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Abstract  
 

Conductor Architecture and Self-Field of Superconducting Strands 

Francis Jerome Ridgeon 

 

Three standard reference material Nb-Ti strands, manufactured for the ITER poloidal field magnets, 

were extensively characterised using both transport and magnetisation techniques, with a focus on 

the behaviour of the material in a magnetic field. To quantify the effect of magnetic self-field, the field 

generated by current flow, the critical current density was measured as a function of the applied 

magnetic field, temperature, current polarity, and geometry.  

 

A high capacity probe was designed and commissioned for the transport measurements. The 

characterisation in different measurement geometries was possible with custom-built sample holders 

(i.e., barrels). As the titanium alloy Ti-6Al-4V used in the standard ITER VAMAS barrel is 

superconducting at 4.22 K, an alternative titanium alloy (Ti-6Al-2Sn-4Zr-2Mo-0.2Si) was identified that 

is not superconducting at 4.22 K and used to manufacture the barrels.  

 

The transport measurements at low applied magnetic-fields resulted in high current densities, and the 

effect of self-field being large. To investigate the self-field both finite element analysis (FEA) and semi-

analytic methods were employed. The H-formulation of Maxwell’s equations was implemented using 

Comsol Multiphysics, a commercial FEA software. The model input for the superconductors properties 

were defined using a number of experimental 𝐽𝐶(𝐵) relationships. The architecture of the strand was 

approximated with different degrees of complexity. The FEA models considered the cross-section of 

the strand as circular, annular, and as three nested cylinders (i.e., tubes-within-tubes). The probability 

distribution of the magnetic field components in the superconducting domain was calculated and 

analysed. The changes in the field distribution due to the geometry of the measurement barrels and 

the current orientation, (resulting in opposite Lorentz force orientation), were used to quantify the 

magnitude and orientation of the self-field. A semi-analytic method was used to derive a  the magnetic 

field distribution data from the FEA and the experimental data. The resultant piecewise 𝐽𝐶(𝐵) 

calculated for the Nb-Ti strand, can be considered a universal 𝐽𝐶(𝐵) relationship. 
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CHAPTER 1 

1.  Introduction 
 

Superconducting materials can be used to generate very large magnetic fields and offer advantages 

over normal conductors if they are in the superconducting state. Superconducting technologies can 

be characterised by their magnetic field strength at which they operate. Low magnetic field 

applications include magnetic resonance imaging (MRI), transmission cables, transformers and fault 

current limiters [1]. Medium magnetic fields are used in: ultra-light rotating machines; 

superconducting air-travel [2]; power applications in compact generators for wind turbines, and for 

energy storage in flywheel technologies [3]. High magnetic fields are used to bend high-energy beams 

in particle accelerators [4], investigating hydrogen properties in nuclear magnetic resonance (NMR). 

 

To use a superconducting material in the superconducting state, it is necessary to characterise its 

behaviour and quantify its critical surface. The critical surface is a three-dimensional space, formed by 

the applied magnetic field 𝐵App, temperature 𝑇, and transport current density 𝐽Tr. Points above the 

surface are in the normal region, and below superconducting. For a fixed 𝐵App and 𝑇, as the current 

density 𝐽 is increased, at the critical current density value, 𝐽C, the critical surface is crossed and the 

material becomes normal and resistive. The most important aspect for engineers designing 

superconducting systems is understanding the 𝐽C behaviour [5]. A precise value of 𝐽C enables 

improved confidence in operational parameters. It can be assumed that the properties of the 

superconducting strand are specific to the strand and intrinsic. Before winding a magnet system, short 

sample lengths of the superconducting strands are characterised. The strand properties are 

characterised using magnetisation and or transport measurements of the critical current density [6]. 

For both measurement types, a magnetic field is applied to the sample. A basic difference between 

transport and magnetisation measurements is the use of a transport current, which modifies the field 

penetrating the sample. Transport measurements of critical current density are dependent upon the 

current flow between the voltage contacts. The transport current is increased, while the voltage is 

measured, and a voltage-current characteristic is obtained. The central concept to this thesis is that 

there is an uncertainty in the value of magnetic field the strand is characterised, due to the magnetic 

field generated by current flow in a conductor when performing transport measurements.  
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The magnetic field generated by the current flow is referred to as the self-field, 𝐵SF. The magnetic 

field dependence of the critical current density 𝐽C(𝐵) measured using transport current is complicated 

due to the fact there is typically both an applied magnetic field and a distribution of self-field within 

the strand. 

 

It has been argued that the magnitude of the self-field is small compared with the applied magnetic 

field [7] and that broadly it can be ignored [8]. Standardisation of the transport measurement method 

has enabled the self-field to be disregarded in comparisons of measurements of strands by different 

institutes [9]. An effort to further standardise test and evaluation methods for superconductors, 

minimising geometric effects, is ongoing [10]. When the self-field is considered, the equations for 

calculating the effect of self-field produce ‘good results’ that enable comparisons between 

measurement methodologies and strands of different diameters. The self-field correction used when 

reporting transport data can be prescribed, institutional, chosen for its simplicity, or historic. Relative 

to the precision of the transport measurement, with an instrumental uncertainty of ∼0.1 %, 

interlaboratory differences of 3.5 % [11], the uncertainty due to the effect of self-field is of significant 

importance. In this thesis using experimental data, the literature self-field corrections are applied, 

compared, and reviewed.  

 

The critical current density of three low-temperature niobium-titanium (Nb-Ti) superconducting 

strands was characterised as a function of magnetic field and temperature in this work. The 

experimental results presented in this thesis highlight differences in the measured 𝐽C of an individual 

strand, dependent on the measurement geometry and orientation of the resultant Lorentz force due 

to current. The results highlight that the measurement geometry and technique result in an 

uncertainty in the value of the net field 𝐵𝑁𝑒𝑡. Using finite element analysis (FEA) methods, the 

magnetic field distribution is calculated in the transport measurement experimental geometry. 

Distributions in the magnetic field were used to characterise and identify the relevant spatial 

dependence of the magnetic field to analyse the experimental data. With the Nb-Ti strand measured 

in four configurations (two geometries, and with the current direction relative to the applied magnetic 

field parallel and anti-parallel), 𝐽C(𝐵App) is compared with 𝐽C(𝐵Net),  where the effect of self-field has 

been considered. Although the four data sets did not converge to a single 𝐽C(𝐵) relationship, which 

defines the success of the self-field calculations, several important results were produced. Using 

results from the FEA, a linearised analytic model, and experimental data the four experimental data 

sets were described by a critical current density relationship for the strand that accounts for the effect 

of self-field. The problem of self-field correction is still open [12]. 
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While the external field dependence of Nb-Ti can be described by empirical fits and parametrisation 

from experimentally determined material properties, the results from this thesis highlight how the 

high precision results have low accuracy. Although each strand is designed and optimised for use at 

its operational magnetic field, It is necessary to extend the applicability of Nb-Ti 𝐽C(𝐵, 𝑇) fit to a wider 

range of field [13].   

 

Nb-Ti is the dominant commercial superconductor with a 98% share of the market [14]. For fusion 

energy to be realised, more energy needs to be generated by the plasma, than used in the control of 

the reaction. The Nb-Ti strand characterised in this thesis was manufactured for the ITER poloidal 

magnetic field (PF) coil and is the type that is used to form a cable in conduit conductors (CICC). The 

CICC is a bundle of Nb3Sn, Nb3Al or Nb-Ti cabled together [15]. The ITER reactor uses a superconducting 

magnet system [16] and it is expected to produce more energy than it consumes. In work by 

Mitchell [17], the Head of the ITER Magnets Division, the difference between the measured critical 

current using conventional methods and the behaviour of cables, consisting of 1200 individual strands, 

is problematic. Samples quench at currents lower than expected from the performance of individual 

strands investigated. The use of short sample test to verify conductors and joint performance is valid 

if the results are interpreted accounting for the effect of self-field. As the strands are twisted during 

the manufacturing of the cable, during operation current flow along the strand moving in and out of 

the highest magnetic field region. Experimental measurements of the critical current over an extended 

range of magnetic fields enables the impacts of self-field to be interpreted and analysed, despite the 

conductor not designed to operate at those magnetic fields. 

 

The structure of the thesis is shown in Figure 1.1, with arrows indicate the connections between 

chapters. Chapter 2 outlines the theories of superconductivity. Chapter 3 describes both the 

properties of Nb-Ti strand investigated, the design of the probe and barrel, and methodology for 

transport measurements. Chapter 4 is a study of the superconducting properties of the titanium alloys 

used to manufacture the measurement barrels used in this thesis. Chapter 5 presents the analytic 

calculations used to verify the results of the finite element analysis calculations. Chapter 6 presents 

the data and analysis of the experimental critical current density measurements, the FEA model, and 

finally the semi-analytic method used to derive a universal critical current relationship. Chapter 7, 

outlines and the main results from the thesis and possible extensions. The appendix provides 

additional information about the strand, probe, details of implementing the FEA methods, and outputs 

from the FEA calculation.  
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Figure 1.1 : Outline and structure of the thesis. The arrows indicate interrelated chapters. 
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CHAPTER 2 

 

2.  Critical Aspects of Superconductivity  
 

This chapter outlines the phenomena and theories of superconductivity. The critical properties and 

the critical state model are described. The final section of this chapter outlines the effects of self-field 

and its relevance to magnet-system design and performance evaluation.  

 

2.1. Introduction  
 

The liquefaction of helium (𝑇 = 4.2 K) in 1908, enabled measurements at lower temperatures than the 

previous cryogen hydrogen (𝑇 =20.3 K). In 1911 Onnes discovered that the direct current electrical 

resistance of mercury (Hg) wire drops to zero when its temperature is below 4.1 K shown in Figure 

2.1 (a) [1]. Onnes received the Nobel Prize in 1913 for his investigations of the properties of matter at 

low temperatures. By 1914, Onnes had suggested the possibility of using superconductors for 

generating magnetic fields, a commercial application for this new state of matter [2]. 

 

Two properties define the superconducting state; the first is the ability to carry a dc electrical current 

without ohmic losses, observed by Onnes. The second property is the complete expulsion of magnetic 

flux from the bulk of the superconductor [3]. A magnetic field enters the bulk’s interior up to a distance 

characterised by the penetration depth. The interior of the superconducting bulk is screened from 

external fields by surface currents and the electric field in the interior is zero. The penetration of the 

magnetic field was described by Meissner and Ochensfeld and is known as the Meissner effect [3].  

 

Superconductors are characterised by their critical temperature, 𝑇C critical current density, 𝐽C, and an 

upper critical field, 𝐵C or 𝐵C2 depending on superconductor type, above which the superconducting 

state cannot be retained. The volume below the surface shown in Figure 2.1 (b) corresponds to the 

superconducting materials niobium-titanium (Nb-Ti) and niobium-tin (Nb3Sn), being in their 

superconducting state.  
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(a) 

 

(b) 

 

Figure 2.1 : (a) The resistivity versus temperature of mercury obtained by Onnes. Figure from Ref. [1]. (b) 3D 
critical J-B-T surface of two commercial Nb-based low TC superconductors. Figure from Ref. [4]. 

 

2.2. Superconductivity 
 

Before the various theories of superconductivity are introduced, the discovery of the two types of 

superconductivity is outlined. The different theories of superconductivity progressively explained 

more of the phenomena associated with low-temperature superconductivity.  

 

2.2.1. Type-I and Type-II Superconductors 
In the presence of an applied magnetic field, two types of superconductors can be distinguished, 

generally referred to as type-I and type-II. In very low applied magnetic fields both types of 

superconductor are perfectly diamagnetic; a supercurrent flows without dissipation and generates a 

magnetic field that opposes and cancels the applied field in the interior of the sample. For a type-I 

superconductor [shown in Figure 2.2 (blue line)], the magnetic flux is perfectly shielded from the 

interior up to the thermodynamic critical field 𝐵C at which the superconducting state is destroyed. 

The critical field 𝐵C can be approximated by a quadratic temperature dependence [5]. 

 

For a type-II superconductor [shown in Figure 2.2 (red line)], above the lower critical field 𝐻C1, fluxons 

penetrate the bulk. Details of fluxons will be outlined in section 2.2.2. When fluxons penetrate the 

bulk, this is called the mixed or Shubnikov phase. As the magnetic field applied to the bulk increases, 

the number of fluxon increases, at a point where the fluxons overlap completely at the second critical 

field 𝐻C2 the superconducting state is destroyed within the bulk and is restricted to the boundary. 
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Figure 2.2 : Schematic magnetisation curves for Type-I (blue) below 𝐻𝐶 the superconductor is in the Meissner 

state, above 𝐻𝐶 it is a normal conductor. Type-II (red line) superconductors below 𝐻𝐶1the superconductor is 

in the Meissner state, above 𝐻𝐶1fluxons penetrate the superconductor, and is in the mixed, or Shubnikov 

state, at 𝐻𝐶2the superconducting state is destroyed.  

 

The magnetic flux density B (T = N·A-1·m-1) is related to the magnetic field intensity H (A·m-1) and 

magnetisation M (A·m-1), through the susceptibility χ 

 

 𝐁 = 𝜇0𝐇 = 𝜇0(𝐇 + 𝐌) = 𝜇0(1 + 𝜒)𝐇 (2.1) 

 

Where 1 + 𝜒 is the relative permeability [𝜇𝑟 (T·m·A-1)] of the material and holds for a linear 

relationship [6]. In the Meissner state, 𝜒 = -1. For type-II superconductors above 𝐻C1, the magnitude 

of the magnetisation reduced as applied field increases. 

 

The different types of superconductivity can be understood in terms of the surface energy associated 

with the boundary between the normal conductor and superconductor (NS) regions. The NS boundary 

energy can be either positive or negative depending on the dominant length scale. For positive NS 

boundaries, the boundary is stable. For negative NS boundary, interfaces are energetically favourable, 

as a result the superconductor split into as many domains as possible. The magnetic field penetrates 

the superconductor as fluxons, which will be outlined in section 2.2.2.  

 

2.2.2. Fluxons 
Abrikosov described the way magnetic field penetrates the bulk, maximising the surface area results 

in a region of normal material inside the bulk, a tube referred to as a fluxon. The fluxon has a non-

superconducting normal core around which supercurrents circulate, shown in Figure 2.3. The 

magnetic field decays as the distance from the core increases and reduces over a length characterised 

by the London penetration depth. The radius (𝑟) of the core is given by the coherence length (𝜉).  
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Figure 2.3 : The structure of an isolated fluxon, with supercurrents encircling the fluxon. The radial 
dependence of the order parameter |Ψ| (length scales of the coherence length 𝜉) and magnetic field 𝑩 
(length scales of the penetration depth 𝜆) and current density 𝐽.  

 

For 𝑟 < 𝜉 the order parameter Ψ is strongly suppressed. At the centre of the fluxon, the amplitude of 

the order parameter is zero. The integral of the magnetic flux over the volume gives the magnitude 

𝜙0, the flux quantum. As the magnitude of the applied magnetic field is increased, the number of 

fluxons penetrating the sample increases.  

 

2.2.3. London Equations 
The London theory [7] (1935) is phenomenological and can explain the vanishing electrical resistivity, 

the Meissner effect, and distinguishes between a superconductor and a perfect conductor. Due to the 

screening currents inside the superconductor bulk, the magnetic field inside decays.  

 

The characteristic decay length is the London penetration depth, 𝜆𝐿, 

 

 

𝜆𝐿 ≡ √
𝑚e

𝜇0𝑒2𝑛s
, 

(2.2) 

where 𝑚e and 𝑒 are the free electron mass and charge, 𝜇0 is the permeability of free space and 𝑛s is 

the number density of superconducting pairs (assumed constant). The penetration depth is the 

characteristic distance that the applied magnetic field penetrates the superconductor and can be 

calculated from the lower critical field. In the two-fluid model of Gorter and Casimir, the number 

density of superconducting pairs is assumed to increase from zero at the critical temperature to the 

total electron density at 𝑇 = 0 K [8].  
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2.2.4. Ginzburg-Landau Theory 
The Ginzburg-Landau (G-L) theory (1950) [9] is phenomenological and uses Landau’s theory of phase 

transitions. G-L theory is a macroscopic thermodynamic theory written in terms of an order 

parameter. Due to the symmetry of the order parameter, a great deal of the phenomenology can be 

accounted for without a full quantum mechanical description. The complex order parameter is 

defined:  

 Ψ = |Ψ|𝑒𝑥𝑝(−i𝜃). (2.3) 

 

The phase is notated by 𝜃. The modulus squared of the wavefunction |Ψ|2 gives the density of 

superelectron pairs  𝑛s = |Ψ|2 . The Helmholtz free energy density is expressed as a function of the 

order parameter near the transition between the normal and superconducting states. The Helmholtz 

free energy density takes the form  

 

 
𝑓 = 𝑓n + 𝛼|Ψ|2 +

𝛽

2
|Ψ|4 +

1

4𝑚e

|(−𝑖ℏ𝛁 − 2𝑒𝑨)Ψ|2 + (
|𝐁|2

2𝜇0
−

|𝜇0𝐇0|2

2𝜇0
). 

 

(2.4) 

Where 𝑓n is the normal state free energy density, ℏ the reduced Planck constant, 𝑨 the magnetic 

vector potential, and 𝛼 and 𝛽 are Taylor expansion parameters. The final term is the energy density 

of the magnetic induction field [10]. Minimising Eq. (2.4) with respect to the applied magnetic field, 

gives two coupled differential equations for the supercurrent density Js, and the order parameter. 

 

  
0 =

1

4𝑚e

|(−𝑖ℏ𝛁 − 2𝑒𝑨)Ψ|2 + (𝛼+𝛽|Ψ|2)Ψ 
(2.5) 

 
Js =

𝑖𝑒ℏ

2𝑚e

(Ψ∗𝛁Ψ − Ψ𝛁Ψ∗) −
2𝑒2

𝑚e
𝑨Ψ∗Ψ 

(2.6) 

 

By minimising Eq. (2.4) with respect to the order parameter, in the absence of a magnetic field, a first-

order ordinary differential equation is derived. Solving the ordinary differential equation, the 

coherence length, the spatial extent of the electron pair wavefunction (specific to 𝑇 < 𝑇C) is given by, 

 

 

𝜉𝐺𝐿 ≡ √
ℏ2

4𝑚e|𝛼|
 

(2.7) 

 

where 𝛼 is a coefficient in the non-trivial solution to G-L equation, with the simplification of no 

superconducting currents.  
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The ratio of the penetration depth and coherence length 

 

 
𝜅 ≡

𝜆𝐿

𝜉𝐺𝐿
 , 

(2.8) 

 

is known as the Ginzburg-Landau parameter. The values of 𝜆𝐿 and 𝜉𝐺𝐿  are temperature dependent. 𝜅 

is temperature-independent in G-L model, in the regions near 𝑇C. The Ginzburg Landau parameter 𝜅 

defines the type of superconductor. Superconductors with a value of κ ≤ 1/√2 are “type-I”,  

κ > 1/√2 are “type-II” superconductors. The value of 𝜅 varies from 0.03 for aluminium, to 60 for Nb-

Ti, 94 for YBCO and 139 for Bi-2223[11]. From G-L theory, the thermodynamic critical field can be 

defined for a type-I superconductor:  

 

 
𝐻C

2 =
|𝛼|2

𝜇0𝛽
 . 

(2.9) 

 

For type-II superconductors, due to the mixed state, the order parameter exhibits a second-order 

phase transition. From G-L theory an upper critical field is defined: 

 

 
𝐵C2 =

Φ0

2𝜋𝜉2
 . 

(2.10) 

 

where Φ0 is the flux quantum, 𝜙0 = ℎ 2𝑒⁄  = 2.07 x 10-15 T⋅m2. 

 

2.2.5. Bardeen-Cooper-Schrieffer Theory 
In 1957 Bardeen, Cooper, and Schrieffer (BCS) [5] provided a microscopic explanation of low-

temperature superconductivity, jointly receiving the Nobel Prize in 1972. Understanding the 

mechanical or vibrational qualities of the crystal was an important step. The experimental evidence of 

the isotope effect, 𝑀𝛼 𝑇C =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [12], demonstrated that 𝑇C was affected by the isotopic mass. 

Fröhlich proposed that the electron-phonon coupling is the origin of the attractive interaction 

between normal electrons near the Fermi surface[13]. For superconductivity, a net attractive 

interaction between electrons is necessary, the electrons within ℏ𝜔D (where 𝜔D is the Debye 

frequency) of the Fermi surface, and the electrons feel a mutual attraction. Cooper in 1956 [14] 

showed that binding occurs in the presence of an attractive potential, no matter how weak. The 

electrons at the Fermi surface attract nearby lattice ions, through mutual Coulomb interaction, and 

this results in a local deformation of the crystal lattice. The lattice responds slower than the electrons 
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travel, as the Fermi temperature (𝑇F) is greater than the Debye temperature (𝜃𝐷). The accumulation 

of positive charge has the result of attracting negatively charged electrons towards it. The attractive 

force is mediated by the lattice distortion. The electrons pair off into integer-spin quasiparticles. The 

electrons act as a Cooper pair, typically pairing with opposite momentum and spins, resulting in a 

boson with zero spin. The integer-spin quasiparticles form a bosonic fluid, which can undergo a Bose-

Einstein type condensation into a collective superfluid ground state.  

 

The binding energy introduces an energy gap (ΔBCS) between paired and unpaired states. At finite 𝑇, 

the critical temperature 𝑇C is related to the excitation gap defined by a universal value,  

 

 ΔBCS(𝑇 = 0) = 1.764𝑘B𝑇C (2.11) 

 

where 𝑘B is the Boltzmann constant.  

 

The critical temperature in BCS theory (for the weak coupling limit) is given by, 

  

 𝑘B𝑇C = 1.14ℏ𝜔D 𝑒𝑥𝑝(−1/𝑁(0)𝑉) = 2Δ(0)/3.52 (2.12) 

 

where 𝜔D is the Debye frequency, 𝑁(0) the density of states at the Fermi surface, and 𝑉 the 

interaction constant.  

 

The Nobel Prize in 2003 was awarded to Abrikosov, Ginzburg, and Leggett for showing that the 

macroscopic G-L theory can be derived from microscopic BCS theory at temperatures near the phase 

transition 𝑇C. The combined theory is referred to as GLAG. The free parameters of Ginzburg-Landau 

theory can be equated to microscopic parameters.  

 

2.2.6. High-Temperature Superconductivity  
High-temperature superconductors (HTS) are unconventional, and their behaviour cannot be 

explained using BCS theory. The first HTS - lanthanum-barium-copper-oxide - was discovered in 1986 

by Bednorz and Muller [15]. Several copper-oxide multilayer systems, the cuprates, have been found 

with high transition temperatures [16]. The two most widely commercialised superconductors are the 

first generation HTS bismuth-strontium-calcium-copper oxide (BSCCO, or BaxLa5-xCu5Oy) and second-

generation HTS yttrium-barium-copper-oxide (YBCO, or YBa2Cu3O7−δ).  
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Understanding the properties of the cuprates may be investigated by changing the hole concentration 

and mapping out the different phases. Under and over doping results in antiferromagnetic insulators 

and metal respectively. Between these phases, the cuprates become ‘strange metals’ with 

nonconventional Fermi surfaces [17]. In a range of hole concentrations and temperatures the cuprates 

superconduct. Quantum oscillations have been used to understand changes in Fermi surfaces to 

identify mechanisms for superconductivity [18]. The carriers (electrons or holes) within these copper 

oxide planes thought to be paired by a non-phonon mediated pairing mechanism. The precise 

mechanism of high-temperature superconductivity is still not known. Physicists have been “stumbling 

around in the dark for 30 years” trying to understand cuprates [18].  

 

Another class of high-temperature superconductors are the iron-based layered superconductors, the 

pnictides and chalcogenides [19]. An important discovery in 2001 was of the intermediate 

temperature superconductor magnesium diboride (MgB2) [20]. In 2015 metallic hydrogen sulphide set 

the record for highest 𝑇C, with an onset temperature of 203.5 K [21]. Metallic hydrogen superconducts 

due to the light hydrogen atom, strong covalent bonds, and strong electron-phonon interaction. 

 

2.3. Critical Current Density 
 

The critical current density is of interest as it is the most important superconducting parameter for 

magnet manufacturing. A confusing aspect of the word critical is that it is not a unique physical state 

when describing the current density in type-II superconductors. To understand the critical current 

density, the behaviour of fluxons with transport currents needs to be understood. The experimental 

data is analysed and further information about the strand derived, the methods used are outlined.  

 

2.3.1. Microstructure 
In engineering superconducting materials, impurities are useful and result in fluxon-defect interaction, 

which immobilises fluxons resulting in zero resistance. Stable unpinned fluxon-lattice configurations 

do not support a resistance-less transport current [22]. In a defect-free ellipsoidal isotropic 

superconductor, an ordered hexagonal lattice of fluxons is formed to maximise the separation 

between fluxons, a lower energy configuration than a random array [22]. The fluxons arrange due to 

repulsive interaction, between the magnetic field 𝑩 of one vortex and the current density 𝑱 present 

at the position of this field and arising from the other vortex. Imperfections such as defects, inclusions, 

voids, grain boundaries, are engineered by several methods including cold working and heat 

treatment. The critical current density depends on the type, size, and distribution of pinning centres. 

Fluxons interact with pinning centres, impeding fluxon movement, because the pinning centres 
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properties are different from the superconductor bulk. Flux lines are trapped in potential wells, due 

to the free energy difference between the matrix and its defects, and the flux profile does not relax 

homogenously throughout the interior. The type of interaction between fluxons and the pinning sites 

are dependent on the penetration depth, and flux-line spacing relative to the size and spacing of the 

pinning centres. The inter-flux-line spacing is the distance to the nearest neighbour in the hexagonal 

lattice, 𝑎0 = 1.07√𝜙0/𝐁. If both the size and spacing of the pinning centres are greater than the 

penetration depth, the magnetic field can reach an equilibrium. When the size and spacing are less 

than the penetration depth, the magnetic field will assume an average value. If the system is closer to 

the critical temperature, the pinning forces become weaker. During magnetisation measurements, 

the fluxons sweep in and out of the bulk of the sample during each cycle around the hysteresis 

loop [23].  

 

2.3.2. Lorentz Force  
A finite supercurrent within the bulk imparts a Lorentz force, 𝐹L from the fluxons onto the pinning 

sites [24]. The equation to describe the force is like the Lorentz force of electrodynamics and can be 

defined either as  

 
𝐹L = { 

𝑱 × 𝝓0

𝑱 × 𝑩
force per unit length

force per unit volume
 

(2.13) 

 

where 𝑱 is the spatially averaged supercurrent density, 𝝓0 is a vector of magnitude 𝜙0 in the direction 

of the flux line and 𝑩 is the flux density due to the number of flux lines per unit area (𝑛𝜙0) [24]. The 

force is perpendicular to both the current and the applied magnetic field shown in Figure 2.4 (a). The 

flux lines interact with the defects, in the critical state model, outlined in Section (2.4) the Lorentz 

force acts in opposition to the pinning force.  

 

Flux pinning exerts an attractive volume pinning force. The critical current density can be derived by 

equating the Lorentz force to the maximum pinning force 𝐹P. The required force to extract a fluxon 

from a defect can be used to calculate the volume flux pinning force, where the force is defined [25]:  

 

 𝑭P(𝐵) = −𝑱C(𝐵) × 𝐁. (2.14) 

 

It was observed that Nb-Ti data obtained at different temperatures and strains, can be mapped onto 

a single universal curve, by plotting the ratio of the pinning force to the maximum value i.e., 

𝐹P/𝐹Pmax against the reduced field 𝑏 = 𝐵/𝐵C2(𝑇) [26].  
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Figure 2.4 : (a) Representation of a fluxon lattice in a type-II superconductor. Transport current (red arrows), magnetic 
field (blue arrows), and Lorentz force acting on the fluxon array (green arrows). (b) The reduced field dependence of the 
volume pinning force for Nb3Sn and Nb-Ti conductors with a peak in the pinning force at different reduced field values.  

 

The magnetic field and temperature dependence of the volume flux pinning can be described by a 

unified scaling law of the form 

 

  𝐹P = 𝐶𝑓(𝑏) ∝ 𝑏𝑝(1 − 𝑏)𝑞 , (2.15) 

 

where 𝐶 is a constant, and 𝑓(𝑏) the field dependence of the volume pinning force. The 𝑝 and 𝑞 are 

fitting parameters, and 𝑏 the reduced field. Measurements of 𝐽𝐶(𝐵App, 𝑇) enable the interpretation 

of the pinning mechanisms. The values of the exponents 𝑝 and 𝑞 values are particular to the pinning 

centres with different interaction types and geometries [27]. The parameter 𝑝 is related to the pinned 

length of flux lines per unit volume. The parameter 𝑞 is related to the field dependence of the 

superconducting order parameter. Nb-Ti typically has 𝑝 and 𝑞 values of 1 [28], which indicates volume 

pinning is the dominant mechanism and the flux line lattice is plastic. Nb3Sn typically has values of 𝑝 = 

0.5 and 𝑞 = 2 [28] which indicate pinning is due to the elastic flux line lattice. The reduced field 

dependence of two Nb-based conductors is shown in Figure 2.4 (b). 

 

2.3.3. Flux Flow 
For current densities above the critical current density, pinning cannot counteract the Lorentz force, 

fluxons move and the material enters the flux flow regime [29]. Fluxons in constant motion generate 

an 𝐸-field and dissipate this energy as heat. The relationship between external current and fluxon 

velocity has a viscous drag term, giving the flux flow resistivity. The electric field current density (𝐸-𝐽) 

characteristics of the flux flow region are approximately linear (𝜌 ∝ 𝑏 ) where 𝑏 is the normalised 

critical field [30]. 
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When there is no pinning, the fluxon velocity can be calculated from the applied current. For materials 

with pinning sites, the effects of pinning and the topology of the pinning sites need to be considered. 

For some conductors, the pinning sites are localised (e.g., defects), whereas for other conductors the 

pinning sites stretch across the entire sample (e.g., grain boundaries). Most technological 

superconductors used in large scale applications are polycrystalline, and the grain boundary structures 

strongly affect flux distribution in superconductors and limit 𝐽C [31]. The grain boundaries provide 

channels for flux flow, a lower resistivity path. The flux flow mechanism is important in both low-

temperature superconductors (LTS) and HTS materials [32].  

 

2.3.4. Flux Creep 
Flux creep is the thermally activated motion of groups of flux lines over the energy barriers arising 

from pinning. When energy (thermal, electrical, or magnetic) is supplied, there is a statistical 

probability that the fluxon will overcome the pinning force and will move through the superconductor 

under the influence of the Lorentz force. The fluxons hop into adjacent wells. Transport current 

modifies the effective depth of the barriers. To a first approximation, the Anderson-Kim model 

assumes that the barrier height reduces linearly with current. Flux creep driven by thermal energy can 

be described by Boltzmann law, with creep rate proportional to exp (−Δ𝐸A/𝑘B𝑇). The probability is 

dependent on the activation energy 𝐸A relative to the product of the Boltzmann constant 𝑘B and 

temperature 𝑇. With thermally activated depinning, although the barrier height is constant, as the 

temperature increases, fluxons are more energetic there is an increased probability of crossing the 

barrier.  

 

2.3.5. Quantification of the Critical Current  
The determination of the critical current density is dependent upon the criterion used to define it [33]. 

With a continuous 𝐸-𝐽 transition, it is necessary to define a criterion above which the superconductor 

is said to have stopped superconducting. The criterion selected is dependent on the measurement 

technique, and the intended use of the results. The numerical value of the criteria is dependent on 

the dominant dissipative regime, typically the thermally activated flux creep [34]. The most practical 

and useful technique for quantifying critical current densities are transport measurements [4].  

 

The different critical current criteria are summarised schematically in Figure 2.5. The electric field (𝐼𝐶
𝐸) 

criterion, is the standard used in the reference laboratory and is used in this work. The E-field criterion 

is defined at a value above the baseline noise. The resistivity criterion, (𝐼𝐶
𝜌

) is most commonly used in 

magnet engineering experiments [4]. The critical current is defined by the intersections of the sloped 

line from the origin to the intersection of the 𝐸-𝐼 curve. The slope is given by the resistivity criterion  
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Figure 2.5 : Schematic of a typical 𝐸-𝐼 plot for a type-II superconductor, with the various criteria used to 
determine the critical current (𝐼𝐶  IC) compared. The dashed horizontal line is the electric field criterion EC 
used in this work.  

 

and is specific to magnet applications; values of 10-14 to 10-15 Ωm are typically used. At high-applied 

magnetic fields, the resistivity criterion is limited by the sensitivity of the measurement of voltage. The 

offset criterion, (𝐼𝐶
𝑂𝐹𝐹  ) takes a tangent to the (𝑉 − 𝐼), curve at an E-field criterion. The intersection 

with zero volts gives IC. As the material becomes ohmic, IC tends to zero. The offset criteria were 

reported in several papers [35]. Another less commonly used criterion is the power criterion (𝐼𝐶
𝑃), (the 

product of current and voltage). The typical power criterion used is 104 W⋅m-3. The power criterion is 

used because of its applicability to heat removal.  

 

A non-criterion-based definition of the critical current (𝐼𝐶,𝑠𝑢𝑟𝑓𝐵) was presented in recent work [36]. 

The criterion is not a fixed value, but stated for each experimental measurement, at the threshold of 

dissipation. The author claims that at the point of dissipation in their experiment, the current 

distribution becomes uniform [36]. The difficulty in using a minimum detectable voltage is that the 

sensitivity of the experimental equipment will affect the value.  

 

2.3.5.1. Strand Areas 
For the chosen criterion, a strand can have a well-defined critical current determined experimentally. 

However, to calculate the critical current density, the measured critical current and the relevant cross-

sectional area (perpendicular to the current direction) are required. For an engineering 

parameterisation, the strands total cross-section (𝐴Eng) is used, the superconductor and the matrix. 

The superconducting critical current density, 𝐽C
sc considers the current flow in just the filaments, 

resulting in the highest values of 𝐽C. The uncertainty in the measurement of the strand diameter (𝑑s) 

can be due to the variation along its length, uncertainty in the strands circularity, and user error. 
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Parametrisation Notation Area [×10-7 m2] 

Engineering 𝐽C
Eng

, 𝐴Eng 4.254 ±0.003  

Superconductor  𝐽C
sc, 𝐴sc 1.596 ± 0.003  

Table 2.1 : Summary of the criteria, notation, and areas for calculating 
 current density. Typical values for a Nb-Ti ITER PF type 1 conductor. 

 

For this work, the diameter of the strand was measured at five points along its length, and ten angles 

around the circumference of the strands. With the 50 data points, an average value was calculated, 

and the measurement uncertainty of 1 μm. To calculate the area of the superconducting filaments, in 

addition to 𝑑s, the copper to non-copper (𝐶𝑛𝐶) ratio is required:  

 

 
𝐴sc = (

𝜋𝑑s
2

4

1

𝐶𝑛𝐶
), 

(2.16) 

 

Table 2.1 summarises the criteria, notation and the values used in this work. The details of the 𝐶𝑛𝐶 

ratios are outlined in section 3.2.1. The uncertainty in the 𝐶𝑛𝐶 value is ± 0.005. Further details of the 

strand and measurement procedure are outlined in A.1. 

 

2.3.5.2. Scaling Laws 
Scaling laws are useful for engineering applications, and can be used to understand the underlying 

properties [37]. From a limited experimental data set, the performance of a strand can be determined. 

If the scaling law parametrises the experimental results, it is possible to calculate critical current 

densities at temperatures and values of applied magnetic fields outside of the measured range. An 

issue with scaling laws is that they may have limited applicability; the conductor may be 

superconducting when the extrapolation of the parameterisation suggests that it is not [38]. 

 

2.3.5.3. E-J Relation and Index of Transition 
The 𝐸-𝐽, or equivalently the voltage-current (𝑉-𝐼), curves of real materials are described by several 

empirical equations. Most commonly, 𝐸-𝐽 can be described by a power-law dependence, relating the 

electric field to the current density [39]:  

 

 
𝐸 = EC | (

𝐽

𝐽C(𝐵, 𝑇)
)

𝑛(𝐵,𝑇)

 |. 
(2.17) 
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Figure 2.6 : Schematic of the E-J characteristic of a high-current superconductor as a function of the index 
of transition (n). A larger n value increases the gradient. 

 

The index of transition 𝑛(𝐵, 𝑇) describes the sharpness of the transition. The 𝑛-value is an indication 

of the pinning strength, with higher values usually indicating better pinning and the homogeneity of 

the strand. The 𝑛 -value characterises the entire conducting path and includes the stabilising materials. 

To define the 𝑛-value from experimental data, the gradient of the 𝐸-𝐽 transition is calculated 

 

 
𝑛 =

∂(logE)

∂(log 𝐽)
, 

(2.18) 

 

between two values of E-field, typically 10 or 100 μVm-1. A schematic of 𝐸-𝐽 transitions with different 

𝑛-values and identical 𝐽𝐶  values are shown in Figure 2.6. Experimentally 𝑛-values are greater than 20 

for HTS and can exceed 50 for LTS [40]. The low 𝑛-values in HTS is often attributed to thermally 

activated flux creep [41]. In a transition, if the heat transfer to the cryogen bath is lower than the heat 

generated, the increase in temperature can result in a higher 𝑛-value and a reduction in 𝐽𝐶  [42]. The 

limits of the power-law are 1 ≤ 𝑛 ≤ ∞. The limit n→ 1, corresponds to the linear Ohm’s law, and 𝑛 →

∞ corresponds to Bean’s critical state model (section 2.4.1). For the infinite 𝑛-value, the electric field 

is multivalued for a single value of 𝐽 [43]. 

 

The relationship between the 𝑛-value and 𝐼C has been parameterised [44] using a modified power law 

of the form: 

 𝑛 − 1 = 𝑟(𝐼𝐶)𝑠. (2.19) 

 

The parameters 𝑟 and 𝑠 are fitting parameters, and in principle are a function of temperature and 

strain [44]. The relationship is empirical, and the 𝐼C is not uniquely correlated with the 𝑛-value.  
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2.4. Critical State Models 
Several phenomenological models, known as critical state models (CSM), describe the gradient of the 

magnetic flux density within a sample and how it changes with the applied magnetic field or current. 

The central idea is that the pinning force exactly matches the Lorentz force. The critical current density 

is always at its maximum possible value or zero.  

 

2.4.1. Bean’s Model 
The original CSM is Bean’s model [45, 46]. The first assumption in Bean’s model is that the electric 

field 𝑬 is parallel to the current density 𝑱. The second assumption is that the current density 𝑱 take the 

values ± 𝐽C or zero (where 𝐽C is field and temperature-independent). Bean’s model predicts an infinitely 

sharp 𝐸-𝐽 transition. Below the critical value, the electric field generated by the superconductor is zero 

until 𝐽C where it becomes infinite. Although Bean’s model assumed 𝐽C is independent of 𝑩, it is used 

to analyse magnetisation measurement data, and is a reasonable approximation and description of 

the hysteresis. Type-II superconductors with flux pinning exhibit irreversible behaviour, with upper 

and lower magnetization plateaus. The Bean’s model is applicable if the superconducting materials 

are homogenous [47].  

 

When a magnetic field is applied to a superconducting sample in the mixed state, the field penetrates 

and shielding currents flow. The lossless current flowing induces a magnetic moment, shielding the 

bulk from the applied magnetic field. Considering the system on the macroscopic scale, the spatial 

gradient of the field is limited by 𝐽C, following Ampère’s law, the gradient in the magnetic field in the 

bulk is of magnitude 𝜇0 𝐽C. Magnetic flux penetrates the superconductor until the local value equals 

the critical value. Reducing the applied magnetic field results in a change at the material surface, the 

average magnetic field inside the superconducting bulk is higher than the external applied magnetic 

field. The magnetic flux is trapped inside the superconductor bulk, even at 𝐵App= 0 T. Flux shielding 

occurs when the average field is less than 𝐵App; trapping is when the average field exceeds 𝐵App. The 

magnetisation determines the difference between the applied magnetic field and the average internal 

magnetic field.  

 

A schematic of the field profile, due to the field ramping for an infinite slab geometry is shown in 

Figure 2.7 (a) Above the lower critical field ± 𝐻C1, flux penetrates the sample (i- v). When the field is 

reduced (vi-ix), opposite surface currents flow and a characteristic ‘M’ shape in the magnetic field 

profile occurs, with shielding currents of equal magnitude flowing in opposite directions. For fields (x-

xi) there is a trapped remnant magnetic field. 
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 (a) 

 

(b) 

 

Figure 2.7 : Schematic of the profiles of the magnetic field inside an infinite superconductor for the Bean model (a) Infinite 
slab geometry: the applied magnetic field is increased from i-v and the field decreases from vi-xi. After the field is cycled, 
fluxons are trapped inside the superconductor. (b) Circular infinite wire with sinusoidal transport current in zero applied 
magnetic field. The current distribution at I = 0.6IC (A) initial ramp-up (B) ramp down, and (C) second ramp. Figure adapted 
from Fig. 3 in Ref. [48]. 

 

The differences in the current density for a virgin sample, and when a transport current has been 

imposed, for 𝐵App =  0 T, is shown in Figure 2.7 (b). The circular conductor is assumed to be infinite 

in the z-direction. Considering more than one period of a sinusoidal transport current results in current 

distribution with both ± 𝐽C inside the circular conductors. The distribution (A,B,C) shown in Figure 2.7 

(b) are for a current value 𝐼 = 0.6 𝐼C. For (A) the current flow is in one direction (+) and flows in the 

outer ring of the conductor at 𝐽C. At time (B) the current direction is reversed, and current (-𝐽C) flows 

in the outer skin. At the time (C) the magnitude of the transport current is identical to time (A) the 

current profile is different with a larger part of the cross-section having a current flowing at 𝐽C due to 

the magnetic history. At time (C) Some current flowing at 𝐽C in the interior. As the current density is 

varied to a maximum value of less than 𝐽C, the current does not penetrate fully into the cross-section. 

For this geometry, 𝑩 = 0 where 𝑱 = 0. 

 

2.4.2. Magnetisation Measurements 
The magnetic moment of a superconductor is proportional to its critical current density and is 

determined by sample geometry and magnetisation history [49]. Assuming that the magnetic field is 

fully penetrated and 𝐽C is constant through the entire sample volume, the magnetic field inside the 

conductor, relative to the applied field gives the sample’s magnetisation. 

