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Abstract

IoT promises a new era of connectivity that goes beyond laptops and smart connected devices to connected

vehicles, smart homes, smart cities and connected healthcare. The huge volume of data that is collected

from millions of IoT devices raises information security and privacy concerns for users. This paper presents

a new scalable encryption technique, called Flexible encryption Technique (FlexenTech), to protect IoT data

during storage and in transit. FlexenTech is suitable for resource constrained devices and networks. It offers

a low encryption time, defends against common attacks such as replay attacks and defines a configurable

mode, where any number of rounds or key sizes may be used. Experimental analysis of FlexenTech shows

its robustness in terms of its multiple configurable confidentiality levels by allowing various configurations.

This configurability provides several advantages for resource constrained devices, including reducing the

encryption computation time by up to 9.7% when compared to its best rivals in the literature.

Keywords: Internet of Things, Encryption, Security.

1. Introduction

The Internet of Things (IoT) is a set of perceptible connected devices capable of interacting with each

other. A thing refers to any device connected to the physical and digital world over the Internet [1].

These things progressively compose an embedded system that serves several real world environments like

healthcare and intelligent transport. IoT devices embrace physical objects via digital actuators, RFID

tags, sensors and communication units. IoT devices are often characterized by ultra-low bandwidth and

limited computation and communication capabilities. As shown in Figure 1, most of the IoT scenarios are

looking to connect with everything and everyone in order to share information [2]. With the huge number
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Figure 1: A comprehensive vision of the IoT architecture.

of connected entities the network traffic as well as the storage capacity will increase in an exponential

way. This introduces critical security challenges since efficient encryption, e.g., public key infrastructure,

will not operate reliably. These limitations render IoT devices prone to a wide range of attacks. Cloud

computing offers a solution to overcome the resource constraints of IoT devices. Furthermore, offloading

data and outsourcing computational tasks to the cloud presents new security and privacy concerns. The

amount of private information generated by IoT devices intensifies the security and privacy challenges in

cloud-enabled IoT networks. As the adoption of IoT grows, the cost-benefit of designing rigorous protocols

will become a major research subject with great impact. Hence, IoT applications cope with many challenges,

particularly the difficulties related to privacy and security issues [3]. These challenges include low resource

availability issues, vulnerability problems due to the nature of wireless communication, and low-power

computation resources. These constraints explain the difficulty of developing the necessary protocols for

the management and protection of these networks, such as routing and security protocols[4]. Like the other

types of network architectures, security is one of the most challenging requirements in IoT networks [5] which

includes mainly data confidentiality, data integrity, authentication, availability, and data freshness. Any

adapted IoT architecture and its standard protocols must consider essential restrictions such as dynamicity,

reliability, scalability, etc., and the information exchanged between IoT devices and the cloud must be

encrypted with adequate security prior to transmission.

Most of the classical cryptographic systems and algorithms are not suitable for IoT networks as they
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Figure 2: A Lightweight Cryptography Taxonomy.

are designed for resource-rich devices on high bandwidth networks. To address this issue, we propose

a lightweight block cipher that consumes fewer resources and reduces encryption overhead by realising:

smaller block size, smaller key length, lower computational complexity and simple key generation. Such a

cipher depends on the specifically used hardware technology and coding style which are useful to provide

an accurate IoT application. The critical issues that must be addressed in this cipher are: how to secure

inter-device and device-to-cloud communications, how to ensure the security and confidentiality of various

network entities, and what are the techniques adopted for authentication, access control and other security

features?

2. Background and related work

This section aims to present an overview of lightweight cryptography techniques and to discuss some

existing work. The proposed lightweight cryptography techniques will be explained depending on their

characteristics.

2.1. A taxonomy of lightweight cryptography techniques

The main characteristics of lightweight cryptography are low-cost, performance and applicable security

level. An optimal lightweight cryptography has to achieve a good balance between security level, computation

time and power consumption.

Regarding these characteristics, we can classify the previous work in lightweight cryptography into three

main classes: physical primitives, computational primitives and ultra lightweight protocols as shown in

Figure 2.

2.1.1. Physical primitives

The main principle of physical primitives is the use of bio-metrics for authentication. A physical primitive

can extend an analogue singularity or variation in physical features, which is essential to physical structures
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but excessively hard to duplicate, and translate it into a digital value for the determination of a specific

quantification. Physical layer protocols are designed with the aim to minimise power consumption without

compromising the fidelity. Power consumption should be linearly scaled as a function of data rate [6].

In [7], the authors describe Physical One-Way Functions (POWF) which focus on measuring the accuracy

of sprinkling outlines of noticeable laser energy. This approach provides a low implementation cost, but it

is not an appropriate low-cost explanation for radio-frequency identification (RFID) because if one delay is

consistently greater than another across chips, then the response will always be the same.

Other authors, e.g., [8], used POWF in their work to decrease the cost of implementation but it reduces

the performance.

2.1.2. Computational primitives

In computational primitives, the system security relies on the complexity in term of computation. These

approaches provide complicated mathematical solutions with high security level. In particular, asymmet-

ric cryptographic primitives have been approved as a strong solution to protect the data or secure the

communication since every primitive has been considered a secure entity [9]. In asymmetric cryptography,

computational primitives exploit the basics of modular arithmetic to attain Shannon’s philosophies of con-

fusion and diffusion [10] with expending basic mathematical and logical processes. In [11, 12, 13, 14], hash

functions and symmetric cryptography schemes are presented. The main shortfalls of these approaches are

the use of large keys, high complexity and energy consumption assigned to the computation process. In

addition, these approaches have not been investigated by public examination to experiment the security

aspect.

