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A B S T R A C T

The advancements of search engines for traditional text documents have enabled the effective
retrieval of massive textual information in a resource-efficient manner. However, such conven-
tional search methodologies often suffer from poor retrieval accuracy especially when documents
exhibit unique properties that behoove specialized and deeper semantic extraction. Recently, Al-
gorithmSeer, a search engine for algorithms has been proposed, that extracts pseudo-codes and
shallow textual metadata from scientific publications and treats them as traditional documents
so that the conventional search engine methodology could be applied. However, such a system
fails to facilitate user search queries that seek to identify algorithm-specific information, such as
the datasets on which algorithms operate, the performance of algorithms, and runtime complex-
ity, etc. In this paper, a set of enhancements to the previously proposed algorithm search en-
gine are presented. Specifically, we propose a set of methods to automatically identify and ex-
tract algorithmic pseudo-codes and the sentences that convey related algorithmic metadata us-
ing a set of machine-learning techniques. In an experiment with over 93,000 text lines, we in-
troduce 60 novel features, comprising content-based, font style based and structure-based fea-
ture groups, to extract algorithmic pseudo-codes. Our proposed pseudo-code extraction method
achieves 93.32% F1-score, outperforming the state-of-the-art techniques by 28%. Additionally, we
propose a method to extract algorithmic-related sentences using deep neural networks and achieve
an accuracy of 78.5%, outperforming a Rule-based model and a support vector machine model by
28% and 16%, respectively.

1. Introduction

Rapid growth in scholarly documents has been observed due to increasingly enormous research activities conducted by scien-
tific communities both in academia and industry over time (Xie et al., 2019; Shardlow et al., 2018; Hassan et al., 2018; Xia et al.,
2017). The advancements in web-based tools and technologies have enabled us to store and index millions of articles in digital
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archives. Academic search engines and digital libraries such as Google Scholar1, Web of Science2, Microsoft Academic3, and Se-
mantic Scholar4 have become a necessary means for researchers to keep abreast of scientific advancements (Safder & Hassan 2019;
Ananiadou, Thompson & Nawaz 2013). The search mechanisms used for these scholarly repositories typically represent a document
as a bag-of-words without sophisticated semantic processing and rely on simple keyword-based search and textual matching tech-
niques, which do not effectively interpret query/document semantic relevance in certain information needs (Vo & Bagheri 2019;
Sinoara et al., 2019; Hassan et al., 2017). For instance, to answer the query “Which model gives the best accuracy on IMDB data
set?”, simple text-matching the query and document text may be insufficient. This is because most text-based information retrieval
systems tend to return documents that contain the query terms, which may not even discuss any algorithms that were used on the
IMDB dataset. Hence, this kind of sophisticated information requires intelligent methods that match the content of a scientific paper
with relevant algorithm-specific metadata. However, most traditional information retrieval approaches fail to deliver precise answers
to such specific algorithmic needs, since they treat a document as a ‘chunk of full-text’, which is later processed as a ‘bag-of-words’.
Such document processing fails to extract crucial information that would satisfy complex and specific queries (Azad & Deepal 2019;
Wang et al., 2011; Arshad et al., 2019)

In computer science and other computing-related fields, researchers publish their newly developed algorithms and corresponding
metadata information in scholarly documents, disseminated through conference meetings, journal publications, open-access archival
services, etc. A significant number of these scientific articles contain pseudo-code (algorithm) along with relevant algorithmic con-
texts such as evaluation results of an algorithm, datasets used by that algorithm and its runtime complexity. Bhatia and Mitra (2012)
estimated that roughly 850 algorithms were published in top-tier computer science conferences during 2005-2009. The ability to
identify these newly emerging algorithms and to extract their corresponding metadata could prove crucial for developing a specific,
semantic-enhanced search methodology for algorithms extracted from a vast and ever-increasing pool of scholarly documents (Li &
de Rijke 2019; Imran et al., 2018)

Searching for a well-known algorithm along with its algorithmic specific metadata, (time complexity, dataset, and results) is quite
easy, as these “standard” algorithms are typically already indexed and made available online. Generally, we consider an algorithm as
a standard algorithm if it is eminent and recognized by its name, such as the Heapsort algorithm, Dijkstra's algorithm, Bellman-Ford
algorithm, and Floyd–Warshall algorithm, etc. Such standard algorithms and their corresponding metadata are manually collected
and cataloged in algorithm textbooks, Wikipedia, and specialized websites for computer programmers such as Tutorialpoint5 and
Programming-Algorithm.net6. According to an initial survey in 2010, Wikipedia.com cataloged around 1,700 standard algorithms.
Furthermore, The National Institute of Standards and Technology (NIST) has a personalized collection of over 289 standard algo-
rithms. While standard algorithms are well managed and cataloged, newly proposed algorithms in scientific publications are not as
well curated, simply because they are both too new, and hence not yet well received by research and practice communities. Further-
more, the massive emergence of these newly invented algorithms published in scientific documents inherently introduces challenges
to manual curation of these algorithmic inventions and their metadata.

Searching for novel algorithms is non-trivial as it requires a tedious effort of manual searching scientific papers and reading
through them until the user finds the desired algorithmic information. However, having to read through entire research articles
would not only make it a tiresome procedure of finding the desired algorithms, but also could discourage many novice algorithm
searchers from seeking cutting-edge algorithmic solutions and diverge away to more standard, yet not so ground-breaking algorithms
which are much easier to find. Moreover, this process may become more exasperated if the searchers are non-experienced in scien-
tific article search who have the tendency to use inappropriate searching keywords. Hence, automatic identification and extraction
of algorithms along with their metadata could significantly support a successful algorithm search mechanism. Recently, a prototype
algorithm search engine has shown improvements to mine algorithms and algorithmic specific metadata from full-text articles (Tu-
arob et al., 2016). While these techniques can extract algorithm representations (as in pseudo-codes) and generate a textual summary
for each algorithm, many aspects are still left for improvement and investigation. Specifically, their pseudo-code extraction method
could be significantly improved by incorporating features that characterize pseudo-code content. Furthermore, algorithm-specific
metadata could be extracted from the document proposing an algorithm. For instance, pseudo-codes corresponding to algorithms and
their associated properties, such as the dataset statistics, performance, and runtime analysis would be additional useful to algorithm
seekers when searching for desired algorithms (Bakar, Safder & Hassan 2018).