 

The magnetisation is given by the volume integral,  

 

 
𝑴 =

1

2𝑉
∫ (𝒓 ×  𝑱 )𝑑𝑉.

𝑉

 
(2.20) 
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The magnetisation per unit volume of a stand under a transverse applied magnetic field can be 

measured by cycling the field, up to a value of several tesla, and back down again. The change in 

magnetisation or magnetisation width Δ𝑀, is the difference between the upper and lower plateau, 

which are a result of the forward and reverse sweep branches [50]. For a strand coiled helically, with 

the long axis perpendicular to the magnetic field, the magnetisation critical current is given by the 

width of the magnetisation loop:  

 

 
𝐼C = 𝐽C

M𝐴SC =
3𝜋Δ𝑀

2𝜆𝑑𝑓
, 

(2.21) 

 

where 𝑑𝑓 is the filament diameter [50]. The volume of superconductor in the stand is derived from 

the copper to non-copper ratio 𝜆 = [𝐶𝑛𝐶 + 1]−1. The copper to non-copper ratio will be defined in 

section 3.2.3. Analysing the data using Δ𝑀 is the standard [51]. The background magnetisation, due 

to the Nickel plating, has not been removed in the data, which is typical for these sorts of 

measurements [52]. 

 

The 𝐽C(𝐵) of a strand is typically interpolated, with magnetisation measurements providing low-field 

(𝐵App > 100 mT) high-current region [51, 53], and transport measurements providing the high-field, 

low-current region data [54]. At very small 𝐵App the superconducting filaments are perfectly 

diamagnetic (in the Meissner state), and the CSM cannot be used [55]. It is not typical to measure 𝐽C at 

high 𝐵App using magnetisation measurements due to the systematic errors associated with magnetic 

field inhomogeneities [51]. 

 

2.5. Self-Field 
 

An issue when measuring the critical current density of Nb-Ti strands is that a spatially variant self-

field (𝐵SF) is generated by the current as it flows through the superconductor [56]. As the 

superconducting strand critical current density is magnetic field dependent, the uncertainty in the 

magnetic field is problematic. The net magnetic field (𝑩Net) is the vectorial sum of the applied field 

(𝑩App) and the self-field (𝑩SF): 

 

 𝑩Net = 𝑩App + 𝑩SF. (2.22) 
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The experimentalist can control 𝑩Appwhich is ideally homogeneous, but in practice it is not. As 𝑩SF is 

inhomogeneous in the strand, the multi-valued 𝑩Net results in non-uniform current densities [57]. 

Correcting data to account for the effect of self-field is useful in quality control and purchase 

specifications, and when comparing short sample data with magnet performance [58]. Extrapolation 

of critical current density data without a self-field correction can result in large errors [59].  

 

Due to the 𝑩App transport measurements are performed at, and the currents used, the effect of 𝑩SF 

is typically neglected due to its magnitude [54, 60, 61]. When the effect of self-field is considered it is 

usually taken as the peak value in 𝑩Net distribution. If the data is not corrected for the effect of self-

field correction, larger strands will appear to carry proportionately lower current. In chapter 6, using 

experimental data and the peak in 𝑩Net, the applicability of using the peak in 𝑩Net to account for the 

effect of self-field is discussed. With the extensive measurements of 𝐽𝐶(𝑩App)in chapter 6 the effect 

of self-field is highlighted, at low 𝑩App. Using results from the FEA calculations - the magnetic field 

distribution statistics - and numerical model it was possible to account for the effect of 𝑩SF.  

 

2.5.1. The Origin of Self-Field 
The Biot-Savart law, established in the 1820s, is the central equation that relates the current to the 

magnetic field and can be written 

 

 
𝑑𝐁 =

𝜇0𝐼

4𝜋

(d𝐒 × 𝒓̂)

𝑟2
=

𝜇0𝐼

4𝜋𝑟2
sin𝜃 dl 𝜽̂, 

(2.23) 

 

where 𝑑𝐁 is the magnetic field of a current element, d𝑺 an element of length in the direction of 

current flow 𝐼. The distance from the current element to the point the magnetic field is calculated at 

point (P) is 𝑟 and the unit vector, 𝒓̂ points from d𝐒 to P is shown schematically in Figure 2.8. The second 

form of Eq. (2.23) is the magnitude of the magnetic field. The angle 𝜃 is between the current element 

and the unit vector. The unit vector 𝜽̂ is the angular direction. The Biot-Savart law is fundamental, and 

the relationship gives several analytic solutions for steady-state magnetic phenomena that are 

textbook exercises [62]. 

 

2.5.2. Correction Factor 
Two methods to correct the experimental data, for the effect of self-field using shown schematically 

in Figure 2.9. The first method fixes the value of 𝐽𝐶, whereas in the second method, the value of the 

magnetic field is fixed. For a fixed experimental 𝐽𝐶  the self-field correction factor Δ𝑩, that  
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Figure 2.8 : Schematic of the Biot-Savart Law. At point 𝑷 at distance 𝑟 the magnetic field element 𝑑𝐁 due 
to the current-carrying element 𝐼 d𝐒 .  

 

Figure 2.9 : Schematic comparing two methods of self-field correction. An increase in the magnetic field 
(Δ𝑩) an increase in the current density (Δ𝑱). The two dashed lines indicate the functional form of JC(B). 
Figure is modified from Ref. [63]  

 

characterises the spatially varying self-field, is added vectorially to 𝑩App. For a fixed 𝐵, the functional 

form of 𝐽𝐶(𝑩Net) ≡ 𝐽𝐶(𝑩App) are assumed similar, and a correction factor Δ𝑱 is added to the measured 

𝐽C. Both methods “seem to be valid” [63]. In this thesis, both methods are considered. 𝑩SF is calculated 

and added to the applied field, Eq. (2.22), and the 𝐽C is evaluated at a fixed value of 𝑩. 

 

2.5.3. Measuring Magnetic Fields 
It is possible to use a Hall sensor (HS) array to measure 𝑩Net. From Eq. (2.22), it is possible to quantify 

𝑩SF at the point of the Hall probe. Early work in the literature used a hall sensor array, and the 

magnetic field gradient over the cross-section was confirmed with variations in the 𝑉-𝐼 

measurements [64]. However, the accuracy of the method is low, with a 3% error in self-field 

measurement [65]. Even though the magnetic field can be measured, how this characterises the 

spatially varying self-field is unclear. In this thesis, the distribution of the magnetic field inside the 

volume of the strand was used to quantify the self-field correction. 
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Figure 2.10 : Schematic of Voltage taps. Length 2 is the separation between the current supply and the 
voltage tap is defined by the strand being measured. Length 3 is the voltage tape length. Figure from 
Ref. [4]. 

 

2.5.4. Current transfer lengths 
When current enters a multifilamentary superconductor it transfers through the normal material, and 

voltages can be generated. The current transfer length is shown schematically in Figure 2.10. A 

minimum separation length between the current contact and voltage tap is necessary to ensure that 

current fully transfers to the filaments before the voltage tap. Depending on the geometry it is easy 

to increase the contact length and separate voltage and current contacts, resulting in negligible 

current transfer voltages. A simplified analytic formula suggests the transfer length of about seven 

strand diameter is needed for Nb-Ti[66]. As the central 500 mm of the ∼1.6 m length of strand is 

measured the transfer length is sufficiently long for any effects to be minimised. Experimental 

measurements of Nb-Ti in the literature [67] suggests that current transfer lengths were 

immeasurably small.  

 

2.5.5. Geometric Effects 
There are two length scales to consider when investigating the effects of geometry on the self-field: 

those due to measurement and those due to differences of the superconductor being measured. The 

focus of this thesis is the effects of coil measurement geometry, with the same strand measured in 

different orientations. The conductors investigated in this thesis are commercial Nb-Ti strands with 

identical structure and manufactured with identical processes. The properties of the Nb-Ti strand 

characterised are detailed in Chapter 3.  

 

2.5.5.1.  Measurement Geometry 
The effect of measurement geometry on the measured critical current, at low E-fields, is shown in 

Figure 2.11. The different 𝐼C are measurable for long and short straight conductors, hairpins, and coils. 

At higher E-fields the effects of geometry on 𝐼C are smaller. A difference of 83 A between the short 

sample and coil for the E-field criterion 0.1 μV⋅cm-1
 (10 μV⋅m-1) is calculated from Figure 2.11. 
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Figure 2.11 : 𝐸-𝐼 experimental data quantifying the effect of measurement geometry. Figure modified from 
Ref. [68]. 

 

Long lengths of commercial Nb-Ti strands are usually measured using the coil geometry, to increase 

the volume measured and the electrical signal [69]. A coil shape is an ideal configuration since it allows 

a long strand length to be tested in a confined space of a high-field solenoid magnet [70]. The length 

of the strand measured on coils makes it possible to have long contact lengths. The pitch of the helical 

sample holders ensures that the sample is in a homogenous part of the solenoidal magnet [69]. The 

measurements made in this thesis are coiled samples, on the ITER VAMAS barrel, which will be 

described in detail in section 3.4.1. 

 

Because the strand is wound in a coil, the current flow in the strand generates a magnetic field in the 

centre of the coil. In the literature, it is assumed that the sample measured in a coil can be considered 

as infinitely straight, with effects due to measurement as a small percentage (1∼2 %) correction [71].  

 

For the hairpin geometry and straight wire geometry, the magnetic field is zero at the centre of the 

strand and increases linearly with radius. Due to the limited length of the perpendicular magnetic field, 

current redistribution reduces the achievable voltage resolution, in short straight, or hairpin samples. 

 

2.5.5.2. Conductor Geometry 
For self-field characterisation, the architecture of a multifilamentary strand needs to be understood. 

Work by Stenvall found that the self-field generated depends on the structure and number of 

filaments and their position [72]. The resultant self-field field distribution depends upon the level that 
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the heterogeneities are modelled. The geometric complexity of the model considered is limited by 

computational resources.  

 

Self-field measurement of HTS 𝐽C i.e., without an applied magnetic field 𝑎𝑟𝑒 used for quality control. 

The shape and dimensions of the sample affect the self-field [57, 73]. Flattening a YBCO tape increases 

the aspect ratio resulting in a different self-field distribution and therefore measured 𝐽C[57]. It has 

been suggested that the reduced critical current density of YBCO with increasing thickness may be a 

result of the self-field [57].  

 

2.5.6. Importance of Self-field 
Achieving stable, efficient, high magnetic fields using superconductors is the technological and 

economic driver for material development. Magnetic self-field corrections are important when 

transport currents are high, for example when conductors operate at 1.9 K. As the current carrying 

capacity increases, the resultant self-field increases. Self-field measurements can be used to 

investigate fundamental aspects of superconductivity, in addition to understanding magnetic systems. 

 

2.5.6.1. Performance Evaluation  
The performance of the magnet system is calculated from short sample strand characterisation. 

Accurate short sample measurements are key to cable development and accurate analysis of coil and 

magnet performance [74]. Self-field corrections facilitate comparison of data between short-sample 

predictions and magnet performance [75]. The critical current and 𝑛-value of a cable are influenced 

by the self-field of the cable, which can be understood by comparing the electrical characterisation of 

the cable with the strands it is made from [42]. Comparisons of strand and cable performance highlight 

how using the local peak magnetic field results in a discrepancy, of 7-12 % depending on the direction 

of 𝐵App. The paper also found degradation due to mechanical processing results in a local reduction 

of 𝐼C [60].  

 

2.5.6.2. Strand Performance 
The behaviour of the short strands measured in the laboratory is different from the strand’s behaviour 

in the wound magnet. Strands are characterised in a well-defined magnetic field profile. When 

characterising the strand in the lab, the transport current is ramped at a constant rate, whereas when 

the magnet is energised, each strand experiences a dynamic magnetic environment.  

 

When the strands are cabled, the individual strands are in different magnetic field environments. The 

self-field from both the strand of interest and the other strands and the external field needs to be 
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considered. The comparison of the cables performance with the strand’s measurement is complex 

due to the heterogeneities of the environment the strand is in within the cable. A major source of the 

heterogeneity is the gradient in the magnetic self-field which is significant in cable cross-section [61]. 

Self-field losses are generated in strands, depending on the twist direction of strands, the self-field 

losses are influenced. [76]. 

 

Using the coupled thermal-hydraulic electromagnetic model (THELMA) code, transient events are 

modelled for the cable in conduit conductors (CICC) [77]. Sudden quenches in the Nb-Ti joint samples 

are understood by considering the local effects. In CICC cables carrying large transport currents, the 

magnetic self-field gives rise to a large magnetic field gradient on the cable cross-section, resulting in 

larger gradient in 𝐽C. The field gradients can cause instability and this affects quench behaviour [78]. 

The simulations of the quench are in qualitative agreement with experimental data [79]. 

 

Self-field instabilities are due to a sudden redistribution of transport current, and an uneven 

distribution [56]. Dynamic self-field instabilities have been studied extensively [80-82]. By comparing 

the 𝑉-𝐼 measurements, constant 𝐵App and varied current, with 𝑉-𝐻 measurements constant current 

and 𝐵App ramped from 0 T to the quench of the sample, it was demonstrated that the premature 

quenches are due to self-field instabilities [80]. The self-field instabilities are defined at different 𝐵𝐴𝑝𝑝 

at high field in the stable region, strands are measured and the current reaches its intrinsic critical 

current, and an intermediated field, where currents quench below their intrinsic critical current, and 

a low field region, where the strand quenches above a certain current.  

 

2.5.6.3. Importance of Self-field on magnet design  
The self-field variation across the CICC, at operating at 40 kA and test currents up to 100 kA, can be 

more than ± 1 T [83]. The conductors' performance may appear better relative to the strand than 

expected, concealing non-uniform degradation [83]. For cabled strands, the current non-uniformity 

and redistribution between strands can result in E-fields above 𝐸C at currents below the critical 

current density [84, 85]. Due to the non-uniform current distribution, the stability margin is reduced.  
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2.6. Conclusions 
 

The theories of superconductivity have explained the experimentally measured phenomena. The 

understanding of the properties of low-temperature superconductors has enabled the conductors to 

be commercialised. It is necessary to understand the microstructure and its effects on the critical 

currents possible in a conductor. The most important parameter in this thesis - and in the design of 

superconducting magnet systems - the critical current density, has been carefully defined. 

Characterising the 𝐸-𝐽 transition and the effects of measurements decisions were discussed. 

Understanding Bean’s critical state model is necessary to evaluate the critical current in magnetisation 

measurements.  

 

Quantification of the critical current density involves understanding how current flow in the sample 

generates a magnetic field. As the critical current density is a function of the magnetic field it is 

necessary to account for the effect of self-field. Using Maxwell’s equations, it is possible to calculate 

the distribution of the magnetic field. Methods of applying the correction are discussed. The effect of 

geometry, and how to directly measure the magnetic field were discussed. The importance of self-

field, both for characterising materials and for understanding superconductivity properties was 

presented. This thesis research aims to experimentally measure the effect of self-field and define 

relationships that address the experimental uncertainty.  
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CHAPTER 3  

3.  Design of a High Current Probe for Nb-Ti 

Measurements 
 

In this chapter, the design of the high current probe for transport measurements is outlined. The 

purpose of this new probe is to make measurements of the critical current density of the strands over 

a range of magnetic fields with high currents, up to 2 kA. In sections 3.1 and 0, the details of the Nb-

Ti strands architecture are outlined. In sections 3.3 and 3.4 the measurement barrel and the probe 

design is outlined. To quantify the self-field effect both the standard barrel (ITER) and a custom-

designed measurement barrel, the minimum separation of turns (MST), were used. The experiment 

depends on being able to measure the voltage and reverse the current flow direction. Current flowing 

in either the clockwise or anticlockwise directions is equivalent to the Lorentz force pointing inwards 

or outwards. Section 3.5 reports measurements of the same strand of Nb-Ti using the new probe 

compared with other in-house measurements made as part of the Fusion for Energy (F4E) contract as 

well as with the same type of Nb-Ti strand measured at other institutes.  

 

3.1. Niobium-Titanium 
 

Niobium-titanium alloy is the most widely used conductor for superconducting magnets [1]. Elemental 

niobium and titanium both superconduct with transition temperatures of 9.3 K and 0.4 K 

respectively [2]. The 𝑇C of Nb-Ti does not change much with Ti content, up to 47%. The effect of Ti 

concentration is a peak in the 𝐵𝐶2 value. The alloy composition of the strand studied has both a 𝑇𝐶  

and 𝐵𝐶2 value that are close to the maximum [3, 4]. The typical composition of the solution alloy used 

in commercial conductors is Nb-47wt%Ti [5]. The standard 𝑇C for Nb-Ti is 9.5 K, and 𝐵C2(𝑇 = 0 𝐾) = 

13.0 T [6].  

 

The ITER machine requires approximately 250 tons of Nb-Ti stand [7, 8] and the strands used have 

become a standard reference material. The measurements in this thesis are of the ITER poloidal field 

(PF) type 1 strand, used in PF coils one and six. The requirements of the type 1 strand are summarised 

in Table 3.1 [9, 10].  
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Characteristic [unit] Value 

Critical current at 6.4 T and 4.22 K [A] > 306 

𝑛-value at 6.4 T and 4.22 K (10 to 100 μVm-1) > 20  

Hysteresis losses at ± 1.5 T and 4.22 K [mJ·cm-3] < 55  

Residual Resistivity Ratio > 100 

Diameter [mm] 0.730 ± 0.005 

Twist pitch [mm] 15±2  

Cu to non-Cu Ratio 1.55 to 1.75 

Nickel Plating Thickness [μm] 1 to 2  

Table 3.1 : Nb-Ti strand requirement for the ITER PF type 1 [9]. 

 

3.1.1. Strand Identification  
Three Nb-Ti ITER type 1 strands were measured. The design and manufacturing process of the three 

strands are identical. The strands were manufactured by the Chepetsky mechanical plant [11]. The 

Nb-Ti strands measured were selected from Durham’s fusion reference laboratory strand inventory. 

The strands are allocated a unique four-digit Durham reference (DR) number. A length of the strand 

is cut from the parent material for transport measurements and a separate length for magnetisation 

measurements. Although there may be some variation along the parent strand’s length, the 

homogeneity of Nb-Ti is considered to be better than Nb3Sn [12, 13]. Controlled levels of impurities 

ensure predictable superconducting properties. The variation between nominally identical strand can 

be attributed to the microstructure of the alloy. The heat treatment generates α Ti-precipitates, which 

are sensitive to the composition and affect the fluxon pinning. Macroscopic irregularities and filament 

cross-sectional area can also affect measured 𝐽C.  

 

The experimental work carried out for this thesis was the extended measurement of strands DR 4810 

and DR 5534 over an range of magnetic fields at a fixed temperature (4.22 K) using the new high 

current probe in different geometries and orientations of 𝐹L. Additional measurements of strand 

DR 5049 were done for this thesis, measurement over a smaller range of magnetic field, from 3.5 K to 

6 K using a variable temperature probe. The reference laboratory, managed by Dr Mark J Raine 

performed the standard characterisation of strands DR 4810, DR 5534, and DR 5049. All three strands 

measured have properties which met the requirements outlined in Table 3.1, the details of the three 

strands are outlined in Appendix A.1 In work by the Durham reference laboratory, an average of 𝐼C of 

336.4 A at (𝐵App = 6.4 T) and a standard error on the mean of ± 0.4 A, for the 320 Nb-Ti type 1 strand 

characterised [14]. Comparisons between the two strands extensively characterised for this thesis are 

shown in section 6.3.2.  
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3.2. The Architecture of Nb-Ti Strands 
 

All low-temperature superconducting strands are manufactured in the form of filamentary 

composites [15], with superconducting filament embedded in a normal conducting matrix (usually 

Cu). The filaments in the superconducting strand are an essential architectural feature.  

 

3.2.1. Filamentary composites 
Filaments make the composite stable to thermal fluctuations [1] and increase the usable current 

densities possible in the strand [16]. In non-DC superconducting magnets, filaments are used to reduce 

AC losses [4]. The small diameter of the filament minimises the self-field instabilities at low-magnetic 

fields [17]. Fine filamentary structures can be manufactured as Nb-Ti is both extremely ductile and has 

a high tensile strength, and the similarities of the Nb-Ti mechanical properties with the copper matrix. 

 

In the strand studied, each Nb-Ti filament is separated with barrier and stabiliser around each 

filament, shown in Figure 3.1 (a). The Nb foil wrapped around the filaments of Nb-Ti core acts as a 

diffusion barrier, preventing the formation of intermetallics, like TiCu4, which can distort the filaments 

during wire drawing [3]. The Nb foil offers excellent ductility and a good mechanical bond with both 

the Nb-Ti and the copper when manufacturing the strands [1]. The Nb-Ti is inserted into a copper 

extrusion can, which is evacuated and sealed. Following extrusion, the copper is shaped, with a 

hexagonal cross-section along the length of the filament. This hexing of the single filament, shown in 

Figure 3.1 (b) allows stacking into a multi-filamentary stack and a compact configuration. The thickness 

of copper around each filament controls the drawability. Reducing the spacing between the filaments 

improves the co-deformation of the filaments and the matrix. If the filaments are too close, Cooper 

pairs tunnel through the copper, increasing the losses [18, 19]. If the filaments are widely separated, 

this can result in wire drawing inhomogeneities referred to as ‘sausaging’, where the filament’s cross-

sectional area is non-uniform. The sausaging is defined as a coefficient of variation for the filament 

cross-sectional areas of approximately 2% [1]. A filament with varying cross-sectional area results in a 

lower overall current carrying capability of the strand [1]. 

 

The Nb-Ti ITER PF strand studied in this work shown in Figure 3.2 contains 4488 filaments with a 

diameter of 6.8 ± 0.2 μm. The scanning electron microscope (SEM) image of the Nb-Ti strand’s cross-

section shown in Figure 3.2(a), summarises the architecture and design. The darker regions are the 

matrix material, and the lighter regions an annulus of composite Cu/Nb-Ti filaments. The inset in 

Figure 3.2 (a) shows the filament and intra-filamentary region. The filamentary composite region is  
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(a) 

 

(b) 

 

Figure 3.1 : Schematic of the internal architecture of the Nb-Ti strand (a) Layered structure of the filamentary unit. 
An Nb-Ti alloy core is wrapped in an Nb diffusion barrier. The Nb-Ti and Nb are inside a copper sheath. (b) The 
filamentary units are hexed and stacked. 

 

(a) 

 

 

(b) 

 

(c) 

 

Figure 3.2 : (a) Nb-Ti strand SEM image where an annulus of composite Cu/Nb-Ti filaments can be seen in grey, 
embedded between the external crown and the internal core copper regions. The inset shows a close-up of the 
filamentary region, with copper in-between filaments. Figure from Ref. [20]. (b) SEM of Nb-Ti cross-section with an 
inner 𝑅𝑖 and minimum 𝑅𝑂′and maximum 𝑅𝑂 outer radii of an annular filamentary region. (c) The Nb-Ti strand 
considered with a circular internal core, and hexagonal filamentary region with length A.  

 

between the external crown and the internal core copper regions. The internal copper core is used to 

reduce cavitation or centre burst extrusion [21]. 
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 Dimension Length [mm] Area Area [×10-7 m2] 

𝑅̅i 0.131 ± 0.002 𝐴fr : Eq. (3.1)  2.5 ± 0.1  

𝑅̅o 0. 30 ± 0.01 𝐴fr(hex): Eq.(3.2)  2.3 ± 0.2  

A 0.33 ± 0.01   

Table 3.2 : Summary of the lengths and areas used in the simplified Nb-Ti strand model.  
The calculations in chapters 5 and 6 use 𝑅̅i = 0.130 mm and 𝑅̅o = 0.310 mm. 

 

In section 2.3.5.1 the engineering and superconducting areas were defined and values for the Nb-Ti 

PF type 1 strand listed. The FEA models in chapters 5 and 6 model the current flow in the composite 

filamentary region, using an annular cross-section. Reducing the complexity of the filamentary region 

to an annulus, with an effective inner (𝑅i) and outer (𝑅O) radii is a simplification which has been used 

previously in the literature [22, 23]. The software ImageJ [24] has been used to measure the dimension 

in the SEM images, Figure 3.2 (b, c). For the circular geometries, the area of circular sections was 

measured, additionally, line profile plots were used to measure lengths. 20 profile plots and 20 circular 

sections were used to define an average inner 𝑅̅i and outer 𝑅̅o radii. The uncertainty in the dimension 

of 𝑅̅o [Figure 3.2 (b)] is larger than 𝑅̅i, due to the non-circularity. The area of the filamentary region is 

calculated: 

 

 𝐴fr = 𝜋 (𝑅̅o
2

− 𝑅̅i
2

). (3.1) 

 

The area is reported in Table 3.2. It was suggested that the uncertainty in 𝑅̅o can be reduced by 

considering the filamentary region as hexagonal, shown in Figure 3.2 (c). Using 20 hexagonal polygons 

in the filamentary composite region the length was measured. The hexagonal filamentary region area, 

𝐴fr(hex), assuming that 𝑅̅i is circular is defined:  

 

 
𝐴fr(hex) =

3√3

2
(𝐴2) −  𝜋𝑅̅i

2
. 

(3.2) 

 

The area is reported in Table 3.2, 𝐴fr(hex) is 9 % smaller. When calculating the self-field, the standard 

in the literature [25] considers a circular cross-section, with the radius to the outermost filament 

defining the dimension for the calculation. The effect of the radius of the strand on self-field is 

discussed in section 5.2.3.5. For the areas in Table 3.2, an equivalent radius can be calculated assuming 

a circular cross-section. For a fixed current, the smaller 𝐴fr(hex) results in a 4 % larger effect of self-

field using the correction. A simpler approach would be to use the superconducting area, as the 

uncertainty is smaller due to the accuracy of measurement of the 𝐶𝑛𝐶 ratio and the strands diameter. 
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3.2.2. Matrix Materials 
The matrix is an alternative current and heat flow path. The matrix works as an electrical shunt when 

superconductivity is interrupted and contributes to the recovery of the superconductivity by 

conducting heat generate to the surrounding coolant. Most commonly, copper is used as a matrix 

material in Nb-Ti conductors. The cryogenic-temperature resistivity of copper is important, influencing 

the superconductors stability. Copper has a high heat capacity that both removes heat and, if 

sufficiently cooled, reduces the heat generated by current shunted through the matrix. The thermal 

conductivity of the copper at 4 K is 420 W·m- 1·K-1
 [26], although the value depends on purity, and 𝑩. 

A value of 0.017 W·m- 1·K-1 is used for the thermal conductivity of Nb-Ti in the modelling 

community [26], but measured values reported vary by a factor of 102
 [27-29]. Copper-nickel (Cu–Ni), 

is an alternative matrix material used for its anisotropic resistivity [30]. Aluminium can also be used as 

a matrix material and has the advantage that the electrical resistivity saturates more quickly with 𝐵App 

than copper [3].  

 

3.2.3. Copper to Non-Copper Ratio 
Varying the ratio of copper to non-copper (𝐶𝑛𝐶) changes the performance of the conductor. The ideal 

ratio of 𝐶𝑛𝐶 depends on the mode of operation of the magnet, the operational current density, and 

the magnetic field operated at [21]. If the strand is completely composed of superconductor it is 

unstable. For a composite, increasing the volume of superconductor results in enhanced current 

carrying capacity and strand stability [21]. With enough copper, the Joule heating is easily extracted 

by cooling [31]. Although the 𝐶𝑛𝐶 gives us the fractional area of the strand which is superconducting, 

it does not contain information about the spatial distribution. 

 

It is possible to optimise the 𝐶𝑛𝐶 ratio for a high stability, high 𝐽𝐶  strand using a numerical method. 

When designing a strand to be able to sustain a large perturbation without quenching, the figures of 

merits are the minimum propagating zone (MPZ), and the minimum quench energy (MQE) [15]. The 

length of the MPZ (𝑙MPZ) gives the maximum dimension over which a normal region will vanish and 

superconductor will not quench. Similarly, the MQE is minimum local energy, in the form of heat, 

needed to increase the temperature of a wire segment with length 𝑙MPZ from the helium temperature 

to 𝑇C. The MPZ can be calculated from the material properties, the effective thermal conductivity, and 

is a function of the areas of superconductor and matrix.  

 

Using material properties the Stekly criterion, a 𝐶𝑛𝐶 ratio for a stable strand was derived. The Stekly 

criterion offers physical insight and is quasi-quantitative. Manufacturing strands with a 𝐶𝑛𝐶 ratio of 

10:1, Stekly was able to build the first magnets that recovered the superconducting state irrespective 
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of the size of the thermal perturbation [32, 33]. Strands used commercially typically have CnC ratios 

of 2:1, larger 𝐶𝑛𝐶 ratios are prohibitively expensive [34], magnets can operate in a metastable 

mode [35]. An average value of the 𝐶𝑛𝐶 of the ITER PF strand during production was reported as 

1.64 [36].  

 

3.2.4. Residual Resistivity Ratio  
The resistivity of the matrix at cryogenic temperature is an important property of the strand that 

influences the stability. The residual resistivity ratio (𝑅𝑅𝑅) is the ratio of the strands resistivity at two 

different temperatures 

 

 𝑅𝑅𝑅 =
𝜌273𝐾

𝜌𝑇
, (3.3) 

 

where 𝜌273𝐾 is the resistivity at 273 K, 𝜌𝑇 is the resistivity at temperature 𝑇. The resistivity values are 

characterised using voltage-current (𝑉 − 𝐼) measurements, the international standard techniques. 

The 𝑅𝑅𝑅 of the copper matrix affects the heat conduction, magnetic shielding, and current transfer 

behaviour. Self-field instabilities have been investigated as a function of 𝑅𝑅𝑅, with greater stability at 

higher values, for the range of 8 to 120 [17]. Increasing the 𝑅𝑅𝑅 above 100 to 300 does not 

significantly increase stability due to the magnetoresistance of copper [37, 38].  

 

3.2.5. Twist Direction and Pitch 
The inter-filament coupling caused by external field variations can be greatly reduced by twisting the 

filaments together. Filaments are twisted about their drawing axis, which partially transposes the 

filaments, reducing flux-jump instabilities and eddy-current losses. The twist pitch is chosen 

depending on the expected rate of change of the field. For a quickly changing field, a high twist pitch 

is used. The twist pitch of the filaments is normally 10-20 times the strand’s diameter [39]. 

Transposition increases the current path length, and this affects AC losses due to coupling [30]. As the 

twist pitch is limited, the only means to reduce these coupling losses is to use resistive barriers in the 

composite. The ITER PF Nb-Ti strand is twisted once in fabrication, with right-handed chirality, when 

the strand’s diameter is just larger than the final diameter.  

 

3.2.6. Nickel Plating 
The ITER Nb-Ti PF strand is nickel-plated [19]. The nickel plating both reduce the AC losses [40] and 

makes it possible to make electrical connections without introducing heat. The drawback to plating is 

the slight decrease in the RRR, probably because of bending the strand when plating [41]. Although 
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Nickel is ferromagnetic [2], the effects are not considered in this work due to the thickness relative to 

the diameter of the strand. 

 

3.3. Measurement Barrels 
 

To reduce the influence of self-field in critical current density measurements, a standardised sample 

holder with a fixed diameter and pitch was defined [42, 43]. The “ITER barrel” is the result of the 

Versailles project on Advanced Materials and Standard (VAMAS) [44]. For this thesis, a custom barrel 

was designed and manufactured to measure the critical current density, as a function of an additional 

parameter. Additionally, the titanium alloy used in the manufacturing of the measurement barrel used 

in this research is an alloy different from the standard. The alloy’s properties will be outlined in 

chapter 4.  

 

3.3.1. Barrel Design 
To investigate the problem of quantifying self-field a new measurement barrel was designed to 

enhance the effect of self-field during measurements. The custom-designed minimum separation of 

turns (MST) with the difference being the separation of turns (𝑆T). The ITER barrel has a 𝑆T of 

3.175 mm (8 turns per inch), with the range 3.18 to 3.20 mm stated in the literature as [45].  

 

The MST barrel has a 𝑆T of 0.830 mm, 0.100 mm larger than the diameter of the strand. Both 

measurement barrel consists of a 35 mm threaded hollow cylinder of titanium alloy, with two 13 mm 

oxygen-free high conductivity (OFHC) copper rings, shown in Figure 3.3 (a, b). The assembly screws 

together and the total height is 51 mm. Along the total height of the barrel, a 90° continuous right-

handed V-shaped groove is cut, 0.92 mm deep for the ITER barrel and 0.42 mm for MST barrel. Both 

barrels have an inner diameter of 24 mm in the copper sections and 28 mm in the titanium section. 

The strand is positioned at the same major radius for both barrels. A strand length of ∼1.6 m is 

measured on the ITER barrel, and ∼6.0 m on the MST barrel. To fix the position of the strand, and 

enable tension whilst winding, both ends of both barrels include a slot cut into the bottom of the OHFC 

copper rings and is just wider than the diameter of the strand, shown in Figure 3.3 (c). The design of 

the ITER and MST barrels are outlined in Table 3.3. Further details are outlined in A.2.1. 
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(a) 

 

(b) 

 

(c) 

 

 

 

Figure 3.3 : Measurement barrels (a) technical drawing of standard ITER VAMAS barrel (b) technical drawing of the 
custom-designed minimum separation of turns (MST) barrel for this work[mm] (c). Minimum separation of turns (MST) 
barrel wound with Nb-Ti strand DR 4810.  

 

Characteristic [unit] ITER MST 

Separation of turns [mm]: 𝑆T 3.175  0.830  

Outer diameter (Cu, Ti-Alloy) [mm] 32  31  

Inner diameter (Ti-alloy) [mm] 28  28  

Inner diameter (Cu) [mm] 24  24  

Groove depth [mm] 0.92  0.42  

Total number of turns  16 61 

Number of turns in Ti-alloy 11 42 

Total number of turns in both OFHC copper rings  5 19 

Table 3.3 : Properties of the standard ITER measurement barrel and custom minimum  
separation of turns (MST) measurement barrel. 

 

3.3.2. Current Transfer  
The current is transferred from the current leads to the strand via the current terminals at the ends of 

the barrel. The current is transferred from the barrel holder to the strands through the lead-tin 

[Pb40Sn60(wt %)] solder, which adheres to both the OHFC current rings and the exposed copper on the 

strand. The strand is wound under 1 kg of tension, as a result, the contact between the groove and 

the strand is maximised. Near the current leads, the transport current flows in the normal metal [46]. 

Current transfer can generate heat, and this limits the use of ITER barrels when measuring conductors 

with extremely high critical currents [44]. 
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Figure 3.4 : The strapped critical current barrel, eight commercial (SuperPower) YBCO tapes are soldered 
to the Nb-Ti strand wound on the OHFC copper ring. 

 

Typically in the transport measurements, presented in chapter 6, E-fields up to 120 μV·m-1 were 

measured.  In initial measurements where low E-fields were measured, the current transfer to the 

strand was improved. The YBCO ‘straps’ are low resistance current paths, and additionally increase 

the number of contact points. The strapping of barrel is standard practice in the Durham reference 

laboratory, and in this work, the same method is used. Eight 4 x 8 mm strips of advanced pinning YBCO 

tape from SuperPower [47] were soldered onto the titanium section of the barrels, shown 

schematically in Figure 3.4. The straps enabled the current to transfer to the central region while 

bypassing problematic regions. This enabled higher E-field to be achieved without thermal runaway. 

The strap length is short enough to ensure current transfer is sufficiently far away from the voltage 

tap region.  

 

3.4. Description of the Probe 
 

The two key design aspects of the probe are the cryogen and current flow. The transport 

measurements were performed in a wet bore magnet, where the liquid helium flows through the 

probe. Increasing the cross-sectional area of the current leads would be ideal for increasing current 

into the strand, but the probe’s dimensions are limited by both the magnet system bore and the 

measurement barrel. Maximal current flow is achieved using both superconducting and normal 

materials. The materials used in the design of the probe was guided by the properties outlined in 

Ref. [48].  

 

The probe was manufactured in Durham’s Physics departments mechanical workshop. The workshop 

has experience of producing probes for measuring a range of superconductor materials [49, 50]. The  
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Figure 3.5 : CAD model of the bottom end of the new design probe with components and dimensions 
labelled in the z-direction.  

 

probe is assembled from two parts, the probe head and the probe’s bottom end. The head of the 

probe was manufactured for the Jefferson Laboratory “JLab” measurements of Rutherford cables. 

Previous measurements were performed using probe currents up to 1000 A and in magnetic fields 

from 0 to 4 T [51]. Before the experimental campaign, the probe head was disassembled, inspected, 

cleaned, and then reassembled to ensure no visible faults and no loose connections. The assembly of 

parts at the bottom end of the probe that includes the newly designed components are shown in 

Figure 3.5. Photographs of the manufactured and assembled probe are shown in Figure 3.6 (a) and 

the probe in the magnet, with external current leads attached to the probe head current contact 

shown in Figure 3.6 (b). A clamp and bubblers (not visible) details outlined in section 3.4.2. 

 

3.4.1. Probe Assembly 
The probe is assembled with the measurement barrel between the current contacts. External to the 

probe, the high current flows through copper cables. Due to the resistive material and high currents, 

the cables heat up due to Joule heating. As these resistive cables are thermally connected to the 

internal current leads, which go down into the liquid helium, it is necessary to allow time for them to 

cool between each transport measurement. 
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(a)  

 

(b) 

 

Figure 3.6 : (a) Photograph of the bottom half of the probe assembly, with a larger view of the barrel and 
terminal connection. (b) The probe head with electrical connections, clamps, and flexible corrugated hoses 
for the bubblers to maintain the helium pressure. 

 

3.4.2. External Constraints and Circuity 
The measurements were performed in a wet bore (38 mm diameter) 15 T vertical superconducting 

magnet system cooled by liquid helium. The applied magnetic field has an accuracy of 1 % and a 

precision of 0.5 % [52]. The field homogeneity has a uniformity better than ± 2 % over the length of 

the specimen between the voltage contacts. The requirement for measurement is a maximum 

periodic and random deviation of the magnetic field less than ± 1 % [53]. The magnet is homogenous 

to 10-3 over a 10 mm diameter sphere volume (DSV). The magnetic field profile was checked using a 

Hall probe that was calibrated against an NMR system in Durham University’s chemistry department. 

The magnet is supplied by a 120 A power supply unit, controlled by a computer. The magnet has both 

a liquid nitrogen and helium jacket. Further details of the magnet system are outlined in [49]. 

 

Flexible corrugated hoses were used to attach the Dewar and probe to the bubblers. Typically, two 

bubblers are attached to the probes head. One bubbler is attached the relief valve on the Dewar, and 

the other attached to an output port on the probe head. The liquid in the bubbler is salinised water. 

Using the bubblers minimises variations in pressure, from atmospheric pressure, of the helium in the 

magnet system. Further details of temperature-pressure relationships for helium are outlined in 

Section 6.2.3.  
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The circuitry of the experiment is represented with a block diagram is shown in Figure 3.7. In addition 

to the magnet system, the sample current source is controlled by the computer. The bubbler is used 

to stabilise the pressure in the magnet system. The computer uses the software program LabVIEW for 

data acquisition. The software interfaces with the hardware via a general-purpose interface bus (GPIB) 

and USB connection to the Keithley 2100 Voltmeters. The data is captured and plotted in real-time 

during the critical current density measurements. An Oxford Instruments (OI) IPS120-10 power supply 

unit (PSU) provides the transport current to the strand for up to 120 A. Above 120A, and up to 2000 A, 

a Power Ten 2000 A PSU is used. The current was increased linearly at a fixed ramp rate during the 

experiments. The current is ramped at a rate of 4 A·s-1, the standard ramp rate used in the European 

Organization for Nuclear Research (CERN) is 12.5 A·s-1 [23]. The effect of the ramp rate is less than 

0.1% [12], repeated measurements at the same 𝐵App with different ramp rates did not produce 

variants in the measured 𝐽C.  

 

The voltage is measured with three voltage taps on the strand. The voltage signal across the sample is 

amplified using an A10 nano-volt amplifier with a gain of 50 k. The amplifier is battery supplied and 

the output is connected to the Keithley 2100. A standard resistor is used as a resistive shunt. The 

current through the strand is determined with a high accuracy using the standard shunt. 

 

From the voltage and the gauge length, the electric field is calculated. The length between each tap is 

250 ± 1 mm for the ITER barrel and 250 ± 2 mm for the MST barrel. For the standard ITER barrel design, 

a marker was designed by the reference laboratory which when placed over the barrel and aligned 

gives the positions of the voltage taps. A permanent marker with 0.6mm width tip marks the region 

of the strand which is then stripped of its copper coating, pre-tinned and voltage taps attached with 

Pb-Sn solder. The central position on the MST barrel was marked using this system. For the top and 

bottom 250 mm voltage taps, a new system was designed. From the radius of the barrel with the 

strand wound on to it, the vertical and horizontal displacement from the centre for the 250 mm length 

taps was calculated. A simple grid was designed shown in Figure 3.8, which was transferred to the 

barrel by printing and copying on to Kapton tape. When the sample was removed from the MST barrel 

the length of voltage taps was measured and was 501.00 ± 0.05 mm. The uncertainty of positioning 

the voltage taps is small, relative to the length of the sample is measured over, and the system for 

positioning contacts above reduces the error. 
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Figure 3.7 : Block diagram of equipment for transport measurement of the critical current density. The data 
acquisition is controlled using the computer. Pressure and temperature are maintained in the Dewar using 
bubblers. Dashed lines are used for signal communication and solid lines for electrical leads.  

 

Figure 3.8 : Voltage tap guide for marking positions on the MST barrel [Figure not to scale].  
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The electric field can be determined from the top 250 mm, the bottom 250 mm, or the whole 500 mm 

length. The voltage taps were twisted at the position of the top contact, and the middle and bottom 

voltage taps are wound parallel to the sample on the measurement barrel. The parallel winding 

minimises inductive voltages for the helical geometry. Twisting the voltage leads reduces the electrical 

noise arising from magnetic-field variations or motion of the strand. Continuous leads were not used 

in the probe. There is a ten-pin plug at the top of the probe, and voltage taps attached near the 

bottom. The noise floor is given by the Johnson noise voltage due to resistance, 𝑅, at a finite 

temperature 𝑇, 

 

 𝑉rms = (4𝑘B𝑇(Δ𝑓)𝑅)1/2, (3.4) 

 

which is where 𝑘B is the Boltzmann constant, and Δ𝑓 is approximately the inverse time-constant of 

the amplifier.  

