

Short-term responses of greenhouse gas emissions and ecosystem carbon fluxes to elevated ozone and N fertilization in a temperate grassland

Wang, Jinyang; Hayes, Felicity; Hill, Paul W.; Chadwick, David R.; Mills, Gina; Jones, Davey L.

Atmospheric Environment

DOI: 10.1016/j.atmosenv.2019.05.027

Published: 15/08/2019

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Wang, J., Hayes, F., Hill, P. W., Chadwick, D. R., Mills, G., & Jones, D. L. (2019). Short-term responses of greenhouse gas emissions and ecosystem carbon fluxes to elevated ozone and N fertilization in a temperate grassland. Atmospheric Environment, 211, 204-213. https://doi.org/10.1016/j.atmosenv.2019.05.027

Hawliau Cyffredinol / General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

. Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Short-term responses of greenhouse gas emissions and ecosystem carbon fluxes to
2	elevated ozone and N fertilization in a temperate grassland
3	Jinyang Wang ^{a,*} , Felicity Hayes ^b , David R. Chadwick ^a , Paul W. Hill ^a , Gina Mills ^b , Davey L.
4	Jones ^{a,c}
5	^a School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, Gwynedd
6	LL57 2UW, UK
7	^b Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, Gwynedd LL57 2UW,
8	UK
9	° UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA
10	6009, Australia
11	*Corresponding author.
12	E-mail address: jy.wang@bangor.ac.uk (J. Wang)
13	
14	
15	
16	

17 Abstract

18 Growing evidence suggests that tropospheric ozone has widespread effects on vegetation, 19 which can contribute to alter ecosystem carbon (C) dynamics and belowground processes. In 20 this study, we used intact soil mesocosms from a semi-improved grassland and investigated the 21 effects of elevated ozone, alone and in combination with nitrogen (N) fertilization on soil-borne 22 greenhouse gas emissions and ecosystem C fluxes. Ozone exposure under fully open-air field 23 conditions was occurred during the growing season. Across a one-year period, soil methane 24 (CH₄) and nitrous oxide (N₂O) emissions did not differ between treatments, but elevated ozone 25 significantly depressed soil CH₄ uptake by 14% during the growing season irrespective of N 26 fertilization. Elevated ozone resulted in a 15% reduction of net ecosystem exchange of carbon 27 dioxide, while N fertilization significantly increased ecosystem respiration during the growing 28 season. Aboveground biomass was unaffected by elevated ozone during the growing season 29 but significantly decreased by 17% during the non-growing season. At the end of the 30 experiment, soil mineral N content, net N mineralization and extracellular enzyme activities 31 (i.e., cellobiohydrolase and leucine aminopeptidase) were higher under elevated ozone than 32 ambient ozone. The short-term effect of single application of N fertilizer was primarily 33 responsibble for the lack of the interaction between elevated ozone and N fertilization. 34 Therefore, results of our short-term study suggest that ozone exposure may have negative 35 impacts on soil CH₄ uptake and C sequestration and contribute to accelerated rates of soil N-36 cycling.

- 37 Keywords: Air pollutant; Fertilizer management; Ground level O₃; Plant-soil feedbacks; Soil
- 38 nutrient cycling

40 **1. Introduction**

41 Owing to the global increase in ozone precursor emissions (i.e., nitrogen oxides, carbon 42 monoxide and volatile organic compounds), further increases of background ozone 43 concentrations in the Northern Hemisphere may occur over this century unless precursor 44 emissions are effectively controlled (Fowler et al., 2008; Meehl et al., 2007). Tropospheric 45 ozone is not only the third-most-important contributor to the human-induced greenhouse gas 46 (GHG) effect after carbon dioxide (CO₂) and methane (CH₄) (IPCC, 2007), but also the 47 important gaseous air pollutant in terms of its effects on net primary production, soil carbon (C) 48 sequestration, as well as other ecosystem services (Ainsworth et al., 2012; Sicard et al., 2017).