In this research, we first observed that pseudo-codes are written in different font sizes and multiple styles, separated from the
body of text in a scholarly article. Therefore, tailored feature engineering techniques that capture pseudo-code characteristics are
investigated for automatic algorithm identification. Moreover, we observed that only a small portion of content in an algorithm
proposing paper discusses the properties of such an algorithm. Table 1 shows notable examples of sentences that convey algorith-
mic properties, found in the discussions related to the evaluation results of an algorithm, dataset for experimentations and run-time
complexity of an algorithm. In this research, we aim to identify and extract such sentences to provide richer algorithmic meta

1 https://scholar.google.com
2 www.webofknowledge.com
3 https://academic.microsoft.com
4 https://www.semanticscholar.org
5 https://www.tutorialspoint.com/
6 https://www.programming-algorithms.net/
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Table 1
Example of sentences conveying algorithmic metadata. [E = Evaluation, D= Dataset, C= Complexity, G= General]

Algorithmic specific metadata sentences
Class
Label

“The experiments indicate that the ARG editing distance, although the slowest, has certain advantages over all other methods: (a) It is the most accurate
demonstrating higher precision and recall than any other method, followed by Hungarian methods and 2D strings.” (Petrakis & Georgiadis 2000).

E

“The data for this task consists of 500 news articles from the New York Times and Associated Press Wire services each paired with 4 different human-
generated reference summaries (not actually headlines), capped at 75 bytes.” (Rush et al., 2017).

D

“For a sorted list of weights, this algorithm runs in O(Hlog log(n/H)) time with 0(n) work, where H is the length of the longest generated code.” (Milidiú
et al., 1999).

C

“Assigning a category to a given word (tagging) depends on the particular word and on the categories (tags) of neighboring words. A theory that is able
to assign tags to a given text is then a recursive logic program by nature.” (Jorge & de Andrade Lopes 1999).

G

data to extracted algorithms. Since the algorithmic metadata is usually composed of textual context with varying writing styles fol-
lowed by different authors and fields of study, using keyword-based approaches to identify algorithmic related sentences may not be
sufficient to capture semantics related to algorithmic metadata.

In this paper, we propose a set of novel machine learning techniques to identify algorithms represented by pseudo-codes and to
extract algorithm-specific metadata from a scientific document. Moreover, we present a prototype of an algorithm-focused search
system with an emphasis on finding algorithms proposed in the scientific documents. Such a system leverages the proposed machine
learning approaches to extract algorithms and algorithmic metadata, which could be used to enhance semantic annotation to corre-
sponding algorithms, hence further improving the semantic search capability. The main contributions of this paper are as follows:

We propose a novel machine learning-based method to discover algorithms (represented as pseudo-codes) in scientific articles.
We frame the problem into a binary classification task, where a text line is classified whether it is part of a pseudo-code or not. A
total of 60 novel features are extracted from each text line in the document, divided into three subcategories: Font Style based (FS),
Content-Based (CN), and Structure-based (ST). Furthermore, we deploy five machine learning classifiers such as Random Forest (RF),
KNN, Naïve Bayes, Logistic Regression and Decision Tree to classify each text line. The proposed approach is validated on a dataset
of 256 research papers, randomly downloaded from CiteSeerX repository. We found that RF achieved 93% F1-score, outperforming
the existing state-of-the-art techniques by 28%.

We propose a deep neural network-based classification technique to identify algorithmic metadata sentences that discuss algo-
rithmic performance evaluation, datasets used, and runtime complexity. We frame this problem into a classification task where a
sentence in an algorithm proposing paper is classified into algorithmic related classes. The proposed approach uses character level
embedding to produce word-level streams that effectively classify these contextually enriched algorithmic metadata sentences by
treating each type of algorithmic metadata as a separate class. Furthermore, we perform a set of rigorous experiments to validate our
proposed technique against two baselines: the Rule-based and a Support Vector Machines (SVM) classifier. The input dataset contains
roughly 37,000 sentences extracted from 256 scholarly articles, originally downloaded from CiteSeerX repository. The proposed deep
learning approach outperforms the Rule-based and SVM methods by 56.69% and 25.80% respectively, in terms of accuracy.

We present a prototype, algorithm-focused search system, Enhanced-IR System, that incorporates our algorithm metadata ex-
traction method. We deployed a case study using 21,940 full-text publications originally downloaded from the Association of Com-
putational Linguistics (ACL) repository. First, we generate a specialized algorithmic-based summary called document synopsis for
each full-text document. Furthermore, we enriched these synopses by inserting algorithmic metadata extracted by our proposed deep
learning model. Lastly, we use Apache Lucene to index the extracted algorithmic metadata and make them searchable. We empiri-
cally evaluate the efficacy of the proposed Enhanced-IR system against a conventional TF-IDF based system, which only indexes the
whole textual content in each document.

The remaining paper is organized as follows. In Section 2, we discuss related work. In Section 3, we discuss our dataset and
proposed methodology using machine learning and deep learning models. Section 4 explains the experimentation and our achieved
results in detail followed by a comprehensive discussion about our proposed deep learning-based search engine. Lastly, in Section 5,
we present a conclusion and discussion on future directions and potential applications of this research.