 

3.4.3. High Current Leads and Current Terminals to Measurement Barrel  
The current leads internal to the probe head were designed previously, and are manufactured from 

brass. Brass was selected as it has a much lower thermal conductivity (109 W·m- 1·K-1
 [26]) than copper 

at low temperature, and the resistivity is less temperature-dependent than copper [54, 55]. 

 

The high current leads that connect to the head are newly designed, specifically to transport large 

current without thermal runaway or burnout. The two halves of the high current leads and current 

terminals to the barrel were manufactured from single pieces of OFHC copper. In addition to OFHC, 

both LTS and HTS are soldered into the current leads. Hybrid current leads can reduce heat load as 

long as they operate below the critical current density of the superconductor in the leads [56]. 

Significant static boil-off due heat transfer from room temperature to the helium bath is a problem 

using an entirely copper current lead and terminal.  

 

Both the current leads and current terminals have a recessed design shown in Figure 3.9. In the three 

deepest channels of the recess, two strands of Nb-Ti are soldered side-by-side using Pb-Sn solder and 

then covered with Pb-Sn solder. A 12 mm wide HTS American Superconductor Corporation (AMSC) 

superconducting tape is soldered on top of the Pb-Sn layer using Bolton Metals Cerrolow-136 

[Pb18Sn12Bi49In21 (wt %)] [57]. The Cerrolow-136 solder is used for bonding the HTS as the maximum 

temperature required to melt the solder is 75°C, low enough to ensure the tape is not delaminated or 

damaged [58].  
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Figure 3.9 : Cross-sectional design of the hybrid high current leads recessed for LTS and HTS material to be 
soldered into. Using both LTS and HTS increases the current carrying capacity of the leads, and over the 
range at which the current transfer can operate. [mm] 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.10 : Drawings of measurement probe current terminals. (a) Bottom current terminal for the barrel. (b) Top 
current terminal for the barrel. (c) Bottom current terminal for the barrel with high current lead. (d) Top current terminal 
for the barrel with high current leads. [mm]. 
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The design of the current terminals maximises the cross-sectional area for current transfer, with the 

same outer diameter as the barrel, and a 2 mm high lip with an internal diameter of 24 mm to align 

the barrel centrally shown in Figure 3.10. The recessed profile (Figure 3.9) is cut into the top and 

bottom copper terminal to the barrel shown in Figure 3.10 (a, b). The bottom terminal has a is slightly 

off centre current lead that goes through the barrel shown in Figure 3.10 (a, c). The bottom terminal 

has a 5 mm diameter hole for helium flow. The M2 holes are for attaching the Tufnol centring guide, 

and a rectangular cut-out is to push through the stainless-steel brace. The top terminal, shown in 

Figure 3.10 (b, d) has an inner diameter of 23 mm, to ensure that the current leads do not short to the 

bottom terminal current lead. 

 

Resistive joints are a problem due to Joule heating. To minimise heating in the region where the strand 

is measured the joint in the current lead is 198 mm above the bottom terminal to the barrel and 

172 mm above the centre of the measurement barrel. The lengths of the current leads for both the 

top and bottom terminal is designed to ensure that the assembly aligns for connecting to the probe 

head. The bottom and top terminals are machined from single pieces of OHFC and are shown in Figure 

3.10 (c, d).  

 

3.4.4. Helium Flow and Static Boil-Off 
When the probe is in the magnet, the cryogens boil-off. The probe is designed with a maximum 

diameter of 32 mm, 6 mm smaller than the magnet’s bore. M2 clearance or greater in the probe 

components ensure helium flow. The gas flow past the current leads prevents overheating and 

reduces helium consumption [59]. As a change in the helium level can result in a different strand 

performance, during the experiment the volume of helium in the magnet is monitored. When 

measuring in low 𝐵App the high transport currents and the time taken to measure the transition, 

typically between 120 and 480s, resulted in significant boil-off of helium.  

 

3.4.5. Lorentz Force 
The strand is measured with current flowing in the strand in both directions with a fixed 𝐵App 

orientation. Strand movement may lead to additional voltage noise, variations in the measured 𝐽C or 

even thermal runaway. In the measurements presented here, the strand is not bonded to the 

measurement barrel. In the helix geometry, the Lorentz force (𝐹L) on the strand will be “compressive 

or explosive” [60]. The 𝐹L  is directed inwards in the standard characterisation measurements. The 

titanium section of the measurement barrel provides support for the strand. The maximum 𝐹L in the 

measurement is calculated using the magnetic field at the maximum measured critical current of 

2.3 kN·m-1. The 𝐹L is constrained by the axial strength of the wire itself. At zero applied magnetic field, 
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the Lorentz force is entirely due to self-field. The results at zero applied field were repeatable and 

independent of the direction of current flow. The hybrid high current leads were parallel to the stray 

field of the magnet ( 𝐽 ∥ 𝐵 = 0) and therefore did not require significant additional mechanical 

support [20].  

 

3.5. Benchmarking and Verification 
The superconducting Nb-Ti and Nb3Sn strands for the ITER machine are manufactured by several 

domestic agencies [61]. To ensure uniform production quality, reference laboratories have measured 

the properties of the superconducting strands. Worldwide benchmarking is performed to ensure 

reliable results [7]. Strands are characterised by several institutes [36, 62-65]. Benchmarking is 

performed at magnetic fields of 6.4 T for Nb-Ti at 4.22 K [9] and 12 T for Nb3Sn [66]. In benchmarking, 

the strands are distributed, mounted, and measured. The results are then reported, with some 

variations in the data [67]. The largest differences in the measured 𝐼C were at the high magnetic 

fields [7]. The national high magnetic field laboratory (NHFML) in the USA has performed verification 

tests on ITER materials [68]. Durham’s fusion reference laboratory has reported cryogenic and room 

temperature measurements of the ITER PF coil conductors as part of the European contribution to 

ITER via a Fusion for Energy (F4E) contract.  

 

Similar transport 𝐽C(𝐵) measurements of the ITER PF Nb-Ti strands have been reported in the 

literature for a range of fields and temperatures. Data from 𝐵App= 1.5 to 11 T and 𝑇 = 3.5 to 7.0 K [69]; 

𝐵App = 4 to 10 T and 𝑇 = 4.2 K to 7.5 K [70]; and 𝐵App= 4 to 8 T and 𝑇 = 3.5 to 6.0 K [71]. The 

measurements presented in this thesis consider a large range of fields, with a minimum 𝐵App= 0 T.  

 

3.5.1. Comparison with Durham Measurements 
The critical current of strand DR 4810 is plotted as a function of the applied field shown in Figure 3.11 

The comparison shows good agreement between the results from the Durham reference laboratories 

measurement and those undertaken for this work using the new probe. The differences in the critical 

current at the benchmarking applied magnetic fields (4 to 6.4 T) were less than 1 A, for details see 

Table 3.4.  

 

3.5.2. Comparison with Literature Values 
The measurement of the critical current of strand DR 4810 using this new probe is compared with the 

same type of Nb-Ti strand in the literature [62, 65]. One thing to note is that the data in these papers 

are from measurements on a non-standard barrel. The ITER measurement barrel, has an outer 

diameter of 32, while [65] are measurements on a barrel with an outer diameter of 18 mm. The other  
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Figure 3.11 : Comparison of the critical current of the same strand (DR 4810) measured on two probes in 
Durham (new high current probe and ITER probe). 

 

dimensions of the barrel are not provided. In chapter 5 the differences in self-field with geometry are 

calculated, the smaller outer diameter measurement barrel results in a different self-field distribution. 

 

The 𝐼C(𝐵) data in the paper by Karasev [62] has been corrected using the self-field correction term, 

defined in [25] which will be outlined in section 5.2.3.5. The difference in the measurement data on 

the new probe and the literature data is shown in Figure 3.12. The difference between the measured 

𝐼C and literature values is larger than the difference between the measurements of the strand in 

Durham. The measurement data is plotted in [62] and [65], additionally the values of 𝐼C(𝐵) have been 

calculated using the fit parameters, calculated using the Bottura fit [72]. How well the data is fit with 

the single or two-component model may result in differences in the value of 𝐼C(𝐵). The data are 

summarised in Table 3.4.  

 

It can also be assumed that it is possible at 𝐵App = 6.4 T, the Durham measurements produced values 

within 2 A of the average value (336.4 A) [14], the values of 351 A, and 329 A are within the 2σ value.  
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Figure 3.12 : (Top) Comparison of literature values of critical current with new high current probe 
measurements of strand DR 4810. (Bottom) Percentage difference of critical current between the new high 
current probe measurements and the literature values as a function of the applied magnetic field. 

 

 

IC [A] 
 

Strand DR 4810:   

Applied 
Field, 
BApp [T] 

Durham 
Reference 
Laboratory 

New high 
current probe 

[65]* [62] 

4.5 532 531 555 524 

5 481 481 501 474 

6 378 378 394 372 

6.4 337 338 351 329 

Table 3.4 : Measured critical current values of ITER type 1 Nb-Ti strands at benchmarking fields,  
* self-field correction defined in [25] has been applied to data [65].  
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3.6. Conclusions 
 

The properties of the Nb-Ti strand characterised in this thesis were outlined. The measurement barrel 

designed to investigate the self-field was described. The main difference between the standard ITER 

barrel and the custom-designed minimum separation of turns barrel is the separation of turns. A high-

current probe has been designed, commissioned, and constructed for low-field high-current transport 

measurements of Nb-Ti ITER PF type 1 strands at 4.22 K. The probe is designed for Durham’s vertical 

15 T magnetic system. The use of both LTS and HTS in the high current leads enable transport 

measurements at high currents. The clamping mechanism and the material choices ensured current 

transfer through the terminal to the barrel is achieved. The measured critical current values measured 

were compared with internal benchmarking experiments and good agreement is found. Further 

details of the Nb-Ti strand can be found in A.1, and details of the probe and barrel can be found in A.2.   
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CHAPTER 4 

4.  Superconducting Properties of Titanium Alloys  

Ti-64 and Ti-6242  
 

In this chapter, the properties of two titanium alloys, Ti-6Al-4V (Ti-64) and Ti-6Al-2Sn-4Zr-2Mo-0.2Si 

(Ti-6242) are outlined. Typically, the ITER measurement barrels are manufactured from Ti-64, which 

is problematic as the alloy superconducts, 𝑇C (Ti-64) = 5.12 K. This alternative superconducting current 

path during the measurement introduces uncertainty in the measurement of 𝐽C. An alternative 

titanium alloy Ti-6Al-2Sn-4Zr-2Mo-0.2Si (Ti-6242) was measured which has similar physical properties 

to Ti-64, such as thermal conductivity and electrical resistivity as a function of temperature. With a 

lower 𝑇C (Ti-6242) = 2.38 K, Ti-6242 alloy is a better choice for manufacturing components for 

superconducting transport measurements. In chapter 3 the characteristics of the Nb-Ti used in the 

ITER poloidal field magnets were outlined, this strand is not heated prior to characterisation. The 

toroidal magnetic field in the ITER magnet system, which provides primary plasma confinement, is 

manufacture from Nb3Sn strands which are heat treated (HT) prior to characterisation. The heat-

treatment for the Nb3Sn strand is performed on the ITER measurement barrel, HT Ti-64 alloys were 

also characterised. The improved understanding of the behaviour of the two titanium alloys as a 

function of magnetic field improves the analysis of 𝐽C measured using transport methods.  

 

4.1. Introduction 
 

In standard critical current density ( 𝐽𝐶) measurements at liquid helium temperatures, samples are 

measured on a Ti-6Al-4V wt % (Ti-64) ITER barrel [1, 2]. Ti-64 is the workhorse of the titanium industry 

covering more than 50 % of uses [3]. The excellent mechanical properties and good machinability of 

this material make it the material of choice for barrels [4]. Ti-64 is a highly resistive material, even at 

cryogenic temperatures, due to the high titanium content in solid solution [5]. The alloy’s thermal 

contraction is similar to Nb3Sn minimising pre-straining of the strands [6] and has low thermal 

conductivity. 

 

In 1970, Clark published the electrical resistivity of many engineering alloys including the Ti-64 alloy 

and reported that it exhibits a superconductivity [7] at 4.22 K in magnetic fields of up to a few tesla [4]. 

Other reports of Ti-64 superconducting properties followed. In 1992 Umezawa showed that the 

https://en.wikipedia.org/wiki/Equals_sign#Approximately_equal
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measured 𝑇C (Ti-64) varied between 4.35 and 6.30 K, depending on oxygen concentration and heat 

treatment [8]. Divakar showed that 𝑇C of Ti-64 could vary from 1.3 to 5.7 K [9, 10]. Barucci measured 

a 𝑇C of about 4.38 K using a mutual inductance method [11]. The alloy superconducts, but a history of 

the material is required to understand the measured value.  

 

As Nb3Sn conductor is typically reacted on the Ti-64 measurement barrel, and then measured, in 

addition to the as-supplied material, heat-treated samples were also characterised. As the Nb-Ti 

conductor studied in this work is not heat treated, the Ti-6Al-2Sn-4Zr-2Mo-0.2Si wt % alloy was 

measured in the as supplied state only [Ti-6242 (AS)].  

 

4.2. Materials and Measurements 
 

4.2.1. Ti-64 Phase Diagram 
Two elementary structures are found in pure titanium, the alpha (𝛼) and beta (𝛽) phase. The crystal 

unit cell structure of the 𝛼-phase is hexagonal close packed (HCP), and the 𝛽-phase body-centred-

cubic (BCC). When heated, the allotropic transformation from  𝛼 to 𝛽 phase occurs at 882 °C, the 𝛽-

transus temperature, 𝑇β. In Ti-alloys the 𝛼-phase and 𝛽-phase are separate by a two-phase (𝛼 + 𝛽) 

region. Ti-64 is categorised as an 𝛼 + 𝛽 two-phase alloy, while the Ti-6242 is categorised as a near-

alpha, or super-alpha alloy, or as a weakly beta-stabilised alpha-beta alloy [5]. 

 

Alloying of the titanium both promotes the 𝛽 crystal structure and optimises the electron density of 

states [12]. The 6% aluminium addition in both the Ti-64 and Ti-6242 alloys is a potent 𝛼-phase 

stabiliser. Aluminium improves oxidation properties and is probably not superconducting [3]. Alloying 

with vanadium helps stabilise the 𝛽-phase in Ti-64, by lowering the 𝛼-𝛽 transition temperature. The 

phase diagram of Ti-6Al-4V is shown in Figure 4.1. In Ti-6242 the 2% molybdenum is a moderate 𝛽-

phase stabiliser. The tin is an alpha stabiliser, while the zirconiums effect is 𝛼 or 𝛽 phase strengthening. 

The silicon is neutral and improves creep resistance [13]. 

 

The properties of 𝛼 + 𝛽 can be controlled by heat treatment (HT) which adjusts the microstructural 

and precipitational states of the  𝛽 component. It is known that temperatures of 620 °C are sufficient 

to change the microstructure of Ti-alloys [3]. When heated the volume fraction of the 𝛽-phase 

increases, for 𝛼 + 𝛽 Ti-alloy, with increasing temperature up to the 𝛽 transus temperature [14]. If the 

Ti-alloy is heated and cooled below 𝑇β the microstructure will depend on the initial microstructure, 

and heat treatment conditions. Conditions such as the heating rate, holding temperature, holding time 

at the temperatures, and cooling conditions. The HT of Ti-64 is outlined in section 4.2.3. 
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Figure 4.1 : Schematic phase diagram of Ti-6Al-V alloy. The 𝛽 phase is BCC, while 𝛼 is HCP. The dashed line 
is the martensite start temperature. Figure from Ref. [15].  

 

The superconducting state in the Ti-64 is due to the proximity effect of the 𝛽 phase [16]. The 

superconductor in proximity to a normal metal may induce pairing correlation in the normal metal. 

The electrons in the normal metal can carry screening currents. The retained 𝛽 state has a higher 𝑇C 

than the 𝛼 matrix [8].  

 

4.2.2. Material Properties 
Ti-64 alloy has excellent strength, good ductility, and desirable corrosion properties. The ideal 

alternative Ti-alloy for a measurement barrel should have similar normal state electrical, thermal, and 

mechanical properties to Ti-64. Ti-6242 alloy was identified as a suitable alternative due to its similar 

properties, detailed in Table 4.1 [5]. Both Ti-6242 and Ti-64 alloys have a high electrical resistivity that 

does not change significantly from 10 K to room temperature. The properties of both alloys are given 

in Table 4.1   

 

The origin of the superconducting properties of Ti-alloys can be understood to some degree in terms 

of the Matthias rules [17]. The elemental components titanium, aluminium, and vanadium all 

superconduct: 𝑇C (Al) = 0.4 K, 𝑇C (Ti) = 1.2 K, and 𝑇C (V) = 5.38 K. As the vanadium has the highest 𝑇C, 

it is probable the Ti-64 𝑇C (Ti-64) ∼ 5.12 K, measured in this work, is due to the vanadium [18]. The Ti-

6242 alloy is investigated because contains elements with lower values of 𝑇C. The element in Ti-6242 

with the highest 𝑇𝐶  is tin (Sn) = 3.772 K. The measurements in section 4.3.1 show that the 𝑇C (Ti-6242) 

∼2.38 K.   

 

The thermal coefficient of linear expansion for both Ti alloys is similar to the intermetallic 

superconductor Nb3Sn (i.e., 7.6×10-6 K-1). Although the Ti-6242 matches the value more closely, the 
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Property [Unit] Ti-64 (AS) Ti-6242 (AS) 

Thermal Conductivity [W·m-1·K-1] 7.4 7.0 

Thermal Coefficient of linear expansion [10-6 K-1] 8.0 7.7 

Specific Heat Capacity [kg-1· K-1] 529 460 

Young’s Modulus: Tensile [1011 N·m-2] 1.10 1.14 

Young’s Modulus: Compressive [1011 N·m-2] 1.11 1.24 

Table 4.1 : Thermal and mechanical properties of titanium alloys [5]. 

 

volume of Ti-64 produced results in a less expensive material. Like Nb-Ti,  Nb3Sn strand are composite, 

the soft copper in the matrix has a higher thermal contraction coefficient, so the linear expansion is 

not perfectly matched to the Ti alloy [19]. In quantifying the effect of self-field, the low a𝐵App was of 

interest. The possibility of Ti-64 being superconducting introduces an uncertainty in characterising the 

strand at low 𝐵App. The use of Ti-6242 is not envisaged for all measurement barrels, transport 

measurements of Nb3Sn at low 𝐵App are limited typically by current supply, in the kA range [20]. 

 

4.2.3. Heat Treatment used for Ti-64  
The heat-treated Ti-64 samples measured in this work were cut from measurement barrels used to 

react bronze route [Ti-64(BR)] and internal tin [Ti-64(IT)] Nb3Sn strands. The heat-treated ITER barrels 

were processed by the Durham reference laboratory team. The Ti-6242 alloy is only studied in its as-

supplied state. Although it was not HT, it is expected that no significant phase change can occur with 

HT due to its near alpha state [21]. Due to the low thermal conductivity of titanium alloys, the 

extraction of the small bars from the HT measurement barrels was completed using low machine 

cutting speeds and large quantities of cutting fluid coolant. The heating produced by extracting the 

titanium bars from the barrels is assumed negligible. 

 

The barrels are first oxidised in air at 300 °C for 5 hours. The barrels were heat-treated in an argon 

atmosphere. HT above 400 °C requires atmospheric protection to limit oxygen and nitrogen forming 

a surface, an 𝛼-case. The heat treatment schedules for the Nb3Sn strands are outlined in Table 4.2 and 

Table 4.3. The bronze route (BR) heat treatment is longer at 480 hours than the internal tin (IT) 300 

hours. The time of the HT affects the particles size, larger particles can result in an increased 𝑇C. The 

HT profiles are shown in Figure 4.2, with maximum temperature (BR) 620 °C and (IT) 650 °C. A ramp 

rate of 5 °C·h-1 between the dwell temperature was used throughout. After the final heat treatment 

dwell, the temperature was rapidly decreased to room temperature by switching off the furnace.   
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Figure 4.2 : Heat treatment (HT) profiles for winding and reacting Nb3Sn superconductors, using Internal 

Tin and Bronze Route compared with the Ti-64 beta transus temperature (𝑇𝛽). For details of HT see Table 

4.2 and Table 4.3. 

 

Temperature [°C] 595 620 500 

Time [hours] 160 320 0 

Table 4.2 : Bronze route heat treatment schedule for the Nb3Sn strand, mounted on Ti-64 
barrel measured in this work. 

 

Temperature [°C] 210 340 450 575 650 500 

Time [hours] 
50 25 25 100 100 0 

Table 4.3 : Internal tin heat treatment schedule for the Nb3Sn strand, mounted on Ti-64 barrel 
measured in this work. 

 

The highest temperature in both HTs of Ti-64 are below 𝑇𝛽= 995 ± 20  °C. In Ref. [22] the phase 

compositions of Ti-64 was measured with varied temperature HT. Analysing the microstructure, the 𝛼-

phase grows within the 𝛽-phase. It is possible to use synchrotron X-ray diffraction spectra of the 

(110)𝛽, the (002)𝛼, and (101)𝛼 reflections to extract phase 𝛼 and 𝛽-phase percentages [23]. These 

measurements were not performed for this thesis. When considering the resistivity measurements, 

the HT can result in defects and inhomogeneities in the Ti alloy sample,  the thermal precipitates 

created have a distribution of sizes. The transition to the superconducting state is broadened, when 

samples that are 𝛽 quenched [16].  
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Figure 4.3 : Titanium alloy bar mounted on PPMS resistivity puck for transport measurements. 

 

4.2.4. Transport Measurements  
Resistivity and the 𝐸-𝐽 characteristics were measured as a function of temperature and magnetic field 

using a standard four-terminal measurement. The temperature and magnetic field were controlled 

using the Quantum Design, physical property measurement system (PPMS). Magnetic fields of up to 

𝐵𝐴𝑝𝑝 = 9T were possible in Durham’s PPMS system. 

 

For the resistivity measurements, the internal PPMS circuitry was used. The titanium bar samples 

(approximately 1 × 1 × 10 mm) were sequentially mounted on to a PPMS resistivity puck shown in 

Figure 4.3. Current and voltage leads were connected with silver paint to the small Ti bars, the voltage 

gauge length was approximately 5 mm. Room temperature measurements of Ti bars approximately 

1 × 1 × 35 mm, with a 20 mm voltage gauge length, were also measured. With measurements data at 

293 K for both Ti-64 [AS] samples from the same source, and a smaller uncertainty in the gauge length 

the difference in the measured resistivity was calculated. The short sample, variable temperature data 

were scaled by normalisation factors outlined in Table 4.4, and the uncertainty in the resistivity was 

reduced to ≈ 4 %. 

 

For the 𝐸-𝐽 measurements of the Ti bars in the PPMS, external circuitry was used. The current was 

provided by a Keithley 220 programmable current source. A resistor was also added in series to the 

sample to ensure the nominal current programmed into the current source and the current derived 

from the voltage across the resistor were consistent through the measurements from 10 nA to 0.1 A. 

The voltage across the sample was measured using an amplifier of gain 5 × 104 and a Keithley 2100 

6½-digit multimeter. 
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Ti-Alloy Normalisation 

Ti-6242 (AS) 1.18 

Ti-64 (AS) 1.03 

Ti-64 (BR) 1.11 

Ti-64 (IT) 1.18 

Table 4.4 : Normalisation factor for Ti-Alloy. 

 

In addition to short Ti bar samples, the ITER barrels the bar samples were cut from were measured in 

the vertical magnet system. The ITER barrels were modified to allow voltage taps to be connected to 

the Ti-alloy sections. The purpose of this additional measurement was to investigate the effect of 

applied-field direction on the critical current density 𝐸-𝐽 measurements.  

 

4.3. Results and Discussion 
 

4.3.1. Zero-field resistivity 
There is excellent agreement, to within 4 %, between experimental data, for the temperature 

dependence of the normal state resistivity of the as supplied Ti-64 alloy, and the data from Ekin [4] 

and Clark [7], shown in Figure 4.4 (a). The transition from normal to superconducting in zero-field is 

seen in the resistivity data for the titanium alloys, shown in Figure 4.4 (b). 𝑇C (Ti-6242) ∼2.38 K is well 

below that of 𝑇C (Ti-64) ∼5.12 K.  

 

The HT Ti-64 alloys transitions to a non-zero resistivity state. The HT of the sample results in a material 

which has connected 𝛽 phase, demonstrated by the superconductive behaviour [24]. The lack of the 

bulk transition can be ascribed to the 𝛼-phase.  At low temperature some of the 𝛽 phase remains in 

the form of interconnecting filaments [25], which causes the superconductivity. The variance in the 

transition and measured 𝑇C is due to the binary structure and differences in the 𝛽 phase due to the 

working of the material.   

 

4.3.2. In-field Resistivity  
The titanium alloy samples were measured in applied-fields to investigate the upper critical fields. The 

magnetic field was applied orthogonally to the direction of current flow in the PPMS measurement 

system. The superconducting 𝑇C  and upper critical field 𝐵C2 of the as-supplied Ti-64 are consistent 

with the literature values, the range measured from 4.35 and 6.30 K. The two as-supplied alloys make 

a complete transition to zero resistivity, shown in Figure 4.5 (a) and Figure 4.6. The heat-treated Ti-64 

alloys were also both measured in an applied magnetic field. 



Superconducting Properties of Titanium Alloys  67 

 

 (a) 

0 50 100 150 200 250 300

0.0

0.5

1.0

1.5
R

e
s
is

ti
v
it
y
, 

r
 (

m
W

m
)

Temperature, T (K)

 Ti-64 (AS)

 Ref [4]

 Ref [7]

 

(b) 

  

0 1 2 3 4 5 6

0

1

2

R
e

s
is

ti
v
it
y
, 

r
 (

m
W

m
)

Temperature, T (K)

 Ti-6242(AS)

 Ti-64 (IT)

 Ti-64 (BR)

 Ti-64 (AS)

4.22

 

Figure 4.4 : (a) The resistivity of titanium alloys Ti-64 (Ti-6Al-4V) compared with the literature 
measurements [4, 7]. (b) The resistivity of titanium alloys Ti-64 (Ti-6Al-4V) and Ti-6242 (Ti-6Al-2Sn-4Zr-

2Mo-0.2Si). The Ti-6242(AS) and Ti-64(AS) materials in the as-supplied state achieve zero resistivity. The 
Ti-64(BR) and Ti-64(IT) were heat-treated using the schedules for bronze-route Nb3Sn and internal tin 

Nb3Sn strands respectively, as detailed in Table 4.2 and Table 4.3. The heat-treated materials show 
partial resistivity transitions from their normal state resistivity to a lower resistivity value. The vertical 

dashed line is at 4.22 K. 
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Figure 4.5 : The resistivity of Ti-6Al-4V alloys as a function of the applied magnetic field (a) Ti-6Al-4V [Ti-
64(AS)] (b) heated treated [Ti-64(BR)] using the schedule used for bronze route Nb3Sn strands as given in 
Table 4.2. (c) [Ti-64(IT)] using the schedule used for Internal Tin route Nb3Sn strands as given in Table 4.3. 

Note that at low temperatures the sample remains resistive. The vertical dashed line is at 4.22 K. 
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Figure 4.6 : The resistivity of as-supplied Ti-6Al-2Sn-4Zr-2Mo-0.2Si (Ti-6242(AS)) as a function of 
temperature measured in magnetic fields from 0 T to 0.875 T. The nominal 0 T data (1st run, red square) 

data were measured at the beginning of the experiment. The 0 T (second run, black open circle) data 
were taken at the end of the experiment. 

 

The heat-treated sample Ti-64(BR) shown in Figure 4.5 (b) shows a partial transitions, the resistivity 

dropping by about 60 %. The heat-treated sample Ti-64(IT) shown in Figure 4.5(c) also shows similar 

partial transitions behaviour. This behaviour may be associated with some non-contiguous parts of 

this alloy becoming superconducting. Although incomplete, the transitions for Ti-64 (IT) and Ti-64 (BR) 

remain relatively sharp and have a temperature dependence that can be associated with 

superconducting components in these alloys. The superconducting path is not continuous throughout 

the entire sample down to a base temperature of 2 K. 

 

The in-field transitions of the as-supplied Ti-6242(AS) alloy were also measured, shown in Figure 4.6. 

The transition is very broad, consistent with multi-phase samples [26] containing materials with a 

range of compositions. The Ti-6242(AS) alloy also showed considerable hysteresis in the resistive 

traces, particularly in nominal zero-field, shown in Figure 4.6. The hysteresis is attributed to trapped 

flux in these inhomogeneous samples. For each of the in-field traces, the samples were first heated to 

above 3 K to ensure the whole sample was driven normal. 

 

From the in-field resistivity measurements, a value for the onset of superconductivity was found 

[𝐵𝐶2
∗ (𝑇)] for each alloy, shown in Figure 4.7.  
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Figure 4.7 : 𝐵𝐶2
∗ (T) – the onset of superconductivity  for the Ti-alloys Ti-64 and Ti-6242 as a function of temperature. 

The Ti-alloy state: as supplied (AS), heat-treated for Bronze route (BR) or internal Tin (IT). The solid line is a fit to 
Eq. (4.1), with 95% confidence band for the Ti-64 alloys. It was not possible to fit the Ti-6242 data meaningfully.  

 

Characteristic [Unit] Ti-64 (AS) Ti-64 (BR) Ti-64 (IT) Ti-6242 (AS) 

𝑇C [K] 5.1 ± 0.1  5.8 ± 0.1 4.5 ± 0.1 2.2 ± 0.1 

𝐵C2(0) [T] 8.5 ± 0.1 9.0 ± 0.1 6.7 ± 0.1 1 ± 1 

𝐵𝐶2  [W-H-H] 14.4 ± 0.4  19.8 ± 0.8 13.6 ± 0.7 4.5 ± 0.2 

Index 𝑆 2.7 ± 0.1 2.6 ± 0.1 2.7 ± 0.1 5 ± 6 

Data points 19 22 17 5 

𝜌 (0 T, 273 K) [μΩ m] 1.60 ± 0.01  1.67 ± 0.01 1.74 ± 0.01 1.75 ± 0.01 

𝜌 (0T, 10 K) [μΩ m] 1.40 ± 0.01 1.45 ± 0.01 1.50 ± 0.01 1.51 ± 0.01 

Table 4.5 : Superconducting and normal state properties of titanium alloys from transport measurements for the 
titanium alloy Ti-64 (Ti-6Al-4V) and Ti-6242 (Ti-6Al-2Sn-4Zr-2Mo-0.2Si). Ti-64(BR) and Ti-64(IT) were heat-treated 

using the schedules that are used for the bronze route strands and internal tin strands outlined in Table 4.2 and Table 
4.3.  
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The onset was defined as 95% of the normal state resistance. The data have been fitted with using the 

expression [27]: 

 
𝐵𝐶2

∗ (𝑇) = 𝐵C2(0) [1 − (
𝑇

𝑇𝐶
)

𝑆

] 
(4.1) 

 

The characteristic superconducting and normal state parameters for the four alloys measured in this 

work are given in Table 4.5. A rule of thumb for data sets with ten or fewer measurements, the error 

is rounded to one significant figure [28]. With five data points for the Ti-6242, it is clear using Eq. (4.1) 

results in an over extrapolation with the uncertainty in 𝑆 and 𝐵C2
∗  equal to or larger than the value. 

The 95% confidence band, 2σ, for the Ti-alloys is shown in Figure 4.7, apart from Ti-6242 as it is not 

meaningful.  

 

It is possible to calculate the 𝐵C2 using the well-known Werthamer, Helfand and Hohenberg (𝑊𝐻 𝐻) 

empirical fit, Eq. (4.2) [29]. (𝑊-𝐻- 𝐻) theory is used to extrapolate to find the upper critical field, at 

0 K, from the 𝑇C and gradient of 𝐵C2
∗  at 𝑇C.  

 

 
𝐵𝐶2

∗ (𝑇)[𝑊𝐻𝐻] = − 0.693 𝑇𝐶 (
𝑑𝐵𝐶2

∗

𝑑𝑇
)

𝑇𝐶

 
(4.2) 

 

This analysis results in values of 𝐵C2
∗ (𝑇)[𝑊𝐻𝐻] has the same trend, i.e., the smallest value for Ti-6242, 

but approximately a scale factor of 2 larger (Table 4.5).  

 

4.3.3. Critical Current Measurements  
The critical current density (𝐽𝐶) measurements on bars of Ti-64(AS) and Ti-64(BR) at 4.22 K as a function 

of the 𝐵App are shown in Figure 4.8. The magnetic field was applied orthogonal to the direction of 

current flow.  Ti-64(AS) shows a zero-resistivity baseline in contrast with and the Ti-64(BR) alloy which 

shows a resistive baseline from origin, both results are consistent with the data shown in Figure 4.4 (b). 

 

Both datasets shown in Figure 4.8 are consistent with the data shown in Figure 4.4 (b). The Ti-64(AS) 

is non-ohmic, i.e., superconducting. The range of 𝐽𝐶  values reported here are comparable to those of 

Goodrich [30], who found 𝐽C values for barrels from > 680 mA·mm-2 for AS material to 2 mA·mm-2 for 

annealed (HT) and oxidised barrels. It is important to note that the 𝐽C are not small values in the 

context of making high accuracy transport measurements, since in zero applied-field the Ti-64 barrel 

can carry a supercurrent of > 112 A. A 𝐽C value a factor of 3 - 4 higher than the data shown in Figure 

4.8 (a) (42 mA·mm-2) is consistent with well-established Lorentz-force-free flux pinning considerations.  
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Figure 4.8 : 𝐸-𝐽 characteristics at 4.22 K as a function of the applied magnetic field (a) as-supplied Ti-6Al-4V [Ti-64(AS)]. 
The line between points is a guide for the eye. Horizontal lines at 𝐸 = 0, and 𝐸𝐶  (b) [Ti-64(BR)]  
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Figure 4.9 : 𝐸-𝐽 characteristics at 4.22 K of titanium alloy barrels. Samples measured were Ti-64(AS) (as supplied Ti-6Al-
4V); Ti-6242(AS) (as supplied Ti-6Al-2Sn-4Zr-2Mo-0.2Si) and Ti-64 that was heat-treated using the internal tin (IT) and 

bronze route (BR) strand schedules given in Table 4.2 and Table 4.3. Not the E-field range in the measurement 

 

In addition to measurements of Ti-alloy bar samples, critical current density measurements were 

performed on intact ITER barrels, shown in Figure 4.9.  Measurements in the vertical magnet setup, 

are at a fixed temperature, 4.22 K, and the applied magnetic field is parallel to the direction of current 

flow. The 𝐽𝐶  measurements of the Ti-64(AS) and Ti-64(BR) samples were measured. The behaviour of 

Ti-64(AS) is consistent with the data shown in Figure 4.4. The data has a noisy baseline and a transition. 

The Ti-64 (BR) measurement barrel is resistive but non-ohmic.  
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4.4. Conclusions 
 

The superconducting transition temperatures and upper critical fields of Ti-64 and Ti-6242 titanium 

alloys, as well as the effect of two heat treatments on Ti-64, were measured. The critical temperature 

of Ti-64 is 5.14 K and Ti-6242 is 2.38 K. After the heat treatments, the standard Ti-64 no longer 

achieved the zero-resistivity state but a partial transition in the resistivity was seen, which was 

attributed to the isolated parts of the material remaining superconducting. For high accuracy 𝐽C 

measurement at 4.22 K in magnetic fields up to 3 T, the barrel should be made using Ti-6242 rather 

than Ti-64 because it is in its normal state under these conditions. The two measurement barrels, 

detailed in chapter 3, were manufactured using Ti-6242 and were used to perform transport 

measurements, detailed in chapter 6.  
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CHAPTER 5 

5.  Magnetic Field Calculations: Analytic and Finite 

Element Analysis  
 

To apply a self-field correction to experimental transport data it is necessary to calculate the 

magnitude, orientation, and distribution of the magnetic field due to current flow. Analytic methods 

are of limited use for calculating the self-field as the magnetic field equations are for unphysical – 

pointlike or infinite – geometries. Finite element analysis (FEA) is the method used to calculate 

magnetic field distributions for current flow through the complex geometry. To verify the 

methodology of the FEA modelling, several consistency tests are used to demonstrate agreement 

between FEA and analytic expressions.  

 

In section 5.1, a brief overview highlighting key features and terminology of the FEA model 

implemented is presented. Additional information about the FEA model is included in the appendix, 

A.3. Working in collaboration with Dr Adel Nader (AN), and with improved computing resources, the 

complexity of the FEA models used for calculations increased.  

 

In section 5.2, several consistency tests using simpler geometries demonstrate the validity of the FEA 

modelling technique and its development. Numerical values of analytic equations were used as 

comparisons, implemented using Mathematica [1]. This section concludes by comparing results of a 

helix with a circular cross-section, with the literature, in particular, the results of a model developed 

by the CERN group [2].  

 

In section 5.3, results are presented from more complex geometries. Calculations are presented for 

helices and arrays that better approximate the experimental geometry and architecture of the strand. 

The architecture of the stand has been considered modelling the composite cross-section as a 

homogenised region in an annulus shape that is subdivided into three nested insulated tubes: tubes-

within-tubes (TwT). The TwT geometry is used, a simplification that captures that the composite strand 

is composed of multiple filaments that are partially transposed. The effect of the current orientation 

relative to the 𝐵App and the resultant Lorentz force (𝐹L) is outlined. The different spatial distributions 

of the self-field results in a change in the 𝐽C measured, which provides insight into the role of self-field 

in testing superconducting properties.  
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5.1. FEA Model Overview 
 

Comsol Multiphysics was used as it is the default FEA software in the modelling community. Several 

FEA model files shared by the superconductivity model workgroup [3], were used as a reference in the 

development of the model used in this work. There are two formulations of the constitutive equations 

to model superconductors used in this thesis, summarised in Table 5.1. The 𝐴-𝑉 formulation describes 

the electrical conductivity in terms of the electric field. The state variable in the 𝐻-formulation is the 

magnetic field strength and is solved directly, rather than the magnetic field potential 𝐴 from which 

𝐵 can be calculated. Using the 𝐻-formulation the resistivity can be defined as a function of the current 

density. The 𝐻-formulation is well-established; the development is outlined in references [4-7]. 

Reference [8] is useful for an in-depth review of the 𝐻-formulation. For details of implementing the 

𝐻-formulation using Comsol see appendix (A.3.2.3). 

 

One of the constitutive equations essential to the model is the relationship between the magnetic flux 

density, 𝐁 and the magnetic field strength 𝐇:  

 

 𝐁 = 𝜇𝐇. (5.1) 

 

where 𝜇 is the magnetic permeability. As there are no magnetic materials in the experimental set-up, 

𝜇 is imposed as the free space value (𝜇0). The other constitutive relationship is the generalised Ohm’s 

law. The relationship between the electric field 𝐄 and the current density 𝐉:  

 

 𝐄 = 𝜌 𝐉. (5.2) 

 

The 𝐸-field is assumed to be parallel to the current density, i.e., 𝜌 is taken to be isotropic [9]. The 

normal conducting domains in the models are implemented using resistivity 𝜌 = 𝜌𝑁. The 

superconducting domains 𝜌 = 𝜌𝑠𝑐 are implemented using different methods for the two formulations. 

When using the 𝐴-𝑉 formulation, a constant resistivity value similar to copper, 1.7 x 10- 8 Ωm [10] is 

defined in the superconducting domains. When using the 𝐻-formulation, the superconducting domain 

is described by a non-linear magnetic field-dependent resistivity equation, a modified version of the 

power-law model [11] Eq. (5.3).  

 

 
𝜌𝐬𝐜(𝐵, 𝑛) =

𝐸C

𝐽C(𝐵)
( 

𝐽

𝐽C(𝐵) 
)

(𝑛−1)

. (5.3) 
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Formulation Constitutive Equations Definitions 

Vector and scalar 
potential 
𝐴-𝑉 

∇2𝐀 = 𝜇𝜎 (
𝜕𝐀

𝜕𝑡
+ ∇𝑉) 

 

∇ ∙ (
𝜕𝐀

𝜕𝑡
+ 𝜎∇𝑉) = 0 

𝐁 = ∇ × 𝐀 
 

𝐄 = −
𝜕𝐀

𝜕𝑡
− ∇V 

 

σ = σ(E) 

𝐻-field ∇  × ρ∇ × 𝐇 = −𝜇
𝜕𝐇

𝜕𝑡
 

𝐉 = ∇ × 𝐇 
 

𝜌 = 𝜌 ( 𝐽 ) 

Table 5.1 : Summary of the two formulations used for modelling superconductors, modified from Ref. [9]. 

 

Several FEA calculations have been completed for this thesis with the development framework 

outlined in Table 5.2. The magnetic field distributions were initially calculated for all the geometries 

in Table 5.2 using the 𝐴-𝑉 formulation. Using the 𝐴-𝑉 formulation for stationary solutions, the 

magnetic field distribution is independent of the value of the domain’s resistivity. For calculations with 

a constant resistivity, both the 𝐴-𝑉 and 𝐻-formulation have been used. For calculations using the 

power-law definition of the superconducting domain resistivity, Eq. (5.3), the 𝐻-formulation has been 

used. For the 𝐻-formulation models, the 𝐽C(𝐵) relationship was developed, from a linear to an 

exponential form. All bulk transport properties of the superconductor are contained within 𝐽C(𝐵). The 

calculations presented in chapter 5 have been implemented using a linear definition of 𝐽C(𝐵),  

 

 
𝐽C(|𝑩|) = 𝐽C0 (1 −

|𝑩|

𝐵C2
). (5.4) 

 

The details and numerical values used in Eq. (5.4) are outlined in section 6.3.1. The  𝐵App field studied 

was from 0 to 8 T, and using experimental data for currents from 150 A to 1 600 A. The consistency 

tests typically fixed the current to 1 kA, and 𝐵App either 0 or 1 T.  

 

As computation time increases with geometric complexity, eventually Comsol cannot be used to 

calculate the properties of a multifilamentary strand with partially transposed filaments. Reducing the 

dimensions of the FEA calculations, i.e., modelling a 3D helix as a 2D axisymmetric or a 3D 

axisymmetric (𝑧-component removed) ring reduces runtime. Implementing the mathematical 

formulation of the 𝐻-field in 2D axisymmetric coordinates using Comsol is relatively straightforward. 