49 Ozone may have important indirect effects on global change through its effects on CH₄ 50 and nitrous oxide (N_2O) emissions. In the past decade, the effects of elevated ozone on CH₄ and 51 N₂O emissions, especially from agroecosystems, have been increasingly studied. For example, 52 studies in rice fields conducted under either free-air open conditions or the open-top chambers 53 (OTC) have consistently shown that CH₄ emissions were substantially less under elevated 54 ozone than under ambient or charcoal-filtered air conditions (Bhatia et al., 2011; Tang et al., 55 2015; Zheng et al., 2011). The impacts of elevated ozone on N₂O emissions have been 56 examined in a range of agricultural systems, including rice fields (Bhatia et al., 2011; Kou et 57 al., 2015; Tang et al., 2015), a soybean field (Decock et al., 2012), an annual grassland (Sánchez-Martín et al., 2017) and a meadow ecosystem (Kanerva et al., 2007). However, the 58 59 results from these experiments are conflicting, showing either positive (Sánchez-Martín et al.,

Kou et al., 2015; Tang et al., 2015) responses of N₂O emissions to ozone exposure. Such inconsistencies may stem from the complex impacts of other factors (e.g. exposure methodology, exposure duration and plant type etc.) on the responses of N₂O emissions to elevated ozone (Tang et al., 2015).

2017), negative (Bhatia et al., 2011; Kanerva et al., 2007) or no significant (Decock et al., 2012;

60

65 On the other hand, ozone may also have important indirect effects on global change through its effect on terrestrial C sequestration. At the global scale, Sitch et al. (2007) used a 66 67 global land C cycle model by including the ozone deposition effect and demonstrated that the 68 negative impact of elevated ozone on plant productivity may result in a significant suppression 69 of the global land-C sink. Such modeling studies (Sitch et al., 2007), however, are based on the 70 effects of ozone on photosynthetic rates and aboveground growth, and do not consider its effects 71 on soil C fluxes. Furthermore, studies now support the view that ozone may also have a 72 profound impact on belowground processes because of altered C allocation to the roots and 73 associated rhizosphere (Andersen, 2003; Fuhrer et al., 2016; Grantz et al., 2006; Wang et al., 74 2019). To better understand how increasing tropospheric ozone will affect global C fluxes, 75 studies addressing ozone effects on soil C fluxes are therefore required.

Net ecosystem exchange (NEE) of CO_2 represents the balance between gross ecosystem productivity (GEP) and ecosystem respiration (R_{eco}) (Niu et al., 2010). It has been suggested that directly measuring NEE can be used to evaluate the response of ecosystem C sequestration to climatic factors (Luyssaert et al., 2007). To date, divergent responses of ecosystem C fluxes

80 to elevated ozone have been reported in an annual grassland (Calvete-Sogo et al., 2014), 81 peatlands (Haapala et al., 2011; Toet et al., 2011), and a subalpine grassland (Volk et al., 2011). 82 These contrasting results of studies from different ecosystem types under distinct ozone 83 exposure conditions signify a limited understanding of ozone effects on ecosystem C fluxes. 84 Despite considerable awareness of the potential interaction between elevated ozone and 85 nitrogen (N) fertilization, very little attention has been paid to investigate their combined effects 86 on ecosystem production and function (Mills et al., 2016). In a seven-year study from a 87 subalpine grassland, plant biomass was positively affected by N addition but neither ozone nor 88 its interaction with N addition (Volk et al., 2014). In contrast, results of a recent meta-analysis 89 show that elevated ozone generally tends to exacerbate the negative impact of limiting N on 90 plant growth (Yendrek et al., 2013). Similarly, in an annual grassland ozone-induced reductions in N content and C/N ratio of plant biomass can be counterbalanced by N addition (Sánchez-91 92 Martín et al., 2017), despite the absence of their interaction on GHG emissions and ecosystem 93 C fluxes. Altogether, these conflicting results suggest that the direction and magnitude of the 94 combined effect of elevated ozone and N fertilization on ecosystem processes remains 95 unpredictable.

As the dominant form of agriculture by land area, grasslands represent over two thirds of utilized agricultural land area in the UK (Defra, 2016). Semi-natural vegetation is well known to be adversely affected by elevated ozone concentrations across Europe (Hayes et al., 2007; Mills et al., 2011). The aforementioned studies have mainly focused on croplands and annual

100	grasslands, but less is known about how elevated ozone and its interaction with N fertilization
101	affect ecosystem production and function (e.g. fodder production, trace gas emissions and soil
102	properties) in temperate grasslands (Wang et al., 2019). Our objectives for this study were
103	therefore (i) to determine the effects of elevated ozone on CH_4 and N_2O fluxes from a temperate
104	grassland in the UK throughout a one-year period; (ii) to investigate how elevated ozone would
105	affect ecosystem C fluxes during the growing season (i.e., ozone exposure period); and (iii) to
106	test whether the responses of these fluxes to elevated ozone would be interacted with N
107	fertilization. To this end, we carried out a field experiment with intact soil mesocosms from a
108	temperate semi-improved grassland and exposed them to elevated ozone for one growing
109	season using a ozone free-air controlled enrichment (O ₃ -FACE) platform.