2.1.3. Ultra Lightweight Protocols

Ultra lightweight refers to those security approaches that use simple logic operations such as exclusive-

or (XOR) for their application [15, 16]. These kinds of techniques become popular and more adaptive

through RFID technologies. Indeed, their security aspect can provide the main services of the security

resistant. These schemes focus on a set of applied assumptions, where the attacker will not have the facility

to compute and generate the key. However, some of them consider that the attacker can read the tag for a

too limited time slot. Ultra lightweight primitives can be classified into one-time pads, as in [17, 18], which

are based on pseudonyms, re-encryption [14] and configured passwords [19].

As a result, secret keys are no longer essential to be securely stored in the memory of physical primitives.

These techniques usually reduce the cost of implementation, as well as the security performance. The

focus of computational primitives on complicated mathematical solutions makes them suffer from a security

problem, in particular from key moving between the sender and receiver. A well designed technique may

render them more popular and adaptive for low-end connected devices.
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2.2. Related work

Numerous research works have been recently carried out to provide encryption techniques pertinent

to the IoT context. They address the inherent resource limitations of IoT devices that make it difficult

to apply conventional encryption algorithms that require a significant amount of resources for their opera-

tion [20]. Several researchers cope with the resource limitation challenge by proposing lightweight encryption

techniques to provide efficient and secure communication with reasonable resource utilisation. A number of

researchers devised techniques to optimise existing conventional block ciphers for IoT devices. Some of them

have improved the performance of block ciphers by utilising smaller key sizes [21], reducing the number of

encryption rounds [22] and using smaller block sizes [23].

Other researchers focused on key management and authentication challenges in IoT environments [24].

The vast majority of this research focuses on symmetric-based algorithms. For example, Beaulieu et al. [25]

proposed Simon and Speck which are lightweight block ciphers with a variety of block and key sizes. The

work in [26] proposed a model which uses parallel computation to enhance the performance of the block

cipher algorithm. This model has been designed to consume lower energy and reduce hardware complexity.

The SIT algorithm proposed in [27] focuses on a hybrid Feistel and substitution-permutation network (SPN)

architecture. It is a mixture that uses the advantages of both approaches to develop a lightweight algorithm

that provides substantial security while maintaining the computation complexity at a reasonable level in

an IoT environment. The symmetric encryption scheme proposed by [28] uses multiple chaotic dynamical

systems for the IoT domain. This technique maintains the dynamic key update with each input data

block to provide higher levels of randomness. The authors in [29] present an experimental configuration

of a fractional-chaos based-cryptosystem for an IoT-based architecture in ad hoc networks under the IEEE

802.15.4 standard. The solution benefits from the characteristics of the fractional-order derivative operator

for encryption schemes to provide secure communications.

Lightweight asymmetric based solutions may provide stronger security than symmetric ciphers. However,

asymmetric solutions are not highly scalable and often have higher computation complexity which renders

them unsuitable for IoT environments [28]. Recently, several studies such as Identity-Based Encryption

(IBE) [30, 31] have been published which combine user’s identity with series of attributes to encrypt data

while enforcing a secure access policy. Furthermore, the decryption is carried out when authorized users with

the desired attributes satisfy a threshold access control policy. In [15], the authors proposed a lightweight

IBE scheme by using pre-computation techniques to reduce the computation cost of constrained devices.

They designed a lookup table, which obtains a pre-computed set of pairs generated using elliptic curve

cryptography in order to be used later to carry out cryptographic operations at low computational cost.

To overcome the expensive bilinear pairing computations, the authors in [16] proposed a lightweight no-

pairing IBE scheme based on elliptic curve cryptography by replacing pairing operations with point scalar

multiplication.
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In [32], the authors proposed a lightweight encryption scheme for smart homes. This scheme provides

users and smart objects a secure service at the lowest computation and communication costs. The proposed

solution relies on identity-based encryption to support flexible public key management, which does not

require complex certificate handling.

Attribute-Based Encryption (ABE) provides the necessary flexibility required to manage a large number

of IoT devices and fine-grained access control, which is very much suited to secure data transmission,

storage and sharing in cloud-based IoT systems. The authors in [15, 33] give background information on

the Ciphertext-Policy Attribute-Based Encryption (CP-ABE) and pre-computation techniques in an efficient

and secure way, and then describe the extended ABE scheme proposed for the CloudIoT platform [34, 33].

In [35], Alphand et al. propose a blockchain security architecture for IoT named IoTChain. In this

work, the secure authorized access to IoT resources is ensured by a combination of the ACE authorization

framework [36] and the OSCAR architecture [37]. IoTChain replaces the single ACE authorization server

by the blockchain to make the ACE authorization phase flexible and trustless. The feasibility of IoTChain

is evaluated through an implemented authorization blockchain on top of a private Ethereum network. Dinu

et al. [38] introduced a software benchmarking framework for the consistent evaluation of lightweight block

ciphers on three different platforms, namely 32-bit ARM, 16-bit MSP430 and 8-bit AVR. Recently, a Novel

Tiny Symmetric encryption Algorithm (NTSA) has been presented in [39]. NTSA proposes to enhance the

text file transfer security through the IoT network by introducing additional key confusions dynamically for

each round of encryption.