During testing inconsistencies were found, outputs were dependent on input parameters, such as the 

𝐸-field being linearly dependent on the ramp rate. In collaboration with Dr Adel Nader, the problem 

was addressed, and useful results were generated using 2D axisymmetric models.  
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Geometry 

Resistivity Definitions 

Constant  Power law: 
𝑛 = 1 
const. 𝐽C 
𝐵App= 0T 

Power law: 
𝑛 = 5 
const. 𝐽C 
𝐵App= 0T 

Power law:  
𝑛 = 1 
𝐽C(𝐵)  
𝐵App= 0T  

Power law:  
𝑛 = 5 
𝐽C(𝐵)  
𝐵App= 1T  

Exponential: 
𝐽C(𝐵)  
𝐵App= 1T  

Exponential:  
𝐽C (|𝐵|𝑚𝑎𝑥)  
𝐵App= 1T 

2D Straight Wire:  
Circular cross-section √ √ √ √ √ √ √ 

3D Straight Wire: 
Circular Cross-section √ √ √ √ √ √ √ 

2D Ring:  
Circular Cross-section AN AN AN AN AN AN AN 

3D Helix:  
Circular Cross-section √ √ √ √ √ √ √ 

3D Rings: Annular 
Cross-section AN AN AN AN AN AN AN 

3D Helix: Annular  
Cross-section √ √ √ √ √ √ √ 

3D Helix: Tubes- 
within-Tubes  
Cross-section 

√ √ √ √ √ √ √ 

Table 5.2 : The geometries of the models studied with the H-Formulation. For each geometry the complexity of the definition of the resistivity 
was increased incrementally. AN indicates models that were developed in collaboration with by Dr Adel Nader. 
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The filamentary region of the strands was modelled as a homogenous region, with a circular or annular 

cross-section in the simple geometries studied in section 5.2. Nb-Ti strands with similar architecture 

to the ITER PF conductor have been modelled in the literature where the filamentary structure of the 

strand is simplified by considering a homogenised bundle [12, 13]. The electrical conductivity of the 

bundle 𝜎𝑏 is characterised using: 

 

 𝜎𝑏 = 𝜆SC 𝜎SC + (1 − 𝜆SC)𝜎m, (5.5) 

 

where 𝜆SC, is the fraction of the strand that is superconductor and the electrical conductivities of the 

matrix and superconductor are 𝜎m, and 𝜎SC respectively. The authors of [12, 13] conclude the bundle 

approximation was of qualitative use, providing a suitable approximation for comparing layouts for 

optimisation, and results in reduced computation time. This bundle approximation has not been 

followed in this thesis, as redistribution of the current is required for accurate modelling of the self-

field. 

 

5.2. Consistency Tests: Simpler Geometries 
 

5.2.1 Infinite Straight Wire 
A first approximation for the effect of the magnetic self-field in the ITER helix geometry is to model it 

as a straight wire. It is a simple calculation with demonstrated usefulness [14]. It has been stated that 

for currents less than 2 kA, the magnetic field generated by current flowing in the helix geometry is 

“not much different from that of a straight strand” [15]. At the National Agency for New Technologies, 

Energy and Sustainable Economic Development (ENEA) facility, transport measurements are corrected 

by applying a straight wire correction term [16]. The justification for the simplification is that the ITER 

barrel’s major radius is large, relative to the strand’s diameter, and the separation between turns 

minimises the effect of neighbouring turns. The magnetic field generated by the nearest neighbour 

turn in the ITER helix is between 1% [16] to ∼ 5% [17] of the self-field on the strand. In section 5.2.1 

the magnetic field of a straight wire is modelled accurately and quickly using Comsol. 

 

5.2.1.1. Magnetic Field Spatial Variation: 2D-FEA 
Using the Biot-Savart law, the equation for a thin infinite straight conductor with a circular cross-

section is described by: 

 
|𝐁|(𝐼, 𝑟) =

𝜇0

2𝜋
|
𝑰 × 𝑟̂

𝑟
|, 

(5.6) 
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where 𝑟 is the distance from the current element to the point the magnetic field is calculated and 𝑰 is 

the current [14, 18]. The infinite long straight wire geometry was investigated using both the A-V and 

H-formulation. The radial field profile outside of a strand of radius 𝑅 = 10 mm is compared to Eq. (5.6) 

and the results from Comsol, shown in Figure 5.1 (a). The magnetic field outside of the strand shows 

the standard inverse radial dependence (𝑟−1). The magnetic field inside the strand, with a circular 

cross-section, is described by:  

 

 
𝐵(𝐼, 𝑟, 𝑅) =

𝜇0𝐼𝑟

2𝜋𝑅2 . 
(5.7) 

 

As both 𝑅 and 𝐼 are constant, the field inside the wire is linearly dependent on the radial distance. The 

radial dependence of the magnetic field 𝑟 < 𝑅 of the wire, for both formulations, are compared to 

Eq. (5.7) and shown in Figure 5.1 (b). 

 

5.2.1.2. Magnetic Field Spatial Variation: Annular 
The magnitude of the magnetic field for a wire with an annular cross-section can be characterised with 

three separate terms. The magnetic field inside the inner radius (𝑟 < 𝑅i) is zero, due to zero current 

flow. For distances outside of the annulus (𝑟 >  𝑅o), the magnetic field can be modelled by assuming 

an infinite straight wire 𝑟−1 dependency. In the region of the conductor where current flows (𝑅𝑖 <

𝑟 < 𝑅𝑜), the magnetic field is dependent upon the radial position, 𝑟, and the inner and outer radii of 

the annulus. The magnetic field is described by:  

 

 
𝐵Annulus(𝐼, 𝑟, 𝑅i, 𝑅o) =

𝜇0𝐼

2𝜋𝑟
(

𝑟2 − 𝑅i
2

𝑅o
2 − 𝑅i

2). 
(5.8) 

 

The radial field profile of an annular wire (𝑅i = 5 mm, and 𝑅o = 10 mm) is calculated using FEA methods 

and compared with the Eq. (5.8) shown in Figure 5.2. The results of the A-V formulation are identical 

to the analytic equation. To generate results using the H-formulation calculation, which closely follows 

the analytic results, a sufficiently high mesh density using linear element order must be used. For 

further details of element order see (A.3.2.4).  
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Figure 5.1 : Comparison of the radial magnetic field distribution, for a conductor of 10 mm radius, with the 
two formulations (a) outside strand, Biot-Savart Eq. (5.6). (b) inside strand, Biot-Savart Eq. (5.7). 
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Figure 5.2 : Comparison of the radial magnetic field profile of an infinite wire with an annular cross-section 
for the two FEA formulations s and Eq. (5.8). 𝑅i = 5 mm, and 𝑅o= 10 mm 
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5.2.1.3. Probability Distribution: 2D-FEA 
For the simple geometry of a straight wire, it is possible to calculate the value of the magnetic field at 

any point inside the strand, and therefore the probability distribution. Understanding the distributions 

of magnetic fields within the volume of the strand is key to understanding which field statistic can 

describe the effect of self-field. The probability of the magnetic field 𝑩 is equal to the probability of 𝑟 

in element 𝑑𝑟 , i.e.,  

 

 |𝑝(𝐵)𝑑𝐵| = |𝑝(𝑟)𝑑𝑟| (5.9) 

 

In the simple case that the magnetic field is given by the Biot-Savart law for a straight wire, of radius 

𝑅, the magnetic field is given by Eq. (5.7). This equation can be simplified by defining a constant 𝐵0 =

𝜇0𝐼/2𝜋R2. The value of 𝐵 is linearly dependent on the position 𝑟. For a normalised distribution of 

magnetic field within the strand, (i.e., fixing the total value equal to one) it is possible to write the 

integral of the probability between the centre of the strand and its radius,  

 

 
∫ 𝑝(𝐵)𝑑𝐵 = 1

𝐵0R 

0

 
(5.10) 

 

The probability element in the radial direction (𝑟 + 𝑑𝑟) is given a fraction of the total area 𝜋𝑅2 in the 

circular cross-section:  

 

 
𝑝(𝑟)𝑑𝑟 =

2𝜋𝑟

𝜋𝑅2
𝑑𝑟 =

2𝑟

𝑅2
𝑑𝑟 

 

(5.11) 

Equating using Eq. (5.9) results in the probability density distribution of the magnetic field inside a 

straight wire, with a circular cross-section, is described by: 

 

 
𝑝(𝐼, 𝐵, 𝑅 ) = (

8𝜋2𝑅2

𝜇0
2𝐼2

) ∙ 𝐵 𝑑𝐵. 
(5.12) 

 

From the form of Eq. (5.12) the probability is linearly related to the magnetic field for a straight wire. 

The analytic solution Eq. (5.12) is compared with the FEA calculations using the A-V formulation and 

agreement is found, as shown in Figure 5.3. Inside the volume of the strand, for a straight wire 

geometry, the most probable field is the maximum field.  
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Figure 5.3 : Comparison of the probability density for FEA solutions (solid line) and analytic solutions 
Eq. (5.12) (dotted line), for a straight wire with uniform current density. The strands radius (𝑅) is varied 
from 0.1 to 1.0 mm. 

 

5.2.1.4. Current Ramp Rate Dependence: 2D-FEA 
In the time-independent calculations, the current is imposed using a constant flux constraint by 

imposing boundary conditions at the edges of the computational volume. For time-dependent 

solutions, the current ramp rate affects the current distribution, and consequently the electric and 

magnetic fields. A conductor of radius 5 mm, with a circular cross-section, was investigated. With a 

fixed ramp rate of 50 A·s-1, the current is increased from 0 to 𝐼C. The 2D plot of the current distribution 

is shown in Figure 5.4 at (a): 0.1 𝐼C A, (b) 0.5 𝐼C, (c) 1.0 𝐼C. In the lower panel, the 2D current distribution 

is a line plot of the normalised spatial current distribution. These plots are used to verify that the 

current penetrates the strand fully.  

 

For some of the FEA calculations, a stepped current ramp is defined, shown in Figure 5.5(a). Integrating 

the electric field with time show the variance as the current is ramped, shown in Figure 5.5(b). The 

analysis of the 𝐸-𝐽 is shown in Figure 5.5 (c). The data points are extracted in a way that the system 

has relaxed back to its equilibrium and within a reasonable computation time.  

 

The skin depth (𝛿) which characterises the skin effect, can be calculated using the resistivity of the 

conductor and the frequency:  

 

  𝛿 = √(2 ∙ 𝜌)/(2 ∙ 𝑓𝑠𝑘𝑖𝑛 ∙ 𝜇0). (5.13) 
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Figure 5.4 : Distribution of the current within the strand for (a) 𝐽/𝐽C = 0.1, (b) 𝐽/𝐽C = 0.5 and (c) 𝐽/𝐽C = 1. (upper) normalised 
current distribution in the strand (lower) current density profile across the diameter of the strand (𝑦 = 0). The mesh 
elements can be seen in these figures. 
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Figure 5.5 : Typical output from FEA calculations (a) the defined step increase in current density with time (b) the E-
field in the centre turn with time (c) Comparison of all E-field data with the E-field data extracted.  
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Defining the skin depth as the radius of the ITER PF strand studied (0.365 mm), and an average 

resistivity of 𝜌 = 2 ×10-15 Ω⋅m (from the FEA solutions), the characteristic time (1/𝑓𝑠𝑘𝑖𝑛) for the current 

to penetrate the conductor is 84 s. FEA calculations used have both computation times greater and 

less than the characteristic value. It was necessary to establish that shorter calculations produce 

results with the expected current distribution. Ramping of current and waiting ensures that errors due 

to eddy currents were not significant. This method was used throughout for results reported. 

 

5.2.1.5. Charge Conservation: 3D-FEA 
Implicit in Maxwell’s equation is conservation of charge, characterised by the equation:  

 

  𝜕 𝜌

𝜕𝑡
+ 𝛁 ∙  𝐉 = 0. (5.14) 

 

To verify that conservation is obeyed in the FEA model, the transport current density 𝐽T is integrated 

normal to the current direction over the surface at interfaces in the modelling domain and compared 

with the current imposed. 

 

The circular cross-section surfaces are perpendicular to the current directions, and their positions are 

shown in Figure 5.6 (a). The current integral as a function of time, from positions 1 (source) to 6 (drain) 

demonstrates the conservation of current along the length of the strand, shown in Figure 5.6 (b). For 

these calculations, the magnetic field is evaluated at t = 2.5 s in the region of interest between points 

3 and 4. The current is imposed as 1 kA, although at positions 1 and 6 for t = 2.5 s, the current is 2% 

larger, it is not clear why. 

 

5.2.1.6. Magnetic Field Spatial Variation: 3D-FEA 
The spatial distribution of magnetic field in both zero-field and an applied magnetic field of 1 T has 

been calculated in both the 𝐴-𝑉 formulation and for 𝐻-formulation. The 𝐴-𝑉 formulation 2D and 3D 

data for 𝐵App = 0 T, is shown in Figure 5.7 and is consistent with analytic solutions. 
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Figure 5.6 : Verification of conservation of current in modelling interfaces (a) positions where current is integrated (b) 
current as a function of time. 

(a) 

 

(b) 

 

Figure 5.7 : A-V Formulation calculations of the magnetic flux density in zero applied field (a) 2D y-z slice (b) 3D plot with 
current streamlines in the x-direction.  

 

5.2.1.7. Comparisons between 2D and 3D 
Consistency between results in different dimensions ensures the reliability of calculation. The 

magnetic field probability distribution has been investigated, as the mesh size is increased, for an 

infinite straight wire in both 2D and 3D cases. Excellent agreement between 2D and 3D models using 

both formulations is seen in Figure 5.8 (a). The magnetic field probability distribution for an infinite 

straight wire with varied mesh density is shown for both A-V and H-formulation is shown in Figure 

5.8(b). Figure 5.8 differs from the earlier analytic calculation (Figure 5.3) as a volume of the strand is 

at a higher magnetic field than the most probable. The increase in the maximum is small (between 1 

and 6%) and due to the meshing.  
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Figure 5.8 : Probability density distribution of the magnetic field for an infinite wire (a) comparison between a 2D wire 
and 3D (radius 5 mm) H-formulation computation (b) Comparison of 3D A-V formulation (solid lines) and H-formulation 
(dotted lines), with varied mesh density. 

 

Dimensions 

Mesh Size 
[min. element 
size (mm)] 

A-V Formulation H Formulation 

Runtime [s] File size [MB] Runtime [s] File size [MB] 

2D Extremely Fine 
[0.01] 

2 0.1 2 0.8 

3D 

Normal  
[0.67] 

422 26.4 13 196 114 

Fine 
[0.53] 

384 26.1 13 615 115 

Finer 
[0.37] 

402 26.0 23 361 115 

Extra Fine 
[0.02] 

563 32.8 8 127 115 

Table 5.3 : Comparison of the computational expense for the two formulations (A-V and H) 
with varied mesh densities, and dimensionalities for the infinite straight wire geometry. 

 

Developing an efficient mesh, was essential for calculations of the complex geometries. For the 

straight wire geometry, it was possible to infer the effects of meshing. A low-density mesh generates 

results quickly. How an increased mesh density affected the resultant magnetic field and runtime was 

investigated. The numerical values for runtime and file size are summarised in Table 5.3. It is clear 

from Table 5.3 that the A-V formulation calculations generate results quickly, with higher-order 

elements (for details see A.3.2.4.), and with smaller file sizes than the H-formulation. Pre-defined and 

custom meshes were used. It is interesting to see the results of the 3D extra fine mesh calculation, a 

result inconsistent with an increased complexity resulting in longer simulation times. It is unclear why 

this happened.  
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Figure 5.9 : Comparison of analytic [Eq. (5.3)] and computational (2D and 3D) 𝐸-𝐽 transitions (a) for fixed 𝑛-value = 24  
(b) (log-log) 𝐸-𝐽 as a function of the index of transition for both 2D model (solid symbols and 3D model (open symbols) of 
an infinite straight wire (radius 5 mm). The dotted horizontal line is the electric field criterion, and the vertical dotted line 
is the critical current density value. 

 

Index of  

transition (𝑛) 

2D 3D 2D 3D 

Runtime [s] Runtime [s] 𝐽C [108 A⋅m-2] 𝐽C [108 A⋅m-2] 

1 31 77 577 9.98 9.98 

5 21 140 483 9.94 9.86 

10 182 163 345 9.87 9.84 

15 179 163 345 9.78 9.80 

24 208 177 324 9.69 9.74 

Table 5.4 : Computational expense and calculated 𝐽C(𝑛) as a function of dimension from Figure 5.9 (b).  
The analytic value of 𝐽C imposed is 1x109 A⋅m-2 

 

5.2.1.8. 𝑛-Index of Transition: 2D and 3D 
Computational and analytic 𝐸-𝐽 traces are compared for both 2D and 3D calculations as shown in 

Figure 5.9. An 𝐻-formulation calculation, with a magnetic-field-dependent 𝐽𝐶  [Eq. (5.4)], was 

implemented varying the 𝑛-index from 1 to 24. The results from H-formulation calculations are 

affected by the 𝑛-index [19]. The strand was modelled with a circular cross-section with a radius of 

5 mm, the current was ramped at 50 A·s-1. The electric field was averaged over the wire’s surface in 

2D and the central volume of the wire in the 3D model. The 3D in Figure 5.9 is shown with a dashed 

line, and 2D with a solid line. The 3D data have higher 𝐸-field for equivalent 𝐽.  The dotted lines show 

the 𝐽C imposed is 1x109 A⋅m-2 and the 𝐸C. The FEA calculations can reproduce to a high fidelity the 

non-linear equilibrium transition, shown in Figure 5.9. The minimum element size limits how small 

each mesh element can be, with lower values a finer mesh is generated.  

 



Magnetic Field Calculations: Analytic and Finite Element Analysis 90 
 

The analytic equation Eq. (5.3) with an 𝑛-value of 24 is compared using the 2D and 3D models, shown 

in Figure 5.9 (a). The 2D and 3D models agree but are different from the analytic equation definition 

of 𝐼C. A finite electric field is seen at currents 0.36 × analytic 𝐼C, and at the E-field criteria (10 μV·m-1) 

the current is 0.97 × analytic 𝐼C for both 2D and 3D models. The results from 2D and 3D are compared 

on a log-log (𝐸-𝐽) plot, shown in Figure 5.9 (b). The 2D calculations result in higher 𝐽C at low 𝑛. The 

computational runtimes for the data obtained in Figure 5.9 (b) are summarised in Table 5.4. The time  

difference between the 2D and 3D results is very large, as expected. Increasing the index of transition 

results in a longer runtime. In 3D for 𝑛 > 5, increases were < 25 % in 3D. 

 

An error in the FEA methodology is highlighted by considering a single data-set for direct comparison, 

shown in Figure 5.10. Both plots shown in Figure 5.10 are log-log, with normalised 𝐽𝐶  data. The 

difference being highlighted is the E-field behaviour over the range of current densities modelled and 

measured experimentally.  

 

The baseline-corrected experimental 𝐸-𝐽 data for the Nb-Ti stand where 𝑛 = 24, is shown in Figure 

5.10 (a). The FEA calculated 𝐸-𝐽 is shown in Figure 5.10 (b), where 𝑛 is imposed as 24. The experimental 

data has noisy 𝐸-field baseline for 𝐽 < 𝐽C which may be skewed to some finite (positive or negative 

value) it is random below the take-off transition. In contrast to this, the FEA calculations for 𝐽 < 𝐽𝐶  has 

a linear 𝐸-𝐽 relation. Evidently, it is not possible to model noise.  

 

For the FEA data shown in Figure 5.10 (b) the region where 𝐸 > 0.1 μV·m-1
 the calculated 𝑛 -values are 

𝑛 = 2.8 in 2D and 𝑛 = 3.1 in 3D, despite 𝑛 imposed as 24. Analysing the experimental data, in the region 

𝐸 < 0.1 μV·m-1 a linear relationship is fitted, and 𝑛 = 24.7 ± 0.1 is calculated, 𝐵App = 8T. A linear region 

is seen for 𝐸 < 0.1 μV·m-1
, Figure 5.10 (b), 23.41 ± 0.08 in 3D. This fault in the FEA calculations was not 

addressed during this thesis, and it is possible that the results presented cannot be considered as 

accurate.  

 

Further work is required to understand how to use the FEA models in the region of current densities 

near the transition to the normal state. It is possible to define a function where 𝐸 = 0 for 𝐽 < 𝐽C [20], 

but this requires the value of 𝐽C to be known and defined. With the FEA models in the literature, 

calculations were typically sinusoidal and 𝐽 was not increased to a value greater than the defined 𝐽C 

value. 
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Figure 5.10 : Comparison of experimental and computation electric field for J < 𝐽C (log-log) 𝐸-𝐽/𝐽C (a) Experimental 𝐵App= 

8 T, 𝑛 = 24 (b) computational 𝐵App= 0T, 𝑛 imposed as 24.  

 

5.2.2 Single Ring 
Modelling the experimental helical geometry as a single ring is a better way to approximate a helix 

than a straight wire - the field and current have components in more than one direction, i.e., 𝐵𝑥 and 

𝐵𝑟 [21]. There are limitations to using the ring geometry to model a helix as the ring is isolated. The 

geometry of the ring is defined in terms of the major radius (𝑅Maj) which is the distance from the free-

space centre of the ring to the axis. The minor radius (𝑅Min) is the distance from the axis of the ring, 

i.e., the strand’s radius.  

 

5.2.2.1. Magnetic Field: Point Evaluation  
Undergraduate physics textbooks present simple equations that describe some features of the single 

ring geometry shown in Figure 5.11. The magnetic field at the centre of the ring in the x-y plane is 

described by: 

 

 
𝐵(𝐼, 𝑅Maj) =

𝜇0𝐼

2𝑅Maj
. 

(5.15) 

 

Where (𝑧 =  0) The parameters are the same as previously defined. Using Eq. (5.15) and the 𝑅Maj of 

the ITER barrel, the magnetic field in the centre is 36 mT. 
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Figure 5.11 : Schematic of a single ring in the 𝑥 − 𝑦 plane. Current flows in the 𝜙 direction. The cross-
section shows the width 2𝑤 and height 2ℎ of the strand with minor radius 𝑅𝑀𝑖𝑛. 

 

5.2.2.2. Magnetic Field Spatial Variation 
The magnetic field variation of a single ring with a circular cross-section was calculated using the Biot-

Savart law. The volume integral form is written:  

 

 
𝑩(𝒓̂) =

𝜇0

4π
∭

𝑱⃗ × (𝒓⃗⃗  −  𝒓′⃗⃗⃗⃗⃗)

|𝒓⃗⃗  −  𝒓′⃗⃗⃗⃗⃗|
3 𝑑𝑉

𝑉

, 
(5.16) 

 

where 𝒓⃗⃗ is the coordinate where the magnetic field is calculated,  𝒓′⃗⃗⃗⃗⃗ is the coordinate vectors pointing 

to the volume current element. Two coordinate systems are used to simplify the notation of the 

integral in Eq. (5.22). The cartesian coordinates (x, y, z) are used defining the position vector to the 

point the current is calculated for 𝒓⃗⃗ where: 

 

 
𝑟 = (

𝑥
𝑦
𝑧

),  
(5.17) 

 

Cylindrical coordinates: radial, azimuthal, and vertical, (𝑟, 𝜃, ℎ) are used for the integral in the internal 

volume of the ring. The dimensions of the ring in cartesian co-ordinates are defined as width 2𝑤, and 

height 2ℎ. Using the standard definition of the geometry of a circle, i.e., 𝑥2 + 𝑦2 = 𝑟2, and 

rearranging, it is possible to define the vector to the current elements which are inside the volume of 

the strand, 𝑟 < 𝑅𝑀𝑖𝑛  − √𝑤2 + ℎ2 . 
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The vector  𝒓′⃗⃗⃗⃗⃗ in Eq. (5.16) is defined:  

 

 
 𝒓′⃗⃗⃗⃗⃗ = (

𝑟 cos 𝜃
𝑟 sin 𝜃

ℎ
) 

(5.18) 

 

For a ring of finite cross-sectional area, the current density can be assumed to have a radial variation 

where: 

 
𝑱 =

𝛼

𝑟
𝑢𝜃⃗⃗ ⃗⃗⃗ =

𝛼

𝑟
(

− sin 𝜃
cos 𝜃

0
). 

(5.19) 

 

The integral of the current density across the cross-section is equal to the current. The parameter 𝛼 

in Eq. (5.19) is a variable to account for the finite cross-section of the ring, where the radius is 

expressed in 𝑥 and 𝑦 dimensions as a width 𝑤, and height, ℎ. The parameter α is defined:  

 

 
∫ ∫

𝛼

𝑟
𝑑𝑟 𝑑ℎ

𝑎+√𝑤2−ℎ2

𝑎−√𝑤2−ℎ2

𝒘

−𝒘

= 𝐼. (5.20) 

 

The numerator of the Biot-Savart integral Eq. (5.16) can be calculated directly to give: 

 

 

𝑱⃗ × (𝒓⃗⃗  −  𝒓′⃗⃗⃗⃗⃗) =
𝛼

𝑟
(

(𝑧 − ℎ) cos 𝜃
(𝑧 − ℎ) sin 𝜃

𝑟 − (𝑥 cos 𝜃 + 𝑦 sin 𝜃)
). (5.21) 

 

Using Eq. (5.17) and (5.21) it is possible to rewrite Eq. (5.16) with the integral over separable variables.  

The z-component of the magnetic field can be calculated by integrating first over the circumference 

(i.e., phi not shown), then over 𝑤, ℎ and finally the angle 𝜃. 

 

 𝐵𝑧(𝒓̂)

=
𝜇0

4π
𝛼 ∫ ∫ ∫

𝑟 − (𝑥 cos 𝜃 + 𝑦 sin 𝜃) 𝑑𝑟 𝑑ℎ 𝑑𝜃

[(𝑥 − 𝑟 cos 𝜃)2 + (𝑦 − 𝑟 sin 𝜃)2 + (𝑧 − ℎ)2]3/2

𝑎+√𝑤2−ℎ2

𝑎−√𝑤2−ℎ2

𝑤

−𝑤

2𝜋

0

 
(5.22) 

 

Extensive series solutions are calculated for 𝐵𝑧(𝒓̂) using Mathematica [1]. The general integral 

Eq. (5.22), for a single ring with an annular cross-section is compared with the FEA calculations shown 

in Figure 5.12 and excellent agreement is seen.  
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Figure 5.12 : Comparison of the analytic Eq. (5.22) and FEA computation A-V (2D and 3D) and H (2D) for a 
single loop with an annular cross-section. The points are solutions of Eq. (5.15) and Eq. (5.19). 𝑅𝑖 = 
0.136 mm and 𝑅𝑜 = 0.311 mm.  

 

The results from FEA calculations using the three methods are compared for the single ring, shown in 

Figure 5.12. The radial distribution of the z-component of the magnetic field, using both formulations 

are very similar. The peak in the magnetic field, the field inside and outside of the ring agree. For the 

analytic solutions for the strand with an annular cross-section, the radial distribution of the magnetic 

field in the filamentary region is dissimilar, shown in Figure 5.27.  

 

5.2.3 Helices and stack of Rings: Circular Cross-section  
The last of the simpler geometries used as consistency tests are helices and a stack of rings with a 

circular cross-section. Using a stack of rings to represent helical geometry is typical as it removes the 

z-component of the geometry and has the benefit of including rotational symmetry [22]. A stack of 

rings better approximates a helix than a single ring, however, the mathematical description is only 

true at large radial distances [22]. It has been argued that the stack is too simplified to describe helical 

data [23, 24]. In the literature calculations of the effect of self-field for the ITER helical geometry have 

used a stack of rings. The consistency test in this section compares FEA results implementing using 

literature methods, and with the same analysis, to the literature values.  
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(a) 

 

(b) 

 

Figure 5.13 : (a) Schematic of the stack of rings, with a separation of turns (𝑆𝑇) in the z-direction, and indexing of the rings 

with the central ring 𝑝 =0. (b) schematic of helix with right handed chirality.  

 

5.2.3.1. Stack of Rings: Analytic 
For defining the self-field correction with an axisymmetric system, the peak in 𝐵z is most commonly 

used. With current only flowing in the ring the 𝐵x and 𝐵𝑦 components average to zero [25]. For this 

thesis, the 𝐵𝑧 was calculated at the centre of a stack of rings, using a summation of the magnetic field 

due to each ring in the stack. Integrating over the angle φ over 0 to 2𝜋 and discounting the 𝐵𝑥 and 𝐵𝑦 

components, the equation for the field is: 

 

 

𝐵𝑧(𝑧, 𝐼, 𝑅Maj, ) =
𝜇0𝐼𝑅Maj

2

2
[ ∑

1

𝑅Maj
2 + 

2

[𝑅Maj
2 + (𝑆𝑇 × 𝑝)2]

3
2

𝑡𝑢𝑟𝑛𝑠/2

𝑝=1

]. 

(5.23) 

 

The rings are separated in the 𝑧-direction by the separation of turns (𝑆T) of the measurement barrel. 

The position of the ring relative to the centre is notated with the index 𝑝, the central ring in the stack, 

𝑝 = 0. The values of 𝐵𝑧 for the ITER and MST are reported in Table 5.5.  

 

Geometry Turns  Magnetic Field [T⋅kA-1] 

ITER 13 0.212 

MST 51 0.765 

Table 5.5 : Analytic calculation of 𝐵𝑧  Eq. (5.23) at the centre  
of the stack of rings. 
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5.2.3.2. Finite Length Solenoids 
Analytic solutions for finite length solenoids are available in the literature [26, 27]. 𝐵𝑧 is derived by 

integrating the magnetic field over the length of the solenoid, 

 

 
𝐵𝑧(𝐿, 𝑛, 𝐼, 𝑅Maj, 𝑧) = (

𝜇0𝑛𝑑𝐼

2
)

×  [(
(L 2⁄ ) − 𝑧

((𝑧 − (L 2⁄ ))2 + 𝑅Maj
2)1 2⁄

) + ((
(L 2⁄ ) + 𝑧

((𝑧 + (L 2⁄ ))2 + 𝑅Maj
2)1 2⁄

))] 

(5.24) 

 

where (L 2⁄ ) is half the height of the solenoid, 𝑧 is parallel to the long axis of the solenoid, and 𝑛𝑑 the 

turn density [28]. The magnetic field at the centre for the two measurement geometries are reported 

in Table 5.6. Solutions to Eq. (5.24) have been calculated and compared with FEA results for a stack of 

nine rings shown schematically in Figure 5.14 (a) and a nine turn helix, as shown in Figure 5.14 (a) and 

Figure 5.14 (b), agreement is seen between FEA and the analytic solutions.  

 

Geometry Turn density, 𝑛𝑑 
[turns⋅ m-1] 

Magnetic Field [T] 

ITER 315 0.336 

MST 1205 1.286 

Table 5.6 : Magnetic field in the centre of a finite solenoid with nine turns. 

 

5.2.3.3. Number of Rings 
The number of rings that should be included in the FEA model is an important consideration. Some of 

the helical calculations presented in this chapter have a simplified geometry with fewer turns than the 

experimental geometry. The number of turns in the experimental geometry - 13 turns on the ITER 

barrel and 51 turns on the MST barrel – can results in long FEA solver calculation times.  

 

The axial field component, 𝐵𝑧 as a function of the number of turns, in the stack of rings, has been 

calculated using the analytic method outlined in section 5.2.3.1. The calculation shown in Figure 5.15 

demonstrates that the 𝐵𝑧 value has not reached the peak value for the number of turns in the titanium 

alloy section of the measurement barrel, therefore the helix cannot be considered to be infinitely long, 

and the number of turns considered in the calculation is an important parameter.  
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Figure 5.14 : The analytic spatial variation in the magnetic field through the centre of a finite length 
solenoid Eq. (5.24) is compared with FEA solutions for a stack of 9 rings. (a) ITER geometry (b) MST 
geometry. 
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Figure 5.15 : The magnitude of the z-component of the magnetic field as a function of the 
number of turns for (top) ITER geometry (bottom) MST geometry. The vertical dashed line 
indicated the number of turns in the titanium alloy section of the measurement barrel. 

 

5.2.3.4. Mesh Density 
The effect of varying the mesh density, relative to the fixed strand diameter, of a stack of nine rings 

with a circular cross-section (𝑅Min = 0.311 mm) was modelled. The MST separation of turns was used. 

The magnetic field distribution was calculated using the 𝐴-𝑉 formulation, shown in Figure 5.16. The 

distribution in 𝐵𝑥  in the central ring is shown, with a fixed field colour bar range ± 0.8 T. Visually the 

distributions of the magnetic field in the three panels are broadly similar, reading the colour bar 

suggests a maximum magnitude of |𝐵𝑥 | < 0.8, which is different from the results derived from the 

FEA, quoted in Table 5.7. It is important to determine if there is an error in the data output from the 

analysis. The average of the magnetic field should be zero, and with a higher density mesh, the value 

approaches zero. 
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(a) 

 

(b) 

 

 (c) 

 

Figure 5.16 : The different distributions of the 𝐵𝑥  with mesh size for a circular cross-section. The approximation of the 
circular cross-section improves with mesh density (a) Fine (b) Finer (c) Extra fine. The geometry is a stack of nine rings 
with a separation between rings, the same as the MST (0.830 mm). The crosshairs note the centre of the cross-section 

Mesh MESH SIZE  
[mm] 

Degrees of 
Freedom 

Calculatio
n time [s] 

Min. 𝐵𝑥 
Field [T] 

Average 𝐵𝑥 
Field [T] 

Max. 𝐵𝑥 
Field [T] 

Fine 0.065 502,541 119 -0.758 -0.001 1.214 

Finer 0.046 1,664,118 256 -0.874 -0.0002 0.871 

Extra fine 0.037 1,972,561 1,315 -0.430 0.00005 0.454 

Table 5.7 : The computational expense of a nine turn geometry MST with mesh density, for data shown in Figure 5.16. 
Differences of the x-component of the magnetic field with mesh density. 

 

5.2.3.5. CERN Correction 
The magnetic field generated in the standard transport measurements, ITER VAMAS geometry, has 

been studied by the CERN group, as part of their research to understand self-field [2, 18, 29]. The CERN 

self-field correction (𝐵SF
CERN) is calculated from the peak transversal field, 𝐵z [2]. The 𝐵SF

CERN self-field 

correction is widely used when analysing transport measurement data [29-37]. 

 

As the internal note [2] is not publicly available the important details are noted here for the reader. 

The FEA calculation uses the 𝐴-𝑉 formulation, implemented with Comsol AC-DC module. Several 
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simplifications to the ITER measurement geometries are made. To simplify the calculation, the 

dimension was reduced from 3D to 2D. In a 3D model of the helix, the angle of the current relative to 

𝐵App, flowing in the strand wound on the ITER barrel is 88.2°. In the 2D axisymmetric model, current 

flows at an angle of 90° relative to 𝐵App. The argument presented was that the difference in the peak 

𝐵z of a 3D model and a 2D axisymmetric model is that no significant differences were found between 

the two models, so the analysis can be done using the 2D model. The second simplification is the 

number of turns considered. The 2D model considers the helix as nine rings spaced by the separation 

of turns. The geometric details of the measurement barrel, (Table 3.3) state there are 16 turns in the 

barrel, with 11 in the titanium section. The third simplification of the FEA model was that the peak 

field on the surface of the conductor (diameter 0.8 mm), is “practically equal” to the peak field in the 

superconducting filaments of a composite strand.  

 

For the calculations, a fixed current of 1 kA is used. The current source and drain are defined in each 

ring separately. The magnetic field is defined as 𝐵App = 0 T. The material properties of the rings are 

defined using copper. A parametric study is carried out, with the parameter varied the length between 

the centre of the strand to the outermost superconducting filament 𝑟of . The peak field in the central 

ring of the stack in the FEA calculation was output for the inward 𝐹L, with the data reported in Table 

5.8. The justification of defining the effect of self-field with the peak in 𝐵z is the high 𝑛-index of Nb-Ti, 

which will be discussed further in section 6.1.3.1. 

 

The CERN self-field correction term, Eq. (5.25), is calculated by calculating the difference between the 

straight wire term Eq.(5.6), the peak in the FEA:  

 

 𝐵SF
CERN(𝐼, 𝑟of, 𝛼𝑎) = 𝐼 ∙ [

𝜇0

2𝜋𝑟of
+ 𝛼𝑎], (5.25) 

 

The value of the constant 𝛼𝑎 in Eq. (5.25) is dependent on the orientation of the 𝐹L. Depending on the 

current and field orientation the position of the peak magnetic field varies from the inside of the 

strand i.e., 𝑅Maj − 𝑅Min, to the outside 𝑅Maj  +  𝑅Min. Although all the results are not reported 

explicitly in the paper, for calculations in zero applied field, it is unclear how the differences with 

orientation was calculated. For inward 𝐹𝐿 measurements, 𝛼𝑎= - 9.0 × 10-5 [T⋅ A-1] and for outward 𝐹L, 

𝛼𝑎  = 1.5 × 10-4. The self-field correction vs radius to the outermost filament is shown in Figure 5.15 

(upper panel). It is clear from Table 5.8 that for 𝑟of  = 0.5 mm and current of 1 kA, the difference 

between Eq. (5.6) and 𝐵𝑍 FEA is on 0.096 T⋅kA-1. Using this data point, to one significant figure, 𝛼𝑎  is 

defined. No numerical values are provided for the outward 𝐹L calculations. 
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Figure 5.17 : (Upper panel) The 𝐵SF calculated using FEA is compared with the defined self-field 

correction term [𝐵SF
CERN: Eq. (5.25)]. (Lower panel) The difference between the straight wire 

equation [Eq. (5.6)] and the FEA. The blue dotted line is 𝛼𝑎 for 1 kA inward 𝐹L; the constant term 
0.09 T⋅kA-1. 

 

Radius 𝑟of [mm] B [Eq.(5.6)] [T] 𝐵𝑍  FEA [T]  𝐵SF
CERN: [Eq. (5.25)] [T] 

0.5 0.400 0.304 0.310 

0.4 0.500 0.397 0.410 

0.3 0.666 0.557 0.580 

0.2 1.000 0.881 0.910 

Table 5.8 : The results from Ref. [2] self-field correction as a function of radius  
to the outermost filament, 𝑟of, for a sample with current of 1 kA. Inward 𝐹L. 

 

A simple problem with the 𝐵SF
CERN analysis is highlighted by the lower panel of Figure 5.15. Using the 

data in the note, for a fixed value of 𝛼𝑎 the difference between the FEA results and Eq. (5.25) can be 

substantial. For 𝑟of = 0.2 mm, the 29 mT difference between FEA and Eq. (5.25), is results in a 32 % 

larger self-field correction term. It should be possible to characterise the difference between the FEA 

and the straight wire term Eq.(5.6) more accurately.  

 

5.2.3.6. Previous Helical Models 
Several self-field corrections calculated for the helical geometry are reviewed in [29]. A Fortran 

calculation by den Ouden [38] modelled the ITER helix geometry. Although no details are available, 

numerical values were reported in [39]. The self-field correction in [29] is of the same form as Eq. 

(5.25) with a different value of the constant for inward Lorentz force: 𝛼𝑎 -10.0 × 10-5 T·A-1.  
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Figure 5.18 : Comparison of peak net magnetic field as a function of the outermost diameter of filament 

with literature definitions. The work calculated in this thesis: 𝐵SF
Ver. using the A-V formulation and a circular 

cross-section five turn helix. 

 

The values for the peak magnetic field, 𝐵SF
CERN (Table I in Ref. [2]), Eq. (5.25) and 𝐵SF

helix (Table 5.1 in 

Ref. [39]) and the self-field correction results generated in this work used to verify the 3D FEA 

methodology (𝐵SF
Ver.). The calculations using the 𝐴-𝑉 formulation for a 9-turn helix are shown in Figure 

5.18, and agreement is seen with the literature data. 

 

The experimental results presented in chapter 6, highlight that by considering solely the ITER barrel 

measurement geometry agreement between different methodologies is not unexpected. The design 

of the barrel, large separation of turns, and the ratio of the major radius of the helix to the strands 

radius results in a measurement geometry where the effect of neighbouring turns is minimised, 

depending on the currents.  

 

5.2.3.7. Reduced Dimensions  
The calculations presented by CERN uses a 2D axisymmetric model, a stack of rings, that is verified in 

their working using a 3D helical calculation. Another method to reduce the number of dimensions is 

to map from Cartesian coordinates, {𝑥, 𝑦, 𝑧} to some {𝑢, 𝑣, 𝑤}, which encompass the twist pitch and 

the parameters of the helix [40]. Filamentary models using a 2D discretisation of a 3D model are 

beneficial [41]. The work presented in this thesis are helices modelled in 3D. 
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Figure 5.19 : Comparison of the probability density distribution for a single ring with 2D and 3D calculations using A-V 
formulations (a) circular cross-section Ro = 0.311 mm (b) Annular cross-section Ro = 0.311 mm and Ri = 0.136 mm. 

 

5.2.3.8. Probability Distribution: 2D and 3D 
The magnetic field probability distribution of 𝐵𝑧 inside the volume of a single ring is investigated using 

both 2D and 3D FEA, shown in Figure 5.19. Both circular, Figure 5.19 (a) and annular Figure 5.19 (b) 

cross-sections have been considered. Reasonable agreement between the 2D and 3D models, which 

can be improved by taking a finer mesh, is shown in Figure 5.19. With the 2D calculations, an 

‘extremely fine’ mesh is built, while a lower density mesh ‘finer’ is used in the 3D calculations. 

Magnetic field distribution statistics are reported in Table 5.9. The difference in the average field for 

the circular cross-section is relatively small, while the peak changes by 10 %. For the annular cross-

section, shown in Figure 5.19 (b), due to the smaller cross-sectional area, a higher current density in 

the strand results in a higher peak magnetic field. For the 3D geometries, the distribution is for the 

volume centred about the coordinate (𝑥, 𝑦, 𝑧) = (0, - 𝑅Maj,0). The coordinate at which the volume of 

the strand is exported for the calculation of the distribution does not affect the resultant 𝐵𝑍 value. For 

the volume centred about the coordinate (𝑥, 𝑦, 𝑧) = (0, 0, 𝑅𝑀𝑎𝑗), there is a large 𝐵𝑦 component, and 

similarly for the volume centred about the coordinate (𝑥, 𝑦, 𝑧) = (𝑅Maj, 0,0) a large 𝐵𝑥 component.  

