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18 ABSTRACT: Soft substrates decorated with micropillar arrays are known to
19 be sensitive to deflection due to capillary action. In this work, we demonstrate
20 that micropillared epoxy surfaces are sensitive to single drops of bacterial
21 suspensions. The micropillars can show significant deformations upon
22 evaporation, just as capillary action does in soft substrates. The phenomenon
23 has been studied with five bacterial strains: S. epidermidis, L. sakei, P.
24 aeruginosa, E. coli, and B. subtilis. The results reveal that only droplets
25 containing motile microbes with flagella stimulate micropillar bending, which
26 leads to significant distortions and pillar aggregations forming dimers, trimers,
27 and higher order clusters. Such deformation is manifested in characteristic
28 patterns that are left on the microarrayed surface following evaporation and
29 can be easily identified even by the naked eye. Our findings could lay the
30 ground for the design and fabrication of mechanically responsive substrates,
31 sensitive to specific types of microorganisms.

32 KEYWORDS: bacteria, bending, elastic micropillars, capillarity, responsive substrates

33 ■ INTRODUCTION

34 The fabrication of materials that are sensitive to physical,
35 chemical, or biological stimuli has opened opportunities for the
36 development of a wide variety of technological applications
37 such as switchable adhesion, mechanosensing, and stimuli-
38 responsive materials.1−6 In particular, the design of biomimetic
39 structures,3,7 inspired by natural systems, has been a powerful
40 tool in the implementation of smart, artificial systems.8,9 In this
41 respect, the use of topographic surfaces is particularly
42 interesting, with natural systems utilizing physical structures,
43 from the nano- to the macroscale, to deliver functions such as
44 superhydrophobicity, adhesion, and antibiofouling as demon-
45 strated by the lotus leaf, shark skin, and gecko feet.4,7,9−13

46 There has been particular interest in developing mechan-
47 ically responsive systems.8,14 An excellent example is the
48 mechanical response of micropillar arrays upon drying of water

49(or water-based solutions).15−26 When water droplets

50evaporate on relatively soft elastic microstructured surfaces,

51capillary action can generate a significant force that is able to

52bend the soft micropillars. Depending on the geometry of the

53arrays, the capillary and elastic forces can form different pillar

54assemblies.15,16 The complexity of the assemblies varies with

55the pillar height and the interpillar distance. For example, large

56periodic chiral aggregates can be formed when the micropillars

57are higher and closer to each other. Each cluster of aggregates

58has a different potential to store elastic energy, embody
59information, enhance adhesion, or capture particles.17,18
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60 The demonstration of mechanically responsive topographic
61 surfaces to bacterial stimuli during evaporation of small
62 droplets is of great interest and has not been demonstrated
63 before. Furthermore, the deflections seen in our systems are
64 significant, leading to pillar aggregations into dimers, trimers,
65 and higher order clusters. Recently, the formation of biofilm
66 strings and networks between topographic pillars has been
67 demonstrated in liquid media;27 however, the mechanical
68 response of the pillars to bacterial presence upon evaporation
69 is not observed. Chew and coauthors have shown small
70 deflections of macropillared surfaces in response to the
71 differential pressure exerted by biofilm growth within a growth
72 chamber over a 24 h period,28 while Biais29 and Ng30 et al.
73 have investigated the interaction of bacterial pili with pillared
74 structures.
75 Here, we demonstrate how epoxy-made soft surfaces
76 containing micropillar arrays interact with suspensions of
77 different bacterial species. Our results suggest that the presence
78 of motile bacteria with flagella drastically increases the
79 mechanical response of the pillars, actively bending soft
80 topographical substrates in the area contained within the
81 contact line. In contrast, solutions containing nonmotile
82 bacteria do not generate such responses. We attribute this to
83 the ability of motile bacteria to interact with each other and
84 with their topographical environment. Importantly, the
85 response of the microarray is sensitive to the type and
86 concentration of bacteria in the solution. These promising
87 results could lay the foundation for the development of devices
88 that are selectively responsive to specific microorganisms,
89 paving the way to construct smart, fast, and cost-effective
90 diagnostic tools.