2.3. Summary and contribution

As a conclusion, all these works might provide a satisfying solution to secure the communication. How-

ever, there are still some inherent limitations in terms of efficiency, scalability and access control, which make

them not suitable for constrained IoT devices. Therefore, there has been a growing demand for efficient

lightweight encryption mechanisms that combine all the features of lightweight symmetric and asymmetric

algorithms [28]. Furthermore, these mechanisms should be able to provide mutual lightweight authentica-

tion for secure access control and authentication between users and devices in an IoT environment. In this

paper, we will design and implement a lightweight encryption technique, which is targeted to define a secure

information exchange by considering the encountered limitations. To this end, an autonomous and secure

exchange of confidential information in the IoT context is required in regard to the nature of the connected

entities and their real environment. The proposed technique focuses on distributed architecture networks

with the aim to ensure a high security on the basis of a dynamic topology.
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Figure 3: A Secure protocol stack for IoT.

3. Architectural concept

In this section, we present the main requirements for a secure information exchange that considers the

limitations of IoT devices. Then we describe the proposed architecture that addresses these requirements.

Our work focuses on distributed architecture networks with the aim to ensure an adapted security level with

dynamic architecture topology. The reason behind flat and distributed network architectures is to adapt

to the nature of IoT networks, where several entities of connected devices may autonomously and securely

exchange confidential information.

A sustainable IoT architecture cannot be achievable without protecting the information, either during the

transmission or the storage. The main tasks here are protection and management. Figure 3 shows a secure

IoT management stack that contains two sub-stacks, IoT having a layered communication protocol as shown

in the right sub-stack, that allows an enormous number of objects to get connected through the internet.

These layers are to fulfill the IoT network limitations and needs. Suitable activity scenarios could be reached

when the second sub-stack is accompanied by the first. That explains why the security paradigm of IoT

network architectures becomes one of the most indispensable elements. Therefore, lightweight computation

modules, such as simple permutation functions and bit-wise exclusive-or operation, are required in the design

of secure transmission for each proposed protocol. To this end, we propose in this work a flexible encryption

technique, called FlexenTech, that provides an acceptable security level with respect to IoT limitations and

requirements.

Table 1 contains the abbreviations used in this paper together with a brief explanation to speed up the

reading and ease the understanding of its content.

The proposed technique was designed with the following goals in mind:

• the technique should be a symmetric block cipher. The same secret cryptographic key (key = K) is

used for encryption and for decryption. The plain data and cipher data are fixed-length bit sequences
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Acronym Definition

K is the secret Key, each pair of entities asymmetrically shares the same secret number called K.

B plain or ciphered data Block size in term of bits.

Vi represents the calculated Value for the ith bit position.

rnd is the number of rounds that will be used in a given configuration.

r the current round.

str means the reversing start bit position from which the next bits will automatically be reversed.

Table 1: List of used acronyms

(block size = B).

• it should be suitable for low resource hardware. This means that the proposed technique should use

only primitive computational operations.

• it should be adaptable to devices of different data-lengths. Accordingly, the number B of bits in a

data is a parameter of our proposed technique; different choices of this parameter can be used.

• it should be iterative in structure, with a variable number of rounds. The number of rounds is a

second parameter as shown in our architecture (Figure 4). The user can explicitly maintain the trade-

off between high speed and high security.

• it should be simple and easy to implement. It is more important to use a simple structure as illustrated

in Algorithm 1, with the aim to easily implement it. Furthermore, a simple scheme is perhaps more

interesting to analyze and evaluate, so that the cryptographic strength can be more rapidly determined.

3.1. The proposed IoT encryption architecture

There are several emerging areas where highly constrained devices are interconnected to accomplish some

tasks. These constrained devices (IoT) aim to communicate and make decisions over many low resources

and capacities. To an efficient use goal, the designed conceptual model illustrated in Figure 4 shows the

complexity space of the proposed technique in view of the security requirements such as confidentiality,

integrity and signature. The efficiency of FlexenTech resides on the choice of B and rnd, where its flexibility

offers a complete freedom to the user for weighing between the complexity and the security level. In

heterogeneous environments, the FlexenTech encryption mode can respond to many challenges and issues

like power consumption of devices, limited battery, memory space, performance cost, and security.

The proposed technique focuses on three parameters to encrypt/decrypt the information:

• Each pair of nodes shares a secret number which will be used as a key.
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Figure 4: A conceptual representation of FlexenTech in view of the complexity space (Block Size, Round).

• A number of rounds should be carried out before achieving the final encrypted information.

• In each given round i, a random rotation will be applied to the information obtained from the previous

round i− 1.

The proposed architecture performs a set of random permutations, substitutions and rotations at the

bit level to encrypt the plaintext. The permutations and substitutions are done using the modular function

with the following steps:

• The size of the information to be encrypted is pre-configured with a given block size called B (in terms

of number of bits).

• Using one of the proposed key management schemes, such as Self-VKS [40], the entities may securely

share a given large number K. We note that B and K should verify the conditions gcd 1(K,B) = 1

and K > B.

• The node uses Equation (1) to make a random permutation at the bit level of the plain information

that will be sent. Figure 5 shows an example that explains how this equation produces random bit

permutations.