2. Literature Review

Extensive research has been done to investigate the effective retrieval of different document elements such as tables, figures,
and pseudo-codes from the full body text of an article (Rastan, Paik, Shepherd 2019; Safder & Hassan 2018). Different Rule-based
and machine learning-based techniques were proposed and deployed for these documents’ element retrieval tasks (Altınel, B., & Ga-
niz 2018; Safder, Hassan & Aljohani 2018; Safder et al., 2017). Prominent among these is the AlgorithmSeer (Tuarob et al., 2016),
i.e. an algorithm search engine, which automatically extracts algorithms from research papers by means of a hybrid machine learning
approach. The system utilizes an ensemble machine learning method, which learns from 47 features automatically-extracted from
each sparse region in a document. The classification model is then used, first, to classify each region whether it is a pseudo-code
or not, and then, second, the system extracts useful textual information corresponding to these algorithms by utilizing a synop
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sis generation method. They also presented a case study on the heterogeneous pool of 20,000 research papers, to improve the search 
results when search queries are algorithm-related.

Moreover, a specialized chemistry search engine, ChemxSeer (Mitra et al., 2007), was proposed for the extraction of figures, ta-
bles and corresponding metadata. The system assists chemists and researchers to search for chemical formulae written in indexed 
chemistry publications. Later, they also designed TableSeer, a search system for tables, along with this work. AckSeer (Khabsa, Treer-
atpituk & Giles 2012) is an acknowledgment search engine built on the CiteSeerX digital library. It uses regular expressions to extract 
acknowledgments from full-text documents. Entities are then extracted from acknowledgments using named entity recognition (NER) 
tools. Recently, methods for extracting and understanding mathematical expressions have been proposed. An example of such appli-
cations is document classification based on mathematical expressions written in academic documents, which categorizes mathemati-
cal documents into their mathematical category, e.g. graph theory, probability theory, and linear algebra (Suzuki & Fujii 2017).

To satisfy certain IR queries, information extracted from images, plots, and graphs presented in the articles could prove essential. 
A few attempts have been made to extract information out of these plots by separating the axis, their labels, legends and data points 
using a computer vision approach (Choudhury, Wang & Giles 2016). Such efforts have established that extracting figures from PDF 
files i s a  c hallenging t ask, m ainly d ue t o i nsufficient la beled da tasets to  tr ain ac curate mo dels. Th is is  ma de po ssible by  inducing 
labels to a large dataset and training the neural network for figure extraction (Seigel 2018; Clark &  Divvala 2016). A  state-of-the-art 
approach for figure extraction, FigureSeer, was proposed, which implements a ResNet based approach to mine information from fig-
ures in scholarly documents (Seigel 2016). The algorithm first localizes potential figure candidates and then classifies each of them 
whether it is a figure o r n ot. T his a pproach a lso h andles c lutters a nd d eformation, r esulting i n a  b etter, m ore a ccurate a nd more 
powerful search. Meuschek (2018) designed an adaptive approach for plagiarism detection from independent text components such 
as images, diagrams, and flowcharts f rom academic d ocuments. The p roposed method i ncorporates s tate-of-the-art image analysis 
techniques with image similarity assessment and position-aware OCR based techniques. The achieved results indicate that this ad-
vanced technique can complement the content-based feature analysis approach for academic plagiarism detection.

More recently, few attempts were made to develop semantic relations between entities. Al- Zaidy and Giles (2018) proposed an 
unsupervised model to construct the entity-relationship graph by avoiding manual data tagging for training. This construction is done 
by an iterative approach where a semantic learner learns from previously extracted tuples. The nodes represent entities, and thus a 
relationship can be developed for better analysis. These graphs were used for algorithmic discovery, or to rank the documents based 
on their relationship in the graph (Xiong 2017).

Text classification is a prominent area of research for many years. Traditional and classical machine learning models such as SVM, 
Naïve Bayes, k-Nearest Neighbors are among the standard choices for document classification t asks (Joachims 1 998; Rubin et al., 
2012, Mahmood et al., 2020). A prominent drawback of these models is that efficiency and performance rapidly decrease for multi-la-
bel classification. R ecent a dvancements i n r epresentation l earning a nd d eep n eural n etworks h ave d evised n ew w ays o f learning 
textual representations (Nguyen, Duong & Cambria 2019; Le & Mikolov 2014). Learning representation of words and sentences from 
the data, deep learning models, such as CNN (Kim 2014), RNN (Lai et al., 2015), RCNN (Sundermeyer, Schlüter & Ney 2012) and 
LSTM (Greff, 2016), appears to be highly effective in text classification, in contrast with traditional bag-of-words based models.

Zhang et al. (2015) introduced a multi-class text classification using character-level convolutional neural networks on large-scale 
datasets. The methods were evaluated against the traditional models, such as BOW, N-grams, TF-IDF, and deep leaning word-based 
CNN and LSTM models. They found that the baseline models overcame the proposed deep learning models with small sample sets; 
whereas, in the case of large-scale datasets, character level deep learning approaches were superior. Inspired by computer vision deep 
networks, Conneau et al. (2016) proposed deep architectures for text classification. The networks operate d irectly a t t he character 
level and employ small convolutions and pooling layers. They also debated that the deep convolutional layers increase the perfor-
mance of deep learning models for text classification.

Recently, Mai et al. (2018) proposed a document title-based semantic subject indexing approach using deep learning MLP, CNN 
and RNN models. They claimed that their proposed deep learning models outperformed the available full-text systems by a large 
margin. Safder et al. (2018) designed a metadata sentence classification a pproach u sing a n L STM d eep l earning m odel. Moreover, 
other studies have focused on encoding syntactic knowledge (part of speech) to enhance sentence and phrase-level representation for 
text classification (Huang, Qian &  Zhu, 2017). Regardless, usages of deep learning techniques for the extraction of metadata specific 
to document elements (such as algorithms) in scholarly documents have not been fully explored.