91 ■ RESULTS AND DISCUSSION
92 One of the key parameters in the mechanical response of soft
93 micropillar arrays is the aspect ratio of a single pillar. We
94 investigated the effect of the pillar aspect ratio by fabricating
95 regular patterns of cylindrical pillars with a constant diameter
96 (5 μm) and interspacing (5 μm) and with variable height
97 (from 5 to 45 μm). The patterns were created on epoxy resin
98 using a method described before31−35 based on casting
99 uncured epoxy on a negative polydimethilsiloxane (PDMS)
100 mold, followed by curing and mechanically removing of the
101 mold. The micropatterns were transferred efficiently, with a
102 high degree of fidelity, as shown by scanning electron

f1 103 microscopy (SEM) imaging (Figure 1 and Figure S1).
104 These microstructured substrates can be susceptible to
105 elastocapillary forces in the presence of pure liquids. Therefore,
106 we evaluated the effect of pure water over a surface decorated
107 with micropillars with lengths varying from 5 to 45 μm (Figure
108 1) during the evaporation of water droplets (Figure 1). In
109 these experiments, the liquid filled up the space between the
110 pillars, resulting in an almost square-shaped droplet contour.
111 Once the droplet spreads on the substrate, the liquid contact
112 line is blocked by the pillared structure and remains
113 immobilized (pinned) for the rest of the drying process.31

114 Figure 1b shows that after complete evaporation, there is
115 almost no trace of the droplet, except at the droplet contour,
116 where lines of pillars were bent by capillary action at the
117 contact line shown in Video S1.18−23,31

118 In the systems studied, the pillar lattice was kept constant
119 (i.e., l = d = 5 μm), but different pillar heights (h) ranging from
120 h = 5 to 45 μm were fabricated. Thus, a range of
121 micropatterned surfaces were generated with different aspect

122ratios (i.e., h/d = 3 to h/d = 9). For large aspect ratio
123structures, we observed significant perturbation of the
124micropillars in the area within the contact line boundary.
125Imaging at low magnifications, or even examination by the
126naked eye, revealed that the inner part of the pattern was
127opaque, suggesting that the whole array of pillars inside the
128dried droplet perimeter was modified (Figure 1c). Higher
129magnification SEM imaging showed that this optical contrast

Figure 1. (a) Representative SEM image of pillared structure (H15),
showing the topographic descriptors for the array. The pillars have a
cylindrical shape and a height (h) of 15 μm and a diameter (d) of 5
μm forming a square lattice with an interpillar distance (l) = 5 μm.
(b) Pure water droplet evaporating on the H15 substrate with
micropillars leaving a distinct square-shaped contact line with no
perturbation of pillars within this contour. (c) Pure water droplet
evaporating on the H22 substrate with micropillars leaving a distinct
shaped contact line pattern with significant modification of the
micropillars within the contact line boundary. Time needed is
represented in a dimensionless form as the ratio between the elapsed
time (t) and the final evaporation time (tf). (d−i) Pillared structures
with constant (d = 5 μm) and different pillar heights (h) of (d) 15 μm
(H15), (e) 22 μm (H22), (f) 28 μm (H28), (g) 33 μm (H33), (h) 38
μm (H38), and (i) 45 μm (H45). SEM images are presented for the
different heights after evaporation of pure water droplets, probing the
sensitivity of the structures to pure elastocapillary bending.
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130 effect was caused by local bending of the micropillars (Figure
131 1d−i), with the pillars bent toward each other forming clusters
132 and adopting complex geometries, e.g., dimer (white box),
133 tetramer (blue box), hexamer (red box), octamer (yellow box),
134 and nonamer (orange box). Similar effects have been reported
135 before for larger pillar aspect ratios18,24,25 and were attributed
136 to the elastocapillary coalescence of the flexible structures.15,18