• It is possible to construct lightweight hash functions with the aim to ensure a substitution based on

local variable values. Since the modulus operation provides a new random i′ for each given i, all bits

between the str bit position and the B bit position will be reversed. Hence, this situation means that

1gcd(K,B) means the greatest common divisor of K and B
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1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0

161 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Plain Data

Vi = ( B ⨉ ( K – i ) ) mod N

B = 16

K = 101

0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1
Random bit 
permutations

i

i’

Random Vi 4785 69 53 37 21 5 90 74 58 42 26 10 95 79 63

136 12 5 11 4 10 16 3 9 15 2 8 14 1 7

Ordered Vi 955 10 21 26 37 42 47 53 58 63 69 74 79 85 90

Figure 5: A demonstrative example of FlexenTech’s permutation.

the content value of a given bit i will automatically be reversed if str ≤ i ≤ B. Otherwise, the content

value will not be changed as shown in the example of Figure 7.

The key principle behind FlexenTech is that by securely sharing any given large number K, the entities

can generate a set of B random values which will be used to encrypt and decrypt the exchanged information.

The permutation of the bits is based on Equation (1).

Vi = (B × (K − i)) mod K (1)

where i = 1, 2 . . . B and Vi represents the obtained value for the ith bit position in the message of size B.

Hereafter, the values of Vi will be ascendingly ordered with the aim to set up a random bit permutation.

Every bit i will be permuted to its new position i′ depending on the position of Vi in the ascendingly

ordered list. To ensure that every bit will be permuted, the value of K should be selected in such a way

that gcd(K,B) = 1. Figure 5 shows an example of the proposed technique, where the entities securely

share K = 101 and the size of the data is configured to B = 16. On the other hand, the destination node

reconstructs the original information by applying Equation (1) on the received data to resubmit every bit

on its right position.

3.2. The proposed FlexenTech encryption algorithm with recursive rounds

The resource consumption of the proposed security protocol must be lightweight in terms of communi-

cation, memory usage and computation. To make sure that the proposed protocol is feasible and practical,

it should add a communication overhead as small as possible and have low memory consumption and low

CPU workload. Therefore, an efficient encryption mechanism has been adopted. The instructions for use
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Figure 6: General structure of FlexenTech.

of this mechanism are shown in Figure 6, where a set of rounds, performing the same operations over the

obtained encrypted information, should be applied before obtaining the final encrypted information. On the

other hand, the proposed technique focuses on a configurable security threshold which defines the preferred

security level of the communication. The security threshold is the number of required rounds to cipher

a plain data. Additionally, a given threshold determines the overload size that will be added in terms of

the number of additional bits to ensure data integrity and signature. Furthermore, before maintaining any

round, a random rotation is performed, where the start bit of the rotation is computed by Equation (2).

On the other hand, the parameter number of rounds is considered as the security level because it implies

immediately the similarity rate between plain and ciphered text, the computation time, and usually an
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additional overload.

str = (K × (r + Nonce)) mod B (2)

where str is the rotation start bit of a given round r and Nonce is a nonce, or could be a counter, which is

used with the aim to reduce playback attacks. Figure 7 shows a clear example of the ciphering steps with a

security level rnd = 4.

In the following, we explain how the proposed algorithm is applied within an IoT environment. For

descriptive purposes, Algorithm 1 uses some terms defined in modular computation. An originator device

prepares messages with the use of this algorithm in order to protect the data. The private data are the value

of K and the secret information. The value of the data size, the used Nonce and the security level, i.e.,

the number of rounds, can be used as public variables. The encryption table is defined to ensure a random

permutation. Its size equals 3×B, where the first row contains the values of Vi. The second and third rows

are to save the original and the new bit position, respectively, after sorting the Vi values. For more details,

FlexenTech.c 1 shows the C code of the example illustrated in Figure 7.

3.3. Analysis of the proposed encryption algorithm

The efficiency of any cryptographic protocol focusing on any algebraic structure depends on factors such

as: parameter size, time-memory tradeoffs, available processing power, software and/or hardware optimiza-

tion, and mathematical algorithms. Therefore, when designing the proposed technique we have taken into

account the primary concerns to use powerful and efficient mathematical operations and algorithms which

quickly carry out computations respecting at the same time the occurred overhead and the used memory

storage. Several hash and encryption functions or digital signature schemes require computations in Zm, the

integers modulo m (m is a large positive integer which may or may not be a prime). Zm is exploited in many

contexts of modern applied cryptography. In this section, we discuss the requirements and the complexity

of the proposed technique. We also discuss efficient methods that can be used to perform addition and

multiplication in Zm.

As the designed technique is bit-oriented, all of the basic computational operations have B−bit as inputs

and outputs. Hence, the technique is a block-cipher with a one-word of B bit input (plainData) block size

and a one-word (cipherData) output block size. The choice for B is not limited to such values. Therefore,

the technique is well-defined for any B > 0, although for strong encryption and more efficiency it is proposed

to use a large value of B. We note that there is no limit for the values of B and K [41], but the relation

between them should verify gcd(K,B) = 1 to ensure that

B × i mod K 6= 0 ∀ i ∈ {1, 2, . . . B} (3)

Lemma 1. For i ∈ {1, . . . B} let Vi ∈ Zk with K > 0. If B is relatively prime to K, then the congruence

B × i ≡ Vi (mod k) has a solution i; moreover, any integer i′ is a solution if and only if i ≡ i′ (mod K).
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Figure 7: A FlexenTech encryption example with four rounds.
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Algorithm 1 Encryption and Decryption FlexenTech algorithm.