3. Methodology

We propose a set of machine learning based techniques to automatically identify pseudo-codes (PCs) and extract algorithmic
metadata sentences from a scientific document. We frame both the problems into text classification problems where each text re-
gion/sentence is classified whether it is a pseudo-code/an algorithmic metadata sentence or not. The section presents the detail of
our proposed approaches, as illustrated at a high level in Figure 1. Firstly, we converted the PDF files into text files. Secondly, we
extracted algorithmic PCs present in the scientific papers. Afterward, we extracted algorithmic metadata present in those papers that
at least contain one or more algorithmic PCs. Lastly, we present a case study of an advanced search system that utilizes the proposed
algorithm-specific metadata extraction to improve algorithm-focused search results.

4



Figure 1. High-level system architecture.

3.1. Algorithmic pseudo-code extraction

In this section, we discuss the details of our designed machine learning-based technique to extract PC from research articles (see
Figure 2). Firstly, we converted PDF articles into text documents using Java-based Apache PDFBox7 API. It supports extraction of
unicode text and eliminates graphical images from a PDF document. Inspired by the work of Hassan (Hassan 2009), we made some
modifications to PDFBox's library to also extract object information such as font styles, font sizes and text locations from a PDF doc-
ument. After this process, only textual content and their font-information are retained, while figures and text alignment information
are removed to facilitate subsequent text mining algorithms. Then, 60 features are extracted from each text line, which are used to
train classification models to identify PC lines in a given scientific paper.

Generally, scientific publications articulate their proposed algorithms in the form of PCs. A PC is defined as a set of step-by-step
instructions for solving a computational problem. Note that, mathematical expressions are not considered PCs, as they do not repre-
sent step-wise computational instructions. These PCs are considered as document elements that are separated from the running text,
having distinguishable identifiers such as captions, function names, and algorithm names. Note that, since PCs can appear anywhere
in a scientific publication, their identifiers (captions, functions names and algorithm names) serve as their references in the running
text. Here, we present a set of novel features that extract font style based, structure-based and context-based features from PCs to
segregate them from the body of the running text in scientific publications. The following is the detail of the designed model.

3.1.1. Sparse region identification
To extract PCs from scholarly documents, we first captured the sparse regions in documents with the observation that not all PCs

are accompanied by PC identifiers such as captions. Therefore, a regular expression based technique that merely focuses on detecting
PC captions tend to suffer from low recall because these non-captioned PCs would remain undetected (Tuarob et al., 2016).

Furthermore, we analyzed PCs present in our dataset and found that 25.8% of the total PCs do not have any accompanying PC
captions. We started with the initial observation that a PC is typically written in a sparse manner (named as a sparse region) in a
document. Figure 3 shows samples of sparse regions on a PDF document and corresponding raw-text pages.

A sparse box is defined as a set of M successive sparse lines. Whereas a sparse line is a line that fulfills the following conditions:
The line should not be a header or footer line.
The ratio of the non-spaced characters C with an average number of characters per line AvgC must be lesser than the threshold z,

that is .
The four text lines upper or lower the given line must be a sparse line.

3.1.2. Feature engineering for PC identification
We compiled a heterogeneous group of features that contain structure-based (ST), content-based (CN) and font style based (FS)

features. Table 2 presents the list of the extracted features along with their descriptions. We extracted 60 features comprising 18 CN,
34 ST, and 8 FS features. The CN feature set captures the captions and the presence of algorithm-related keywords. Similarly, the FS
based features examine the variations in font styles, font sizes, and indentation used to compose a PC. The ST features analyze the
text sparsity along with the character types and symbols used. Furthermore, we deployed multiple feature normalization techniques
to avoid model over fitting.

3.1.3. Algorithmic Metadata Extraction
The proposed algorithmic metadata extraction model leverages the capacity of deep learning classification techniques to iden-

tify text lines in a given document that discusses metadata information of the proposed algorithmic PC within. Specifically, we
employed a character convolutional neural network and two Bi-Directional LSTM architectures to classify each sentence in an ar-
ticle into one of the three algorithmic metadata classes, or non-algorithm related class. Note that, word embedding based tech

7 https://pdfbox.apache.org/
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Figure 2. Proposed mechanism for algorithmic PC extraction.

Figure 3. An example of sparse region extraction for algorithmic PC extraction

niques (Mikolov et al.,2013) are well adapted for domain-specific tasks, but acquiring prior knowledge is nevertheless a costly process
– it requires a predefined word vocabulary, and the structural parser needs to deal with many different variations including morpho-
logical shifts and undefined chunking. Such specifications make text comprehension more or less specialized to a particular language
– in case of language modifications, many rules need to be built from scratch.

Additionally, deep learning systems are capable enough to understand text scripts without artificially integrating external knowl-
edge about words, sentences or any other language-related syntactic and semantic concepts (Zhang & LeCun 2015). Interestingly, in
the English language, all dictionary words are generated by 26 alphabets (or 52 in case of both upper and lower case alphabets or
a few more special characters). Therefore, with character embedding, any word vector can be generated even from out-of-vocabu-
lary words. Whereas, word embeddings can only handle seen words. Likewise, character embeddings work well for misspelled and
new words. Moreover, it manages rare words much better than word2vec because word embedding vectors suffer from the lack of
training data for infrequent words. Additionally, in the case of character-based models, there are a small number of vectors; there-
fore, they are quite efficient in terms of model time complexity (Kim et al., 2016). Figure 4 explains the detailed architecture of our
proposed approach. Firstly, the PDF documents are parsed to extract textual content. Next, we performed the document segmenta
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Table 2
Feature list for pseudo-code extraction.