 

Cross-
section 

Dimension Minimum Field 
 [T] 

Average Field  
[T] 

Maximum Field 
 [T] 

Runtime 
[s] 

Circular 
2 -0.368 0.030 0.441 7 

3 -0.390 0.029 0.469 13 

Annular 
2 -0.682 0.033 0.682 68 

3 -0.730 0.031 0.774 167 

Table 5.9 : The magnetic field distribution statistics for 𝐴-𝑉 formulations of the single ring  
geometry plotted in Figure 5.19.  
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5.3. Consistency Tests: Complex Geometries 
 

The geometries and cross-sections considered in section 5.2 allowed several simple self-field 

corrections to be calculated and confirmed using FEA and analytic solutions. Using the results from 

the simpler geometries it is possible to replot 𝐽C(𝐵App) measurement data  accounting for the effect 

of self-field, as a function of 𝐽C(𝐵Net). Analysing the experimental data, presented in chapter 6, it was 

clear that it is necessary to combine the helical geometry and capture the complex multifilamentary 

architecture of the strand to understand the experimental data. In this section, both analytic and FEA 

calculations for an array of straight wires and a stack of rings, and helices are presented.  

 

5.3.1 Tubes-within-Tubes  
Due to the complexity of the Nb-Ti strand’s architecture, and the computing resources available, it is 

not possible to model each partially transposed filament in the strand. As the strands are twisted 

during manufacturing, the filaments are partially transposed in an annulus. Each of the 4488 filaments 

remains broadly at a constant distance from the central axis of the strand. The strand is considered as 

numerous and concentric thin layers. The strand is modelled as three annular nested tubes, tubes-

within-tubes (TwT), shown in Figure 5.20, is proposed as an approximation to the partially transposed 

filaments. The TwT geometry allows current redistribution in the superconducting domain, without 

incurring a very high computational expense. Similar models where the current circulates the strand 

in addition to in and out of each filament have been reported [42]. In the TwT models, the 

superconducting region within the strand is described by three tubes that have equal wall thickness. 

The inner and outer radii of the tubes are reported in Table 5.10 and the fractional areas in Table 5.11.  

Although in the strand the central core is copper a resistive air domain is used in the FEA model. It is 

assumed that the current will flow in the nominally zero-resistance superconducting domain. 

 

Inner 
Copper:  
[mm] 

Tube 1:  
[mm] 

Tube 2  
[mm] 

Tube 3  
[mm] 

Strand 
OD 
[mm] 

𝑅0: 0.136 𝑅1: 0.194 𝑅2:0.253 𝑅3: 0.311 𝑅4: 0.365 

Table 5.10 : The outer radii in the tubes-within-tube models of the Nb-Ti strand. 

Tube Area [1 × 10 -8 m2] Fractional Area [Unitless] 

1 6.01 24.47 

2 8.28 33.71 

3 10.27 41.82 

Table 5.11 : Cross-sectional, and fractional area of the tubes in the  
tube-within-tube model. 
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Figure 5.20 : Nb-Ti strand cross-section model three nested tubes (T1, T2, T3) of superconductors, tube-within-tube, with 
central resistive air (𝑅 < 𝑅0) domain (figure not to scale).  

 

Figure 5.21 : Literature 3D FEA model of twisted filaments, with a varied number of Filaments (i) 15 (ii) 30 (iii) 60 filaments. 
The figure is from Ref. [43]. 

 

In the literature, Lyly looks at transposed filament bundles [43] shown in Figure 5.21. The FEA model 

is a straight wire composed of twisted filaments. The similarity between the filament geometry shown 

in Figure 5.21 and the tubes-within-tubes model is the group of filaments with fixed radii. 

 

For the TwT geometry, the position and current dependent magnetic field is reported as a matrix 

 

 
𝐵(𝐼𝑋, 𝑇𝐽) = (

𝐹11 𝐹12 𝐹13

𝐹21 𝐹22 𝐹23

𝐹31 𝐹32 𝐹33

) 
(5.26) 

 

where 𝐹12 for example, is the magnetic field produced at the position of the outer radius of tube one 

(𝑅1) due to the current flow in tube two (𝑇2). The position-dependent values have units of T·kA-1. The 

positions where the matrix values are calculated are the outer radius of each of the tubes 1-3, Table 

5.10. Details for deriving the matrix values are outlined in section 5.3.5.3. Using the magnetic field 

matrices, the current distributions were calculated in chapter 6.  
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(a) 

 

 

(b) 

 

 

Figure 5.22 : Simplified vector diagram of the magnetic field and resultant Lorentz force for the standard 
measurement set-up (applied field, and current flow in the z-direction). (a) The inward 𝐹𝐿 acting on the strand 
during measurement, result in the self-field that opposes the applied field at 𝑟 = 𝑅Maj  − 𝑅Min. (b) Schematic of 

the geometry of the tube-within-tube cross-section. The magnitude of the 𝑧-component of the magnetic field in 
the radial direction and the 𝑦-component of the magnetic field in the 𝑧-direction is represented vectorially at the 
outer radii of the three tubes considered. Current is flowing in tube 1 (black outline, the grey outline shows the 
positions of the other tubes).  

 

5.3.2 Lorentz force Orientation 
A schematic of the experiment, when the magnetic field direction and current orientation result in an 

inward 𝐹L acting on the strand is shown in Figure 5.22. The 𝐹𝐿  induced pushes the strand towards the 

measurement barrel [2]. The orientation of the applied field is fixed in the experiments, depending on 

the current and magnitude of the 𝐵App, the magnitude and orientation of the 𝐵SF can either increase 

or decrease the net magnetic field. From the form of the typical 𝐽𝐶(𝐵) relationship, it is assumed that 

the 𝐽𝐶  locally decreases as the 𝐵Net increases. With the inward 𝐹L shown in Figure 5.22 (a), the net 

field is reduced on the side of the strand closest to the centre of the barrel. For the inward 𝐹𝐿 force, 

the region of the highest magnetic field, and where dissipation will occur first, is at the outside of the 

helix, 𝑟 ≈ 𝑅𝑀𝑎𝑗 + 𝑅𝑀𝑖𝑛, and vice versa for 𝐹L radially outwards.  

 

For the central turn of the nested TwT geometry, shown in Figure 5.22 (b), the orientation and 

magnitude of the magnetic field are represented with vectors at the outer radii of the tubes. The 
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magnitude of the field is dependent on where the current is flowing, and the magnetic field is not 

equal, i.e., ± 𝑅1. The simplified geometry is shown in Figure 5.22 (b) does not consider the angular 

direction of the magnetic field vector. To calculate the magnetic field angle, θ,  

 

 
𝜃 = tan−1 (

𝐵z

𝐵r
). 

(5.27) 

 

where 𝐵r is in the magnetic field in the radial direction. The matrices in Table A.13 are for both the 

magnitude and angle of the magnetic field, relative to 𝐵App (in the +𝐵z direction).  

 

5.3.3 Array of Straight Wires  
A helix can be considered as an array of straight wires. A slice along the 𝑥-𝑧 plane of the helix is shown 

schematically in Figure 5.23 (a). The elements of the straight wire array are positioned with the same 

separation in the 𝑥-direction i.e., the diameter (2 × 𝑅Maj). The vertical distance (𝑧-direction) between 

neighbouring turns on the same side is 𝑆T, while on the opposite side the increase is a half a turn 

(0.5 × 𝑆𝑇). To approximate the helical current flow, the direction of current flow is opposite at ± 𝑅Maj. 

 

In the region where the matrix is calculated, 𝐵Net is the vector summation of the magnetic field 

𝐵Annulus [Eq. (5.8)] which is the field inside the wire, and the magnetic field due to the other wires in 

the array, 𝐵Array. The 𝐵Array is calculated as the summation of the magnetic field due to the array of 

infinite straight wire using Eq. (5.6), with the 𝑧-distances defined by the separation of turns and 𝑅Maj. 

 

 𝐵Net = 𝐵Annulus + 𝐵Array. (5.28) 

 

For the fixed strand geometry considered the 𝐵Annulus term is the same for both the approximation 

of the ITER and MST helix geometry. With two experimental 𝑆T, the 𝐵Array term is geometry 

dependent. The result of Eq. (5.28) are plotted in Figure 5.27, good agreement with the FEA results is 

seen for the  ITER geometry but not for the MST geometry. The simplification of the radial distribution 

in Eq. (5.8), i.e., 𝐵 = 0 for 𝑟 < 𝑅1 may account for the error. 𝐵Net in the radial and 𝑧-directions see 

Table A.12 and A.13.  
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(a) 

 

(b) 

 

Figure 5.23 : (a) Simplified schematic of a straight wire array. Red points current into the plane, and blue out 
of the plane. Not to scale. (b) FEA model geometry of the straight wire array for an ITER type measurement.  

 

5.3.4 Stack of Rings 
Developing on section 5.2.3, the magnetic field distribution for a periodically arranged stack of rings 

was studied with the TwT cross-section. The calculated field matrices for the array of rings, the 

magnetic field is the vector summation of the individual ring (section 5.2.2.2) and the straight wire 

term for the rings above and below. For the ITER geometry 13 rings are considered, and MST 51 rings. 

The results for the stack of rings with the TwT cross-section are shown in Figure 5.27. Like the array of 

straight wires, the results of the stack of rings produces results consistent with the FEA for the ITER 

geometry, but not the MST geometry. For numerical values of the field matrices in the radial and 𝑧-

directions see Table A.12 and A.13.  

 

5.3.5 Helices 
 

5.3.5.1. Charge Conservation: 3D-FEA 
An important check on the validity of the calculations was to ensure the conservation of charge. The 

positions of the six interfaces in the helix are shown in Figure 5.24 (a). In the geometry considered the 

FEA model consists of six domains. The extrudes (domains 1 and 6) connect the helix to the outside of 

the air domain. The helix (domains 2, 3, and 5) are where the current flows. The high-density mesh is 

implemented in domain 3. A high-density mesh air domain, around the centre of the helix (domain 4) 

is to locally increase the mesh density. The conservation of current is demonstrated by integrating the 

current density across interfaces. The interfaces are at the boundaries of the domains, i.e., the outer 

modelling domain, into the helix (domain 2), into and out of (domain 3), the volume analysed, and the 
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Figure 5.24 : (a)Labelled helix model in Comsol. The extrudes (1,6) connect the helix to the outside of the air domain. 
Domains 2, 3, and 5 are the helix. Domain 4 is a box volume of air around the centre of the helix region defined for a 
localised increased mesh density. The red arrows streamline indicate current flow direction. The colour plot is the 
distribution in the magnetic field. (b) Integral of the current density along the length of the helix at the positions of the 
interfaces for the two geometries (b) ITER (c) MST. The dashed horizontal line is the maximum critical current ramped to.  

 

upper extrude and outer modelling domain. The current as a function of time and position, shown 

in Figure 5.24 (b, c) for the ITER and MST geometry shows there is reasonable continuity of current 

during the ramp. 

 

5.3.5.2. Probability Distribution and Number of Turns 
The combination of the number of turns and the pitch of the MST barrel necessarily results in a large 

dense mesh. How the number of turns changes the magnetic field distribution was investigated, 

shown in Figure 5.25, with computation time reported in Table 5.12. In section 5.2.3.3, the analytic 

calculation for the ring geometry suggested that increasing the number of turns increased the 

magnitude of the magnetic field at a faster rate for the MST geometry, which is shown in Figure 

5.25. 
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Figure 5.25 : (log-lin) Probability density as a function number of turns, 𝐵App= 0 T, annular cross-section (a) ITER separation 

of turns (b) MST separation of turns. 

 

Geometry Runtime [s] Average Magnetic field [T] 

Number of 
Turns 

ITER MST ITER MST 

1 64,068 41,753 0.192 0.193 

3 89,436 56,218 0.194 0.211 

5 73,049 78,635 0.200 0.223 

7 90,416 87,324 0.198 0.232 

9 97,799 144,123 0.199 0.239 

11 125,994 157,197 0.200 0.257 

Table 5.12 : Computation time for a varied number of turns in 
the two measurement geometries. Note: 86,400 seconds is a day 

 

For the ITER geometry [Figure 5.25 (a)], changing the number of turns has a limited effect when there 

are at least five turns. For the MST geometry [Figure 5.25 (b)] a linear increase in the average magnetic 

field, ∼5 mT·turn is seen. From these results, it is concluded that it is necessary to model the 

experimental geometry as closely as possible. The data demonstrates that the MST barrel modelled 

with 51 turns is extremely computationally expensive. The matrix elements in Table A.12 and Table 

A.13 are calculated for finite barrels using the experimental geometry.  
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Figure 5.26 : FEA distribution of the magnetic field for three separate tubes (a) ITER in the radial direction (b) ITER in the 
z-direction (c) MST in the radial direction (d) MST in the z-direction. The current label i.e., I1 denotes the tube which it 
flows in. 

 

5.3.5.3. Matrix Elements  
The helical TwT geometry was modelled with three separate FEA models, each with different 𝑅i and 

𝑅o. The ITER and MST geometries were modelled. For the results shown in Figure 5.26, the ITER 

geometry was approximated with 11 turns and the MST geometry with 21 turns.  

 

The FEA calculations shown in Figure 5.26 were repeated for 13 turns and 51 turns for the ITER and 

MST geometries respectively, but not included here. The peak values obtained were used to generate 

the matrix elements in Table A.12 and Table A.13. The magnetic field profiles through the centre of 

three separate strands modelled are shown in Figure 5.26. The magnetic field in the radial direction is 

shown in Figure 5.26 (a, c) and the z-directions is shown in Figure 5.26 (b, d). For current flowing in 

tube 1 i.e., 𝑅i= 0.136 mm and 𝑅o = 0.194 m, the profile is labelled 𝐼1. The peaks in the magnetic field 

shown in Figure 5.26 are at the outer radius of each of the tubes. From the value of the magnetic field 

at the positions of the 𝑅Maj ± 𝑅o (for the three values of 𝑅o) the matrix elements were calculated, 

equivalently for 𝑧 = 0 + 𝑅𝑂  (for the three values of 𝑅𝑂).  
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For the ITER geometry shown in Figure 5.26 (a, b), the gradient of the magnetic field in both the 𝑥 and 

𝑟 direction is small (for 𝑟 < 𝑅Maj + 𝑅i) it is 58 mT·mm-1. For 𝑟 < 𝑅𝑖), the magnetic field is linear, and 

the range is small between 75-100 mT. For the MST geometry, the magnetic field for 𝑟 < 𝑅Maj + 𝑅𝑖 

in the varies from 0 – 300 mT in the radial direction (722 mT·mm-1) and 100-240 mT in the vertical 

direction. 

 

The results from the single ring and stack of ring matrix elements agree with FEA for the ITER geometry 

shown in Figure 5.27 (a). For the methods considered the results agree, this may be due to the 

relatively large separation of the turns and ratio of major to minor radius of the ITER geometry. For 

the MST geometry, shown in Figure 5.27 (b), the discrepancy between the FEA and analytic solutions 

are varied. The peak value of the magnetic field for the MST geometry on the outermost part of the 

helix agree while the other points do not. The straight wire array does not result in a uniform magnetic 

field between the array (𝑟 < 𝑅Maj). The stack of rings most closely approximates the results of the 

FEA. With the single ring, the magnetic field is not added vectorially by rings above or below and has 

the smallest magnitude. 

 

5.3.5.4. Current Ramp: 3D-FEA 
The experimental data acquisition procedure was mimicked using time-dependent calculations. 

Experimentally the current was ramped to an approximated 𝐼C value, interpolated or experimentally 

measured, over a period of 120 seconds. The FEA calculations could not be ramped similarly due to 

the required computing time. Three methods for ramping the applied current in the computation were 

considered. 

 

The current was ramped linearly at a rate of 50 A·s-1. The second method included a stepped increase 

in which the current was rapidly ramped, imposed at a rate of 400 A·s-1 up to 90% of the critical 

current, and then was ramped between 90 % and 110 % of the critical value (from experimental data) 

at a slower rate of 4 A·s-1. The density of data around the E-field criterion is higher for the stepped 

increase. These two methods are compared in Figure 5.28 (a), with agreement seen. For the linear 

ramp, the low current data obtained is of little use to the self-field calculations. In the third calculation, 

the current was increased up to 120 % of the measured critical current and then slowly decreased to 

90 % of 𝐼𝐶, Figure 5.28 (b). The 𝐼𝐶  at the E-field criterion is different by 140 A (8 %). 
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Figure 5.27 : Comparison of the magnetic field as a function of radial distance in the region 
of the strand calculated using different methods. The vertical dashed lines are a guide for 
the eye at 𝑟 = 𝑅𝑖 and 𝑅𝑜 of the tube. (a) the ITER geometry (b) the MST geometry.  
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Figure 5.28 : The effect of the current ramp (a) ramp rate (b) current ramp direction.  
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5.4. Conclusions 
 

If the geometry and superconducting properties are known, numerical models are a useful and flexible 

tool to calculate the performance of a system. Finite element analysis is essential to accurately 

describe magnetic field profiles and distributions due to helical current flow. In chapter 5, the 

reliability of the models, from simple to complex geometries has been shown. The radial distribution 

of the magnetic field calculated using FEA of isolated geometries and stacks of rings and arrays of 

straight wires produce results which agree with the analytic models.  

 

There are several disadvantages to using FEA, the choice of the input parameters, the meshing, and 

the order of the elements, all affect the solution. It is necessary to check that results are consistent. 

As the results of FEA calculations are always approximate solutions, the accuracy depends on how well 

the problem was posed and discretised. The approximations of the experimental geometry have been 

investigated, and the necessary complexity to capture the detail was implemented. An important 

point to consider is the difficulty in using the models to capture the non-linear behaviour as the current 

in the system is increased to a value up to and then exceeds the  𝐽𝐶  value, highlighted in Figure 5.10.  

 

Using the FEA modelling technique developed, magnetic fields of the complex experimental 

geometries are calculated to analyse experimental data in chapter 6.  
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CHAPTER 6 

6.  Quantifying the Effects of Self-Field  
 

In this chapter, extensive critical current density (𝐽C) measurements of the Nb-Ti strands characterised 

are presented. Measurements in the two experimental geometries and Lorentz force (𝐹L) orientations 

resulted in different values of 𝐽C at every applied magnetic field (𝐵App). Using the experimental data, 

the self-fields were calculated as a function of 𝐽C and 𝐵App. A universal curve describing the strand’s 

𝐽C as a function of the magnetic field accounting for the effect of self-field is presented.  

 

In section 6.1, experimental 𝐼C data for the standard ITER barrel design, field, and 𝐹L orientation in the 

benchmarking range of 𝐵App is replotted with five of the literature self-field corrections terms used. 

The methodology, applicability, and the magnitude of the literature self-field corrections are 

discussed. In addition, the one example of a 𝐹L direction-dependent literature self-field correction was 

calculated for the experimental data, and its implications are discussed.  

 

In section 6.1.4, the experimental transport and magnetisation measurements of the Nb-Ti strands 

studied are reported. Measuring the same strand, wound on the ITER and MST barrels, makes it 

possible to isolate and investigate the effect of the helical geometry. Using data from the strands, the 

repeatability of the results is also seen. The transport 𝐽Cdata are also compared to magnetisation data 

for 𝐵App= 0 to 8 T.  

 

In section 6.5 the finite element analysis model used to calculate the magnetic field distribution and 

self-field terms are described. The initial analysis including 𝐽C as a function of the average of the 

magnitude of the net magnetic field (𝐵̅𝑁𝑒𝑡) is presented. The effects of the FEA input parameters are 

investigated. The results of the model with the different 𝐽C(𝐵) are compared and how well they can 

generate a universal 𝐽C(𝐵) curve is evaluated. The section concludes by considering how closely the 

FEA results describe 𝐽C(𝐵̅𝑁𝑒𝑡). 

 

In section 6.6, a linearised semi-analytic model, that combines both the FEA and experimental results 

as inputs, is used to calculate the distribution of current within the strands’ filamentary region. The 

FEA matrix elements define the radial distribution of the magnetic field with current. Several piecewise 

𝐽C(𝐵) were calculated and compared with the experimental data. The 𝐽C(𝐵) calculated results in a 
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universal plot for the Nb-Ti strands measured in this thesis. In section 6.7, the implications of the work 

presented in this chapter are discussed.  

 

6.1. Self-field Corrections in the Literature 
 

The primary purpose of this thesis is to quantify the effect of self-field, finding self-field corrections 

for an arbitrary size and shape helical measurement geometry. The effect of self-field is to change the 

spatial distribution of the 𝐵Net [1]. To contextualise the research, the self-field corrections used in the 

literature are compared. The self-field corrections can be characterised by considering the magnitude 

of the magnetic field per unit current, i.e., T·kA-1. Most self-field correction equations in the literature 

are independent of 𝐵. Although it is clear that it is difficult to analyse data when 𝐵SF is of the same 

magnitude as 𝐵App [2-4]. Other self-field corrections from the literature state the range of 𝐵App and 

currents within which they can be used. Infrequently self-field corrections have been applied to data 

without a detailed methodology [5, 6]. The self-field has been analysed for ITER measurement barrel 

geometries [7, 8] and reported to have intractable solutions. The range of self-field data corrections 

presented in this section is not exhaustive. 

 

6.1.1. Literature Methodologies 
The first four methods discussed in section 6.1.1 account for the effect of self-field by evaluating the 

peak magnetic field in the strand. The fifth method considers an average value of the self-field in the 

strand. Two of the self-field corrections in this section consider the helical geometry of the transport 

measurement, with the others assuming a straight wire geometry.  

 

Transport measurement of strand DR 4810 in the standard geometry and inward Lorentz force 

orientation 𝐹L, 𝐼C vs 𝐵App (closed symbols) are compared with five self-field corrections (open 

symbols) shown in Figure 6.1. Transport measurements in the range of 𝐵App shown in Figure 6.1 are 

typically used to verify the manufactured Nb-Ti strand’s quality. The magnitude of the literature self-

field correction for the data shown in Figure 6.1 varies from 0.205 to 0.733 T·kA-1.  

 

The experimentally measured 𝐼C at 𝐵 = 7.0 T (vertical dashed line in Figure 6.1) was 275 A. The values 

of 𝐼C are calculated, with a linear 𝐼C(𝐵) assumed for the five cases, from the single experimental data 

set, the interpolated 𝐼C values and the percentage increase are reported in Table 6.1. The 𝐼C data at 

𝐵App = 7.0 T was considered throughout this chapter to enable direct comparison of effects and 

magnitudes of the different self-field corrections applied to single experimental data sets.  
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Figure 6.1 : Experimental data set with the literature self-field correction applied for the Nb-Ti strand DR 
4810 wound on the ITER barrel. The dotted vertical line: 𝐵 = 7.0 T. The experimental data is plotted as a 
function of the applied field [closed symbols: 𝐼C(𝐵App)]. The self-field corrected data is plotted as a 

function of the net magnetic field [open symbols: 𝐼C(𝐵𝑁𝑒𝑡)]. A linear 𝐼C(𝐵) fit between data points is 
assumed in the range of 𝐵App.  

 

Correction term 𝐵SF [mT] Interpolated  
𝐼C (𝐵 = 7.0T)  

Increase in 𝐼C [%] 

𝐶𝑛𝐶: 𝐵SF
𝐶𝑛𝐶  56.2 280.8 2.1 

Composite: 𝐵SF
av 144.5 290.8 5.7 

Helix: 𝐵SF
Helix 155.5 292.1 6.2 

Outer: 𝐵SF
Outer 167.7 294.6 7.1 

CERN: 𝐵SF
CERN 201.5 297.6 8.2 

Table 6.1 : The resultant self-field, interpolated 𝐼C and increase in 𝐼C for the different self-field 
correction terms outlined in section 6.1.1. 𝐼C (𝐵App= 7.0 T) = 275 A is compared with the  

interpolated 𝐼C(𝐵𝑁𝑒𝑡) = 7.0 T (vertical dashed line in Figure 6.1).  
 

 

6.1.1.1. Copper to Non-copper Ratio 
To account for the fact that the strand is a composite, the copper to non-copper ratio (𝐶𝑛𝐶) is 

incorporated into the equation for the magnetic field of a thin infinite conductor with a circular cross-

section. The peak magnetic field is modified by the volume fraction of the superconductor. The self-

field is described by,  

 𝐵SF
𝐶𝑛𝐶( 𝐽, 𝐶𝑛𝐶, 𝐷) = 𝜇0𝐽𝑅/2(1 + 𝐶𝑛𝐶), (6.1) 

 

where 𝐽 is the current density and 𝑅 is the strand’s radius [9]. 
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As the orientation of the 𝐹𝐿 is not considered in this model, a single value of the self-field correction 

is calculated. The result of the correction is an increase from the 𝐵𝐴𝑝𝑝 by 0.8 % at 7.0 T, and by an 

average of 1.1 % for the data shown in Figure 6.1 for a 𝐶𝑛𝐶 value of 1.68. The increase in calculated 

𝐼C for the 𝐵App= 7 T data is 2.1 %. In the 1989 paper by Garber [3] this methodology is suggested for 

multifilamentary wires, and good agreement is seen when comparing transport data corrected for the 

effect of self-field and the magnetisation data.  

 

6.1.1.2. Outermost Filament 
By considering the architecture of the Nb-Ti strand (outlined in section 3.2), the simple modification 

to the infinite wire Biot-Savart law is to use the radius to the outermost filament in the filamentary 

region (𝑟of). Not including the copper crown, the region of copper around the annulus of filaments, 

increases the calculated effect of the self-field. The strands 𝑅= 0.365 mm is larger than 𝑟of = 0.311 mm. 

Ignoring this copper region is justified as the current flow would be dissipative. The self-field correction 

term is described [10],  

 

 𝐵SF
Outer(𝐼, 𝑟of) = 𝜇0𝐼/(2𝜋𝑟of), (6.2) 

 

where the notation is the same as used previously. The orientation of the 𝐹L is not considered in this 

correction, a single value of the self-field is calculated. The result of this self-field correction is an 

increase from the 𝐵App by 2.5 % at 7.0 T, and an average increase in 𝐵 of 3.3 % for the data shown in 

Figure 6.1. The increase in 𝐼C for the 𝐵App = 7 T data is 7.1 %. 

 

6.1.1.3. Helix Model 
The self-field correction which considers the helical geometry of the ITER barrel and is the standard 

which has been widely used in the community outlined in section (5.2.3.5). The CERN (𝐵SF
CERN) [11], 

Eq. (5.25) was used.  The 𝐵SF
CERN correction is the largest correction to 𝐼C for the data presented. The 

increase from 𝐵App= 7.0 T is 2.9 %, with an average increase in 𝐵 of 3.8 % for the data shown in Figure 

6.1. The increase in 𝐼C for the 𝐵App= 7 T data is 8.2 %. 

 

In more recent work [12] the peak magnetic field was calculated for the helical geometry of the 

Brookhaven National Laboratory (BNL) Nb3Sn test barrel [13, 14]. The BNL barrel has similar geometric 

properties to the ITER barrel, but the strand is soldered onto the stainless steel enabling higher 

currents during transport measurements. The self-field correction for two types of strand in the range 

of 𝐵App from 7.0 to 11.5 T has been calculated for two strands of different diameters.  
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The self-field is described by,  

 𝐵SF
Helix(𝑘, 𝐼) = 𝑘𝐼, (6.3) 

 

where the numerical values for 𝑘 are dependent on the diameter of the strand, 0.570 T·kA-1 for 

0.70 mm and 0.500 T·kA-1 for 0.88 mm. Assuming a linear relationship between the 𝑘 values and 

diameter, for the strand characterised (0.710 mm) 𝑘 = 0.566 T·kA-1. The increase in 𝐼C for the 

𝐵App = 7 T data is 6.2 %.  

 

6.1.1.4. Composite Zone Calculation  
An analytic self-field correction term, which considers the cross-section of the strand with a single 

composite zone of superconducting filaments, has been calculated [15]. In the infinite straight wire 

geometry, the self-field is the average of the magnetic field due to the uniform current density in the 

superconducting region. The magnetic field due to current flow in the annulus region between the 

inner (𝑅i) and outer (𝑅o) radii was calculated. The average self-field is described by 

  

 
𝐵𝑆𝐹
𝑎𝑣(𝑅i, 𝑅o) =

𝜇0𝐼C

2𝜋(𝑅o
2 − 𝑅i

2)2
(
𝑅o
3

3
− 𝑅i

2𝑅o +
2𝑅i

3

3
). 

(6.4) 

 

Although Eq. (6.4) has been stated as valid for transport data at 𝐵App< 1 T, it has been included in 

Figure 6.1 as an example of a self-field correction defined by the average. The increase from 

𝐵App= 7.0 T is 2.1 %, and an average increase of 2.7 % for the data shown in Figure 6.1. The increase 

in 𝐼C for the 𝐵App= 7 T data is 5.7 %.  

 

6.1.2. Lorentz Force Orientation 
With a fixed orientation of the magnetic field and the helical geometry, reversing the transport current 

direction changes the orientation of the Lorentz force (𝐹L), outlined in section 5.3.2. Measuring a 

difference in 𝐼C with the orientations of 𝐹L is one method to demonstrate the change in magnitude 

and orientation of the self-field [16]. Experimentally it is important to ensure that changes are due to 

the field distribution and not degradation of the strand. It has been reported in the literature that 

cycling the 𝐹L orientation, even at high 𝐹L, does not decrease the performance stability of Nb-Ti [17]. 

 

With measurements of the multiple Nb-Ti strands, and with varied magnetic field history, the 

differences in the measured 𝐼C with Lorentz force was seen consistently. Inward 𝐹L results in a higher 

measured 𝐼C than outward 𝐹L. Both the precision of the measurement, and the result of the inward 

𝐹L consistently resulting in a higher 𝐼C ensured confidence in the experimental measured difference 
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Figure 6.2 : Experimental 𝐼C(𝐵App) and CERN self-field corrected [Eq. (5.25)] 𝐼C(𝐵Net) critical current data 

for strand DR 4810 in both orientation of Lorentz force. The linear fit are a guide for the eye. The dotted 
vertical line: 𝐵 = 7.0 T. 

 

𝐹L orientation  𝐼C (𝐵App= 7.0T) 𝐼C (𝐵 = 7.0T)  Increase in 𝐼C [%] 𝐵SF
CERN[mT] 

Inward 274.8 297.6 8.3 201 

Outward 274.0 299.1 9.2 217 

Table 6.2 : Comparison of 𝐼C in both orientations of Lorentz force for 𝐵𝐴𝑝𝑝 

and 𝐵̅𝑁𝑒𝑡  applying the 𝐵SF
CERN self-field correction Eq. 5.22. 

 

due to the current and applied magnetic field orientations.  

 

The self-field corrected data 𝐼C(𝐵Net) for the two 𝐹L orientation using the 𝐵SF
CERN correction term with 

the two 𝛼𝑎  values is shown in Figure 6.2. The 𝐵SF
CERN correction outlined in 5.2.3.5 defines the effect 

of self-field by the  peak in 𝐵z distribution and as a result for any value of 𝐼C the effect is to increase 

𝐵Net.  Seeing an increased 𝐼C in both orientation due to the effect of 𝐵SF is not intuitive. When 

considering reversing the current orientation relative to a fixed 𝐵App the effect of the field should act 

in the opposite direction. The interpolated difference in 𝐼C for the two orientations at 𝐵App= 7.0 T, is 

very small (< 2A) within the measurement error. The difference in the 𝐵Net from Eq. (5.25) for the 

𝐵App = 7.0 T of 16 mT. The data shown in Figure 6.2 is summarised in Table 6.2. 

 

It is difficult to analyse self-field entirely from the differences in 𝐼C that are measured when the 

orientation of 𝐹L is changed. If the form of the equation for self-field is 𝐵Net = 𝐵App + 𝐵𝑆𝐹
∗ , where 𝐵𝑆𝐹

∗  

has a term due to both the Lorentz force distribution 𝐵𝐹𝐿  and the helical geometry 𝐵Helix.  
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6.1.3. Applicability of the Literature Methodologies 
The maximum increase in 𝐼C of 8.2 % (Table 6.1) is a conservative estimate of the effect of self-field. 

The discrepancies due to self-field, where the peak field has been applied to characterise the 

correction to the net field, is still an open question in the community. Inconsistencies in measurement 

results when the literature methods have been used are not “completely unexpected” [18].  

 

6.1.3.1. Architecture  
Understanding the effect of the architecture is necessary to account for the effect of self-field. The 

effect of self-field is dependent on the architecture of the strand [19]. The layout of the filaments in 

the strand has a substantial effect. While the twisting of the filaments decouples the magnetic field 

with respect to the transverse fields, the filaments are affected by self-field [20]. The self-field flux is 

linked between the inner and outer filaments [21]. Although the self-field losses are not considered in 

thesis, the self-field losses are influenced by twisting of the filaments [22]. Experimentally, at high 

𝐵App, the twist pitch has little effect on 𝐽C [23].  

 

The literature methodologies that consider the filament layout, account for the architecture with a 

homogenised term. In analysis that considers an annulus of filaments, the ratio of matrix area to the 

area of the homogenized filament bundle is also considered [24, 25]. While the new approach 

implemented in this thesis is to consider a self-field correction which accounts for the architecture of 

the strand with the TwT geometry.  

 

6.1.3.2. Peak field 
The peak in the magnetic field distribution is most used to define the effect of self-field. The peak is 

both a conservative estimate of the self-field [27] and typically the simplest to calculate [28]. 

Additionally, the behaviour of the current and the architecture of the strand can be used to argue for 

the peak field, which will be discussed further in this section. Conversely, it has also been argued that 

using the peak field has no real theoretical justification [29, 30].  

 

For a constant transport current density (𝐽Tr) flowing along the conductor, where 𝐽Tr ≈ 𝐽𝐶, the current 

cycles in and out of the highest magnetic-field region due to the transposition of the filaments [31]. 

The electric field generated by this current flow will vary with the magnetic field [32, 33]. In 

calculations of the distribution of voltages due to self-field, the peak magnetic field contributes the 

majority of the voltage [34].  
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For the peak to characterise 𝐵SF, the filaments are required to be fully transposed; filaments are not 

fully transposed in any Nb-Ti strand [21]. The way that the filaments are twisted during manufacturing 

result in each filament at a fixed radius from the strand’s centre, and a number of filaments at that 

radius. The result of the twisting is that that many of the filaments experience the same 

electromagnetic conditions [35]. The filament transposition and the gauge length would suggest that 

the effect of peak magnetic field is localised; not all filaments experience the peak in 𝐵Net. The purpose 

of calculating the probability density distribution of the magnetic field in this work is to quantify the 

volume of the strand which is at the peak magnetic field, shown in Figure 5.19. The skew and shape 

of the probability distributions calculated demonstrate that only a small fraction of the strand 

experiences the peak magnetic field value, shown in Figure 6.22 (b). The analysis demonstrates that 

the effect of the peak field is localised, such that the conductor cross-section exposed to the peak field 

is a very limited fraction [34]. 

 

An additional effect to consider in the multifilamentary conductor is that the current can redistribute. 

The typical form the 𝐽C(𝐵) relationship (higher 𝐵 results in lower 𝐽C) it is possible that there is  

magnetic field gradient in the volume of the strand [3].  

 

The 𝐵SF
CERN correction [11] argues that the large value 𝑛-index, justifies the peak field defining the self-

field correction. Using the peak field to characterise the self-field correction can be justified if the 

index of transition is infinite, and filaments are fully transposed. For a fully transposed filament when 

any part of the outermost filaments becomes normal, all filaments become normal. The 𝑛-index 

measured for the Nb-Ti strand, shown in Figure 6.14, has finite values between 20 < 𝑛 < 100. 

 

6.1.3.3. Average Field 
The alternative to using the peak magnetic field to describe the self-field is to use an average field, 

with a magnitude between 𝐵App ± 𝐵SF [36]. If the local magnitude of 𝐵Net determines 𝐽C, parts of the 

strand experience a self-field that adds in parallel to the 𝐵App and produces an 𝐸-field > 𝐸C. 

Conversely, regions of the strand where the self-field opposes the applied field, the 𝐸-field < 𝐸C. In 

regions where the self-field is orthogonal to the 𝐵App, the 𝐵Netincreases, with no compensation 

occurring in regions where the self-field has opposite polarity. However, if the self-field is 

characterised by an average in the distribution of 𝐵Net, it is possible that the self-field correction 

opposes the direction of the applied field, i.e., 𝐵Net < 𝐵App. The results from section 6.1.2 suggest 

that 𝐵Net is always larger than 𝐵App, and accordingly the 𝐽C measured is lower than its true value. 

 



Quantifying the Effects of Self-Field   125 

 

 

Figure 6.3 : Photograph of a superconducting wire mounted on a tee-shaped Walters spring. 𝑆𝑇 = 6.35 mm, 
𝑅𝑀𝑎𝑗 = 12.5 mm. Figure taken from Ref. [37] 

 

6.1.3.4. Measurement Geometry 
Before and after the standardisation of the ITER VAMAS measurement barrel geometry, strands have 

been characterised in different helical geometries [38]. In order for data in different helical geometries 

to be useful for understanding the performance of the strand, a geometry-dependent self-field 

correction is needed [38]. Transport data for Nb-Ti strands measured in the BNL, ITER, and CERN 

geometries are compared in Ref. [39]. As self-field corrections are not usually applied to benchmarking 

data [40], it is possible to quantify systematic differences due to the geometries of the different 

measurement barrels. As CERN typically uses a larger diameter measurement barrel for its Nb-Ti 

measurements, a smaller 𝐵SF is expected and found to produce a systematically higher 𝐽C than all 

other participants [39]. 

 

The variables in the literature self-field correction methods (section 6.1.1) consider the geometric 

properties of the strand. The approach in this thesis is to use one type of strand varying the separation 

of the turns, 𝑆𝑇 of the measurement barrel geometry. If it is possible to parametrise the self-field 

correction as a function of the experimental helical geometry, the 𝐽C measured in any helical geometry 

can, in theory, be corrected for. 

 

A self-field correction for another widely used helical geometry the Walters spring (WS), shown in 

Figure 6.3, has been defined [10]. The WS can be used to measure strands with both compressive and 

tensile axial strains. The WS has a smaller diameter (25 mm) and a larger separation of turns (6.35 mm) 

than the ITER barrel [41]. An equivalent equation for the WS self-field correction is reported, with the 
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𝛼 term in Eq. (5.25) comparable: 𝛼(ITER) = - 9.0 × 10-5, 𝛼(WS) = - 10.0 × 10-5. The analysis demonstrated 

that the geometric differences averaged out [10].  

 

Experimental measurements of Nb3Sn strands on custom barrels, with 25 mm outer diameter and a 

separation of turns of 3 and 5 mm, and 35 mm outer diameter with a separation of turns of 3 mm 

have been reported [42]. The transport measurements from 𝐵App= 8.0 to 12.0 T result in 𝐼C values 

between 114 and 332 A. For currents in this range, the effect of 𝐵SF is expected to be small relative to 

the large 𝐵App. The larger diameter should reduce the effect of self-field and result in a higher 

measured 𝐼C. However, the experimental results for the 35 mm diameter measurement barrel were a 

1.5 % lower 𝐼C than the 25 mm barrel. For the measurement barrel with a greater separation of turns, 

the effect of self-field should be smaller. Experimentally this was seen with the 5 mm separation of 

turns measurement barrel resulted in a 1 % higher 𝐼C than the 3 mm geometry. The author concluded 

that the effect of dimension and pitches was not appreciable. This conclusion was specific to the Nb3Sn 

measurement, which will be discussed in section 6.2.1.  

 

6.1.4. Comparing Measurements Techniques 
Agreement between the transport and magnetisation measurements of 𝐽C is seen in some data in the 

literature [43-46]. There are also papers which discuss the large differences (7-10 %) [47] between 

magnetisation and transport measurements of 𝐽C, particularly at low 𝐵App[15, 48, 49]. In [47] the 

author argues that there are “no valid transport measurements” for 𝐵App< 1 T. Low 𝐵App 

magnetisation data can have errors as the analysis neglects coupling effects due to filament proximity 

and contact, undermining the reliability of extracting 𝐽C(𝐵). At low 𝐵App, proximity coupling increases 

the magnetic moment by tens of percent [15, 50]. In [51] the magnetisation data does not agree with 

transport data, underestimating 𝐽C. Elsewhere the results for measured 𝐽C are described as “technique 

dependent” [52]. Research quantifying the universal self-field 𝐽C[53] used only transport data for the 

analysis. It is important for the analysis of self-field to understand the limitations of each of the 

methods.  

 

The 𝐽C measured using the magnetisation method is an average value in the strand rather than the 

weakest point [47, 48], and the analysis of the measurements assumes that 𝐽C is constant across the 

volume of the strands. At high 𝐵App, when the effect of self-field is small, 𝐵App is expected to be 

“roughly uniform” [15]. 
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6.2. Critical Current Density 
 

6.2.1. Strain Dependence 
Nb-Ti strands were used to investigate the effect of self-field because it limited any variability due to 

strain. The changes in 𝐽C are only a few percent at tensile strains of ∼ 3% [54]. The strain dependence 

of Nb-Ti [𝐽C(ϵ)] is an order of magnitude smaller than the commercial A-15 materials: Nb3Sn and 

V3Ga [55]. The highest 𝐽C measured is when the Nb-Ti strand is in the strain-free state [13]. The tensile 

strain (ϵ) on the strand wound on the measurement barrel geometry is given by [39]: 

 

 
ϵ =

𝑅Maj + 𝑑s

𝑅Maj + 0.5𝑑s
− 1. 

(6.5) 

 

For the ITER strand’s diameter (𝑑s) and the measurement barrel’s major radius (𝑅Maj) the strain is 

2.3 %. For the smaller radius WS, the strain is of 2.9 %. Transport measurements of the Nb-Ti on the 

WS resulted in a reduction of 𝐼C about 5 % at 𝐵App = 7 T [39]. The differences in the measurement 

geometries cause the strand to be in different strain states which could explain the variance in the 

interlaboratory comparisons of Nb-Ti strands [39]. The differences in the 𝐼C measurements of Nb3Sn 

strands [42] in different geometries could be explained by the strain state of the strand.  

 

For an elastic model, there is a compressive strain of equal magnitude on the inside of the strand. 