Require: Private: K, plainData;

Require: Public: B, Nonce, rnd, mode, cipheredData;

Ensure: data; . data here means plainData or cipheredData which is tied to the encryption mode.

1: Temporal: table[3][B];

2: Constant: V = 0, orgPos = 1, newPos = 2;

3: for (i ∈ [0, B − 1]) do

4: table[V ][i]← (B × (K − i)) mod K;

5: table[orgPos][i]← i . numbering the bit positions

6: end for

7: table← sortingTable(table)

8: if mode = encrypt then

9: cipheredData← plainData

10: for r ∈ [1, rnd] do

11: str ← (K × (r + Nonce)) mod B

12: cipheredData← rightRotation(cipheredData, str);

13: cipheredData← reverse(cipheredData, str);

14: parityBit(cipheredData, str);

15: cipheredData← RandomPermutation(table, cipheredData);

16: end for

17: return cipheredData;

18: end if

19: if mode = decrypt then

20: plainData← cipheredData

21: for r ∈ [1, rnd] do

22: plainData← RandomPermutation(table, plainData);

23: str ← (K × (r + Nonce)) mod B

24: plainData← reverse(plainData, str);

25: parityBit(plainData, str);

26: plainData← leftRotation(plainData, str);

27: end for

28: return plainData;

29: end if

30: return −1
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Algorithm 2 Sorting table function.

Require: (Arg table);

Ensure: table;

1: Temporal: temp;

2: for (i ∈ [0, B − 1]) do . Sorting table depending on Vi values and moving their bit positions

3: for j ∈ [i + 1, B − 1] do

4: if (table[V][i] > table[V][j]) then

5: temp← table[V ][i];

6: table[V ][i]← table[V ][j];

7: table[V ][j]← temp;

8: temp← table[orgPos][i];

9: table[orgPos][i]← table[orgPos][j];

10: table[orgPos][j]← temp;

11: end if

12: end for

13: end for

14: for (i ∈ [0, B − 1]) do . inserting the new bit positions

15: for j ∈ [0, B − 1] do

16: if table[newPos][j] = i then

17: table[newPos][i]← j;

18: end if

19: end for

20: end for

21: return table

15



Proof. The integer i = Vi × B′, where B′ is a multiplicative inverse of a modulo K, is clearly a solution.

For any integer i′, we have B × i′ ≡ Vi (mod K) if and only if B × i′ ≡ B × i (mod K) which holds if and

only if i ≡ i′ (mod K).

Suppose that B, Vi,K ∈ Z with K > 0, B 6= 0, and gcd(B,K) = 1. This theorem says that there exists

unique integers i and j satisfying: B × i ≡ Vi (mod K), B × j ≡ Vj (mod K), and Vi 6= Vj if i 6= j with

0 ≤ i, j < K. In the proposed technique we avoid the value i = 0 to ensure a full bit permutation.

We observe that any value of i that verifies (B × i) < K, the congruence modulo K equals to B × i (i.e.,

B× i ≡ B× i (mod K)). This situation leads to generate some ordered Vi values. Following to the principle

of the proposed technique, ordered values of Vi means encrypting data with weak permutation. For example,

by using K = 101 and B = 16 on Figure 5, Vi will be [16, 32, 48, 64, 80, 96, 11, 27, 43, 59, 75, 91, 6, 22, 38, 54]

when we use i = {1, 2, . . . 16} in Equation (3). The values that are in ascendant order (here there are three

waves of ordered values: [16 – 96], [11 – 91] and [6 – 54]) will minimize the randomization of the permutation

phase of the encryption process. In order to avoid these values, we let run i from K − 1 until K − B as

shown in Equation (1). Vi values will then determine the bit permutation of plain data as shown by the

example presented in Figure 5

An analysis shows that the total number of ordered compositions of Vi that can be obtained by using

different values of K equals B!. Then, in the aim to reduce brute force attacks, the size of the data to be

encrypted should be configured in such a way that B! ≈ +∞. As a result, the strength of the proposed

technique is relatively proportional to the size of B in terms of bits, where there is no restriction concerning

the preferred size of K. The computation task of checking gcd(K,B) = 1 can be avoided if the used size of

B is a prime number, case in which any value of K will verify gcd(K,B) = 1. Choosing a prime number B

will help us to minimize the computation and to avoid repute computation in case that gcd(K,B) 6= 1. The

process of sharing securely the same value of K between two or more devices can be reached by using one

of the known algorithms, for instance the asymmetric key sharing algorithm or a pre-configured symmetric

key sharing scheme. On the other hand, the number rnd of rounds is the second parameter. Choosing a

large number of rounds presumably provides an increased level of security. We note here that the number of

rounds depends on the desired security level and the supplied size of B. However, choosing a large number

of rounds also implies a need for more memory and computation time. The analysis of the example shown in

Figure 7 says that a brute force attack may find the original data from the used permutation at a maximum

of 16! tests. The speed of growth of the factorial function offers a great advantage to reduce brute force

attacks.