Feature Description
CN Word Sparsity Ratio of no. of words to avg. no. of words in a line

Character Sparsity Ratio of number of chars in a line to avg. no. of chars
No. Algo Keywords No. of algorithm keywords (e.g algorithms, pseudo-code, etc.) in a line
Percent Algo keywords No. of algorithm keywords in a line to the number of words.
Percent Algo. Keywords to lines Ratio of algorithm keywords to the number of lines.
Number of PC keywords Number of PC keywords (e.g. if, else, for, for all, while, do, iftrue, ifend etc.) present in a line
Percent PC keywords No. of PC keywords in a line to the number of words.
Percent PC Keywords to lines Ratio of PC keywords to the number of lines.
Begin with PC Keyword Is line begin with a PC keyword or not
No. lines begin with PC
Keyword

Number of lines begin with a PC keyword.

Percent of begin PC keywords Ratio of the number of lines begins with a PC keyword to the number of lines.
Is Function Is a function detected by regex, e.g. FindMin(), present in the line or not
Number of Functions Total number of functions in a line e.g. count(s)
Functions Percent Ratio of no. of functions to no. of lines
Is PC caption The current line is a PC caption or not.
PC Label Nearby Is the line has a PC label (e.g. Algorithm Z, Procedure, etc.) nearby in a window (three lines above or below the

line)
PC Caption Nearby Is a PC Caption present within a window range.
Caption Nearby Is a general caption or PC caption present within the window range.

ST Begin with a Digit. Is line begin with a digit
Lines begin with a Digit Total number of lines begins with a digit.
Percent Lines begin with a Digit Ration of the number of lines with a digit to the total number of lines.
Lines End with a Dot Total number of lines end with a dot.
Percent Lines End with a Dot Ratio of the number of lines end with a dot to the number of lines.
Chars Count Number of chars in a line.
Percent Chars Ratio of the number of characters to the number of lines.
Symbol Count Number of symbols present in a line.
Percent Symbol Count Ratio of number symbols present in a line to the number of characters.
Alphabets Count Number of alphabets in a line.
Percent Alphabets Count Ratio of the number of alphabets in a line to the number of characters.
Digit Count Number of digits present in a line
Percent Digit Count Ratio of the number of digits to the number of characters.
Alphanumeric Count Number of alphanumeric characters present in a line
Percent Alphanumeric Ratio of number of alphanumeric characters to the number of characters
Non Alphanumeric Count Number of non-alphanumeric characters present in a line
Percent Non Alphanumeric Ratio of the number of non- alphanumeric characters to the number of characters
Greek Chars Count Number of Greek characters present in a line.
Percent Greek Chars Ratio of the number of Greek characters to the number of characters
Arrows Char Count Number of arrows chars in a line
Percent Arrows Char Ratio of number of arrow chars to the number of characters
MathOps Count Number of math operators in a line
Percent MathOps Count Ratio of the number of math operators to the number of characters.
Comment Signs Count Number of comment signs in a line
Percent Comment Signs Ratio of number of comment signs to the number of characters
PC Symbol Count Number of PC symbols (e.g. math operators, arrows, comment signs)in a line
Percent PC Symbol Ratio of Number of PC symbols (e.g. math operators, arrows, comment signs)in a line to the number of chars
1CharWords Count Number of 1character words in a line
Percent 1CharWords Ratio of number of 1character words in a line to the number of lines
Percent 1CharLines Ratio of number of lines with 1character words to the total number of lines
ijk Chars Count Number of ijk characters in a line
Percent ijk Chars Ratio of number of ijk characters in a line to the number of lines
Coding Symbol Count Number of coding symbols in a line
Percent Coding Symbol Count Ratio of the number of coding symbols in a line to the number of lines

FS Mode FS The mode font size of a line
Variance FS The Variance value of the font size of a line.
Indentation Is the text line is indented or not
Indentation Variance Indentation Variance value of a text line.
Avg. Indentation Of First 4
Chars

Average indentation of first 4 characters in a line.

Number of Diff FS The total number of font sizes present in a line.
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 Table 2 

(Continued)

Feature Description
Number of FS Switches Count the number of font style switches in a line
FS Switches Percent Ratio of number of font style (different combination of font style and font name) to the number of lines.

Figure 4. Detailed architecture of the algorithmic metadata extraction model.

tion and pre-processing to clean noisy text remnants and classify each chunk of text into corresponding sections. Furthermore, the
cleaned sentences are fed to the deep learning model for classification of algorithmic specific metadata. Lastly, we combined the ex-
tracted algorithm metadata sentences with sentences that directly reference an algorithm (e.g., “Our proposed approach is summarized
in Algorithm 2.”) for efficient document searching.

3.2.1. Deep Neural Network Model
The proposed model scans through each sentence in a document, then classifies it into an algorithm metadata type. Firstly, the

text character streams are fed to the sentence encoding component to generate sentence level embedding. Note that, the LSTM is
added at the encoding stage to keep track of word and character positions in a sentence embedding. Furthermore, these learned sen-
tence encodings are passed to another Bi-Directional LSTM to capture sentence context and semantics. Lastly, we added a layer of
neurons as an output layer. The details of the components in the model architecture are discussed in the following sections.