110 **2. Materials and methods**

111 2.1 Experimental design

112 The experiment was conducted in 2017 in a O₃-FACE system at CEH Bangor Air Pollution 113 Facility, Abergwyngregyn, North Wales, UK (13 m asl, 53°15'N, 4°01'W). The climate at the 114 site is classed as temperate-oceanic with a mean annual soil temperature of 11°C at 10 cm depth 115 and a mean annual rainfall of 1250 mm. Experimental plots consisted of 16 intact soil mesocosms (31 cm diameter \times 25 cm deep), which were excavated in the early spring of 2017 116 from a semi-improved upland grassland located at the Henfaes Research Station, 117 118 Abergwyngregyn, North Wales, UK (53°13'N, 4°0'W). The upland site is located at approximately 270 m altitude with a mean growing season temperature of 10 °C and a mean 119

annual precipitation of 1200 mm. This semi-improved grassland site had not received any
fertilizer applications and is grazed at low stocking densities (1-2 ewes ha⁻¹). The vegetation
was classified as *Cynosurus cristatus-Centaurea nigra* grassland (NVC MG5; Rodwell, 1992).
The soil is classified as an Orthic Podzol (FAO, 1981). The soil of this site had a slightly acidic

124 pH of 5.39 ± 0.04 , total soil C of $8.45\pm0.09\%$, and total N of $0.81\pm0.01\%$.

125 Four treatments were established to determine the effects of elevated ozone, N fertilization 126 and their potential interaction. The low and high ozone treatments from the O₃-FACE system 127 as described below (hereafter called the ambient and elevated ozone treatments, respectively) 128 were used in this study. The exposure period of ozone was from May 26 to October 9, 2017. 129 Each quarter of these mesocosms was randomly assigned to one of the four combinations of ozone and N fertilizer treatments. Nitrogen was added as NH₄NO₃ at a rate of 100 kg N ha⁻¹ 130 131 dissolved in 200 mL of deionized water per mesocosm on May 26, 2017. For the control 132 treatment, an equal amount of deionized water was added. To ensure all other macro-nutrients 133 were not limiting pasture growth, and that any nutrient response was the result of the N addition, 134 calcium superphosphate for P and potassium chloride for K were also used and applied to all treatments at a rate of 10 and 50 kg ha⁻¹, respectively. The fertilizer addition rates were based 135 136 on national guidelines.

137 The O₃-FACE system was established in the spring of 2014, consisting of nine rings of 4 138 m diameter as described previously (Wang et al., 2019). Breifly, the rings were arranged in a 139 replicated 3×3 Latin square with 10 m between the centers of each ring. Low (ambient air)

140	and high ozone (ambient air + 20 ppb) treatments were used in this study. Ozone was generated
141	from oxygen concentrated from air (Integra 10, SeQual) using a G11 ozone generator (Pacific
142	Ozone). Small fans (200 mm, Explair) were used to push the ozone through the delivery pipe
143	(65 mm, with 3 mm holes every 10 cm). Ozone delivery was achieved via computer controlled
144	(LabView version 2012) solenoid valves operating using pulse width modulation. Wind speed
145	was monitored continuously (WindSonic, Gill Instruments Ltd, UK) and was used to
146	instantaneously adjust solenoid operation and thus ozone delivery. Ozone release was reduced
147	at wind speeds below 16 m s ^{-1} and did not occur when wind speeds fell below 2 m s ^{-1} . At very
148	high wind speeds the ozone concentrations may not be well controlled and thus did not reach
149	the target maximum concentrations. Despite this, we still got elevated ozone with the 'high'
150	ozone treatment compared to the low ozone treatment as the solenoid valves were <1 m from
151	the O ₃ -FACE rings, the response time of ozone delivery to track windspeed was fast. Ozone
152	was sampled adjacent to the plants in each ring at a height of 30 cm for approximately 3.5 min
153	in every 30-min using an ozone analyzer (ThermoScientific, Model 49i, Reading, UK).