137 In our experiments, as the aspect ratio decreased, the clusters
138 contained lower numbers of aggregated pillars until a critical
139 aspect ratio h/d = 3, for which no clusters were observed in the
140 inner part of the droplet (Figure 1d).
141 The deformation of the pillars, upon water evaporation, is
142 induced by the surface tension (γ) of the water/air meniscus
143 connecting the pillars, and the corresponding force scales as Fc
144 ∼ γr, where r = d/2 is the pillar radius.21,36 The natural
145 elasticity of the pillars resists deformation with an elastic force
146 FE ∼ Elr4/h3, where E is the Young modulus and l the
147 interpillar distance.18 This expression is analogous to the usual
148 beam theory for slender objects, showing that the resistance to
149 bending decreases strongly when the pillars height increases. If
150 we define the pillar bending sensitivity as the ratio of capillary
151 and elastic forces, Fc/FE = γ/El(h/r)3, we can conclude that it
152 is directly proportional to the cubic power of the pillar aspect
153 ratio h/r; i.e., slender pillars are more prone to be bent by
154 surface tension, while wide pillars tend to be more stable.
155 Under our experimental conditions, no pillar coalescence is
156 observed in the area within the contact line boundary from
157 pure water when the aspect ratio is below h/d = 3,31 suggesting
158 that this is the critical aspect ratio threshold for which capillary
159 action equals restoration mechanical stress on the micropillars.
160 It is important to note that in this analysis, we are not
161 considering the effect of the contact line. This effect is
162 expected to have an enhanced deforming effect, but an
163 accurate evaluation of this factor is beyond existing
164 phenomenological modeling capabilities and will be the subject
165 of future studies. Consequently, all of the results described
166 below applies exclusively to the inner part of the dried pattern
167 left by the droplet, ignoring possible contact line effects.
168 Bacterial-Triggered Coalescence of Pillars. From the
169 elastocapillary assay discussed in the previous section, we
170 identified the critical region within the topographic parameter
171 space where the micropillared structure is able to resist
172 capillary deformation in the presence of pure water droplets.
173 Such a surface opens up the possibility to sense the presence of
174 a second entity introduced into water (i.e., bacterial cells),
175 which could induce a response in its own right. This critical
176 structure corresponds to an aspect ratio h/d ≈ 3 and pillar
177 height h = 15 μm (H15, Figure 1d), as discussed in the
178 previous section.
179 We, therefore, investigated the drying process of droplets
180 containing different bacteria species over the H15 pillared
181 structures. Similar to the case of pure water droplets, a pinned
182 square drop shape is found. However, the patterns observed
183 within the contact line formed after complete evaporation of
184 the droplets were surprisingly different for some bacteria as
185 clearly observed in Video S2.
186 Five different bacterial species, with a wide range of
187 morphological and biological characteristics were investigated:
188 S. epidermidis, L. sakei, P. aeruginosa, E. coli, and B. subtilis. The
189 patterns formed after evaporation of droplets containing

f2 190 different bacteria on H15 pillar substrates (Figure 2) can be
191 classified in two main groups: one group displaying significant
192 bending of the pillars within the pattern (P. aeruginosa, E. coli,

193and B. subtilis) and another group that does not induce any
194responsive bending of the pillars in the center of the dried
195patterns (S. epidermidis and L. sakei). These distinct behaviors
196could be observed even by the naked eye in the form of a local
197change in contrast at the surface (Figure 2, 5×). At higher
198magnifications, the difference is clearly revealed to be
199associated with the coalescence of adjacent pillars (Figure 2,
20040× and SEM (100×)).
201We attempted to correlate these results to the general
202 t1characteristics of the bacterial species used in this work (Table
203 t11). Atomic force microscopy (AFM) imaging confirmed the
204expected size and cell morphology for these bacteria: Gram-
205negative (−) P. aeruginosa and E. coli as well as Gram-positive
206(+) B. subtilis and L. sakei present a rod-like shape, while
207Gram-positive (+) S. epidermidis has a spheroidal shape
208(Figure S2). In addition, L. sakei and S. epidermidis are not
209motile (no flagella present), while the other three strains have
210flagella. From these considerations, we can conclude that the
211different pattern types showed in Figure 2 (bending vs
212nonbending) cannot be explained considering bacteria cell

Figure 2. Typical patterns left over H15 substrates after the
evaporation of different bacterial species: (a1−a3) S. epidermidis,
(b1−b3) L. sakei, (c1−c3) P. aeruginosa, (d1−d3), E. coli, (e1−e3) B.
subtilis. Here, the concentration of the different bacterial species is 107

CFU/mL. The different columns correspond to different degrees of
magnifications: 5× (left column), 40× (central column) by using a
confocal microscope, and >100× with SEM (right column).
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213 morphology only. Similarly, the stiffness of the cell envelop
214 does not appear to play a critical role, with rigid Gram-positive
215 bacteria and softer Gram-negative bacteria distributed among
216 both pattern groups.
217 Interestingly, the different response of the microstructures
218 upon evaporation of the bacterial solutions correlates with the
219 presence or absence of flagella. Bacteria with flagella clearly
220 induce a bending response in the H15 pillars, while
221 nonflagellated bacteria are unable to bend the pillars when
222 used at the same bacterial concentration.
223 For the bacteria that induce a mechanical response, a
224 concentration dependence is observed, with deformation of
225 pillar clusters at the center of the dried droplet observed for
226 bacteria concentrations between 107 CFU/mL and 109 CFU/
227 mL, while none is observed for lower bacteria concentrations
228 (105 CFU/mL). At low concentrations, only the perimeter
229 near the corners of the dried square pattern presented

f3 230 coalescence of the pillars (Figure 3a−c). This can be attributed
231 to the coffee-stain-like effect, able to drag bacterial cells toward
232 the droplet contact line, increasing the local concentration of
233 bacteria during evaporation.31 Interestingly, bacterial cells
234 without flagella confirm the absence of responsivity at different
235 cell concentrations (Figure 3d−f).