3.2.2. Hierarchical Section Extraction
Generally, a scholarly article is organized into eight standard sections, namely, Abstract, Introduction, Background, Proposed

Methodology, Experiments, Results, Conclusions, and References. We observed that the location of the sentences can provide useful
signals for identifying algorithmic metadata. For example, discussions related to the results of an algorithm are usually added into
the Experimentation & Results section. Similarly, discussions related to algorithmic time complexity and datasets are typically added
into specific sections of an article. Therefore, we employed a document segmentation approach (Tuarob, Mitra & Giles, 2015) to sep-
arate the document into standard sections. Note that the relevant sections such as Abstract, Methodology, Experimentation & Results
and Conclusion, which are likely to contain discussions related to algorithmic metadata are segregated from all irrelevant sections
(Introduction, Background, and References). Moreover, we also applied text cleaning techniques using heuristic rules and regular
expression to get rid of junk lines (lines that are part of text remnants from tables or lines that do not form complete words), header
& footers, authors name and affiliations, and document titles. In the end, the processed text is provided to the designed classification
model.

3.2.3. Sentence Encoding and Classification
Our designed deep neural network accepts character one-hot encoding schemes as an input vector. The vector is generated by

selecting m characters as language alphabets, where m= 70 (including 26 English alphabets, 10 digits, new line and 33 other spe-
cial characters) is the number of the possible character set. Then, each character is represented by a one-hot vector (size of m).



Note that characters outside of the set, such as space, are encoded as zero vectors. The output is 16 dimensions vector per every
single character.

At the embedding stage, firstly, the characters (one-hot encoding) are read by the CNN (convolution and max pool layer) to
generate a sequence of 0/1 vectors representing the sentence. Since sentences may have different lengths, to avoid inconsistent rep-
resentation from CNN, we employ the LSTM layer to summarize the sequence of vectors into a single fixed-size vector. Specifically,
the sequence of vectors from the CNN is fed to two bidirectional LSTM layers, and the concatenation of the last output states (both
directions) is the encoded sentence. The final representation is a vector intended to capture the semantics of a sentence without
losing ordering information of words (characters) and to model dependencies of words (characters) in both forward and backward
directions. To classify a sentence, we apply fully-connected layers to transform the LSTM output into a probability distribution over
the classes. The class with the highest probability is the output of our classification model.

3.2.4. Detailed Model Architecture
Our model has the following detail. For the character-level CNN, we use one convolutional layer with 256 filters with a filter

width of 3 (three characters are read at a time), followed by a max-pooling layer with a kernel width of 21. For the bidirectional
LSTM layers, we use two layers having 256 and 128 hidden units respectively. Lastly, the fully connected layers also contain two
layers. The first fully-connected layer has 100 units and uses a ReLU activation function as presented in Equation 1:

(1)

where xi is the encoded representation of input data learned by the LSTM. The final layer has a softmax activation function to com-
pute the probability distribution of the output classes as shown in Equation 2 and Equation 3.

(2)

(3)

For regularization, we applied a dropout with probability = 0.3 in between the layers.

4. Results and Discussion

In this section, we discuss the details of our experimentation and evaluation results for PC extraction and algorithmic metadata
extraction. We also present a simple baseline method called a Rule-based technique and a machine learning method to compare their
results with our proposed algorithmic metadata extraction model. Lastly, we present a prototype of an enhanced scholarly search
engine to illustrate the efficacy and applicability of our proposed approaches.

4.1. Datasets

We used two datasets in this research, one for pseudo-code identification and algorithmic metadata extraction, and the other for
evaluating our enhanced search engine.

The first dataset consists of 256 PDF articles containing 275 pseudo-codes, and 282 unique algorithms, originally downloaded
from CiteSeerX repository. These PDF documents were randomly selected from the set of documents that contain at least one occur-
rence of the term ‘algorithm’. For pseudo-code (PC) identification, we extracted 93,565 text lines from the given dataset and per-
formed manual annotation to tag them as PC or non-PC lines. We found that only 8% of the total lines are labeled as PC lines (Class
1), whereas the other 92% are non-PC lines (Class 0). Out of 256 papers, only 92 papers contain one or more PCs along with their
associated textual metadata. Therefore, these 92 papers were used for the algorithm metadata extraction validation. We preprocessed
the 92 research articles to remove textual remnants and junk lines. Finally, we are left with 37,000 sentences, among which 7% of
sentences are annotated as the positive class (algorithmic metadata sentence) and the remaining 93% sentences are tagged as neg-
ative class (non-algorithmic metadata sentence) instances. Note that, 7% (2,577) of the positive instances comprise three types of
algorithmic specific metadata 1) 2,331 sentences discussing algorithmic efficiency, 2) 136 sentences relating to datasets in a given
document, and 3) 80 sentences describing algorithmic time complexity. We used this dataset to evaluate the performance of our pro-
posed deep learning technique for algorithmic metadata extraction.

To implement a search system, a larger set of documents is required. The second dataset consists of 21,940 articles, downloaded
from ACL, containing 1,500 unique algorithms. We used this dataset as a case study to evaluate the effectiveness of our proposed
enhanced searching system. The complete list of Paper_IDs used in the second dataset can be downloaded from https://github.com/
slab-itu/algo-metadata.

https://github.com/slab-itu/algo-metadata
https://github.com/slab-itu/algo-metadata


.

4.2. Evaluation of Algorithmic Pseudo-Code Extraction

We implemented a set of machine learning classifiers including Random Forest (RF), Repeated Incremental Pruning to Produce
Error Reduction (RIPPER), Decision Stump (DS), Linear Logistic regression (LLR), Support Vector Machines (SVM), Naïve Bayes (NB),
k-Nearest Neighbors (KNN), Logistic Regression (LG), and Decision Tree (DT). However, we only reported the results for the top five
best performing classifiers such as RF, NB, KNN, LR, and DT because the prelim results for the remaining classifiers were not good
compared to other tree-based classifiers due to the rule-extracted features. For model training, we used five-fold cross-validation for
all classifiers. For RF, we set criterian=gini to balance class weights. Moreover, we computed Mean PR-curves and Feature-based
PR-curves to measure the effectiveness of each feature type. These curves elaborate on the model performance and behavior with all
features and for each feature group.