In the proposed technique we use two kinds of permutation: the first is by ordering the values of Vi

and the second is achieved from the rotation. However, the technique still needs a substitution function

to avoid frequency analysis attacks. Therefore, we have reversed all bits starting from str until the B-bit
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position. Hence, the value of str can be exploited for multiple uses: it offers a random permutation in each

round, ensures the bit substitutions and extracts the integrity bits. The integrity is ensured by computing

the parity of bits before starting the permutation. In FlexenTech, the size of parity bits equals rnd and

the receiver detects any change on one bit by comparing the parity bits of the obtained plain data with

the right bit of the integrity bits. Otherwise, changing even bits will not be detected in the obtained plain

data. This change can be detected in the next rounds. The integrity is ensured by satisfying the condition

of preventing the bits change in case that an even number of changed bits are still in the same part, i.e.,

in the reversed bits part or in the other part. Hence, the number of rounds has a straight impact on data

integrity strength.

Let P be the probability to make a change on some bits over the ciphered data that generate the same

parity bits. The value of P is related to the size of parity bits, i.e., the number of rounds, and the value of

Nonce.

In this technique, an attacker can falsify the data without any change at the parity bits level only when

the falsified bits meet the following two conditions:

1. Falsifying an even number of bits situated in the reversed part, i.e., between [str, B];

2. Each round contains an even number of falsified bits in the reversed part.

The first condition seems easy to be met, but each pair of falsified bits should be situated on the same

side (either on the reversed or on the unreversed bits side) for every round. Hence, the second condition

says that the data integrity of FlexenTech depends on the size of the parity bits, i.e., the number of rounds.

Then, the probability P of an attacker to falsify e bits (e being an even number) of the ciphered data without

a change at the parity bits is calculated as:

P e
str =

str
B
× str − 1

B − 1
× . . .

str − e− 1

B − e− 1
+

B − str
B

× B − str − 1

B − 1
· · · × B − str − e− 1

B − e− 1
(4)

with total probability P = P e
1 × P e

2 . . . P e
rnd .

Equation (4) says that there are two probabilities of successful falsifications. The first probability could

be obtained when the falsification has been made over the unreversed side and these falsified bits are still

on the same side for each round. The same holds for the second probability, but the falsification has been

made over the reversed bits side. Hence, we observe that the number of rounds has an important impact on

the probability to succeed in falsifying the ciphered data.

3.4. Discussion

We divide the discussion into two parts: 1) Choosing the adequate key establishment algorithm to

securely compute the shared key (i.e., K). 2) The robustness and efficiency of this technique to cope with

the most known attacks.
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3.4.1. Key establishment algorithm

Key establishment is the most fundamental cryptographic primitive in all types of applications. How-

ever, the nature of such connected devices limits the use of conventional key establishment techniques. Many

researchers have proposed to use symmetric key pre-distribution schemes for the key establishment objec-

tive [40, 42]. These schemes consider the resource limitation, the communication capability and the compu-

tation speed [43]. However, symmetric schemes often have a centralized aspect, focus on pre-configuration

and define a pool key principle which leads us to exploit asymmetric key establishment schemes [44]. The

authors of [45] benchmark some public key protocols that are usually used for a symmetric key agreement to

determine the most appropriate for the requirements of critical infrastructure and emergency applications.

Based on these algorithms, the analysis shows that there are remarkable performance benefits with the

Curve25519, especially FourQ [46] which uses the Elliptic Curve Diffie-Hellman scheme.

In the proposed protocol, we use FourQ which is a new elliptic curve algorithm released by Microsoft

Research in 2015. FourQ is not used yet in standard or known protocols. Technically, FourQ targets

the 128 bit security level and its high performance is mainly obtained from the decomposition of the total

number of the elliptic curve group operations and fast arithmetic modulo computation using the Mersenne

prime p = 2127 − 1. In term of speed, FourQ uses the endomorphisms to accelerate scalar multiplications

via four-dimensional decompositions, where the computation of scalar multiplications is significantly faster

than all known curve-based cryptographic primitives.

3.4.2. FlexenTech’s robustness and efficiency

During the development of the FlexenTech encryption technique, we began to focus our attention on

how to find adequate solutions to the encountered IoT issues by taking into account the designed technique

that should additionally provide a high-security level when suitable parameters are assigned. Our technique

demonstrates its robustness and efficiency by providing data encryption, data integrity and data freshness,

as will be explained below.

Encryption. The proposed technique converts a plain text into a ciphered text with the same text size B.

Furthermore, the proposed technique considers permutation and substitution to avoid frequency cryptanal-

ysis attacks. That means that the obtained ciphered text has no trace or information related to the original

text. In computation and efficiency terms, the proposed technique needs only simple operations in order to

encrypt a text with a given key K by computing B values of Vi and ordering them. In each round, the bits

of the input text should be rotated starting from str, ordered with respect to Vi values and reversing the

bits that are on the right side of str, see Figure 7(a). The key restriction here is that the value of K should

be greater than B which offers a large pool of keys and ensures flexible key configurations. This encryption

mechanism offers a pool of size B!−B.
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Data integrity. The integrity approaches aim to detect the alteration in the data that will be sent. Any even

slight modification should be of effect on the integrity bits. In the decryption phase, the authorized entity

has to check a possible alternation by computing the parity bit of the bits that are listed on the right side of

str, then compare it with the originally received bit in each round. This technique is powerful for detecting

the integrity of data during the data decryption, i.e., we do not need to execute an additional separated

task. Furthermore, it is possible to detect a data alteration before obtaining the plain text. In fact, this

principle will offer a significant reduction in term of computation. On the other hand, such applications

request to hide the integrity bits in the ciphered data which is easily reached in our proposed technique by

computing the r next Vi values (Vr+1, Vr+2 . . . Vr+B) under the condition that K > (r + B). The parity

bits and the ciphered data can then be encrypted in an additional round.