236No clear correlation was observed between bacterial species
237and the cluster symmetries obtained (e.g., dimer, trimer,
238tetramer, etc.). However, the data suggests that the assemblies
239emerge due to perturbation of the balance between capillary
240forces and elastic restoration forces in the presence of bacteria
241with flagella. In the next section, we discuss a possible
242mechanism for this distinctive behavior.
243Possible Origin of Bacteria-Induced Coalescence. In
244the previous sections, we determined the critical pillar aspect
245ratio, below which surface tension forces were not able to
246induce pillar coalescence in pure water. Interestingly, the
247responsivity is dramatically enhanced when the droplets
248contain flagellated bacteria. While the bending process at the
249perimeter of the contact line appears similar in both cases,
250coalescence within the central area is triggered at smaller
251aspect ratios by the presence of bacteria with flagella. This
252enhanced pillar bending effect results in characteristic patterns
253on the substrate, distinct for motile and nonmotile bacteria.
254The possible origin of the enhanced pillar bending may be
255related to the ability of the bacteria with flagella to adhere to
256more than one pillar (Figure S3), thus connecting adjacent
257pillars and inducing a mechanical deformation. In the presence
258of bacteria with flagella, we observed, at SEM, after drying,
259structures bridging bent pillars, while nonflagellated bacteria
260appeared attached to single pillars. The morphology of the
261single bacterial cells cannot be distinguished, probably due to
262distortions on the cell envelop after evaporation, in the absence
263of fixation.
264These effects can also be understood by comparing the
265length scales of bacterial structures and pillar interspacing
266distances. The average size of the capsule for a single bacterial
267cell is below 2 μm (Table 1), while flagella can reach tens of
268μm beyond the outer cell membrane.37 Considering that in our
269microstructured surfaces the interpillar distance was 5 μm,
270bacteria without flagella will predominantly fall between the

Table 1. General Characteristics of the Different Bacterial
Strains Used in the Studya

strain gram shape L × Wa (μm
2) flagella

(a) P. aeruginosa − rod 1.4(±0.2) × 0.8(±0.2) yes
(b) E. coli − rod 1.7(±0.2) × 0.9(±0.2) yes
(c) B. subtilis + rod 1.8(±0.4) × 0.80(±0.2) yes
(d) L. sakei + rod 1.5(±0.4) × 0.8(±0.2) no
(e) S. epidermidis + spherical 1.3(±0.3) × 1.3(±0.3) no
aAFM images of cells are presented in Figure S2.

Figure 3. Effect of bacteria concentration on the bending pattern for E. coli and S. epidermidis on the H15 pillared substrate. Representative optical
microscopy images for (a) 105 CFU/mL, (b) 107 CFU/mL, and (c) 109 CFU/mL. Scale bar in panels a−f is 100 μm.
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271 pillars or strongly adhere38 to single pillars. On the other hand,
272 bacteria with flagella,32 in which appendage sizes exceed the
273 interpillar distance, can potentially interact with more than one
274 pillar, leading to the observed pillar deformation.
275 In support of this, we found evidence of bacterial matter
276 residing between the bent pillars, after complete evaporation of

f4 277 droplets containing flagellated bacteria (Figure 4). Non-
278 flagellated bacteria, on the other hand, are found attached to
279 individual pillars only, forming nonconnecting structures (see
280 Figures S4−S7).

281 Although a more detailed investigation of bacterial behavior
282 during the actual drying process is necessary to confirm the
283 hypothesis proposed, our results support the potential use of
284 pillared soft substrates to discriminate between motile and
285 nonflagellated bacteria using a cost-effective and immediate
286 assay based on droplet-drying, which can be performed and
287 quickly analyzed by the naked eye. In addition, discrimination
288 of bacterial concentration is also possible, with only samples
289 containing concentrations above a critical threshold producing
290 a response. We envision that by tuning the properties of the
291 substrates, a more subtle differentiation between different
292 microorganisms and different bacterial concentrations could be
293 achieved in the future with this presented novel, easy to
294 fabricate, and cost-effective technology.

295 ■ CONCLUSIONS
296 We show that soft micropillared surfaces can be tailor-made
297 sensitive to the presence of isolated bacterial cells in a single
298 drop. The evaporation of water droplets and bacterial
299 suspensions over fabricated micropillar arrays leads to very
300 distinct micropillar deformations and patterns. Once the
301 threshold for elastocapillary pillar coalescence is found, we
302 observe that only bacteria with flagella can promote pillar
303 coalescence. Such responsive micropillared surfaces could
304 provide a platform for the development of fast and cost-
305 effective self-responsive surfaces for bacterial detection and
306 differentiation.