Figure 5 shows the PR-curves for five best performing classifiers along with their AUCPR values using five-fold cross-validation.
We also computed feature-based PR curves for each feature group to get insights about the impact of each feature type on the over-
all performance. We found that RF outperformed all the classifiers with 0.98 AUCPR using all features. Moreover, DT secured 0.91
AUCPR and KNN achieved 0.78 AUCPR. LG and NB remained the lower performing classifiers among all with 0.65 and 0.09 AUCPR
respectively. Note that NB is a conditional probability model that works well with discrete attribute values. Additionally, it also suf-
fers from zero conditional probability issue (division by zero). Therefore, it underperformed when dealing with continuous variables
in our dataset.

Additionally, Table 3 shows the precision, recall, and F1-score for all the deployed classifiers using 5-fold cross-validation. The
results indicate that RF is the best performing model because of its ability to handle multiple decision trees in parallel. The result

Figure 5. Mean and feature based PR curves for all classifiers.



Table 3
Precision, recall, and F1-score for all classifiers.

Classifier Precision Recall F1-score
Random Forest 0.96 0.91 0.93
Decision Tree 0.73 0.87 0.80
KNN 0.66 0.62 0.64
Logistic Regression 0.25 0.89 0.37
Naïve Bayes 0.09 0.68 0.15

is the average of all the decision trees. Since a single decision tree has a high value of variance that tends to over-fit easily, the aver-
aging mechanism (or voting) helps to reduce the variance and avoid model over-fitting. Moreover, RF selects subsets of data to learn,
therefore; it works well even on large datasets. Additionally, it has the ability to handle class imbalance by attempting to minimize
the overall error rate to optimize model performance.

We also present the feature-based PR-curves for all feature groups; CN, FS, and ST, for each classifier (see Fig. 5). We observed
that CN based features are the best performing feature set among all feature groups with 0.98 AUCPR. This is because such features
are capable of capturing PC contents, including algorithm/PC keywords and the presence of captions. Moreover, FS and ST features
have also shown promising results independently.

Furthermore, we have also compared our best performing classifier RF trained with our proposed features using five-fold cross-val-
idation with existing state-of-the-art pseudo-code extraction methods (See Table 4). Overall our PC extraction model (PC-ML60) has
outperformed the existing state of the art (Taurob et al., 2016) Rule-based (PC-BL), machine learning (PC-ML) and combined (PC-ML)
PC extraction techniques with 90.02% precision, 90.76% recall and 93.32% F1-score, outperforming the best baseline (PC-CB) by
+9.9% precision, +35.12% recall and +22.87% F1-score respectively.

4.3. Evaluation of Deep Neural Network for Algorithmic Metadata Extraction

To train a deep neural network model, we optimize the network using categorical cross-entropy loss. We set the number of epochs
to 100. Further, to overcome the class imbalance problem in our input data, we deployed standard data balancing techniques such
as random undersampling and oversampling. Moreover, we performed a set of experiments using multiple optimizers such as Adam,
Adamax, Adagrad, Adadelta and RMSprop with the learning rate = 0.001.

Figure 6 depicts the learning accuracy and loss behavior during the model training using different optimizers. The model has
shown a very smooth behavior for optimizers Adam and RMSProp. Whereas, the other three optimizers (Adagrad, Adadelta, and
Adamax) did not perform well for our dataset. Their accuracy/loss curves have shown irregular behavior during the model training.
Overall, Adam and RMSprop optimizers yielded the best performance. In the first 80 epochs, we observed a rapid increase in training
accuracy and later, we have seen a gradual increase in training accuracy until it reached up to 95% with a loss value approaching to
zero.

4.4. Rule-based Method

For a baseline benchmark, we designed a keyword-based approach. In this technique, we carefully extracted the algorithmic
metadata related keywords such as dataset, corpus, running time, complexity, precision, f-score, etc. from a subset of our dataset. Fur-
thermore, we employed a simple keyword-matching algorithm to mark all matched lines as an algorithmic specific metadata text
line. For instance, if a line contains any of the algorithmic specific keywords, it would be marked as the positive class line. The
rest of the lines are treated as negative class instances. However, this traditional keyword matching approach suffered from very
low recall and low precision due to its inability to capture the context of the sentences. Furthermore, we deployed an SVM model
with linear kernel settings. Table 5 shows our achieved results in terms of precision, recall, F1-score, and accuracy for our proposed
deep neural network (DNN) algorithm metadata sentence classification model, and the other two baselines (i.e. Rule-based and SVM
methods). The deep learning model trained with the RMSprop optimizer yielded the highest F1 score. Therefore, we used these re-
sults to represent the best performance achieved by our proposed approach. Overall, our deep neural network approach performed
better than both the Rule-based and SVM approaches, with 79% accuracy, due to its ability to understand representations of seman-
tics and context during classification. It is also worth noting that the Bi-Directional LSTM treats an input sentence as a sequence of
terms, whose orders are considered, while the other baselines represent a sentence as a bag of words. The high classification perfor

Table 4
Precision, recall, and F1-score for PC extraction.

Method Model Precision% Recall% F1-Score%
PC-BL (Tuarob et al., 2016) Baseline 70.46 35.96 47.62
PC-ML (Tuarob et al., 2016) Majority-Voting (LMT-RF-RIPPER-MLR) 85.31 57.04 68.04
PC-CB (Tuarob et al., 2016) Majority-Voting (LMT-RF-RIPPER) 87.37 67.17 75.95
PC-ML60 Majority-Voting (RF) 96.02 90.76 93.32



Figure 6. Learning curve of the sentence classification network with different optimizers.

Table 5
Algorithmic metadata evaluation.