3.5. Data freshness

The importance of data freshness is increasing, especially in the domain of distributed smart networks

which are composed of a large-scale set of autonomous data sources. The use of the encrypted data with

same freshness may lead to unauthorized access problems. In fact, data freshness is indispensable in Wireless

Sensor Networks, IoT and other domains, to reduce various types of attacks such as replay attacks and

extraction of some confidential information from the encrypted data. At the same time, we have to be

interested in the overall generated overhead in order to ensure data freshness. In this paper, we propose

an efficient technique to ensure the data freshness by using a Nonce during the data encryption/decryption

phases, where the used Nonce has no restriction in term of size. The way to avoid the augmentation of the

overhead is to introduce the Nonce to compute the rotation in each round. In fact, by using this principle

the following services can be ensured:

• Data freshness is ensured without any additional overhead. However, the entities publicly share the

used Nonce.

• Encapsulating the whole encrypted data, that will be sent, allows to distinguish ciphered text from

the same plain data by using a different Nonce value in each case.

• A large counter size is useful to be used as a Nonce in order to encrypt data with different counter

values, i.e., for each secret K the counter can be used 2x times, where x is the Nonce size in terms of

bits.

The data freshness offers many other services and advantages mainly in real-time applications including

e-commerce, sensor data fusion, traffic control, and monitoring. To reach this aim, the data freshness process

of this technique focuses on the communication speed, where no overhead is added. The proposed technique

gives a configurable range of parameter values so that user devices may run the encryption algorithm
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whose security and speed are accepted for their application. Unlike several encryption techniques, which

have no parameterization and hence no flexibility, the proposed encryption algorithm permits upgrades as

necessary. The choice of r affects both encryption speed and security. For some domains, real-time may be

the most critical requirement. This kind of application looks for the best security obtainable within a given

encryption time requirement. Choosing a small value of rnd (say rnd = 4) may provide some security, albeit

modest, within the given speed constraint. The size overhead is critical, because it immediately affects the

communication speed and the lifetime of connected devices, as well as the packet loss rate caused by packet

collisions.

4. Implementation and results

This section gives the experimental setup details used in the evaluation of FlexenTechit’s reconfiguration

flexibility. FlexenTech uses a pseudo random number as a key for encryption and decryption. It completes

the rnd rounds of encryption on each B bits block of data. In all rounds, encryption is done using a function

that ensures an irregular rotation. Furthermore, each round increases the number of integrity bits. With

any unfixed parameter, the encryption strength of FlexenTech is directly tied to the predefined parameters

during its execution. FlexenTech gives its users the ability to balance the weighing between encryption

computational complexity, security level, and data load; specifically, users can adjust encryption speed,

key setup time, and code size to balance performance. This makes FlexenTech suitable for application on

resource constrained embedded devices.

FlexenTech is easy to implement efficiently in most common programming languages. For evaluation

purposes, FlexenTech was coded in C (source code available from2). This implementation follows accu-

rately the specifications given in Section 3.2 to generate the encryption example shown in Figure 7. The

performance analysis evaluates the effect of the rnd and B parameters as a function of the computation

time. Since the study relies on the development of a lightweight encryption technique for IoT systems, the

proposed technique will be implemented and verified in two environments with the following specifications:

Raspberry Pi 3 Model B :

– CPU: Quad-Core 1.2GHz Broadcom BCM2837 64bit, ARM Cortex-A53 (ARMv8)

– RAM 1GB

– Raspbian is the official operating system

– Geany GCC c/c++ compiler

Laptop Acer Aspire E1-571 :

2https://github.com/smedileh/FlexenTech/blob/master/FlexenTech.c
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– CPU: Intel Core i5-3230M 3rd Gen, 2.60 GHz Dual-core, HM77 Express

– RAM 8GB

– Windows 10 operating system

– Geany GCC c/c++ compiler

In the following subsections, we describe each experiment and present and analyse its results.

4.1. Number of Round

This experiment investigates the impact of changing rnd on FlexenTech’s performance. Figures 8(a)

and 8(c) plots rnd against the running time on both the Raspberry Pi device and the Acer laptop. The

block size is fixed to 16 through all runs. As observed from Figure 8(a), when rnd = 4 the running time in

the laptop does not exceed 0.25 ns. Hereafter, when rnd is increased to 8, the running time is propoertioally

doubled to reach 0.5 ns. The same trend is observed consistently with other parameters, meaning that

the time increases approximately by a factor of two. Similar performance is observed on the Raspberry Pi

device. Figure 8(c) shows that the running time on the Raspberry Pi device continues to increase as rnd

increases.

4.2. Block Size

The experimental results illustrated in Figures 8(b) and 8(d) study the impact of the used block size on

the encryption time and complexity. In these experiments, the rnd is fixed to 16 while varying the block

size to 16, 32, 64, 128, 256 and 512. Figure 8(b) shows that, when the block size is as small as 16 bits,

the running time does not exceed 0.35 ns. When the block size is fixed to 32 and 64 bits the running time

increases by a factor of 2 with a time of about 0.75 and 1.85 ns, respectively. When the block size is set

to 128 bits the running time does not increase as much and stands at 2.1 ns. However, when the block size

increases to 256 and 512 bits, the running time increases significantly to about 180%. This increase in the

running time is caused by the time consumed by the sorting function in Algorithm 1 (see line 9). Figure 8(d)

shows similar performance is on the Raspberry Pi.