Interpolating the 𝐽C(ϵ) data from [54], a strain of 2.3 % results in the 𝐽C decreasing by ≈ 17 % at 

𝐵App= 5 T. Extrapolating the 𝐽C(ϵ)data from [54] to 𝐵App= 0.5 T the 2.3 % strain results in the 

𝐽C decreasing by ≈ 9 %. The 𝐽C values at 0.0 and 2.3 % strain are fitted at the low field assuming a linear 

𝐽C(𝐵) relationship. Although the decrease in 𝐽C with strain on both the ITER and the MST barrels is not 

small, as 𝑅Maj is fixed the strands are in the same state. The strands characterised had diameters 

between 0.732 to 0.736 mm, details in Table A.1, the resultant differences in ϵ is a maximum of 0.01 %. 

The strand could be in a different strain state due to winding on to the barrel. Analysis of preparation 

techniques in the literature quantified the effect to be small < 1 A [38]. With a fixed winding method 

(section 3.3.2) differences were minimised.  

 

The strain-dependent upper critical field 𝐵C2
∗ is described [55], 

 

 𝐵C2
∗ (𝜖) = 𝐵C2M

∗ (𝜖)(1 − a|ϵ|𝑢) (6.6) 
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where 𝐵C2M
∗ (𝜖) is the maximum value of the upper critical field. The Nb-Ti fitting parameters for 

Eq. (6.9) from [55] are: a(ϵ < 0) = 23, and 𝑢 = 1.7. The average change in 𝐵C2
∗ (𝜖) (4.22 K) has been 

calculated as 488 mT (4.6 %) for the strand wound on an ITER barrel using strain dependent 

parameters [54].  

 

In other work looking at the effect of self-field when characterising Nb-Ti strands, mechanical stresses 

are not considered to affect the results [31]. It should be noted that strain can decrease the strand’s 

stability; as the strand is bent during manufacture the RRR of the strand is reduced by 10 % [56]. The 

strain state is not considered further in this work. 

 

6.2.2. Angular Dependence  
The orientation of current flow relative to 𝐵App affects the 𝐽C value measured. The angular 

dependence of 𝐽C in multifilamentary Nb-Ti wires is small due to the competing effects of the pinning 

and the Lorentz force averaging out [57, 58]. Generally, the maximum pinning force for Nb-Ti is 

strongly dependent on the angle between the transport current and 𝐵App [59]. In transport 

measurements, the strand is approximately perpendicular to the applied magnetic field [60, 61]. The 

angle between the strand and the field direction is 88.46° for the ITER barrel and 88.44° for the MST 

barrel. The angular dependence of 𝐽C was not considered in the self-field analysis as the angle, relative 

to the 𝐵App at 90°, in both measurement geometries is small.  

 

6.2.3. Temperature Dependence 
The atmospheric pressures during the experimental campaign were noted from a local weather 

station [62] and ranged from 99.1 to 102.8 kPa. To account for changes in the temperature of the 

helium bath, the temperature-pressure relationship was calculated using the data shown in Figure 

6.4 (a), digitised from [63]. A cubic-fit was used to calculate the helium temperature, the values for 

the cubic function fitted are reported in Table 6.3. The calculated temperature of the helium on the 

days experiment was carried out are shown in Figure 6.4 (b). 

 

The critical current measured at the bath temperature (𝐼m) is corrected to the 4.22 K critical 

current (𝐼C) value, with the relationship 

 

 𝐼C
𝐼m
=
𝑇C(𝐵) − 4.22

𝑇C(𝐵) − 𝑇m
, (6.7) 

 

where 𝑇𝐶(𝐵) is the field dependence of the critical temperature [40]. 
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Figure 6.4 : Temperature correction term for Liquid Helium-4 (a) Reduced temperature vs pressure digitised data from Ref. [63]. 
(b) The maximum and minimum helium temperatures calculated using atmospheric data and cubic fit for days the experiment 
was run. 

 

Parameter Value Error 

A [𝑥0] 2.53 0.01 

B [𝑥1] 25.6 × 10-3 0.3 × 10-3 

C [𝑥2] -1.11 × 10-4 0.04 × 10-4 

D [𝑥4] 2.4 × 10-7 0.1 × 10-7 

Table 6.3 : Helium Temperature-Pressure fit parameters. 

 

For Nb-Ti, 𝑇C(𝐵) is described by the relationship[64],  

 

 
𝑇C(𝐵) = 𝑇C  × (1 −

𝐵

𝐵C2
)
0.59

, (6.8) 

 

where the numerical values are the 𝐵C2  =14.5 T and 𝑇C = 9.2 K. The helium bath’s minimum 

temperature was calculated as 4.208 K, an average of 4.232 K, and a maximum of 4.248 K. Using the 

temperature of the helium bath (𝑇m) the 𝐼C was corrected from the bath temperature to 4.22 K. The 

largest correction to 𝐼m is at high 𝐵App and is of order 2%. The maximum difference between 𝐼mand 

𝐼𝐶  is 10 A.  

 

At high 𝐵App the 𝐼C values are small (< 40 A), and the field sensitivity of 𝐽C measurements is lower [15], 

so the data is of limited use for verification of the self-field correction. At low 𝐵App, the correction 

defined by Eq. (6.7) is equivalent to 0.8 % 𝐼C. The variation in pressure and temperature correction did 

not make a significant difference, less than 4 A, to the measured transport 𝐼C data. As the same strands  
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Figure 6.5 : (a) Comparison of the raw and self-field corrected data. (b) log-log data with n-index fitting shown. 

 

are measured on multiple days and removed from the magnet system, the strands are thermally 

cycled. The effect of temperature cycling on Nb-Ti is less than 0.3 % [65].  

 

6.2.4. Baseline correction and fitting 
The transport measurement data is baseline correct. The raw data is shifted vertically, by subtracting 

a linear fit between 0 and ∼90 % 𝐼C with the gradient fixed as 0. The raw data, linear fit, and baseline 

corrected data is shown in Figure 6.5 (a). It is clear that the baseline is not sloped curved or 

multisegmented, which would indicate current transfer [66].  

 

To extract 𝑛-value, the 𝐸-𝐼 data was plotted on a log-log scale, and using the data from 10 μV⋅m-1 to 

the 100 μV⋅m-1 a straight line was fitted with error, shown in Figure 6.5 (b).  

 

6.2.5. Measurement Error  
In order to investigate the effect of self-field each aspect of the experiment has been analysed, in 

order for the measurement error to be minimised. The first test of the accuracy of the Nb-Ti strand 

measurements was the comparison with the benchmarking measurements shown in section 3.5.1. 

The remeasurement of the same strand with a different experimental set-up and analysis process gave 

values which differed by 1 A.  

 

The transport 𝐸-𝐽 data shown in Figure 6.6 is a comparison of the same Nb-Ti strand remeasured and 

the differences. The data shown in Figure 6.6 (a) is the MST measurement geometry at the 

benchmarking range of 𝐵App . Measurement 1 was using probe 1 in 2016/05. Using this probe, the  
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Figure 6.6 : Comparison of strand DR 4810 data (a) different probes, different months measured in the MST geometry (b) 
Measurements on the strand DR 4810 on the same probe, following inward and outward 𝐹𝐿 measurements in the ITER 
geometry.  

 

Date Measurement  𝐼𝐶  [10 μV⋅m-1] [A] 

2016-11-02 

1 1616 ± 1  

2 1612 ± 1 

3 1605 ± 1 

2016-11-03 

4 1620 ± 1 

5 1609 ± 1 

6 1610 ± 1 

Table 6.4 : Comparison of 𝐼𝐶  𝑚easured at 𝐵App = 0 T in the ITER  

geometry on different  days and following different 𝐹𝐿 measurements. 

 

sample quenched when measuring at lower 𝐵App. Using the new probe, it was possible to measure 

the strand completely, in 2016/11. Measurements using the first probe (square symbols) gave slightly 

higher 𝐼𝐶  than the second probe (circular symbols). The results highlight both that the measurement 

error is small, relative to the effect being investigated, and the improved design increases the 𝐸-field 

measured.  

 

One check of the effect of Lorentz force was repeated measurements at 𝐵App = 0 T, shown in Figure 

6.6 (b). The measurement is of strand DR 4810 wound on the ITER measurement barrel. 

Measurements followed the applied magnetic field being reserved, and the current orientation 

reversed. The differences in 𝐼𝐶  are outlined in Table 6.4, with an average of 1612 A, and standard 
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deviation of 5 A. The differences in the value are less than 0.3 % of the 𝐼𝐶  value. There was no clear 

trend from the data, with respect to the data or the direction of the 𝐹𝐿 in the previous measurements. 

 

6.3. Transport Measurements 
 

6.3.1. Variable Temperature Data 
Variable temperature transport measurements are used to determine the temperature margin of the 

strand when used in magnet applications [67]. The temperature margin is defined as the difference 

between the operating temperature and the temperature at which 𝐼C is equal to the operating 

current. Transport measurements over the range of temperatures 3.5 to 6.0 K were performed in 

𝐵App = 4.0 to 8.0 T. The strand DR 5049 was characterised in the ITER measurement geometry. The 

design of the probe and experimental set-up were developed by Dr Mark J Raine. The measurement 

data in the inward 𝐹L data was supplied by Dr Mark J Raine, the outward 𝐼C measurements data is new 

and was completed for this research by F Ridgeon. The data in this section with details of the probe 

and experimental set-up were published [68].  

 

The data for both orientations of 𝐹L were analysed by F Ridgeon, and the strand was remeasured in 

the outward 𝐹L at the same 𝐵App and 𝑇. Log-log 𝐸-𝐽 traces comparing the two 𝐹L orientations 

measurements at 𝑇 = 3.5 K, are shown in Figure 6.7. For inward 𝐹L closed symbols are used, and open 

symbols for outward 𝐹L. For the data shown in Figure 6.7, the differences in 𝐽C with opposite 𝐹L 

orientation is < 1 % at 𝐸C. It was clear from the extensive measurements that the data is high quality. 

Each measurement, for a fixed field and temperature, resulted in a lower 𝐽C for the outward 

𝐹L measurements. Although differences in measured 𝐽C are seen, the stability of the strand at the 

range of 𝐵App and 𝑇 measured at reduces the variability.  

 

Within the measured range of 𝐵App and 𝑇, the magnitude of the transport currents results in 𝐵SF 

being small relative to 𝐵App. The 𝐼C(𝐵App, 𝑇) data for the strand in the two orientations of 𝐹L is 

summarised in Figure 6.8. The data was parameterised using the single pinning-mechanism, Bottura 

phenomenological relationship [69]: 

 

 𝐼𝐶 =
𝐶0

𝐵
𝑏𝛼(1 − 𝑏)𝛽(1 − 𝑡𝜈)𝛾 

(6.9) 

 

where 𝛼, 𝛽, 𝛾, 𝜈 and 𝐶0 are scaling parameters, normalised critical temperature (𝑡 = 𝑇/𝑇C), and 

reduced field 𝑏. 
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Figure 6.7 : 𝐸-𝐽 traces for DR 5049 at 3.5 K. Open symbols - outward Lorentz force, closed symbols - inward 
Lorentz force. Inward data provided by Dr Mark J Raine. 
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Figure 6.8 : Critical current data for DR 5049. Open symbols -outward Lorentz force, closed symbols - 
inward Lorentz force. The dashed lines are the Bottura fit Eq. (6.9) to both data sets. Inward data provided 
by Dr Mark J Raine.  

 

𝐶0 [A·T-1] 𝐵𝑐2(0) [T] 𝑇C0 [K] 𝛼 𝛽 𝛾 𝜈 

14054 14.33 9.05 0.75 0.84 1.83 1.53 

Table 6.5 : Fitting parameter of Nb-Ti strand for both Lorentz force polarities at varied temperature. 
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The temperature-dependent upper critical field is used. Eq. (6.9) was fitted using the standard 

method, outlined in [18]. The value of 𝜈, and the parameters of Eq. (6.9) are listed in Table 6.5. The 

fitting parameters values in Table 6.5 are within the typical range in the literature. The standard 

deviation (σ = 2.0 %) for the measurement in two orientations of 𝐹L, is typical for fitting the data set 

in one 𝐹L orientation. Any effect due to the orientation of 𝐹L on the distribution of self-field is too 

small to be resolved. In section  

 

The variable temperature data is at high 𝐵App, and it is of limited use for the analysis of the self-field. 

However, the data demonstrates that it is possible to measure the strand over a range of 

temperatures, fields, and orientations of Lorentz force.  

 

6.3.2. 4.22 K Data 
Transport measurements of strands DR 4810 and DR 5534 at 4.22 K in 𝐵Appfrom 10.5 to 0.0 T were 

performed to characterise 𝐽C and the effect of self-field. The measurements at high 𝐵App (>5.5 T) are 

at the standard values of magnetic field used in benchmarking and verification of the strand. A higher 

density of measurements was taken at low field (< 2.0 T), as the FEA calculations suggested a peak in 

the measured 𝐽C and large differences in 𝐽C were being observed experimentally. The measurements 

in the inward 𝐹L at low fields (<1 T), the outward 𝐹L for the ITER geometry and all 𝐽C measurements in 

the MST geometry provide new information. 

 

The strand DR 4810 was measured in ITER geometry in a reversed applied magnetic field (𝐵App =

−𝐵z). Due to possible damage of the magnet, further transport measurements were not repeated at 

𝐵App = −𝐵z. A selection of the 𝐸-𝐼 traces for the strand DR 4810 at 4.22 K are shown in Figure 6.9. 

The raw data has been corrected, the baseline has been shifted vertically by the average of the electric 

field, between 0 and ≈ 90 % of 𝐽C. 

 

The effect of magnetic field hysteresis on 𝐽C at any 𝐵App was investigated. Measurements were 

repeated at 𝐵App = 0 T following 𝐵App > 0.4 T, and 𝐵App< 0.4 T. The resultant differences were small, 

σ = 5.1 A, 0.3 %. Following changes to the experimental set-up (refilling the helium in the magnet, 

adjustment to the probe assembly) measurements were repeated at several 𝐵Appvalues. Differences 

were typically less than 1 A, e.g., repeated 𝐼C measurements at 𝐵App= 1.4 T, inward 𝐹L ITER geometry 

results in an 𝐼C of 1039.4 ± 0.9 A.  
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Figure 6.9 : Experimental 𝐸-𝐼 traces of the Nb-Ti strand DR 4810 measured in the (a) Inward Lorentz force orientation ITER geometry (b) Outward Lorentz force orientation ITER geometry 
(c) Inward Lorentz force orientation MST geometry (d) Outward Lorentz force orientation MST geometry. Open symbols 𝐵App< 0 T.  



Quantifying the Effects of Self-Field   136 

 

(a) 

3 4 5 6 7 8 9 10

0

5

10

15

20

 ITER

 MST

E
le

c
tr

ic
 F

ie
ld

 (
m

V
 m

-1
)

Current Density (109 Am-2)

600 800 1000 1200 1400 1600

Current (A)

0

2

4

6

8

10

V
o

lt
a

g
e

 (
m

V
)

 

(b) 

2.4 2.6 2.8 3.0 3.2

0

5

10

15

20

 ITER

 MST

E
le

c
tr

ic
 F

ie
ld

 (
m

V
 m

-1
)

Current Density (109 Am-2)

400 420 440 460 480 500

Current (A)

0

2

4

6

8

10

V
o

lt
a

g
e

 (
m

V
)

 

Figure 6.10 : 𝐸-𝐽 data for strand DR4810 in the four measurement geometries at two values of the applied field  
(a) 𝐵App= 0.8 T (b) 𝐵App= 5.0T.  

 

Geometry 𝐹L orientation 𝐽C (0.8 T) 
[109 Am-2] 

Δ (0.8 T) =
𝐽C − 𝐽C̅(%) 

𝐽C (5.0 T) 
[109 Am-2] 

Δ (5.0 T) =
𝐽C − 𝐽C̅(%) 

ITER 
Inward 8.15 + 3.8 3.02 + 0.3  

Outward 7.47 - 4.8 3.01 + 0.0 

MST 
Inward 9.29 + 18.3 3.09 + 2.7 

Outward 6.49 - 17.3 2.90 - 3.7 

Table 6.6 : Critical current density at 𝐵App= 0.8 T and 5.0 T. Percentage difference from the average 𝐽C,  

𝐽C (𝐵App= 0.8 T) = 7.85 × 109A⋅m-2 and 𝐽C (𝐵App= 5.0 T) = 3.01 × 109 A⋅m-2 

 

The measurement of DR 4810 in the ITER geometry inward 𝐹L is shown in Figure 6.9 (a). For the high-

currents, low 𝐵App, 𝐸-fields of >5 µV⋅m-1
 were measured. As 𝐸-fields of 100 µV⋅m-1 were not measured 

the uncertainty in the analysis of the index of transition is large. The measurement of DR 4810 in the 

ITER geometry outward 𝐹L is shown in Figure 6.9 (b). For 𝐵App < 0 T, 𝐸-fields < 100 µV⋅m-1 were 

measured. For the MST geometry in the inward 𝐹L orientation [Figure 6.9 (c)], in the intermediate 

𝐵App range (8.0 to 2.0 T) low 𝐸-fields (<10 µVm-1) were measured. The outward 𝐹L MST geometry 

[Figure 6.9 (d)] followed the inward measurements, and 𝐸-fields of 100 µV⋅m-1
 were measured.  

 

The 𝐸-𝐽 traces at a fixed 𝐵App with the four configurations (helical geometry, and Lorentz force 

orientation) is shown in Figure 6.10, for the strand DR 4810. At 𝐵App= 0.8 T, shown in Figure 6.10 (a), 

changing the orientation of 𝐹L results in a difference in 𝐽C of 8.7 % in the ITER geometry and by 35.7 % 

in the MST geometry. At 𝐵App= 5.0 T, shown in Figure 6.10 (b), the measured 𝐽C is comparable in the 

two orientations of 𝐹L in the ITER geometry, i.e., differences of 0.3 % similar to measurement error,  
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Figure 6.11 : Critical current density as a function of the applied magnetic field for strand DR 4810. (a) Complete data 
range (b) Low applied, high self-field data (c) High applied-field, low self-field effect data. Lines between data points are 
a guide for the eye.  

 

whereas the difference in the MST geometry is larger at 6.3 %. The 𝐽C value and the percentage 

difference from the average are reported in Table 6.6. An average of the four data sets was used to 

calculate 𝐽C. 

 

The 𝐽C vs 𝐵App of strand DR 4810 is shown in Figure 6.11. The data for the whole range of 𝐵App is 

shown in Figure 6.11 (a). The largest changes in the measured 𝐽C, due to the effect of self-field 

occurred at the low field range (>2.0 T). The low applied-field, high self-field data are replotted in 

Figure 6.11 (b), and the low self-field and high applied-field data in Figure 6.11 (c). From these 𝐽C vs 

𝐵App data, the effect of the different density of turns on the measurement barrel can be seen. 
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Strand ID Geometry Inward 𝐹L Outward 𝐹L 

DR 4810 

ITER 
  

MST 
  

DR 5534 

ITER   

MST 
  

Table 6.7 : Summary of notation used for measured properties of strands DR 4810 and DR 5534 in different geometries and 
Lorentz force orientations for analysis figures. Not used in E-J data shown in Figure 6.9 

 

The outward Lorentz force orientation results in an increased 𝐵Net which reduces the measured 𝐽C. 

The inward Lorentz force orientation results in a reduced 𝐵Net, this increases the measured 𝐽C. The 

ITER measurement geometry results in a smaller 𝐵SF , as the peak in the measured 𝐽C in the inward 

𝐹Lis lower than the MST geometry. For 𝐵Appbelow the peak in measured 𝐽C, a constant gradient (ITER: 

0.607 T·kA-1, MST: 0.328 T·kA-1) was measured for the inward 𝐹L measurements.  

 

Transport measurements of composite Nb-Ti strands, at low 𝐵App, can be limited by self-field 

instabilities [70]. The 𝐽C at 𝐵App= - 0.2 T for ITER outward 𝐹Lwas found by extrapolating the 𝐸-𝐽 data 

to 𝐸C. Similarly, the data at 𝐵App= 0.2 T for ITER inward 𝐹Lwas found by extrapolation of 𝐸-𝐽 data to 

𝐸C. The uncertainty in 𝐽C due to this extrapolation is 0.7 %. For the high 𝐵App data, shown in Figure 

6.11 (c) the 𝐽C (B) is nearly linear. The change in the gradient at 𝐵App> 9 T, in all four measurements, 

is an artefact of the 𝐸-field criterion used [66]. 

 

The 𝐸-𝐼 measurements about the peak in the measured 𝐽Cin the inward 𝐹L, for the ITER and MST 

geometry, are shown in Figure 6.12. The peak occurs around 𝐵App= 0.2 T for the ITER geometry and 

𝐵App= 0.7 T for MST geometry. For both data sets, the peak 𝐵App± 0.1 T, have similar behaviour and 

𝐼C. Measurements of 𝐼C about the peak were not always possible due to the instability of the strand, 

and the volume of helium and time required. It is expected there is an equivalent peak in 𝐼C at 

𝐵App- 0.2 T for the ITER geometry and in the outward 𝐹L, but measurements were not performed at 

𝐵App< -0.2 T to verify. 
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Figure 6.12 : 𝐸-𝐼 measurement data for strand DR 4810 about the peak in the 𝐼C in the inward Lorentz force orientation 
(a) ITER geometry (b) MST geometry.  

 

The difference in 𝐼C with the orientation of Lorentz force (normalised by the inward 𝐹L measurement) 

Δ𝐼C/𝐼C is shown in Figure 6.13 (a) at high 𝐵App, where (𝐹L(in) − 𝐹L(out)) determines the sign of Δ𝐼C. 

The percentage difference in 𝐼C for the ITER geometry is small (<0.35 %, <1.0 A) at the benchmarking 

range of 𝐵App (the shaded region) shown in Figure 6.13 (a). For the MST data shown in Figure 6.13 (a), 

the difference in 𝐼Cis larger, 6% (22 A). The experimentally measured difference in 𝐼C with 𝐹L 

orientation can be understood by considering the distribution of current in the stand, and the 

resultant distributions of the magnetic field with 𝐹L orientation. One of the results of the FEA 

calculations was the position of the maximum magnetic field changes with the 𝐹L orientation. Plotting 

the difference in the 𝐼C for the complete data set of 𝐵App shown in Figure 6.13(b), a maximum 

difference of 460 A (MST geometry), and 240 A (ITER geometry) is measured. The largest differences 

occur when comparing measurements where the self-field is acting in the opposite directions and the 

𝐵App is small.  

 

The 𝐼C for the four measurement geometries has been normalised by the ITER inwards 𝐹L data, shown 

in Figure 6.13 (c). For the benchmarking range of 𝐵App, the differences in 𝐼C due to 𝐹Lis small. The 

differences in 𝐼C due to the two geometries is clear. The difference due to the MST geometry in the 

outwards 𝐹Lorientation is still smaller than 2 %. 

 

The normalised Lorentz Force (≡ 𝐽CB) for the four measurements are compared in Figure 6.13 (d), and 

the peak in 𝐹L varies from 𝐵App= 4.3 to 4.7 T. The analysis in Ekin 2016 paper which defines a master 

scaling curve replots the reduced pinning force vs reduced field, the shape is invariant and “thus can 

be registered into a single master unified-scaling curve” [71]. Typical data is for 𝑏 > 0.3   
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Figure 6.13 : DR 4810 (a) Percentage differences in critical current, with Lorentz force orientation for both geometries as 
a function of the applied field. (b) (log-lin) differences in critical current with Lorentz force orientation as a function of 
applied field for both geometries. Highlighted region – benchmarking and verification range of 𝐵App. (c) Normalised 𝐼C 

(inward ITER geometry) (d) average of outward and inward 𝐹L 𝐼C. (d) Reduced pinning force vs reduced field (𝑏).  

 

The index of transition (𝑛) is compared for the measurement geometries and different 𝐹L directions. 

The results are reported in Figure 6.14. For the 𝑛 versus 𝐵App data, shown in Figure 6.14 (a), for 𝐵App> 

2.0 T the 𝑛-value decreases - a typical inverted parabola shape. For 𝐵App< 2.0 T, there is a sharp 

increase in the 𝑛-value. At all values of 𝐵App, the inward 𝐹Lmeasurements have lower n-values than 

the corresponding outward measurements. The analysis of 𝑛 has large error bars at low 𝐵App, because 

heating due to the high currents occurs. The increase in 𝑛 at 𝐵App< 2.0 T could be due to the instability 

of the strand when measured under those conditions. It is difficult to measure 𝑛-value at low 𝐵Appof 

Nb-Ti strands, due to the low E-fields measured before samples quenching, and the value can be very 

large [42].  

 

There is a power-law relation between the n-value and the critical current density shown in Figure 

6.14 (b). The data in Figure 6.14 (b) are fitted with Eq. (2.18) with fitting parameters r = - 2.72 and 

s = 0.46 and are within the typical range of values [72]. 
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Figure 6.14 : Index of transition for the four transport measurements of strand DR 4810 (a) 𝑛 versus 𝐵App (b) (n-1) versus 

the critical current density.  

 

Transport measurements of strand DR 5534 were repeated at the same 𝐵App where possible in the 

same geometries using both 𝐹Lorientations, using the same probe as strand DR 4810, on separate 

measurement barrels. Similar 𝐸-𝐽 traces were measured, and the same analysis performed. The 𝐼C- 

𝐵App of the two strands are compared in Figure 6.15. There are some broadly similar features: a sharp 

increase in 𝐼C at 𝐵App< 2.0 T, higher 𝐼C in the inward 𝐹L orientation, and a linear increase in 𝐼C at low 

𝐵App. Due to the instability of strand DR 5534 at high currents, the peaks in 𝐼C were not measured in 

either measurement geometry. Strand DR 5534 could not be kept sufficiently stable to measure a 

transition and E-field without quenching. In the ITER geometry, it was not possible to measure the 

𝐼C above 1190 A and in the MST geometry, it was not possible to measure 𝐼C above 1370 A.  

 

The high self-field region is compared for strands DR 4810 and DR 5534 in the ITER geometry shown 

in Figure 6.15 (b) and MST Figure 6.15 (c). The gradient in the linear region 𝐽C(𝐵) at 𝐵App< 0.4 T is 

slightly higher for DR 5534 than DR 4810, (with MST: 0.351 T⋅kA-1). The physical properties of the 

strand (section 3.2) may explain why the measured 𝐼C was lower. Although both strands are nominally 

the same, strand DR 5534 has both a lower 𝐶𝑛𝐶 ratio and RRR. The relationship between self-field 

instabilities and RRR is well documented [12, 73, 74].  

 

The transport measurements at 4.22 K, of the three strands considered in this chapter are compared 

in Figure 6.16. The effect of variance in the strand 𝐼C (i.e., 𝐼Cat 𝐵App= 7 T varies by 6 A, 2.2 %), was not 

considered in the calculation of the self-field correction. As the 𝐽Cmeasurements of strand DR 4810 

are the most complete, the experimental data for strand DR 4810 is used as the input for the FEA and 

semi-analytic analysis.  



Quantifying the Effects of Self-Field   142 

 

 (a) 

0 2 4 6 8 10

0

500

1000

1500

C
ri
ti
c
a

l 
C

u
rr

e
n
t 

(A
)

Applied Magnetic Field, BApp (T)

ITER

 DR 4810

 DR 5534

MST

  DR 4810

  DR 5534

 

(b) 

0.0 0.5 1.0 1.5 2.0
750

1000

1250

1500

1750

C
ri
ti
c
a

l 
C

u
rr

e
n

t 
(A

)

Applied Field (T)

  DR 4810 

  DR 5534

 

(c) 

0.0 0.5 1.0 1.5 2.0

800

1000

1200

1400

1600

  DR 4810 

  DR 5534 

C
ri
ti
c
a

l 
C

u
rr

e
n

t 
(A

)

Applied Magnetic Field, BApp (T)  

Figure 6.15 : Comparison of the 𝐽Cof strands DR 4810 and DR 5534. (a) Full magnetic field range (b) limited field range in 
the ITER geometry (c) limited field range in the MST geometry. Lines between DR 4810 data points are a guide for the eye. 
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Figure 6.16 : Compilation of the inward 𝐹L ITER geometry measured 𝐼C at 4.22 K. Line between DR 4810 
data points are a guide for the eye. 𝐼C (𝐵App= 7.0T) = 274.8 [DR 4810], 277.0 [DR 5049], 271.0 A [DR 5534]. 
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6.4. Magnetisation Measurements  
The self-field can be expected to be much less in magnetic measurements than transport 

measurement due to the magnitude of the current flowing in the strand. The magnetisation 𝐽C 

(𝐵App, 𝑇) of the strands provides additional data about the strands behaviour, to aid in understanding 

the universal 𝐽C (B).  

 

To measure 𝐽C magnetically, a Quantum Design PPMS system [75] is used in DC-extraction mode. The 

DC 𝐵Appis swept at a rate of 4 mT.s-1 (0.240 T min-1). 170 mm of strand is cut, cleaned using 

isopropanol, and wound tightly around a stainless-steel rod, as shown in Figure 6.17. The 

characteristics of the coiled strand are outlined in Table 6.8. The coiled strand is orientated parallel to 

the applied magnetic field (+BZ). Dr Mark J Raine produced the magnetic moment data. 

 

Raw magnetic moment data (not normalised by volume) for the three strands are shown in Figure 

6.18. The area under the curve is used to calculate the AC losses. The strands DR 5534 and DR 5049 

have very similar behaviour. Strand DR 4810 has both the highest AC losses and measured 𝐽C. The 

losses of the three strands are within the ITER requirements (<55 mJ·cc_st-1), Table 6.9. The skewed 

or asymmetric nature of the data are due to the nickel plating.  

 

Characteristic [Unit] Value 

Length [mm] 130  

Major radius [mm] 2.365 

Height [mm] 6.75 

Pitch [mm] 0.732 

Number of turns 8.7 

Table 6.8 : Characteristics of magnetisation helical  
measurement geometry.  

 

Strand Identity Losses 𝑄ℎ𝑦𝑠  [mJ·cc_st-1] 

DR 4810 47 ± 0.1 

DR 5049 44 ± 0.1 

DR 5534 44 ± 0.1 

Table 6.9 : Hysteresis losses. cc_st: cubic centimetre of strand. 



Quantifying the Effects of Self-Field   144 

 

 

Figure 6.17 : Photograph of an Nb-Ti strand wound for magnetisation measurement. Taken from [76]. 
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Figure 6.18 : Magnetic moment versus applied magnetic field for strands DR 4810, DR 5049 and DR 5534. 
Raw data.  
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Figure 6.19 : Magnetic moment versus applied magnetic field for strand DR 4810. (a) various temperature (3.0 to 9.5 K in 
0.5 K intervals) measurements over a limited field (± 1.8 T) range (b) 4.22 K measurement data.  

 

All three strands were measured from 3.0 to 9.5 K at 0.5 K intervals. The magnetic moment data for 

strand DR 4810, 𝐵App  = -1.80 to 1.80 T, shown in Figure 6.19 (a) are typical. The peaks in the magnetic 

moment near 𝐵App= 0 T, are above (+ 16 mT) and below (-18 mT) skewed in the direction which the 

magnetic field is swept. Measurement data of DR 4810 for 𝐵App= -1.8 T to 8.5 T at 4.2 K, is shown in 

Figure 6.19 (b). The data points on the graph indicate where 𝐽C was extracted. 
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6.4.1. Filament Properties and 𝐽C 
 

To calculate 𝐽C from magnetisation measurement, the architecture of the conductor must be known. 

Magnetisation measurements are influenced by the geometry of the filaments [69]. Using an electron 

microscope image of the strand, the area of the superconducting region was measured and analysed 

using photo editing software. The filaments are assumed to be perfectly round [15]. An average 

filament diameter was calculated using the number of filaments (𝑁), the measured superconducting 

area, 𝐴sc: 

 

 

𝑑f = √
4𝐴sc
𝜋𝑁

. 

(6.10) 

 

The average filament diameter of strand DR 4810 is 6.73 μm, the filament diameter 7 μm was used 

for the analysis. The uncertainty in the measurement resolution of the electron microscopy is 

considered negligibly small. Polishing of the sample can increase the uncertainty to < 1%.  

 

There is a normal distribution in the diameter of the filament around the average, with the average 

filament diameter varying with radial position [77]. As the filaments are non-uniform, the analysis is 

further complicated with and variance in 𝐽C along the length of each filament [78]. In Ref. [77] the 

distribution of filament sizes was from 0.75 to 1.2 𝐷/< 𝐷 >, where < 𝐷 > is the average filament 

diameter. This paper was studying filaments of average diameters 27, 33, 37 μm, and it is not clear 

how relevant this result is to the 7 μm filaments in the composite.   

 

Filament distortion [45] can result in an increase in the transport measurements and can be up to 

1.4 [69]. The ratio of magnetisation to transport measurements of the ITER PF type 1 strand were 

measured as 0.92-0.94 indicating uniformly shaped Nb-Ti filaments [45].  

 

The 4.22 K transport and magnetisation 𝐽C(𝐵) measurements for strand DR 4810 are compared in 

Figure 6.20 (a). The differences in the results for the two methods are expected, with the uncertainty 

in 𝐵 at high fields in magnetisation measurements, and uncertainty in 𝐵 due to self-field effect at low 

𝐵Appin transport measurements. The transport 𝐽C are lower for 𝐵App< 2 T, and higher for 𝐵App> 2 T 

than the magnetisation 𝐽C. Literature data [79] comparing transport and magnetisation measurement 

methods shows similar behaviour to the data shown in Figure 6.20 (a). 
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Figure 6.20 : (a) Comparison between transport (ITER geometry) and magnetisation 𝐽Cfor strand DR 4810 at 4.22 K. The 
dashed horizontal line is at 𝐽C= 0. The open symbols: outward 𝐹L, closed symbols: inward 𝐹L (b) Comparison between 
transport and magnetisation 𝐽Cmeasurements of strands DR 5049. The closed symbols are the transport data (ITER, inward 
𝐹L) and crossed symbols the magnetisation data. The dashed straight lines are a guide for the eye.  

 

In the literature the single term exponential fit to the two experimental data sets (magnetisation and 

transport measurements) that captures the sharp increase of 𝐽C at low 𝐵 (< 4.0 T ) results in a low less 

accuracy fit for 𝐵 > 4.0 T [79].  For the FEA calculations in this chapter, the 𝐽C(𝐵) data, shown in Figure 

6.20 (a), is fitted with a two term exponential as a model input. 

 

Variable temperature data, 𝐼C(𝐵, 𝑇), measured using both transport and magnetisation techniques 

are compared in Figure 6.20 (b). Typically the two measurement methods provide data in different 

field ranges, and the magnetisation and transport data can be fitted with small errors using either a 

single-pinning [69] or double-pinning mechanism [46]. For the range of 𝐵Appand temperatures 

studied, the magnetisation 𝐼C is lower than transport, as expected from considering the data shown 

in Figure 6.20 (a).  

 

6.4.2. Electric field 
The 𝐽C was evaluated in the transport measurements using an 𝐸-field criterion of 10 μV·m-1. The 𝐸-

field generated in the magnetisation measurement was calculated for comparison using Faraday’s law. 

The tightly wound coil was approximated by the magnetic field of an infinite solenoid geometry, the 

𝐸-field was equated to a flux change,  

 

 
𝐸 = (−𝑛𝑑𝐴

𝑑𝐵

𝑑𝑡
) /𝑙. 

(6.11) 
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Figure 6.21 : Calculation of self-field effect using the differences in transport and magnetisation 
measurement at 𝐵App= 0 T. 

 

The magnetisation measurement geometry and Eq. (6.11) suggest the evaluation is at 𝐸 ≈ 10 nV·m-1, 

three orders of magnitude smaller than the 𝐸𝐶. As the magnetisation measurements were of strands 

with constant areas and lengths, at a fixed magnetic field ramp rate (𝑑𝐵/𝑑𝑡 = const.), a single 𝐸-field 

is generated, and further analysis is not possible.  

 

6.4.3. Self-field 
Although there are errors associated with magnetisation measurements, the higher 𝐽C measured 

relative to the transport technique provides further evidence that the self-field effects are large at low 

𝐵App, and self-field corrections are necessary to understand low 𝐵Apptransport measurement 𝐽C. 

 

One comparison between transport and magnetisation measurements is calculating at what value of 

𝐵 the magnetisation 𝐽C is equal to the transport 𝐽C [48] The data input is the transport at 𝐵App= 0 T 

and what value of 𝐵 this is equivalent too in the magnetisation data, shown in Figure 6.21. Analysing 

the data in using this method results in a 𝐵SF = 1.00 ± 0.01 T for the ITER geometry, i.e., 0.63 T⋅kA-1 

and 𝐵SF = 2.31 ± 0.01 T for the MST geometry, i.e., 1.87 T⋅kA-1. The magnitude of the ITER self-field 

correction is within the range reported in the literature. It is clear that the 𝐽C measured is not accurate, 

due to the facts 𝐵 ≠ 0 T. The relationship generated is of limited use.  

 

Detailed quantification of the magnitude of the effect of self-field in the magnetisation measurement 

is a topic for future research. In sections 6.5 (FEA model) and 6.6 (semi-analytic method) the 

magnetisation 𝐽C(𝐵) data were plotted without correcting for the effect of self-field and used as a 

reference.  
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6.5. Finite Element Analysis Model 
 

The consistency checks in chapter 5 verified the FEA modelling methodology implemented using the 

𝐻-formulation. In this section different models are presented which vary in complexity, both the 

definition of 𝐽C(𝐵) and how the current redistributes within the strand. The strands architecture is 

modelled in a way that allows the current can redistribute. A precursory model with an annular cross-

section is considered in section 6.5.1. With a reduced experimental 𝐽C data set, the FEA results are 

compared with literature methodologies, and an analytic method is attempted to understand the 

effects of filament transposition. Extensive analysis of the self-field with an annular cross-section is 

outlined in section 6.5.2 with the complete transport and magnetisation measurement data. In the 

insulated TwT cross-section the current can redistribute within each tube.  

 

For the FEA models in section 6.5.2 the geometry is fixed, the variable changed is the 𝐽C(𝐵) 

relationship. The fixed value of 𝑛 =  5 in Eq. (5.3) was used in all the models presented here. The 

magnetic field is calculated by defining a ramping to the 𝐼C, at each of the 𝐹Lorientation and values of 

𝐵App. The distribution of the probability density was analysed and an average of the magnitude of the 

net magnetic field (𝐵̅𝑁𝑒𝑡) at selected 𝐵App value was calculated. The values of 𝐵̅𝑁𝑒𝑡 were used to 

replot the experimental data. An accurate self-field correction would result in the replotted 𝐽C data 

points at each 𝐵Appconverging on to a single curve. 𝐽C(𝐵) relationship that accounts for the effect of 

self-field have been investigated for several materials in the literature [80, 81].  

 

6.5.1. Precursory Self-field Correction: Annular Cross-section 
The first self-field correction calculated used the variable temperature transport measurement data 

(section 6.3.1) of strand DR 5534 at 4.22 K. The experimental data is taken in the ITER geometry and 

in both orientations of 𝐹L. The measured differences in the 𝐼C data are small, ∼5A, >1 %. At high 𝐵App 

it is expected that the distribution in the net-field results in a correction would result in a 𝐵̅𝑁𝑒𝑡 < 𝐵App 

for inwards 𝐹L, and higher 𝐵̅𝑁𝑒𝑡 < 𝐵Appfor outwards 𝐹L, with the two data sets converging onto a 

single 𝐼C(𝐵).  

 

The FEA model simplified the experimental geometry; the ITER helix was modelled with five turns only. 

The strand cross-section was considered as annular, with an inner and outer filamentary region radius. 

The field distribution was calculated for current density at which the 𝐸C criterion is met. The 

probability distribution of the superconducting region in the two orientations of 𝐹L is analysed to 

calculate 𝐵𝑁𝑒𝑡.   
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Figure 6.22 : Model 0 (a) Comparison of 𝐼Cvs 𝐵Appand 𝐼Cvs 𝐵̅𝑁𝑒𝑡with self-field correction. Inset – 𝐼C data about 𝐵 = 7 T. 

(b) Probability density function for the modulus of the net magnetic field for each of the two polarities of force on the strand 
- inward Lorentz force (solid) and outward Lorentz force (dashed). The distribution is calculated for the central turn of the 

strand at 𝐵App =  5 T.  (c) The self-field correction as a function of the applied magnetic field. The 𝐵SF
CERN correction is Eq. 5.22, 

calculated with a transposition factor (𝑓tr) of 1.0 and 0.4. The inward (closed symbols) and outward (open symbols) Lorentz 
force.  

 

The 𝐽C(𝐵) relationship implemented is a linear fit of the form  

 

 
𝐽C(|𝑩|) = 𝐽C0 (1 −

|𝑩|

𝐵C2
) (6.12) 

 

to the experimental 4.22 K data, shown in Figure 6.8, where 𝐽C0 is the critical current density at 𝐵 = 0 T. 

This model will be referred to as model 0 in this section.  The experimental data for 𝐵App= 4 to 8 T is 

replotted as a function of the average of the magnitude of the net magnetic field (𝐵̅𝑁𝑒𝑡) in the two 

𝐹L orientations shown in Figure 6.22 (a). The convention of open symbols for outward 𝐹L and closed 

for inward 𝐹L is followed. The results of the FEA model is peaks in 𝐵Net  > 𝐵App, but the averages 

greater than, 𝐵̅𝑁𝑒𝑡 > 𝐵App in the outward 𝐹L measurements, and less than, 𝐵̅𝑁𝑒𝑡< 𝐵App in the inward 

Lorentz force measurements, shown in Figure 6.22 (b). The 𝐵SF at 𝐵App= 7.0 T is +30 mT in the 
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outward 𝐹L, and -23 mT for inward 𝐹L. This result is in contrast to those in section 6.1.2, both in 

magnitude, and orientation. Visually it is clear that the resultant 𝐵̅𝑁𝑒𝑡 for the two datasets is not 

described by a single 𝐽𝐶(𝐵), [inset in Figure 6.22 (a)]. The self-field correction is considered as an 

overestimate, as the resultant 𝐽𝐶(𝐵) for the two 𝐹L orientations do not converge. Using the measured 

𝐼𝐶  as the input in the FEA, the values being so similar in both 𝐹L orientations makes the analysis more 

difficult to analyse. Determining an effect which has typically been neglected with almost identical 

input was going to be tricky.  