Methods Optimizer Precision Recall F1-score Accuracy
Rule-based N/A 0.211 0.163 0.155 0.501
SVM N/A 0.701 0.622 0.562 0.624
DNN RMSprop 0.787 0.778 0.782 0.785
DNN Adam 0.809 0.777 0.781 0.755

mance achieved by the Bi-Directional LSTM may infer that the orderings of terms could be useful signals for detecting sentences with
algorithm-specific information in a scientific document.

4.5. Employed Search Systems

In this section, we present a prototype search system, designed specifically to target searching for documents containing algo-
rithms. We generated document improved summary called document synopsis using algorithmic metadata extracted sentences and
algorithm referencing text lines from the document using the BM25 formula [31]. Equation 4 represents the mathematical formula



tion for BM25.

(4)

Where n represents the number of lines in the document, lct = line count, i.e., the number of lines that contain the term t,
tcts = number of times a term t appears in a line L, tctq = frequency of term t in query Q, lL = length of line L, lav = average length
of a line in D and constants k1= 2, k3=2, and b=0.75.

The synopsis presents the algorithmic specific brief description of a research publication. Representing a document with its al-
gorithmic synopsis facilitates the algorithm searchers to narrow down search results, especially when their information needs are
algorithm related. Therefore, we used document synopses for indexing instead of a complete document.

In order to measure the usefulness of the synopsis generated by our proposed methods in terms of improving searching capabil-
ities, we carried out an empirical study on the ACL dataset containing 21,940 documents. Firstly, we deployed our algorithmic PC
metadata extraction model on those papers which have one or more algorithmic PCs. Secondly, we created a document synopsis using
our proposed algorithmic PC metadata detection. Lastly, we indexed these synopses and calculated their ranking results (R) on over
50 algorithm related search queries (see Table 6). Additionally, we computed Reciprocal Rank (RR) by taking inverse of R, RR=1/
R and Mean RR (MRR) by taking sum average of RR, . In this experiment, we implement a baseline search engine
using Apache Lucene that indexes whole documents and use customized TF-IDF based textual similarity to retrieve documents. By
design, Lucene implements a customized TF-IDF function for efficient score computation, using techniques for boosting and normal-
izing.

Fig. 7 illustrates the RR for both the traditional system (TS) and the enhanced system (ES) for the 50 queries. The box areas rep-
resent the RR value for TS and ES against 50. In the case of ES, we observed a higher RR score for most of the queries. Furthermore,
Fig. 7 shows the MRR values for both systems. The red line represents the MRR value of the corresponding system. Our ES achieved
average MMR= 0.7 against TS that yielded a lower average MRR of 0.49. Therefore, in the case of ES, the MRR line is towards the
upper end of the graph compared to TS. Overall, we observed around 40% increases in the performance of our proposed ES compared
to the TS in terms of mean reciprocal rank.

Table 6
Sample query ranking results for the advanced system and traditional system.

Queries
Advance
System [1/R]

Traditonal
System [1/R]

ACL
paper ID Paper Title

Q1: Graph Disambiguation Algorithm 1 [1] 10[0.1] D11-1072 Robust Disambiguation of Named Entities in Text
Q2: Recursive Propagation algorithm for

Propagated affinity matrix
1[1] 1[1] D09-1091 Multilingual Spectral Clustering Using Document

Similarity Propagation
Q3: Word Sense Subjectivity Score scoring

algorithm on SENSIVAL-3
1[1] 3[0.33] P06-1134 Word Sense and Subjectivity

Q4: BFS algorithm on TREC dataset having
high precision and recall

1[1] 6[0.16] D12-1138 A Discriminative Model for Query Spelling Correction
with Latent Structural SVM

Q5: Averaged perceptron algorithm 2[0.5] 18[0.05] D09-1161 K-Best Combination of Syntactic Parsers

Figure 7. Reciprocal Rank for both the Enhanced System (ES) and Traditional System (TS)



5. Concluding Remarks

Algorithms are ubiquitous in computer science and related fields. The ability to extract and index algorithms and their meta-
data from scientific documents could prove valuable for computational science researchers and software developers looking for cut-
ting-edge algorithmic solutions to specific problems that need to be solved. Therefore, the ability and capacity to perform complex
queries and arrive at highly accurate findings are of the benefit of the public and private sector, academia included. In this paper,
we proposed a novel machine learning-based technique that – by reference to 60 distinctive features – enables the identification of
algorithmic pseudo-codes present in scientific publications. Additionally, we identified algorithmic metadata sentences that while
using deep neural networks enhance the searching competences of an algorithm focused IR system. In the future, we plan to design
a new set of ETL pipelines to design character embeding based PC extraction techniques Since, the existing embedding based tech-
niques cannot fulfill this task efficiently at their present form because they can only look into the given PC line and cannot grasp
the contents of a PC box that are written in different font sizes, in multiple styles and spans over multiple lines, separated from the
body of text in a scholarly article. Furthermore, we plan to explore NLP based techniques, such as tree parsing, etc. to understand
the text semantics using alphanumeric characters (Batista-Navarro et al., 2013). This would allow us to compare algorithms based on
their observed results on a particular data corpus with their achieved time complexity. Furthermore, we can design techniques for
finding other algorithm metadata such as code snippets, input, output, and compatible data structures in a large-scale data corpus for
improved document search (Nawaz, Thompson & Ananiadou 2012; Jahangir et al., 2017). Last but not the least, this study is helpful
to build IR models for researchers, scientists, academics and practitioners working in applied sciences, who are inclined to find rele-
vant knowledge related to algorithms from scientific publications. Therefore, we foresee the potential applications of this study in an
emerging area of bibliometric-enhanced information retrieval. As mentioned above, this, in turn, would of particular interest in the
public and private sector, not least in the process of information retrieval, comparison, match findings, etc. The data and code used
in this paper can be downloaded from here: https://github.com/slab-itu/algo-metadata.
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