4.3. Comparative Performance Analysis

In this section we compare FlexenTech’s encryption time with some common symmetric encryption

techniques, namely FlexenTech, RC5, Blowfish and AES. Figure 9 shows the encryption speed of FlexenTech

against these symmetric techniques running on the Acer laptop. We observe that FlexenTech outperforms

both AES and Blowfish, and performs comparably to RC5 and FlexenTech. Similar to FlexenTech, RC5 and

FlexenTech are simple algorithms with low memory requirements, which makes them suitable for resource

constrained hardware.
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Figures 10 and 11 show the encryption processing time on a Raspberry Pi device. We observe in Figure 10

that FlexenTech is faster than RC5 while providing good security level when using block size smaller than 64

bits, whereas RC5 provides security only if predefined suitable parameters are chosen. The security of RC5

depends on the size of the used key, which is stronger for a larger key size. Hence, FlexenTech is more

efficient and flexible in term of the used block size.

We also studied the encryption processing time as a function of the number of rounds. Figure 11 shows

that RC5 performs better if rnd > 8. However, FlexenTech still gives a reasonable encryption processing

time even if rnd < 32. Due to the random permutations at the bit level of the plaintext, it is possible to

use FlexenTech with one round to encrypt securely. Therefore, 4 rounds are largely enough in FlexenTech,

whereas 12 rounds are required in RC5.

In terms of reconfiguration flexibility, Simon and Speck cryptographic schemes are designed with leveled

flexibility allowing some different key and block sizes. Speck contains 10 variants where the block size is 32,

48, 64, 96 or 128 bits, and the key size is 64, 72, 96, 128, 144, 192 or 256 bits and the number of rounds

depends on the parameters selected. Speck gets its nonlinearity from the modular addition operation;

it has been demonstrated that key lengths below 80 bits do not provide a high level of security. When

SIMON is executed on an 8-bit AVR microcontroller, Speck encryption with 64-bit blocks and a 128-bit key

consumes 192 bytes of the Flash memory, temporary variables consume 112 bytes of RAM, takes 164 cycles

to encrypt each byte in the block, and the Attacked Rounds/Total Rounds percentage ranges between 53%

and 74%; however, reduced-round variants have been successfully compromised.

The Tiny Encryption Algorithm (TEA) cipher focuses on Feistel iterations by using 64-bit size blocks

(32 bit words) and a 128-bit key (divided into 4 parts) where odd rounds use K[0; 1] and even rounds use

K[2; 3]. With the use of 32 cycles (64 rounds ), the designers of TEA argue that 16 cycles may suffice

but they suggest 32 cycles with the use of the constant ”C” (used to prevent simple attacks based on the

symmetry of the rounds). There are successful attacks on TEA with 17 rounds because TEA is susceptible

to related-key attack which arise from the simplicity of its key schedule [47].

We summarise the performance of FlexenTech against of theses ciphers in Table 3. Overall, the secu-

rity performance of block ciphers depends on the used block size, key size and number of rounds. Other

encryption techniques prefer a large block size for faster execution due to the time spend in the cipher ini-

tialisation. Moreover, large keys result in lower computation time, because all bits of the key are involved in

an execution cycle of the encryption. FlexenTech offers a major advantage by allowing efficient encryption

using only one single round. Another advantage of FlexenTech is its reduced complexity, i.e., the key has

two parts where the first is static and used once for the random permutation for all rounds, and the second

is dynamic requiring its specific computation in each round to compute the start bit rotation. The static

part of the key reduces computation cost, memory utilisation and energy consumption, which is of particular

importance for the low-end IoT devices.
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Figure 9: The execution speed of FlexenTech compared with other encryption techniques.
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Figure 10: The execution time as a function of the block size.

5. Conclusion and future work

Nowadays, the main security challenge in the IoT environment is the design of efficient and lightweight

encryption techniques in regard to resource limitations of connected devices. In this paper, we have pro-

posed the FlexenTech encryption technique to cope with the device limitation challenge in order to render
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Figure 11: The execution time as a function of the number of rounds.

these devices more applicable in terms of security requirements. The mechanism of the proposed technique

reduces the computation time incurred by data transmission, because we have minimized the number of

rounds used to cipher the information and introduced many improvements to minimize computation. Re-

ducing computation time offers a remarkable benefit in term of energy consumption of the autonomous IoT

devices [57]. The implementation of FlexenTech upon low-end IoT devices shows its practical flexibility.

This flexibility enables the choice of a minimal number of rounds and a smaller overhead size which leads

to an improvement in encryption time without reducing security levels. The obtained enhancement on the

encryption time decreases many risks of such attacks. A security analysis of the proposed technique also

shows its configuration flexibility and feasibility in terms of limited resource consumption and low execution

time.

In future research, we intend to evaluate FlexenTech on various IoT hardware platforms in different

application scenarios that require various levels of security. This allows studying the configuration flexibility

and security of FlexenTech under real-life conditions exposing potential practical technical issues that may

hinder its application. In parallel to practical evaluation, we plan to formally model and analyse FlexenTech

to prove its properties using SPIN model checker or similar tool. Another interesting future work avenue is

to investigate the possibility to adapt this principle of FlexenTech to the use for cloud storage.
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