154 2.2 Soil GHG emissions and ecosystem C fluxes

Soil GHG fluxes were measured throughout the experimental year. Gas samples were collected by placing a handmade opaque chamber over the intact soil mesocosms and sealing with a wide rubber band to ensure that the headspace inside the chamber was air-tight. Three gas samples were taken within a 40-min enclosure time and immediately transferred into pre-evacuated 20mL screw-cap vials (QUMA Elektronik & Analytik GmbH, Germany). Gas samples were

160	stored under positive pressure and analyzed using a Perkin Elmer Clarus 580 gas
161	chromatograph equipped with a Turbo Matrix 110 autosampler (PerkinElmer Inc., Shelton, CT,
162	USA). CH ₄ and CO ₂ were detected with a flame ionization detector connected to a methanizer
163	and N_2O with a ^{63}Ni electron-capture detector. Three standard gases were used for calibration
164	with concentrations of 1.42, 2.92, and 10.4 ppm CH_4 ; 258, 496 and 1276 ppm CO_2 ; and 308,
165	641, and 1500 ppb N_2O (BOC Gases Ltd, Guildford, UK). Gas fluxes were calculated from the
166	concentration change in the chamber versus time and were adjusted for air temperature and
167	atmospheric pressure at the time of sampling. The annual fluxes of these gases were
168	approximated by applying the trapezoid rule assuming constant flux rates per day.

169 Ecosystem C fluxes were measured during the growing season using a static-chamber 170 method, which has been used and validated in previous studies (Niu et al., 2010; Volk et al., 171 2011). The measurements were made from June to September in 2017 and was taken between 172 8:00 and 11:00 am on sunny days. If it is rained or cloudy on a scheduled sampling date, we 173 postponed the measurements and selected the next sunny day. In total, complete sets of 174 measurements were made seven times during the growing season. A portable infrared gas 175 analyzer (EGM-4 Environmental Gas Monitor for CO₂; PP Systems Ltd, Hitchin, UK), which 176 was attached to a handmade transparent plastic chamber, was employed to sample and measure 177 CO₂ concentration ([CO₂]) in situ as described elsewhere (Williamson et al., 2016). A small fan 178 created moderate turbulence inside the chamber to facilitate air mixing. A temperature probe 179 was also installed inside to determine the chamber air temperature. During the measurement, 180 the chamber was tightly sealed to the rim of the mesocosm using a cell foam band. The chamber

181 [CO₂] were consecutively recorded at 20 s intervals during a 2-min measurement period per 182 mesocosm. The chamber $[CO_2]$ did not drop below 340 ppm or rise above 500 ppm. After the 183 net ecosystem exchange (NEE) of CO_2 measurement, the chambers were opened to allow the 184 chamber [CO₂] to return to the ambient atmospheric concentration. Subsequently, the chamber 185 was again placed over the mesocosm and covered with a shade cloth, and the $[CO_2]$ 186 measurement was repeated over a 2-min period (i.e., dark respiration). Due to the light removal 187 inside the chamber, the data of the chamber $[CO_2]$ were considered to represent ecosystem 188 respiration (R_{eco}). To eliminate the disturbance effect during measurement, the first 20 s of data 189 was omitted in subsequent analysis to allow for initial adjustment of the chamber [CO₂]. The 190 quality of the measurement was considered acceptable if a linear regression of [CO₂] versus time during the following 100 s yielded $R^2 \ge 0.9$, indicating strictly linear changes in the 191 192 chamber [CO₂]. Gross ecosystem productivity (GEP) was computed by the sum of absolute 193 values of NEE and R_{eco} . By convention, negative NEE values refer net C uptake by the 194 ecosystem, while positive NEE values represent net C loss from the ecosystem.

195 2.3 Soil abiotic and biotic properties and plant analysis

196 Air temperature and rainfall were recorded hourly on site with an automated weather station.

197 Parallel to gas sampling and ecosystem C flux measurements, soil temperature and volumetric

- 198 water content (v/v, %) at a depth of 10 cm in each mesocosm were measured by a handheld
- 199 thermometer (HI98509 Checktemp®1; Hanna Instruments Ltd, Leighton Buzzard, UK) and
- 200 moisture sensor (ML3 ThetaProbe; Delta-T, Cambridge, UK), respectively. Water-filled pore

201 space (WFPS) was calculated by dividing volumetric water content by total porosity (Linn and 202 Doran, 1984). Total porosity was calculated as $[1-(bulk density/particle density)] \times 100\%$ and 203 using a particle density of 2.65 g cm⁻³.