 

The precursory self-field correction 𝐵SF
Pre., as a function of 𝐵App and 𝐹L, is compared with the 𝐵SF

CERN 

(Eq. 5.25) and is smaller, as shown in Figure 6.22 (c). To try and explain the difference between the 

𝐵SF
Pre. and 𝐵SF

CERN result, a term was added to Eq. 5.25, to characterises the degree to which the 

filaments are transposed, 𝑓tr: 

 

 𝐵SF/𝐼 = 𝑓tr (
𝜇0

2𝜋𝑟
+ 𝛼). (6.13) 

 

As the 𝐵SF
CERN assumes the full transposition of filaments, 𝑓tr= 1 this results in the maximum self-field 

correction. The self-field correction is also not a function of 𝐵. In the Nb-Ti strands, the filaments are 

partially transposed, and transposition factor was estimated: 𝑓tr ≈ (0.6 × 2)/π ≈ 0.4. As expected, the 

transposition factor results in a lower self-field correction, although the results of 𝐵SF
Pre. is significantly 

lower than Eq. (6.13) and opposes 𝐵App.  The transport 𝐼C data, was used to calculate an experimental 

transposition factor. Using the values of 𝛼𝑖𝑛 and 𝛼𝑜𝑢𝑡 from Eq. 5.25, and the change in 𝐼C with 

magnetic field (𝜕𝐼C/𝜕𝐵), of ∼100 A⋅T-1
 (for the Nb-Ti strand studied in the range of 𝐵App), the 

difference in 𝐼C due to the difference in Lorentz force direction, 𝐹L results in the relationship: 

 

 Δ𝐼C/𝐼C = 𝑓tr (
𝜕𝐼C

𝜕𝐵
)
𝐼C
[−𝛼𝑖𝑛 + 𝛼𝑜𝑢𝑡]. (6.14) 

 

As the experimental difference in 𝐼C with 𝐹L at 𝐵App= 5.0 T is 1%, a value of 𝑓tr can be calculated from 

Eq. (6.14) to be 𝑓tr ≈0.42.  

 

This precursory FEA analysis considers only the ITER barrel measurement geometry at high 𝐵App and 

low measured 𝐽C. The analysis suggests that the effect of self-field is smaller than the conservative 

CERN estimate, and that the architecture can be included using a transposition factor. Using the data 

in section 6.3.2 was necessary to quantify the effect of self-field. 
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6.5.2. Extensive Self-field Correction: Annular Cross-section 
The ITER and MST geometries are modelled using a five-turn helix, with an annular cross-section 

𝑅𝑖 = 0.136 mm and 𝑅𝑜 = 0.311 mm. The FEA calculations of 𝐵SF, implemented using 𝐽C(𝐵) model 1, 

are carried out at 𝐵App= 0.0 to 8.0T. The current input is the geometry dependent average 𝐼C of the 

inner and outward 𝐹L. At 𝐵App= 0 T, a single value of 𝐵̅𝑁𝑒𝑡 is calculated for each geometry. The average 

of the probability distribution is used to define 𝐵SF. The self-field is calculated for each Lorentz force 

orientation, and the critical current data replotted 𝐼Cvs 𝐵̅𝑁𝑒𝑡, shown in Figure 6.23. 

 

With 𝐽C measured in two geometries for strand DR 4810, the self-field correction was calculated with 

many grid data points to verify the FEA model.  The 𝐽C(𝐵) relationship is defined using the 

experimental transport 𝐽C data for strand DR 4810. The 𝐽C(𝐵) relationships are a linear relationship of 

the form Eq. (6.12). The fit is the average (inward and outward 𝐹L) of the transport 𝐽C for the two 

geometries of strand DR 4810, the blue line shown in Figure 6.23. To reduce the error of the linear fit, 

low 𝐵App (< 3.0 T) and high 𝐵App (> 3.0 T) regimes were defined. The numerical parameters of 𝐽C(𝐵) 

model 1 are listed in Table 6.10. This model will be referred to as model 1. 

 

Over the benchmarking range of magnetic fields, as shown in Figure 6.23 (a), due to the small 𝐼C and 

resultant 𝐵SF, describing the four data sets with a single curve is a reasonable approximation for the 

ITER geometry. Comparing the results of this analysis with the literature (Table 6.2) at 𝐵App= 7.0 T, 

the inward 𝐼C is decreased by 0.6 % and the outward 𝐼C is increased by 0.8 %. The resultant self-field 

correction is more than ten times smaller than the standard literature correction. The difference in 

results is not unexpected as the analysis considers the average. For the inward 𝐹L, the resultant 𝐵̅𝑁𝑒𝑡 

> 𝐵App, whereas 𝐵̅𝑁𝑒𝑡 < 𝐵Appfor outward 𝐹L.  

 

The low 𝐵App, (high 𝐵SF) data is plotted in Figure 6.23 (b). It can be reasonably assumed that a 

universal 𝐽C(𝐵) relationship does not peak at 𝐵 > 0 T and turnover. Below the peak in 𝐽C, the effect of 

transport current flow changes the orientation of 𝐵Net. It was not possible to describe the 𝐽C(𝐵) MST 

data shown in Figure 6.23 (b), with a single universal curve for 𝐽C(𝐵). For 𝐵 < 0.7 T, the analysis of the 

data suggests 𝐽C can have two values. The 𝐽C at 𝐵̅𝑁𝑒𝑡≈ 0.6 T has values of 5.63 or 4.84 ×109 A⋅m-2 in the 

MST geometry. The analysis does not result in a universal curve and suggests that the effect of the 

𝐵Net is not recreated with the FEA model. 
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Figure 6.23 : Model [1] Comparison of experimental data 𝐼Cvs 𝐵Appfor strand DR 4810 and self-field 

corrected data 𝐼Cvs 𝐵̅𝑁𝑒𝑡with 𝐽C(𝐵) relationship model 1 – linear fit to the average of the experimental: 
Table 6.10. (a) benchmarking region of 𝐵App. Inset – 𝐼Cdata about 𝐵 = 7 T. (b) Low 𝐵Appregion.  

 

 

𝐵Apprange 𝐽C0 [1× 109 A·m-2] Upper Critical  
field, 𝐵𝐶2 [T] 

Low (< 3.0 T) 9.94 
 

4.50 
 

High (> 3.0 T) 6.65 9.66 
 

Table 6.10 : Linear fit parameters for 𝐽C(𝐵) model 1, 6.  
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Figure 6.24 : Model [1] (a) (log-log) Net magnetic field as a function of the applied field for the two geometries 
and orientations of Lorentz force. The dotted line indicates a 1:1 ratio(b) Self-field correction as a function of 
applied field for the ITER and MST geometry [𝐽C(𝐵) model 1]. Open symbols: outward 𝐹L, closed symbols: inward 
𝐹Lorientation. Lines between data points are a guide for the eye.  

 

The results of the FEA calculations are considered further by investigating the 𝐵SF and 𝐵̅𝑁𝑒𝑡, At 𝐵App= 

0 T, the 𝐵̅𝑁𝑒𝑡 is entirely due to the 𝐵SF, a minimum value of 𝐵̅𝑁𝑒𝑡 = 0.505 T was found, shown in Figure 

6.24 (a). Experimentally the difference in 𝐼C value between the ITER and MST measurement barrel 

geometries is ∼345 A.  The similar size of 𝐵̅𝑁𝑒𝑡 suggests that the geometric effect is not being captured 

with the FEA, the effect of the neighbouring turns are not as significant as the geometry of the strand 

itself, i.e., both measurement geometries consider the cross-section as an annulus. 
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Model  𝐽C1 [109 A⋅m-2] 𝐽C2 [109 A⋅m-2] 𝐵1[T] 𝐵2[T] 𝐶0 [109A⋅m-2] 𝐼𝐶(𝐵App= 0 T) [A] 

2  10.2 17.3 1.158 0.158 1.730 7 173 

3  45.0 10.9 0.144 1.776 0.475 12 213 

4, 5 10.7 15.3 8.025 0.332 -2.790 3 685 

Table 6.11 : Exponential fit parameters for the critical current density Eq. (6.15) for the Nb-Ti ITER PF strand DR 4810 
shown in Figure 6.20 

 

The self-field correction was calculated as a function of 𝐵App, shown in Figure 6.24 (b). For both 

geometries in the inward 𝐹L orientation: 𝐵̅𝑁𝑒𝑡 < 𝐵App, for 𝐵App> 1.0 T. Similarly, in the outward 

𝐹Lorientation: 𝐵̅𝑁𝑒𝑡 > 𝐵App, for 𝐵App> 1.0 T. For 𝐵App≤ 1.0 T, both orientations of the 𝐹Lresult in a 

𝐵̅𝑁𝑒𝑡 > 𝐵App. 

 

The rest of section 6.5.2 uses FEA models with different definitions of 𝐽C(𝐵) but with the same 

geometry as model 1. In total 4 different 𝐽C(𝐵) are used, and two implementations of the magnetic 

field dependency. The focus has changed to investigate the self-field correction at low 𝐵App. Using the 

FEA model 𝐼C-𝐵̅𝑁𝑒𝑡 were calculated for the two geometries and inward and outward 𝐹L at values of 

𝐵App= 0, 0.5 and 1.0 T. At low 𝐵App, the FEA calculations generate 𝐵̅𝑁𝑒𝑡 > 𝐵App for all 𝐹L orientations. 

As the 𝐽C(𝐵) relationship is iterated, how well the correction works is evaluated by attempting to 

describe a new 𝐽C(𝐵). The purpose of this analysis is quantifying if the magnetisation 𝐽C(𝐵) produces 

consistent results for both 𝐹L and geometries at the low 𝐵App. 

 

One-term exponential decay functions to fit 𝐽C(𝐵) data have been used in the literature [82]. Using a 

two-term equation to describes 𝐽C(𝐵) minimised any differences between the fit and the 

magnetisation 𝐽C(𝐵) data. The FEA analysis of 𝐵SF in models 2 - 5 use a 𝐽C(𝐵) behaviour given by:  

 

 
𝐽C(B) = 𝐽C1 𝑒

(−
|𝑩|
𝐵1
)
+ 𝐽C2 𝑒

(−
|𝑩|
𝐵2
)
+ 𝐶0 . (6.15) 

 

The free parameters in Eq. (6.15) have no independent physical meaning. Table 6.11 summarises the 

numerical values for the fitting parameters for models 2-5.  

 

The 𝐽C(𝐵) used in models 2 and 3 was two fits to the magnetisation data. The 𝐽C(𝐵) model 2, was a 

fit to the magnetisation data with the data from 𝐵App= 0.0 to 3.0 T. The fitting parameters for model 

3 were calculated using the magnetisation data for 𝐵App= 0.0 to 2.0 T. With a reduced 𝐵Appfitting 

range, the result was an increased 𝐼Cat 𝐵 = 0.0 T.  
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Figure 6.25 : Models [1-4] Comparison with the experimental data (𝐼C vs 𝐵App) and four helical models with varied 

𝐽C(𝐵) relationship (𝐼C vs 𝐵̅𝑁𝑒𝑡). (a) ITER measurement geometry (b) MST measurement geometry. Dashed lines 
are a guide for the eye, open symbols: outward 𝐹L, closed symbols: inward 𝐹L. 

 

The fitting parameters used to evaluate 𝐽C(𝐵) used in model 4 was calculated using the 𝐼C-𝐵̅𝑁𝑒𝑡 ITER 

data shown in Figure 6.25 fitted from 𝐵 = 0.0 to 8.0 T.  Model 5 uses the same numerical parameters 

as model 4, further details will be outlined in section 6.5.2.1. The 𝐼C intercept at 𝐵App= 0 T, for 𝐽C(𝐵) 

relationships in models 2, 3, and 4, are listed in Table 6.11. The intercept is larger than the 

experimentally measured transport [𝐼C (𝐵App= 0 T) = 1600 A], which is expected because the 

experimental 𝐼C  at 𝐵App= 0 T, is at 𝐵Net dependent on the current and measurement geometry.  

 

 

 



Quantifying the Effects of Self-Field   156 

 

Model 

𝐵̅𝑁𝑒𝑡 (𝐵App= 0 T) [T] 𝐵SF [T⋅kA-1] 

ITER MST ITER MST 

1 0.529 0.505 0.333 0.408 

2  0.584 0.401 0.367 0.324 

3  0.530 0.374 0.334 0.302 

4 0.495 0.355 0.311 0.287 

Table 6.12 : FEA calculations of 𝐵̅𝑁𝑒𝑡  and the self-field correction for the four models at 𝐵App= 0 T from 

 Figure 6.23 and Figure 6.25. 

 

The 𝐼Cvs 𝐵̅𝑁𝑒𝑡 data for models 1 to 4 are reported in Figure 6.25. The ITER data is shown in Figure 6.25 

(a) and MST in Figure 6.25 (b). The value of 𝐵̅𝑁𝑒𝑡 in the ITER and MST geometry at 𝐵App= 0 T, are 

summarised in Table 6.12. The self-field corrections calculated by these models are smaller than both 

the literature values and the comparison with the magnetisation data, section 6.4.1. The self-field 

correction results for models 2-4 are similar to the results of model 1. In Figure 6.24 (b), the MST 

results are of a similar magnitude to the ITER. This is similar to Figure 6.24 which highlighted the 

inaccuracy of the analysis. The results of the different FEA calculations of self-field Figure 6.25 

demonstrate serious difficulties in using this approach to analyse the experimental data. The effect of 

self-field on the measured 𝐼C was not accounted for properly with the analysis used here a 𝐽C(𝐵) that 

explains the four data sets was not produced. When considering the 𝐵App= 0  T data, it is possible that 

by calculating the average of 𝐵Net rather than a component of 𝐵 the magnitude of the self-field 

correction is increased, due to 𝐵Net > 0 T. The calculation of the magnitude of a vector could skews 

how the data is interpreted.   

 

The distribution of the 𝐵𝑁𝑒𝑡 was investigated further. The probability distribution data for 𝐽C(𝐵) in 

model 2, ITER geometry, is shown in Figure 6.26 (a). The experimental transport ITER data are 

replotted in Figure 6.26 (b). The resultant 𝐽C(𝐵𝑁𝑒𝑡) where 𝐵𝑁𝑒𝑡 is defined by the average or the peak 

produces two equivalent 𝐽C(𝐵) relationships, which can be described by a simple relationship. The 

differences in resultant 𝐵 correction between the two data sets is 0.67 T.  
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Figure 6.26 : Model [2] (a) The probability distribution as a function 𝐵App and Lorentz force orientation for the ITER 

geometry calculated using the 𝐽C(𝐵) model 2, see Table 6.11. Dashed line is the outward 𝐹L data and sold line the inward 
𝐹L data (b) Comparison of the methods of self-field analysis, calculated peak and average of the distribution for both 𝐹L 
orientations.  

 

6.5.2.1. Resistivity Definition  
The final annular cross-section FEA model discussed is referred to as model 5. Model 5 is a 

development on model 4, using the same numerical parameters in the definition of 𝐽C(𝐵), outlined in 

Table 6.11. The difference is in the implementation of the FEA, the definition of 𝜌𝑆𝐶. The magnetic 

field term in the exponents of Eq. (6.15) was modified by replacing the magnitude of the local field, 

|𝑩| with the maximum value of the magnetic field, (|𝐵|max) in the superconducting domain. The 𝐼C vs 

𝐵̅𝑁𝑒𝑡 for model 5 is compared with model 4 and the experimental transport data for the ITER 

geometry, shown in Figure 6.27 (a) and MST geometry shown in Figure 6.27 (b). The 𝐵̅𝑁𝑒𝑡 of model 4 

and 5 in the ITER and MST geometry are compared for the inward 𝐹Lin Table 6.13. 

 

It was expected that by taking |𝐵|max would result in a larger 𝐵̅Net which is essential to understand 

the low 𝐵App data. The results in Figure 6.27 show the larger 𝐵̅Net for the data except the 𝐵App = 1 T 

in the ITER geometry.  Using model 5 again results in a multivalued 𝐽C(𝐵). 

 

𝐵App [T] 

ITER MST 

𝐵̅𝑁𝑒𝑡 [ρ (|𝑩|)] [T] 

Model 4  

𝐵̅𝑁𝑒𝑡 [ρ (|𝐵|𝑚𝑎𝑥] [T] 

Model 5 

𝐵̅𝑁𝑒𝑡 [ρ (|𝑩|)] [T] 

Model 4 

𝐵̅𝑁𝑒𝑡 [ρ (|𝐵|𝑚𝑎𝑥] [T] 

Model 5 [T] 

0.0  0.495 0.647 0.354 0.504 

0.5 0.653 0.673 0.658 0.657 

1.0 1.029 0.962 1.020 1.144 

Table 6.13 : Comparison of the calculated 𝐵̅𝑁𝑒𝑡  for models 4 and 5, with the 𝜌𝑆𝐶  defined using  
 local |𝑩| and maximum |𝐵|𝑚𝑎𝑥magnetic field value. 
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Figure 6.27 : Model [4,5] Comparison of the experimental data (IC-𝐵App) and helical models with varied 

𝐽C(𝐵) relationship (IC-𝐵̅𝑁𝑒𝑡). (a) ITER measurement geometry (b) MST measurement geometry. Dashed 
lines are a guide for the eye, open symbols: outward 𝐹L, closed symbols: inward 𝐹Lorientation. 

 

6.5.3. Self-field Calculation: Tubes-within-tubes Cross-section  
Unlike sections 6.5.1 and 6.5.2, the geometry modelled in this section is a 13 turn ITER helix, and 51 

turn MST helix. To implement the three tubes, the definition of resistivity in the superconducting 

domain is defined separately for each of the three domains. Model 6 was calculated using the 𝐽C(𝐵) 

relationship implemented in model 1, detailed in Table 6.10. The self-field was calculated for 𝐵App< 

0.5 T. The analysis considers the value of 𝐼C for the various 𝐵Appvalues when the 𝐸-field reached the 

𝐸C criteria. The resultant 𝐼C (𝐵App = 0 T) is 2180 A, 38% larger than the experimental transport 

measurement, but 364 % smaller than the magnetisation measurement. The 𝐼C vs 𝐵̅𝑁𝑒𝑡is compared 

with the experimental data (𝐼C vs 𝐵App) shown in Figure 6.28. It was again not possible to find a 𝐽C(𝐵) 

relationship which describes the four data sets.  
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Figure 6.28 : Model [6] Comparison of the experimental 𝐼C-𝐵Appand the 𝐼C-𝐵̅𝑁𝑒𝑡  for a 13 turn ITER helix 

with a Tubes-within-tubes cross-section.  

 

 

6.5.4. Conclusion 
Several approaches have been considered to calculate the effect of self-field using FEA methods. 

Throughout, the analysis has relied upon the accuracy and absolute values of the transport 

measurement data. The 𝐽C(𝐵) data has two distinct field ranges, the high and low 𝐵App. The analysis 

of the self-field at high 𝐵App result in effect of self-field being small and confidence with this data 

enables the low field data to be investigated further. The resultant 𝐽C(𝐵𝑁𝑒𝑡) is compared with the 

average of the measured inward and outward 𝐽C. in section 6.5.1 the difference in the average of the 

magnetic field with 𝐹𝐿 varies by ∼60 mT at 𝐵App= 7 T, is inconsistent with experimental 𝐼𝐶. The 

simplification of the FEA model, both the measurement geometry, and the 𝐽C(𝐵) input, were 

considered  to be limiting the models ability to resolve the differences in 𝐽C due to 𝐹𝐿.  

 

The FEA model in section 6.5.2 resulted in a self-field corrected ITER data set that reduced the variance 

between the inward and outward 𝐹L,  𝐽C value. Additionally, the 𝐽C(𝐵̅𝑁𝑒𝑡) at low 𝐵App range 

converged on to a single curve. It was clear that the more complex magnetic field due to the MST 

geometry was not accounted for with the FEA analysis. The modification of the definition of the 

relevant magnetic field in defining 𝐽C did not produce consistent results, and more research is needed.  
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6.6. Semi-Analytic Method 
As the focus of this thesis was the architecture of the strand, and as the distribution of the magnetic 

field and the transposition of the filaments were not properly accounted for in the FEA model, a semi-

analytic method was developed. Using the spatial distribution of the magnetic field inside the TwT 

from the FEA analysis the current distribution inside the strand was calculated. The semi-analytic 

method was used to generate a universal 𝐽C(𝐵) for the Nb-Ti strands.  

 

The critical current density as a function of magnetic field was derived by calculating the spatial 

distribution of the current in the tubes for a TwT model for the cross-section of the Nb-Ti strand. A 

linear 𝐽C(𝐵) relationship, 

 

 𝐽𝐶 = 𝑋0 + 𝑋1 (𝐵𝑀𝑎𝑥) (6.16) 

 

is assumed as a first-order approximation. The numerical values of the parameters 𝑋0, 𝑋1 and 𝐵𝑀𝑎𝑥 

are unknown but considered to be universal, i.e, describe the 𝐽C(𝐵) of the strand without errors 

associated due to effect of self-field. The form of Eq. (6.16) defines a positive 𝑋0, intercept and a 

negative 𝑋1 gradient. The field matrices in the axial direction and the experimental 𝐽C transport 

measurements of strand DR 4810 were used to calculate the numerical values of the unknown 

parameters in Eq. (6.16).  

 

6.6.1. Problem Specification  
The cross-section of the Nb-Ti strand was modelled as three TwT, with an unknown current 

distribution. The notation for current flow in each tube is 𝐼T𝑖  for current flow in tube 𝑖. The areas of 

the tubes (𝐴T𝑖) are known, Table 5.11. The total current (𝐼T) in the strand is the summation of the 

current in each of the tubes:  

 

 𝐼T = 𝐼T1 + 𝐼T2 + 𝐼T3. (6.17) 

 

The current that flows in each tube is calculated assuming the same functional form of the 𝐽C(𝐵) 

relationship Eq. (6.16), with the unknown parameters 𝑋0 and 𝑋1. The current in each tube is defined 

by,  

 

 𝐼𝑇1 = 𝐴𝑇1[𝑋0 + 𝑋1𝐵𝑇1𝑀𝑎𝑥]

𝐼𝑇2 = 𝐴𝑇2[𝑋0 + 𝑋1𝐵𝑇2𝑀𝑎𝑥]

𝐼𝑇3 = 𝐴𝑇3[𝑋0 + 𝑋1𝐵𝑇3𝑀𝑎𝑥]
. (6.18) 
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The current in the tube is a function of the tube dependent maximum self-field i.e., 𝐵𝑇1𝑀𝑎𝑥. The 

maximum self-field in each tube is the product of the product of the current flowing in each tube e.g., 

𝐼T1, and the spatially dependent magnetic-field parameter in the tube, e.g., 𝐹12. In addition to the 

magnetic field associated with the current flow, there is the applied field, 𝐵App with direction defined 

by sign of 𝐵App. The maximum magnetic fields in the tubes are given by: 

 

 𝐵𝑇1𝑀𝑎𝑥 = 𝐹11𝐼T1 + 𝐹12IT2 + 𝐹13𝐼T3 + 𝐵App
𝐵𝑇2𝑀𝑎𝑥 = 𝐹21𝐼T1 + 𝐹22𝐼T2 + 𝐹23𝐼T3 + 𝐵App
𝐵𝑇3𝑀𝑎𝑥 = 𝐹31𝐼T1 + 𝐹32𝐼T2 + 𝐹33𝐼T3 + 𝐵App

 (6.19) 

 

It is possible to solve Eq. (6.16) by substituting the RHS of Eq. (6.19) into Eq. (6.18). Rearranging 

Eq. (6.18) it is written using a matrix of equations: 

 

 

(

(𝐴1𝐹11𝑋1 − 1) 𝐴1𝐹12𝑋1 𝐴1𝐹13𝑋1
𝐴2𝐹21𝑋1 (𝐴2𝐹22𝑋1 − 1) 𝐴2𝐹23𝑋1
𝐴3𝐹31𝑋1
1

𝐴3𝐹32𝑋1
1

(𝐴3𝐹33𝑋1 − 1)
1

)(
𝐼1
𝐼2
𝐼3

)

=

(

 

−𝐴1𝑋0 − 𝐴1𝑋1𝐵App
−𝐴2𝑋0 − 𝐴1𝑋1𝐵App
−𝐴3𝑋0 − 𝐴1𝑋1𝐵App

𝐼𝑇 )

 . 

(6.20) 

 

Using Mathematica’s [83] linear solver function, the unknowns in the matrix  (𝐼1,𝐼2, 𝐼3) are eliminated; 

i.e., 𝐼1 is a function of the spatially dependent magnetic field parameters, tube areas and the 

magnitude of 𝐵App. The spatially dependent magnetic field parameters are input from Table A.12. The 

transport measurement 𝐼C data of strand DR 4810 is used to define the total current (𝐼T). The equation 

is solved using ‘NSolve’ with values of 𝑋0 and 𝑋1 parameters calculated. Depending on the orientation 

of the 𝐹L, the magnetic field parameters on the inner side of the strand wound on the barrel (𝑟 <

𝑅𝑀𝑎𝑗) or outer side (𝑟 > 𝑅𝑀𝑎𝑗) are input to calculate the numerical solutions of Eq. (6.20). The 

Mathematica function ‘Reals’ calculates the solutions in the real number domain (x∈Reals).  

 

The definition of 𝐵Max in Eq. (6.16) is an average value: the product of the maximum magnetic field in 

each tube and the area of the tube, divided by the total area of the superconducting region:  

 

 𝐵Max = (𝐴1𝐵𝑇1𝑀𝑎𝑥 + 𝐴2𝐵𝑇2𝑀𝑎𝑥 + 𝐴3𝐵𝑇3𝑀𝑎𝑥)/(𝐴1 + 𝐴2 + 𝐴3). (6.21) 
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There are three methods available to solve Eq. (6.20). One method is to fix the geometry (ITER or MST) 

and the orientation of 𝐹Land vary 𝐵App. This method has the advantage of negating any error with 

the calculation of the matrix element. A second method is to fix the 𝐵Appand orientation of 𝐹Land 

vary the geometry. The third method is to fix the geometry and 𝐵Appand vary the orientation of 𝐹L. 

Using the number of magnetic-field parameter matrices, several 𝐽C(𝐵) relationships were calculated. 

The 𝐽C(𝐵) was calculated for the matrices for the different geometries in Table 5.13. The 𝐽C(𝐵) was 

calculated piecewise, with values of 𝑋0 and 𝑋1 at each 𝐵App, 𝐹Land geometry. 

 

6.6.2. Derived 𝐽C(𝐵) Relationships 
The value of 𝑋0 = 1.926 and 𝑋1 = -1.1435 for varying the geometry at fixed 𝐵App= 0 T results in the 

distribution of current in the three tubes, for the ITER and MST geometry outlined in Table 6.14. The 

consistency checks used in the analysis ensure that each of the tube current terms is less than the 

total current, each current is in the same direction (> 0 A), and the sum of the currents ≡ 𝐼T. The highest 

current is in the central tube, Table 6.14 and is expected due to the lowest 𝐵̅𝑁𝑒𝑡. 

 

The derived 𝐽C(𝐵̅𝑁𝑒𝑡) values for 𝐵App= 0 to 8 T are summarised in Figure 6.29. The straight wire, ring 

array, and helical geometry matrices have been used as inputs. Initially, a single method was used to 

solve Eq. (6.20), using the matrix elements calculated for the straight wire array, shown in Figure 6.29 

(a). The 𝐵Appand ITER geometry were fixed, and the only variables were the experimental 𝐽C data for 

inward and outward 𝐹L. The data does not collapse on to a single curve, with 𝐵 < 1.5 T data oscillating. 

At 𝐵App= 7 T the resultant change in 𝐵̅𝑁𝑒𝑡 results in a smaller difference than the experimental 𝐽C 

measurement, a change of 38 mT and 3 × 106
 A⋅m-2. For the inward orientation, the self-field 

correction term varies between 0.433 and 0.491 T·kA-1, and in the outward between 0.573 and 

0.628 T·kA-1.  

 

The second data set used in the analysis was the matrix elements for the array of rings. The self-field 

correction was calculated for both the ITER and MST experimental data. The 𝐽C(𝐵̅𝑁𝑒𝑡) relationship is 

plotted in Figure 6.29 (b). Two methods of calculating the parameters in Eq. (6.16) are compared, with 

the variable being either the orientation of 𝐹L or 𝐵App.  

 

Geometry 𝐼T1 [kA] 𝐼T2 [kA] 𝐼T3 [kA] 𝐼T [kA] 

ITER 0.583 0.523 0.478 1.584 

MST 0.484 0.408 0.346 1.238 

Table 6.14 : Distribution of the current in the three TwT model. 𝐵App= 0 T 
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These two methods of solving Eq. (6.20) produce very similar results for the ITER and MST data. It was 

not possible to calculate the values for 𝑋0 and 𝑋1 for the outward 𝐹LMST data, as did not converge to 

a physical solution. The ITER and MST FEA helix matrices were used to calculate the 𝐽C(𝐵̅𝑁𝑒𝑡) 

relationship plotted in Figure 6.29 (c). It was not possible to calculate the varied 𝐵Appcurve for the 

outward 𝐹L MST data, because the results did not converge to a physical solution.  

 

The three self-field corrected ITER inwards 𝐹L data are compared, shown in Figure 6.29 (d). The 

resultant 𝐽C(𝐵̅𝑁𝑒𝑡) using the ring array and the helix field values are similar, with the helix 𝐽C slightly 

higher. The straight wire array is the highest of the three data sets. The 𝐵̅𝑁𝑒𝑡calculated using the three 

geometries matrix elements, and two methods of solving for the ITER geometry are similar as shown 

in Table 6.15.  

 

The 𝐽C(𝐵) calculated using the helix matrix element are compared with the experimental data, shown 

in Figure 6.30. The experimental data are replotted at the calculated 𝐵̅𝑁𝑒𝑡. In the comparison with the 

transport measurements, shown in Figure 6.30 (a), it is clear that the measurements in the two 

geometries are well approximated by a single universal curve. Extrapolation of the 𝐽C(𝐵̅𝑁𝑒𝑡) data 

suggest the 𝐽C at 𝐵 = 0 T is actually a factor of five higher than the transport measurement at 𝐵App= 

0 T. These results have not been seen before and therefore are important results. The 𝐼C data for 𝐵 = 

7 T is summarised in Table 6.16.  

 

Geometry Method: Varied 𝐵̅𝑁𝑒𝑡 [T] 𝐵SF [T⋅kA-1] 

Straight wire 𝐹L  1.023 0.646 

Ring Array 
𝐹L  0.812 0.513 

𝐵App  0.838 0.529 

Helix 
𝐹L  0.860 0.543 

𝐵App  0.853 0.539 

Table 6.15 : Comparison of analytic method calculation of 𝐵̅𝑁𝑒𝑡  
at 𝐵App= 0.0 T, ITER geometry, inward 𝐹L. Figure 6.29 (d)  
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Figure 6.29 : Piecewise 𝐽C(𝐵̅𝑁𝑒𝑡) relationship calculated using the position-dependent field matrix elements for the 
approximation of the helical geometry both the ITER and MST data (a) Straight wire array. (b) Ring array (c) 13 turn and 
51 turn helix. The 𝐽C(𝐵̅𝑁𝑒𝑡) are calculated by fixing two parameters and varying the third (ITER or MST geometry, Lorentz 
fore orientation, Applied magnetic fields). (d) Comparison of three different approaches for the inward Lorentz force ITER 
geometry 𝐽C data, where the varied 𝐹L method has been used to solve. The ring array data are very similar to the helix 
data. 

 

 

Geometry Method: Varied 𝐼C [A] Increase in 𝐼C [%] 

Straight wire 𝐹L  287.9 4.7 

Ring Array 
𝐹L  285.5 3.8 

𝐵App 285.6 3.8 

Helix 
𝐹L  285.9 4.0 

𝐵App 293.5 6.7 

Table 6.16 : Interpolated 𝐼C at 𝐵 = 7.0T and percentage increase from 𝐼C (𝐵App= 7.0 T) = 275 A 

ITER geometry, inward 𝐹L. Figure 6.30 (b) 
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Figure 6.30 : Comparison of the semi-analytic 𝐽C(𝐵̅𝑁𝑒𝑡) and the experimental data. (a) Transport measurements 
data for 0 to 8 T (b) Transport measurements data around 𝐵 = 7 T (c) Magnetisation measurement. 
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6.7. Discussion  
There are several novel results presented in this chapter. The extensive transport and magnetisation 

𝐽C measurements, of the Nb-Ti strands over a range of 𝐵Appand the two Lorentz force orientations is 

new information about the strands performance. Due to self-field instabilities at low 𝐵App, and the 

high current requirements, high-quality transport measurements of Nb-Ti strand are unusual at low 

𝐵App, but have been achieved.  

 

The compilation of the literature self-field corrections highlights the number of self-field corrections 

that have been attempted. The literature self-field calculations generally consider a fixed current and 

investigate the relationship between the radius of the strand and the self-field correction. A different 

approach has been adopted in this work, using two measurement barrels with the same major radius 

𝑅Maj and a different separation of turns. As the same probe was used and values of 𝐵Appwere fixed, 

this has the advantage that the variation of the critical current density is only due to the different 

geometries. At each 𝐵Appthe transport measurement of the same strands in the four configurations 

results in different 𝐽C values.  

 

In the standard inward 𝐹L measurements the strand is supported by the barrel. Although there was 

concerns about measuring the strand in the outward Lorentz force measurements, complimentary 

data was obtained. The data shows a systematically lower 𝐽C for strands measured in the ourward 𝐹L. 

As the hysteresis measurements demonstrate the strand was not affected by the cycling of the Lorentz 

force, the differences in 𝐽C can be characterised using the direction of the Lorentz force.  

 

The measurement data demonstrates that the value of 𝐽C at high 𝐵Appcannot be used to understand 

the low 𝐵Appdata. At low 𝐵App, the peaks in 𝐽C(𝐵) highlight the current densities at which the self-

field changes the orientation of the net magnetic field. 

When comparing the magnetisation to the transport data, the 𝐽C data at low 𝐵Appdata was higher. 

The transport critical current measured at 𝐵App= 0 T, was 1 600 A, while fits to the magnetisation data 

suggest at 𝐵 = 0 T the 𝐼C is between 7 and 12 kA.  

 

The simple method of evaluating the self-field correction by comparison of transport with the 

magnetisation measurement provides a useful result. The method in section 6.1.4 provides an 

estimate for the difference in self-field that is due to the geometry. The self-field correction of the two 

geometries, ITER: 0.63 T⋅kA-1, and MST: 1.87 T⋅kA-1 is a ratio 1: 2.9.  In work comparing the 

magnetisation method with transport, the ratio between the magnetisation 𝐽C at low fields 
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(𝐵App= 0.3 T) and transport 𝐽C (𝐵App=5.0 T) is expected to be about 5 [84]. For the Nb-Ti strands 

characterised, the ratio is between 6.0 and 6.3.  

 

The work presented in this chapter demonstrates the use of FEA and semi-analytic methods that were 

implemented to try and understand the effect of self-field. The FEA was unsuccessful in accurately 

recreating the experimental 𝐸-𝐽 behaviour because the model was not precise enough to describe the 

behaviour of a transposed multifilamentary superconductor. Using the FEA method, a 𝐽C(BNet) was not 

found that could be used to explain the four data sets. The problem of characterising the self-field 

correction in transport measurement has not been solved. This result is useful, as FEA analysis, or 

similar (Fortran) has been used to characterise the self-field effect by others previously. Agreement 

between the different methods does not establish the accuracy or applicability. The ITER geometry 

was easier to describe with simple analytic methods.  

 

Using the semi-analytic methods, it was possible to account for the two geometries and Lorentz force 

orientations and generate a piecewise universal 𝐽C(𝐵) curve that converges. The method could be 

extended to consider an increased number of tubes-within-tubes, and other components of the 

magnetic field within the cross-section.  

 

The FEA and semi-analytic methods of calculating 𝐽C(𝐵) produce several self-field correction terms 

that vary both in magnitude and orientation relative to literature values and relationships defined. 

The analysis in this chapter presents the evidence that the average of the distribution of the magnetic 

field can be used to calculate a self-field correction that leads to a universal curve for 𝐽C(𝐵). While the 

analysis focussed on strand DR 4810, the successful method which generates a universal curve should 

be equally applicable to the other strands.  

 

In the literature, it has been suggested that the only objective statement is that the strand is exposed 

to a field range [34]. The self-field corrections presented in this chapter suggest that the average value 

provides a better understanding of the universal 𝐽C(𝐵). 
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CHAPTER 7 

 

7.  Conclusions and Future Work 
 

7.1. Conclusions 
In the transport measurements and in operation in a superconducting system such as MRI or fusion 

confinement magnets, current flow generates a magnetic self-field. In order to assess how the magnet 

system will perform, it is crucial to characterise the strand’s critical current density as a function of 

the net magnetic field, and this requires a quantification of the self-field. The main contributions of 

this thesis are highlighted below.  

 

An existing transport measurement experimental set-up was modified to increase the current 

capacity; high currents up to 1 600 A were measured. The hybrid material current lead and the current 

terminal interfaces design ensured that current transfer to the strand was efficient. The clamping 

mechanisms ensured that the current contact was reliable. Consistency checks of the 𝐽C(𝐵) data, 

acquired using the new high-current probe, demonstrated agreement between the new probe and 

the Durham reference laboratory measurements of the strands.  

 

The superconducting properties of the titanium alloy Ti-6Al-4V (Ti-64) used for standard ITER 

measurement barrels were characterised. As Ti-64 superconducts an alternative titanium alloy (Ti-

6242) with similar physical properties was identified and characterised. The Nb3Sn strand for the ITER 

magnet systems is heat-treated on the Ti-64 measurement barrel. To investigate the effect of heat 

treatment on Ti-64, the alloy was characterised following the bronze route and internal tin heating 

schedules. Both measurement barrels (in the ITER and MST geometries) were manufactured from Ti-

6242 alloys, which remains in the normal state at 4.22 K. 

 

A custom minimum separation of turns (MST) measurement barrel was designed, to investigate how 

the helical geometry affects the self-field. With an increased density of turns, for the MST barrel, the 

effect of self-field is larger than in the standard ITER geometry. The barrel was designed to ensure that 

there were no other differences in the position of the strand when measured.  
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Transport and magnetisation measurements of three Nb-Ti strands were performed. The dependency 

of the magnitudes and orientation of self-fields with measurement geometry and current orientation 

relative to the applied magnetic field was highlighted. The differences in 𝐽C for the variable-

temperature measurements, at the benchmarking range of magnetic fields and temperature for 

strand characterisation, was less than 1% for the opposite orientations of the Lorentz force. Extensive 

measurements at 4.22 K, over the complete range of magnetic fields, highlighted the large effect of 

self-field at low 𝐵𝐴𝑝𝑝. Transport measurements were compared with magnetisation measurements of 

the three strands over the same applied field range and temperatures. The low field magnetisation 𝐽C 

data demonstrates that the self-field suppresses 𝐽C of the strand and reveal the large uncertainty in 

the magnetic field measured at with transport measurements.  

 

To calculate the magnetic field distribution in the volume of the strand during the transport 

measurements, a 3D finite element analysis model using the H-formulation in Comsol Multiphysics 

was developed. The modelling methodology was verified using simpler geometries and analytic 

solutions. The radial distribution in the self-field was calculated for the experimental helical 

geometries and analysed. How accurately a straight wire array and a stack of rings described the radial 

distribution of the magnetic field due to the current flowing helically, was compared with the FEA 

results for both experimental measurement geometries.  

 

Using experimental data, and literature methods for self-field corrections calculated using simple 

geometries, it was not possible to generate a universal 𝐽C(𝐵) for the experimental data. It was not 

possible to describe the experimental data with a helical geometry, with a circular cross-section, 

where the peak in the z-component of the net magnetic field defines the self-field correction. For the 

experimental geometry modelled with a helix with a strand with an annular cross-section, magnetic 

field distributions were calculated. Inputting the experimental 𝐽C(𝐵) data a universal 𝐽C(𝐵) was 

explored. The superconducting domain resistivity was defined by the maximum value of the magnetic 

field in the domain, rather than the local value. Partial transposition was modelled by considering the 

cross-section as tubes-within-tubes, with suitable accuracy and in limited computational time.  

 

With the experimental critical current density data and spatial distribution of the magnetic field from 

the FEA calculations a semi-analytic, piecewise, linear 𝐽C(𝐵) relationship was derived. Using the matrix 

elements for the varied geometries, considering the strands cross-section as three tubes-within-tubes, 

a number of 𝐽C(𝐵) were calculated using the semi-analytic method. The resultant data when replotted 

resulted in a single curve that described the 𝐽C(𝐵) of the Nb-Ti strand. 
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7.2. Future Work 
The results of this investigation are promising, with improvements to the FEA model required to 

converge upon a robust self-field correction. Possible future work, focussing on an improved FEA 

model, is outlined below. 

 

The properties of the strand were defined with a number of 𝐽C(𝐵) relationships which were simplistic. 

Several of the bulk room temperature and cryogenic characteristics of the strand were measured, but 

not incorporated into the FEA models. A higher 𝐶𝑛𝐶 ratio results in a more stable wire, which was 

observed experimentally; the transport 𝐽C(𝐵) was only measured at high currents for the strand with 

the largest 𝐶𝑛𝐶 ratio. The relationship between self-field instabilities and RRR is well documented [1-

3] and was not considered as an independent parameter in the model. The field-dependency of the 

index of transition 𝑛(𝐵) was measured and it would be possible to include the 𝑛(𝐵) relationship in 

the definition of 𝐽C(𝐵).  

 

The simplification of the architecture could be addressed with further development of the cross-

section. The FEA model is composed of circular components but experimentally the copper can be 

deformed when wound, resulting in a non-circular cross-section. For the helical FEA models, the 

number of tubes considered was limited to three. For the helical FEA geometries, three tubes were 

the limit with the computing resources available. With the radius of the annulus of filament and the 

filament diameter, it is possible that 26 tubes are required to accurately model the architecture. For 

the straight wire and ring array, it is possible to use the analytic equations to calculate the field and 

defining matrices.  

 

The twisted helical geometry was modelled using a mathematical parametrisation in 3D cartesian 

coordinates. The discretisation of the structure resulted in impractical simulation times. As the models 

considered do not consider the transposition directly, if it is possible to generate self-field distributions 

with transposed filaments it would be useful to quantify the effect. In the literature, the helical 

geometry has been parameterised using the Frenet frame to investigate transposed filaments. 

Although non-cartesian geometry [4] have been considered in the literature, it was not attempted in 

this research.  