307■ EXPERIMENTS AND METHODS
308The epoxy micropillars were fabricated by casting EPO-TEK OG142-
30913 from Epoxy Technology into a negative replica PDMS mold, as
310described.31,32 After the resin was casted, a 1.1 mm thick glass slide
311was placed over the mold and placed below an ultraviolet light for 20
312min until the epoxy pillar was cured. The epoxy micropillars were
313mechanically removed from the mold. The SEM images of the epoxy
314pillars are shown in Figure S1. After the sample preparation, we
315measured the Young modulus (E) of the bulk material and the
316micropillar via an axial compression test. The E value for the bulk
317material was 1 ± 0.3 GPa, and the E value for the H15 substrate was
3180.5 ± 0.2 GPa.
319Bacterial cultures were performed following recommended growing
320conditions for each species. P. aeruginosa ATCC-8626, E. coli ATCC-
32110798, and S. epidermidis ATTC-12228 were grown overnight at 37
322°C in liquid broth medium (Oxoid Ltd., Thermo Fisher). B. subtilis
323subsp. subtilis ATCC-6051 and L. sakei DSMZ-20017 were grown
324overnight at 30°C in MRS broth medium from Oxoid Ltd., Thermo
325Fisher. All of the cells cultures were then centrifuged and redispersed
326in sterile deionized water two times, finally adjusting the bacterial
327concentration to 107 colony-forming units per milliliter (CFU/mL),
328unless differently specified. Note that colony counting was performed
329after cell redispersion in deionized water to ensure cell viability.
330The evaporation of all droplets was carried out placing a droplet of
3315−10 μL ± 4 μL on the epoxy substrates. For droplets containing
332bacteria, experiments were performed in triplicates drying 5 droplets
333over substrates independently. The images were collected with a
334CMOS camera PCO Sensicam at 1 frames per second (fps). The
335droplet completely evaporated in approximately 2100 ± 300 s.
336Evaporation experiments were assessed at room temperature (21 ± 3
337°C) in an atmosphere with a relative humidity of 35 ± 5%.
338The contact angle measurements of water and bacterial suspension
339droplets on epoxy surfaces were carried out by placing a water droplet
340with bacterial suspension of 107 CFU/mL on the epoxy substrates.
341The contact angle (CA) for H15 was 100° ± 7°, whereas the CA was
34292° ± 5° for H22, H28, and H33. For longer pillars like H38 and
343H45, the CA was 88° ± 3°. CA hysteresis was carried out in a similar
344manner as CA measurements but by tilting the substrate 45°.
345Experiments were performed for the H15 substrate with and without
346bacterial containing droplets only, the CA hysteresis was 50° ± 8°. No
347significant differences in CA and CA hysteresis were observed
348between water droplets and the deposited bacterial containing
349droplets. CA values are shown in Table S1.
350Transmission light microscopy images of the dried patterns were
351collected with a Zeiss 510 confocal microscope equipped with ×10,
352×20, and ×40 air objectives. AFM measurements from the Supporting
353Information were obtained using a Bruker Multimode 8 and a
354Keysights 5500 instrument. Prior to AFM morphological analysis, a
355droplet of bacteria suspension (107 CFU/mL) was deposited onto an
356oxygen plasma-treated epoxy flat substrate and dried at room
357temperature. Estimated length (L) × width (Wa) in Table 1 are
358reported within a standard deviation of 10−25% obtained by
359measuring 15−20 cells per bacterial strains. These tests were carried
360out independently in triplicates. Top-view scanning electron
361microscopy (SEM) imaging was performed at 20 kV. Side-view
362SEM was recorded after fracturing the epoxy/glass with a diamond
363cutter at accelerating voltages of 3 kV. Prior to SEM inspection in a
364JSM-6610 JEOL system, all samples were coated with 20 nm of
365chromium to increase the electrical conductivity. SEM images are
366presented without fixation, which involves several solvent exchange
367steps39 preserving the bacterial footprints after droplet evaporation.
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372SEM images of some of the pillared arrays fabricated;
373AFM images of bacterial cells dried over flat epoxy

Figure 4. Representative SEM images of H15 pillared structures after
drying of bacterial suspensions, showing motile bacteria (B. subtilis
and E. coli) bridging the bent pillars. The concentration of the
different bacterial species is 107 CFU/mL.
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379 Video S1: droplet contour impalement (AVI)
380 Video S2: pillar bending by B. subtilis at the latest stages
381 of evaporation (AVI)
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