 

The speed of the solving of the FEA model could be improved. It is typical to define material properties 

as look-up functions [5], which could reduce computation time, which was investigated but not 
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implemented. With the complexity of the 𝐽C(𝐵) increased, a linearised power-law could improve the 

solver speed.  

 

The self-field was not considered in the analysis of the magnetisation 𝐽C(𝐵) data. The measurement 

geometry is known, and the current flow can be assumed, it is possible to use FEA to calculate the 

magnetic field distribution. The field distribution in the strand for the magnetisation would be 

different from the transport measurements, which could verify the argument for the average of the 

magnitude of the magnetic field. Field distributions and hysteresis behaviour have been modelled for 

superconducting strips using 𝐻-formulation [6].  

 

The analysis of the experimental data assumes an isothermal system, for transport measurements, 

the heat generated in the transition could affect both the measured 𝑛-value and the 𝐽C. The FEA model 

does not consider 𝐽C(𝑇), which could be added into the definition of resistivity, 𝜌(𝐵, 𝑇). The variable-

temperature data could be used to verify the self-field correction. For an accurate self-field correction, 

the method should be valid for the extended temperature and Lorentz force data set.   

 

The magnetic field in the magnet bore used for the transport measurement is inhomogeneous. The 

field profile within the magnet is accounted for experimentally, with a smaller correction applied for 

the MST measurement, due to the reduced z-dimension the strand is measured over. Defining a 

spatially dependent 𝐵𝐴𝑝𝑝 in the FEA calculations could provide useful information. 

 

There are several interesting results presented in this thesis, in addition to the high-quality 

experimental transport and magnetisation data, a consideration of the experimental set-up and 

sources of uncertainty. However, the uncertainty due to the effect of self-field was not accurately 

quantified using the FEA methods. 

 

Since the discovery of the superconductor Nb-Ti, a significant effort by the superconductivity research 

community has resulted in an increased critical current density of this material. The stable, and cost-

effective material has been widely and successfully utilised. In addition to the technology it currently 

underpins, recent research has outlined the possibility of commercial use of Nb-Ti in H98 - factor 

tokamaks [7]. The data shown in Figure 6.1 outlines the distribution in the size of the effect that is 

assumed. The possibility of increasing the operational currents of these materials with a thorough 

understanding of self-field and the understanding of the behaviour of these materials at low applied 

fields is of interest to magnet designers.   
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A. Appendix 
 

A.1. Nb-Ti strands Properties  
 

The material and physical properties of the strands characterised in this work are outlined in this 

section.  The data was provided by Dr Mark J Raine [1].  

 

The diameter of the strand is required to be 0.730 ± 0.005 mm. The strand is measured using a 

Scantron dual-axis laser micrometre, with an uncertainty of 0.1 μm. The values for the strand are 

summarised in Table A.1. The twist pitch of the strand is required to be 15 ± 2 mm. The twist pitch is 

obtained by measuring the angle of the filaments and the diameter using visual inspection under a 

microscope [2]. The strands characterised are within requirements, reported in Table A.1. 

 

The Cu to non-Cu Ratio (𝐶𝑛𝐶) of the strand is required to between 1.55 to 1.75. The 𝐶𝑛𝐶 was 

calculated using the change in the mass of the strand before and after the copper matrix was etched, 

a volumetric ratio and the density of copper [2]. The 𝐶𝑛𝐶 of the strands characterised in this work are 

outlined in Table A.1. All three strands are within the required specifications for ITER. The nickel 

plating of the strand is required to between 1 to 2 mm. The nickel plating is measured using a 

Couloscope®, a commercially available machine produced by Fischer that use electrochemical analysis 

method to determine the thickness of metal coatings. The strands characterised are within 

requirements, reported in Table A.1.  

 

The residual resistivity ratio (RRR) of the strands is required to be >100. The RRR is measured using 

the standard V-I measurements using the Quantum Design Physical Properties Measurement System 

(PPMS). The values measured are within requirements, reported in Table A.1. 

 

Strand ID Diameter 
[mm] 

Twist 
Direction 

Twist 
pitch  
[mm] 

𝐶𝑛𝐶 Ratio Ni-plating 
thickness 
 [μm] 

RRR  
(ρ273 K / ρ10 K) 

DR 4810 0.736 ± 0.001  RH 14 1.68 ± 0.03 : 1 1.8 123 

DR 5049  0.733 ± 0.001 RH 14 1.58 ± 0.03: 1 1.5 127 

DR 5534 0.732 ± 0.001 RH 16 1.67± 0.03  : 1 1.6 112 

Table A.1 : Properties of the Nb-Ti strands measured in this work. Data provided by Dr Mark J Raine. RH: Right hand 
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A.2. Experimental Set-up 
 

The details in this section are additional information not included in chapter 3, and provide a useful 

reference if interested in repeating the experiment in the Durham magnet system.  

 

To enable machining of the different twist pitches, an outer diameter of 32 mm on the ITER barrel 

shown in Figure A.1(a), and 31 mm on the MST barrel [Figure A.1(b)].  

 

The probe head and tubing are manufactured from 316 L stainless steel. The top half of the internal 

current leads have a rectangular cross-section that is 15 × 6 mm The Tufnol reinforcing structures 

(25 × 16 mm) are attached along the length of the current leads and separate the two leads to prevent 

electrical shorting shown in Figure A.2 (a). The current leads are insulated using Kapton tape along the 

length. The tubing, shown in Figure A.2 (b) is shortened from the original JLab design to the length of 

500 mm to attach the newly designed bottom of the probe. The tubing has an internal diameter of 

36 mm and an outer diameter of 38 mm to fit through the Dewar opening. 

 

The depth of the probe into the magnet can be adjusted by raising or lowering the adjustable platform 

which it rests on ensuring that the strand is measured in the most homogenous region of the magnet. 

The centre of the barrel is positioned in the diameter sphere volume (DSV) to ensure, the homogeneity 

of the magnetic field. To fix the barrel vertically, the length of the probe is specified, for details see 

Table A.2. When the probe is in the magnet, the vertical position is fixed by clamping the probe to the 

adjustable platform. 

 

 

Component Description Dimension [mm] 

Wooden support Total length 150.0  

Platform  Height from top of magnet Dewar 217.1 

Barrel Half of total height 25.5 

Magnet Dewar to the centre of the magnetic field 1197.4  

Internal current leads Bottom of the probe can to bottom 1590.0 

Table A.2 : Components, relationship with respect to the probe in the magnet, and relevant dimensions. 
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(a) 

 

(b) 

 

Figure A.1 : Comparison of the strand’s position in the OFHC copper rings groove for the two barrel designs. (a) ITER 
(b) minimum separation of turns (MST). The vertical dashed line is the centre of the helix. [mm]. 

 

(a) 

 

(b) 

 

Figure A.2 : (a) Technical drawing of the top part of the probe assembly head and the top half of the internal 
current leads. (b) Stainless steel tubing which is hard-soldered to the bottom of the probe head can. 
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The technical drawing of the probe head and internal components is shown in Figure A.3. The internal 

structure, Figure A.3 (a) shows the four external current contacts. The individual external current 

contact, Figure A.3 (b), are manufactured with both insulating and conducting components. The probe 

head current terminals to the external transport current source, Figure A.3 (c), is attached to the 

internal current contacts. The assembly is fitted inside of the probe can, Figure A.3 (d). The insulating 

components in the assembly are manufactured from Macor – a machineable glass-ceramic – which 

provides thermal insulation and performs well at high temperatures [3].  

 

To ensure reliable current transfer from the current leads to the strand, a clamping mechanism was 

developed. The clamping mechanism was manufactured from 316 L stainless steel. Technical drawings 

for the four components, shown in  Figure A.4 (a-d). Figure A.4 (a) is the bottom stainless steel part, 

which is hard-soldered {using Silver-floTM 55 [Ag55Cu21Zn22Sn2 (wt %)]} to the bottom current terminal 

to the barrel. The large hole allows for helium flow. The top clamping mechanism, Figure A.4 (b), is a 

5 mm thick stainless steel component has 8 tapped holes for M2.5 screws. The screws are tightened 

to distribute the pressure on the top copper terminal to the barrel. The brace, Figure A.4 (c) is hard 

soldered to part (a). The titanium spacer, Figure A.4 (d), is insulated with Kapton polyimide tape. The 

stainless-steel clamp is pushed against the stainless-steel brace and screwed into the titanium alloy 

spacer. The clamping mechanism assembly, Figure A.4 (e), without the measurement barrel and the 

current terminals to aid interpretation.  

 

Differences in the position of the strand in the magnet with respect to the field calibration position 

can cause systematic errors [4]. To ensure the centralisation of the probe radially, a cotton textile-

phenolic resin (Tufnol) centring guide was designed and used (Figure A.5). A 5 mm hole is incorporated 

for helium flow and aligns with a hole in the bottom current terminal to the barrel. The maximum 

diameter of the guide is 38 mm; this ensures that the probe cannot move laterally. The large opening 

in the structure ensures helium can flow through the probe. The M2 clearance holes are for attaching 

a guide to the bottom of the probe.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure A.3 :Probe head assembly drawings: (a) Internal components of the probe head and the top plate. (b) One of the 
four current connectors inside the probe head. (c) The probe head current contacts manufactured from OFHC copper. 
[mm] (d) The stainless steel can of the probe which is soldered to the stainless-steel tube. Bubblers and blanking plates 
are connected to the ports.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

 

(e) 

 

Figure A.4 : Drawings of the components in the measurement barrel clamping mechanism (a) Stainless steel plate  
(b) Stainless steel clamping mechanism (c) Stainless steel brace (d) Kapton insulated titanium spacer (e) Assembled 
clamping mechanism. [mm] 

 

Figure A.5 : Drawing of the Tufnol centring guide. The M2 clearance is for screwing to the bottom terminal. The large gaps 
are to enable maximum helium flow. [mm] 
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A.3. Finite Element Analysis 
In this section the broad approach to calculating magnetic field distributions using a commercial finite 

element analysis (FEA) package is outlined. In this thesis, Comsol Multiphysics [5] has been used. The 

approach detailed is specific to the modelling of high-field application Nb-Ti strands [6] which consist 

of thousands of superconducting filaments embedded in a copper matrix. The strand is wound 

helically for transport measurements. One conclusion of this thesis is that it is simply not possible to 

model the exact structure and architectural details of the strand of the transport measurement. It is 

necessary to use a simplified structure, that captures the essential science, which can be solved using 

state of the art computers in a reasonable timeframe. 

 

In the applied superconductivity literature, numerical models have typically been performed at two 

length scales. Macroscopic models use Ginzburg-Landau theory, where the wave function defines the 

superconducting properties. Time-dependent Ginzburg-Landau models can be implemented using 

finite difference methods [7, 8]. Bulk models use experimentally measured superconducting 

properties and are implemented with FEA, and/or boundary element methods. Using FEA, it is possible 

to calculate magnetic fields due to current flow in complex geometries. FEA models of 

superconducting systems are used to calculate magnetic and electric fields, AC losses, and thermal 

loads. Significant research is being undertaken to design and optimise high-temperature 

superconductor (HTS) devices, where electromagnetic modelling is key [9].  

 

FEA is a numerical modelling technique that takes a complex object and discretises the object into 

small elements. The partial differential equations (PDE) used are reduced to linear algebraic equations, 

with solutions approximating the unknown potentials. The modelling of superconductors is difficult 

due to their complex thermal and electromagnetic behaviour. There can be rapid variations in the 

superconducting state, with quickly changing dynamics. In the region around the sharp transition [10], 

the non-linearity between superconducting and normal state is computationally heavy. When 

discretising large geometries (or geometries with high aspect ratios), investigating an extensive 

number of parameters, or calculating fine details, computation time can be extremely long. Simple 

models are built to investigate the method of implementation, (e.g., a parameter, or an aspect of the 

pre-processing) and ideally a rapid solution provides feedback for model development. One difficulty 

when using the H-formulation in Comsol was that these simple models can take days to converge on 

a solution.  

 

To calculate the magnetic field distribution using FEA, there is a standard workflow that has been 

followed. The first step is pre-processing, where the problem is specified, and meshes are generated. 
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The formulation of equations is implemented in the constructed geometry and the bulk properties 

(electrical, magnetic) in each domain are defined. On the surfaces, internal and external, boundary 

conditions are defined. The next step is processing, where the problem is solved, the final step is post-

processing, where the solutions are visualised, and the data analysed. 

 

A.3.1. Partial Differential Equations (PDEs) 
 

Superconductor models are implemented using Maxwell’s equations in PDE form. The general form 

of PDE for a single dependent variable 𝑢 is defined, 

 

 
𝑒𝑎

𝜕2𝑢

𝜕𝑡2
+ 𝑑𝑎

𝜕𝑢

𝜕𝑡
+ ∇ ∙ 𝚪 = 𝑓. (A.1) 

 

The first step involves defining both the number of dependent variables (𝑢) and the dimension (0D - 

4D). For the H-formulation, the dependent variable is the magnetic field H (A⋅m-1), the conservative 

flux vector 𝛤 is the electric field term (V·m-1). For the 3D H-formulation calculations, the source term 

𝑓(scalar) is defined as zero.  

 

A.3.1.1. Governing Equations  
The equations used to model electromagnetic behaviour are Maxwell’s four equations. The first two 

Gauss’s law Eq. (A.2) and Gauss’s divergence law Eq. (A.3) written in the differential form:  

 

 𝛁 ∙  𝐄 = 𝜌 𝜖0⁄ , (A.2) 

 

 𝛁 ∙  𝐁 = 0. (A.3) 

 

Where 𝜖0 is the vacuum permittivity. The third is the Maxwell-Faraday equation Eq. (A.4) that states 

the curl of the electric field is related to a change in the magnetic field with time. The fourth is 

Ampère's Maxwell law Eq. (A.5) that states the curl of the magnetic field is proportional to the electric 

current plus a displacement current density.  

 

 
𝛁 ×  𝐄 = −

𝜕 𝑩

𝜕𝑡
. (A.4) 

 

 
𝛁 ×  𝐁 = 𝜇0 𝑱 + 𝜇0𝜖0

𝜕 𝑬

𝜕𝑡
. (A.5) 
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When implementing the FEA model, the displacement current term in Eq. (A.5) is neglected i.e., 

(𝜕 𝑬)/𝜕𝑡 = 0 [11]. The assumption of relatively low excitation frequencies leads to the quasi-static 

situation. Like other models of bulk superconducting systems, the electromagnetic radiation is 

neglected. 

 

The constitutive relationship between the magnetic flux density, 𝑩 and the magnetic field strength 𝑯 

is defined using the relative permeability 𝜇𝑟 as follows:  

 

 𝑩 = 𝜇0𝜇𝑟  𝑯. (A.6) 

 

When modelling low-temperature superconductor (LTS) materials, with non-magnetic materials in the 

composite, 𝜇𝑟 = 1 is used. In the literature, when modelling composites with magnetic materials, e.g., 

second-generation HTS tapes with magnetic coatings, 𝜇𝑟 ≠1 is used and hysteresis effects are included 

to accurately describe the material [12].  

 

The other constitutive relationship, central to this thesis, is the generalised Ohm’s law. The 

relationship between the electric field 𝑬 and the current density 𝑱:  

 𝑬 = 𝜌 𝑱. (A.7) 

 

The normal conducting domains in the models are implemented using resistivity 𝜌 = 𝜌𝑁. To account 

for the non-linear resistivity of the superconducting domains, 𝜌𝐬𝐜 is defined,  

 

 
𝜌𝐬𝐜(𝐵, 𝑛) =

𝐸C

𝐽C(𝐵)
( 

𝐽

𝐽C(𝐵) 
)
(𝑛−1)

 (A.8) 

 

where Eq. (A.8) is a modified version of the often used power-law model [13], a form of Eq. (2.16) 

written in terms of Ohm’s law.  

 

A.3.1.2. Formulations of Maxwell’s Equations 
The formulations of Maxwell’s equations are summarised in Table A.3. The four formulations can be 

grouped into two pairs. A-V and E define conductivity in terms of the electric field [14] while T-Ω and 

H use the resistivity as a function of the current density. The A-V formulation is widely used to solve 

steady-state problems [15-20]. The A-V formulation is only useful for constant conductivity. For the 

superconducting domains with a magnetic-field-dependent resistivity, using A-V formulation means 

the current is circularly defined, it is, therefore, necessary to use the H-formulation.  
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Formulation Constitutive equations Definitions 

Vector and Scalar potential 

A-V 

∇2𝑨 = 𝜇𝜎 (
𝜕𝑨

𝜕𝑡
+ ∇𝑉) 

 

∇ ∙ (
𝜕𝑨

𝜕𝑡
+ 𝜎∇𝑉) = 0 

𝐁 = ∇ × 𝐀 
 

𝑬 = −
𝜕𝑨

𝜕𝑡
− ∇V 

 

σ = σ(E) 

E-Field ∇ × ∇ × 𝐄 = −𝜇
𝜕(σ𝐄)

𝜕𝑡
 

σ = σ(E) 
 

∇ ×  𝐄 = −
𝜕 𝑩

𝜕𝑡
 

 

Current Potential 

T-Ω 

∇ × (ρ∇ × 𝐓) = −𝜇(𝐓̇ − ∇Ω̇) 
 

∇2Ω = 0 

𝑱 = ∇ × 𝐓 
 

𝑯 = 𝑇 − ∇Ω 
 

𝜌 = 𝜌(𝐽) 

 

H-field 
∇ × ρ∇ × 𝐇 = −𝜇

𝜕𝑯

𝜕𝑡
 

 

𝑱 = ∇ × 𝐇 
 

𝜌 = 𝜌(𝐽) 

Table A.3 : Summary of formulations for modelling superconductors. Modified from Ref. [21] 

 

The T-Ω formulation uses a vector potential T which is defined to satisfy the equation 𝑱 = ∇ × 𝑻. The 

scalar magnetic potential Ω is defined as 𝑯 = 𝑻 − ∇Ω [22-24]. The initial condition ∇ ∙ [𝜇(𝐓 − ∇Ω)] =

0 is required to impose Gauss’ law. There are three unknowns per node. For systems without 

ferromagnetic materials, the T-Ω formulation is reduced to H-formulation, as 𝛺 is zero throughout the 

domain. The state variable in the H-formulation is the magnetic field, and it is solved for directly. When 

implemented using the finite difference methods the E-field formulation is numerically more efficient 

than the H-formulation [25]. One problem associated with using the E-field formulation is the 

calculation of the current density [26]. Another problem with the E-Field method is the numerical 

inaccuracies when taking the curl of the magnetisation function. 

 

A.3.1.3. Boundary Conditions and Constraints 
Boundary conditions (BC) are essential to construct a model, specifying the solutions the dependent 

variable can take on that boundary. Whole functions are used as boundary conditions. There are two 

types of BC. The Dirichlet BC [19] is usually a mathematical constraint on a dependent variable 

whereas the Neumann BC which is usually a constraint on the flux through a boundary.  
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The generalised form of the Neumann domain boundary is defined  

 

 −𝒏 ∙ 𝜞 = 𝑔 − 𝑞𝑢 + ℎ𝑇𝜇 (A.9) 

 

where 𝒏 is the outward unit normal vector on the surface 𝑑𝛺. The variables 𝑔, 𝑞, are user-defined 

coefficients. An essential boundary condition is used if the boundary is insulated or has a fixed value 𝑟. 

The dependent variable is fixed as:  

 

 𝑢 = 𝑟. (A.10) 

 

The default zero-flux boundary condition prescribes zero-flux insulation across the boundary, the 

divergence of the dependent variable is 𝑢 zero 

 

 𝒏 ∙ 𝜞 = 0. (A.11) 

 

In this thesis, zero flux boundary conditions are often used on the boundaries of the air domain and 

non-zero boundary conditions are used to define the current into the superconducting system. With 

an applied magnetic field it is important to ensure that the correct components are continuous across 

a boundary. If the magnetic field at internal boundaries, in the tubes-within-tubes cross-section, is 

fixed the assembly of equations is ill-defined, and the FEA calculation does not converge on a solution.  

 

A.3.2. Methodology 
 

Comsol was the FEA software used during this thesis. Comsol is known for being easy to understand 

and has a user-friendly graphic interface [27]. Researchers at various institutes have established a 

superconductivity model workgroup [28] which is used as a reference and resource. For a complete 

description of the Comsol see the reference guide [5]. 

 

A.3.2.1. Problem Specification 
The experimental geometry, the Nb-Ti strand’s dimensions, the measurement barrel, and the design 

of the transport measurements, specify the problem. The other dimensions of the computational 

model are reported in Table A.4. The system modelled contains a conducting domain, 𝛺𝐶 where 

current flows and a non-conducting air domain ΩN. Figure A.6 is a schematic of the modelling system. 

A common standard that is implemented is that the air domain is ten times the volume of the 

superconducting domain, allowing numerical errors to dissipate [29]. 
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Figure A.6 : FEA modelling domain structure. The conducting region 𝛺𝐶  extends to the ends of the 
insulating air region 𝛺𝑁. 

 

 

Variable Dimension Volume [mm3] Mesh Elements 

Extrude length 0.30 x 80 [mm] 36.5 6,045 

Large air domain 160 x 160 x 160 [mm3] 4.096 x106
  12,194 

Small air domain  
(around central helix volume) 

ITER: 3 x 3 x 3 [mm3]  
MST: 1 x 1 x 0.830 [mm3]  

ITER: 27  
MST: 0.83 

174,151 

Table A.4 : Geometry of the modelling domains implemented in meshing the ITER and MST helices.  
The mesh is subdivided, with the small air domain having the highest density mesh. 

 

The air domain has been defined with a finite, non-zero value of resistivity, which is typical in the 

community. Finite values are used to avoid singularities in the system of equations. FEA models where 

𝜌
Air 

= 0 Ωm have been presented [30]. The current flow should not occur in the air, a robust standard 

for the non-finite conductivity of air has not yet been defined. The leakage of currents can be 

minimised by increasing the resistivity of the air [31]. A range of values has been used in the literature 

for the air’s resistivity, with very low 1 x 10-8 [31], 1 x 10-6 Ωm [11], to very high 2 x 1014 Ωm [23]. In the 

models used in this thesis, 𝜌
Air 

= 1 Ωm. 

 

A.3.2.2. A-V formulation in Comsol 
Magnetic field calculations using the A-V formulation with an applied magnetic field can be performed 

using the Comsol AC-DC magnetic field module. The steady-state solutions are generated quickly, 

depending on the meshes and error tolerances. Using the pre-defined algorithms, it was possible to 

generate highly efficient meshes. Implementing magnetic-field dependent parameters, using the A-V 

formulation was unsuccessful, as it resulted in a circular dependency. It is not possible to implement 

the field-dependency of the resistivity or investigate time-dependent using the A-V formulation, and 

so was of limited use in the analysis . 
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Figure A.7 : Probability density distribution with a varied applied magnetic field. The A-V formulation ITER 
geometry (11 turns, solid cross-section). 

 

The results of the A-V calculations were of limited use to modelling the experiment as the 

redistribution of current whilst it is being ramped was the focus for analysis. Calculations of the field 

distributions as a function of the net magnetic field, for a helix with the circular cross-section, is shown 

in Figure A.7. 

 

A.3.2.3. H-formulation in Comsol 
Using the H-formulation is time-intensive, both in computational time and when implementing and 

verifying new features [32]. The H-formulation enables the superconductors’ non-linear resistivity 

relationship, to be modelled. At each instance, the magnetic field due to the current flow from the 

entire system is used in calculating the resistivity of each part of the superconducting domain. Using 

Ohm’s law, the electric field can be calculated and 𝐸-𝐽 traces that can be compared to experimental 

results are produced. 

 

For a 3D model, the state variable (𝑢) in the PDE is the three Cartesian independent magnetic field 

components:  

 

 

𝑢 = [

𝐻𝑥

𝐻𝑦

𝐻𝑧

] 

(A.12) 

 

For calculations in an applied magnetic field, the variable 𝐻z is modified.  
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Assuming an isotropic magnetic field in the z-direction, the 𝑧-component of the magnetic field is 

rewritten as:  

 

 𝐻z
∗ = 𝐻z + 𝐻App,z. (A.13) 

 

By substituting Ohms law, and the simplified Maxwell- Ampère's law (relating 𝑯 and 𝑱), the Maxwell-

Faraday equation law is defined: 

 

 
(𝛁 × (𝜌𝛁 × 𝐻)) = (−

𝜕(𝜇0𝐻)

𝜕𝑡
). 

(A.14) 

 

As this equation is over-constrained, the divergence is taken 

 

 
𝛁 ∙ (𝛁 × (𝜌𝛁 × 𝐻)) = 𝛻 ∙ (−

𝜕(𝜇0𝐻)

𝜕𝑡
). 

(A.15) 

 

The second-order differential operator (𝛁 × 𝛁 ×) can result in ill-conditioned matrices. When the 

divergence of the curl is set equal to zero, Eq. (A.15) is rewritten as  

 

 
𝜇0

𝜕𝐇

𝜕𝑡
+ 𝛁 × 𝐄 = 0. 

(A.16) 

 

The three components of the current density [𝛁 × 𝐻 in Eq. (A.15)], are calculated by taking the 

derivates of the three components of H: 

 

𝑱 =

𝐽𝑥
𝐽𝑦
𝐽𝑧

=

[
 
 
 
 
 
 
𝑑𝐻𝑧

𝑑𝑦
−

𝑑𝐻𝑦

𝑑𝑧
𝑑𝐻𝑥

𝑑𝑧
−

𝑑𝐻𝑧

𝑑𝑥
𝑑𝐻𝑦

𝑑𝑥
−

𝑑𝐻𝑥

𝑑𝑦 ]
 
 
 
 
 
 

. 

(A.17) 

 

The conservative flux vector in Eq. (A.1) is modified, the cross product in Eq. (A.16) is defined as a dot 

product, this is implemented using the matrix: 

  

 

Γ = (

0 𝐸𝑧 −𝐸𝑦

−𝐸𝑧 0 𝐸𝑥

𝐸𝑦 −𝐸𝑥 0
). 

(A.18) 
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The other terms in the PDE Eq. (A.1) are the damping coefficient 𝑑𝑎 which is set to the 𝜇0, and the 

mass and source coefficient defined 𝑒𝑎 = 𝑓 = 0. The initial conditions in the model are the field 

components and its time derivative, defined as 0 A⋅m-1 and A⋅m-1⋅s-1 respectively.  

 

The variables 𝐻 and 𝐽 have an additional term in their definition, a very small number (10-15), defined 

in Comsol as ‘eps’, to avoid division by zero.  

 

To model superconductors in the Comsol general form PDE interface, it is necessary to use the curl 

operation. It is typical to use the curl operation when calculating electromagnetic vector fields, as it 

reduces the number of dependent variables to H with field components mod1.H.  

 

A.3.2.4. Element Order and Nodes 
The simulation domain is discretised into a number of elements, defined by a set of points called 

nodes. The adjacent elements share the degree of freedom at connected nodes. The elements have a 

finite size and the subsequent description of the problem uses a finite number of degrees of freedom. 

Each node has a set of shape functions or basis functions. The default in Comsol, for a single degree 

of freedom at each node, are first-order elements. First-order elements have a node with a value of 

unity and at each other node zero, Figure A.8 (a). A second-order has a node at the midpoint of the 

vertex, with nine shape-functions, Figure A.8 (b). The node orders that are available to approximate a 

function increase in complexity from linear to quintic. Well-posed problems converge toward the 

same answer, regardless of the element order, but converge on the solution at different rates. The 

first-order element approximates all sides of the domain as straight lines. A curved domain Figure 

A.8 (c-i) is approximated with straight lines (c-ii), or curved lines (c-iii). Depending on the shape 

between nodes, the mesh generated can result in geometric discretisation error.  

 

In the Comsol AC-DC magnetic field module, the default element order for the magnetic vector 

potential A is quadratic. The effect of element order for a straight wire (radius 10 mm, length 100 mm), 

with identical meshing (540 boundary elements), is shown in Figure A.9. The degrees of freedom and 

computation times are defined in Table A.5. It is possible to change the element order in H-

formulation, but only linear elements are possible in 3D models. The approach employed to generate 

accurate results is to increase the mesh density until results converge. 
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(a)         (b) 

 

(c) 

 

Figure A.8 : (a) First-order node (b) Second-order node (c) curved domain (i) being approximated with first-order (ii) and 
second-order (iii) quadrilateral elements.  
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Figure A.9 : Radial distribution of the magnetic field with varied element order. A-V formulation for an infinite straight 
wire. 

 

Element order Degrees of Freedom  Calculation time [s] 

Linear 35,930 4 

Quadratic 201,401 24 

Cubic 597,432 249  

Table A.5 : Element order and calculation time using the A-V formulation  
for an infinite straight wire.  
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Domain Mesh 
Type 

Minimum 
element size 
[mm] 

Maximum 
element size 
[mm] 

Maximum 
element 
growth rate 

Curvature 
factor 

Resolution of 
Narrow 
regions:  

Small air 
domain 

Extra 
fine 

0.12 2.8 1.35 0.3 0.85 

Helix Finer 0.32 4.4 1.40 0.4 0.7 

Extrude Normal 2.24 8 1.50 0.6 0.5 

Large air 
domain 

Coarser 3.2 15.2 1.70 0.8 0.3 

Table A.6 : Structure of the helix mesh and element sizes. 

 

A.3.2.5. Pre-processing 
The geometry in the model was constructed using standard computer-aided design (CAD) tools. The 

properties of the domains were defined using the definitions of resistivity. The current injection was 

implemented across surfaces where the flux integrals were specified.  

 

A.3.2.6. Meshing 
A challenge of FEA is generating an efficient mesh for complex systems. The mesh density was 

increased in regions of interest, where the mesh elements size was as small as the smallest detail 

resolved. The mesh elements maximum and minimum sizes were varied, along with the element 

growth rate, the curvature factor and the resolution of narrow regions. The compromise between a 

sufficiently accurate mesh and reasonable computational time was a continuous challenge throughout 

the work. 

 

The geometry of the transport measurements has the inherent challenge that the strand has a small 

minor radius and the helix a relatively large major radius. In addition to the aspect ratio, the curved 

boundaries of the helix can result in discretisation errors. The mesh size feature was used, with a 

sequence of different densities used. The default meshes used are listed in Table A.6 for the 3D 

calculations. The hierarchy and structure of the mesh were varied to achieve a suitably high-density 

mesh. With a strand diameter of 0.730 mm, extra-fine meshing is necessary to understand the 

redistribution of current on the scale of the strand’s architecture. 

 

A.3.2.7. Processing 
FEA problems in Comsol are calculated using a non-linear solver. The solver approximates a 

continuous equation with a set of discrete polynomial equations, written as the matrix M. The form 

of the assembled equation is,  

 M𝑿̇ = 𝒇(𝑡, 𝑿), 
(A.19) 
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where 𝒇(𝑡, 𝑿) is the formulation of unknown variables in time 𝑡 and space 𝑿. The discretised form of 

the linear model is solved using by taking Newton steps, 𝛿𝑈. The iteration at 𝑈1 = 𝑈0 + 𝜆 𝛿𝑈 is 

calculated and the error in 𝑈1 is estimated. When a successful step is taken, the algorithm proceeds 

with the next Newton iteration. When the estimated error is less than the relative tolerance, the 

calculations stop. Numerical errors may accumulate over time, resulting in the solution diverging. For 

linear problems, the relative tolerance is typically 1 x 10-1, for the non-linear superconducting system 

1 x 10-5 was used [33]. Table A.7 summarises the solver configuration.  

 

Comsol uses the multifrontal massively parallel sparse direct solver (MUMPS) in the calculations. The 

advantage of using MUMPS is both the speed and that all the processor cores on a single machine are 

used. MUMPS uses fifth element-order backward differentiation formulation (BDF). Table A.8 

summarises the time-dependent solver settings. 

 

Variable Value 

Global method Scaled 

Tolerance Method Manual 

Relative tolerance  1 x 10-5 

Absolute tolerance 1 x 10-7, 1 x 10-3 

MUMPS: memory allocation factor 1.2 (4.0) 

Table A.7 : Solver configuration, the options that are default are italicised.  

 

Variable Value 

Steps taken by solver 
Free 

Initial step No 

Maximum step No 

Maximum BDF order 5 

Minimum BDF order 1 

Event tolerance 0.01 

Nonlinear controller No 

Table A.8 : Time-dependent solver settings, 
the default choices are italicised. 
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A.3.2.8. Batch Calculation  
As the complexity of the model increased, the runtime also increased. FEA models that were stable 

could be calculated using batch mode. Batch calculation reduces user input time if a calculation fails 

the next model in the batch script runs automatically [5]. 

 

A.3.2.9. Post-processing 
Once the solution has been calculated, the data was analysed. Plots were produced in 1, 2, and 3D, 

with examples in Figure A.10. An example of the type of 3D plot is shown in Figure A.10 (a) showing 

the magnetic field profiles, current direction and the geometry of the ITER measurement barrel. 

Colour plots of the cross-section of the strand, Figure A.10 (b, c) are used in visualising the magnetic 

field and current distribution. A normalised histogram of the volume of the central turn of the helix is 

presented in Figure A.10 (d) which is used to calculate field distribution statistics.  

 

To calculate the average value of the field distribution, the volume of interest is exported using 

Comsol’s results export function. The data is output as separate .txt files where the value of the 

desired variable is evaluated at 𝑥, 𝑦, 𝑧 position with a constant step size. From the histogram, the 

average value magnetic flux density is calculated,  

 

 𝐵̅ = 𝑀𝑛/𝑁, (A.20) 

 

where 𝑀 is the midpoint of the box, 𝑛 the frequency in the box, and 𝑁 the total number of data points. 

Fixed bin width was used in the analysis. The python script used to generate Figure A.10 (d) is reported 

in Table A.9. The domain file and magnetic field files are loaded. The magnetic field data that is in the 

domain of interest is selected. The spatial information is not required for the histogram. The histogram 

is plotted, and statistics output, maximum, minimum, and the average is calculated from the midpoint.  

 

dom=loadtxt("dom.txt") 
mag=loadtxt("magB.txt") 
wirem=mag[:,3][dom[:,3]==5] 
plt.hist(wirem,100, normed=True, histtype='step',stacked=True) 
print max(wirem) 
print min(wirem) 
FreqB,BWB,l=plt.hist(wirem,100,normed=True,histtype='step', stacked =True)  
FieldB=(BWB[1:]+BWB[:-1])/2  
averB=FieldB*FreqB 
BavB=sum(averB)/sum(FreqB) 
print (BavB) 

Table A.9 : Typical python script for field calculations. 
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Figure A.10 : Typical FEA post-processing of the ITER helix geometry (a) 3D plot of the magnetic field distribution, with 
arrow vector field of the current direction (b) 2D profile of magnetic field in the volume of the strand in the centre of the 
helix (c) 2D profile of the current distribution in the strands cross-section (d) 1D plot – comparison of the probability 
density for ITER and MST geometries (zero applied magnetic field, current of 1 kA). 

 

A.3.3. Computation 
 

A.3.3.1. Software  
Several commercial FEA software packages were considered for this PhD. FlexPDE was initially used 

as Durham have experience studying electromagnetic behaviour in 3D planar geometries [34]. H-

formulation has been implemented using FlexPDE in the literature [35]. However early work using 

FlexPDE was limited by the complexity of modelling the helix geometry, a necessary component of the 

thesis.  

 

In the community, there are several commercial software being used to study superconductors [36]. 

An alternative commercial FEA software is Flux [15, 37] which used the A-V formulation as the basis 

for simulations and has been used to define self-field AC losses [38]. The commercial FEA software 

Opera [39] is a specialist package used for very precise MRI field calculations and is too specialised for 

this work. Opera uses the Biot-Savart integral to calculate magnetic field profiles for 
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superconductors [40]. An expensive software for electromagnetic calculations is Ansys [41], which has 

been used by the ITER and fusion for energy (F4E) team [42]. An open-source FEA software 

investigated was ParaFEM [43] as it is used widely in teaching and research, but has not yet been used 

for modelling superconductors. Although it is possible to use and develop open-source software, the 

lack of documentation and insufficient user support is a drawback. It is common to validate the results 

from an open-source FEA software with equivalent results from Comsol. Comsol was chosen as it is a 

well-documented software package, with a broad community of users working on the H-formulation. 

 

A.3.3.2. Hardware  
The FEA models were solved using three computers, their properties are summarised in Table A.10. 

The two workstations have the same: amount of random-access memory (RAM), number of cores, 

and processor architecture. The computational time for an H-formulation ITER geometry with a five-

turns model is recorded in Table A.11. The model has 7314 degrees of freedom, and 1887 timesteps 

in the calculation. The shortest calculation time was the AN workstation, with the newest generations 

of RAM and processors this is expected. The server has the most RAM, enabling systems with more 

degree of freedom to be studied, but this was significantly slower. 

 

Machine ID Processor Cores Processor speed  
[GHz] 

RAM  
[GB] 

FJR: Workstation Intel i7-4790 4 3.60 32  

AN: Workstation  Intel i7-6700 4 3.40 32 

Server Intel Xeon E5620 8 2.40 144 

Table A.10 : Properties of the three computers used in calculations. 

 

Machine ID  Total Time [s] Time per step [s] 

AN: Workstation  3622 1.92 

FJR: Workstation 4515 2.39 

Server 7650 4.05 

Table A.11 : Computational times for helix calculation.  
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A.3.4. Results 
The matrix elements for the geometries reported in,  Table A.12 and Table A.13. were calculated using 

the experimental number of turns, i.e., 13 turns on the ITER barrel and 51 turns on the MST barrel. 

The FEA results and analytic solutions are compared with the matrix elements (Table A.12) for the 

arrays and a single ring. The radial distribution of the magnetic field around the volume of the strand 

at the centre of the helix (𝑧 = 0 mm), with the centre of the strand defined as 0 mm. The structure of 

the annulus cross-section is demarcated with dashed lines ( 𝑅i = 0.136 mm, 𝑅O = 0.194 mm). 

 

Geometry Field Term 𝐵𝑧(𝑟 > 𝑅Maj) [·kA-1] 𝐵𝑧(𝑟 < 𝑅Maj) [T·kA-1] 

An Array of 

Straight 

wires: TwT 

Central tube: 

𝐵Annulus 
(
−1.023 0.000 0.000
−0.785 −0.791 0.000
−0.643 −0.643 −0.643

) (
1.031 0.000 0.000
0.791 0.791 0.000
0.643 0.643 0.643

) 

ITER: 13 

𝐵Net 
(
0.967 −0.055 −0.055
0.734 0.734 −0.051
0.589 0.589 0.589

) (
1.114 0.078 0.078
0.880 0.890 0.082
0.735 0.735 0.735

) 

MST: 51 

𝐵Net 
(
0.921 −0.101 −0.101
0.731 0.731 −0.054
0.627 0.627 0.627

) (
1.489 0.454 0.454
1.299 1.299 0.501
1.195 1.195 1.195

) 

An Array of 

Rings: TwT 

Central ring: 

𝐵𝑧,𝑟𝑖𝑛𝑔 
(
0.988 −0.030 −0.029
0.750 0.749 −0.029
0.605 0.604 0.603

) (
1.075 0.031 0.030
0.832 0.833 0.030
0.683 0.684 0.685

) 

ITER: 13 

𝐵Net 
(
0.885 −0.133 −0.132
0.651 0.650 −0.128
0.509 0.508 0.507

) (
1.201 0.157 0.156
0.962 0.963 0.159
0.816 0.817 0.818

) 

MST: 51 

𝐵Net 
(
0.649 −0.37 −0.368
0.459 0.458 −0.320
0.357 0.356 0.355

) (
1.768 0.724 0.722
1.573 1.574 0.771
1.469 1.469 1.47

) 

FEA: Helix  

ITER: 13 

𝐵Net 
(
−0.862 0.106 0.115
−0.675 −0.658 0.109
−0.521 −0.525 −0.489

) (
1.141 0.1403 0.139
0.956 0.928 0.143
0.808 0.798 0.769

) 

 MST: 51  

𝐵Net 
(
0.672 −0.309 −0.293
0.542 0.492 −0.246
0.457 0.429 0.395

) (
1.656 0.651 0.646
1.512 1.452 0.6924
1.400 1.400 1.354

) 

Table A.12 : Summary table of matrices for tubes-within-tube (TwT) cross-section in the radial direction 
 for an array of straight wires, an array of rings, and helix.  
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Geometry Field Term |𝐵|( 𝑧 > 0) [T·kA-1] 𝜃(𝑑𝑒𝑔𝑟𝑒𝑒) 

An Array 

of 

Straight 

wires: 

TwT 

Central wire: 

𝐵Annulus 
(
1.031 0.000 0.000
0.791 0.791 0.000
0.643 0.643 0.643

)  

ITER: 13 

𝐵Net 
(
1.020 0.074 0.074
0.780 0.780 0.074
0.628 0.628 0.628

) (
4.09 −80.73 −80.73
5.36 5.36 −77.99
6.66 6.66 6.66

) 

MST: 51 

𝐵Net 
(
0.886 0.342 0.342
0.608 0.608 0.381
0.427 0.427 0.427

) (
18.69 −56.27 −56.27
27.82 27.82 −48.25
41.65 41.65 41.65

) 

An Array 

of Rings: 

TwT 

Central ring: 

𝐵𝑧,𝑟𝑖𝑛𝑔 
(
1.031 0.000 0.000
0.790 0.790 0.000
0.643 0.643 0.643

)  

ITER: 13 

𝐵Net 
(
1.029 0.147 0.145
0.788 0.788 0.146
0.640 0.640 0.640

) (
8.27 −85.21 −85.13
10.77 10.69 −83.65
13.23 13.16 13.07

) 

MST: 51 

𝐵Net 
(
1.006 0.583 0.581
0.769 0.768 0.606
0.317 0.636 0.635

) (
33.32 −70.92 −70.87
45.90 45.87 −65.07
60.10 60.07 60.03

) 

Table A.13 : Summary table of matrices for tubes-within-tube (TwT) cross-section in the z-direction 
 for straight wire arrays, ring arrays, and helix. 

 

 

A.3.5. Conclusions 
If the geometry and superconducting properties of a system are known, numerical models are a useful 

and flexible tool to predict behaviour. Finite element analysis can provide useful information about 

the distribution in the magnetic field profile and the redistribution of current in a helical strand. In this 

thesis, Comsol has been used and the H-formulation implemented to solve the necessary field 

equations directly.   
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