204	In May 2018, two soil cores (10-cm deep; 5-cm diameter) were collected from each
205	mesocosm. Fresh soils were passed through a 2-mm sieve to remove visible plant material and
206	small stones, and then placed at 4 °C to await analysis. Soil water content was determined
207	gravimetrically by drying soil in an oven (24 h, 105 °C). Available soil C and N pools were
208	quantified by extracting soil subsamples with 0.5 M K ₂ SO ₄ (1:5 w/v). The concentrations of
209	ammonium (NH ₄ ⁺) and nitrate (NO ₃ ⁻) in the extracts were determined via the colorimetric
210	salicylate procedure of Mulvaney (1996) and the vanadate method of Miranda et al. (2001),
211	respectively. For soil microbial biomass, additional subsamples were fumigated for 24 h with
212	chloroform and similarly extracted with 0.5 M K ₂ SO ₄ (1:5 w/v) (Vance et al., 1987). Dissolved
213	organic C (DOC) and total dissolved N (TDN) in the 0.5 M K ₂ SO ₄ extracts (fumigation and
214	non-fumigation samples) were quantified using a Multi N/C 2100 TOC analyzer (AnalytikJena,
215	Jena, Germany). Dissolved organic N (DON) was calculated as the difference between TDN
216	and soil mineral N. Microbial biomass C and N concentrations were corrected using correction
217	factors of 0.45 for C and 0.54 for N (Brookes et al., 1985; Wu et al., 1990). Total C (TC) and
218	N (TN) contents of ground soil and plant samples were determined with a TruSpec [®] elemental
219	analyzer (Leco Corp., St Joseph, MI). Net N mineralization and nitrification rates were
220	determined by the aerobic incubation of soil samples for 14 days at 10 °C in the dark (Hart et
221	al., 1994), followed by extraction with 0.5 M K ₂ SO ₄ and analyzing for soil mineral N as

described above. To assess the effects of elevated ozone and N fertilization on hydrolytic
extracellular enzyme activities, the potential activities of four extracellular enzymes: βglucosidase, cellobiohydrolase, N-acetyl-glucosaminidase and leucine aminopeptidase were
measured according to the fluorometric protocol (DeForest, 2009; Saiya-Cork et al., 2002).

Plant biomass was measured twice by cutting all plants at 2 cm above the ground at the end of growing season (early November of 2017) and in May 2018, respectively. For root biomass measurement, two additional soil cores (10-cm deep; 5-cm diameter) was sampled from each mesocosm. The harvested soil cores were rinsed thoroughly and passed through a 0.5-mm aperture sieve and the root fragments remaining in the sieve recovered. All plant samples were oven-dried at 65 °C and weighed to determine their dry biomass.

232 2.4 Statistical analysis

233 Each parameter was tested for normal distribution (using Shapiro-Wilk's test) and equality of 234 variance (using Levene's test), and parameters with non-normal distributions or unequal 235 variances were either logarithmically or square-root transformed when necessary. For analysis 236 of time-series data (i.e., repeated measurements of soil gas fluxes and soil factors), we used 237 linear mixed effects models (LME, package LME4; Bates et al. 2014) to test for the fixed 238 effects of ozone, N fertilization and their possible interaction. The spatial replication and time 239 (sampling days) were included as random effects. If the Akaike's information criterion (AIC) 240 showed an improvement in the LME models, we included a first-order temporal autoregressive 241 function to account for the decreasing correlation of the measurements with increasing time

242	and/or a variance function (varIdent) to account for heteroscedasticity in the fixed-factor
243	variances (Crawley, 2012). We used linear mixed effects models to test the fixed effects of
244	ozone, N fertilization and their interaction on soil properties, extracellular enzyme activities
245	and plant biomass. Multiple comparisons were made using the Tukey HSD test.
246	To assess the relationships between soil GHG emissions or ecosystem C fluxes and soil
247	factors (temperature and WFPS), we used the mean values of the four replicate mesocosms on
248	each sampling day, and conducted Pearson correlation tests over the entire sampling period. In
249	all statistical tests, differences among treatments were considered significant at $P \le 0.05$ and
250	marginally significant at $P \le 0.09$. Statistical analyses were performed in R version 3.2.2 (R
251	Development Core Team, 2015).

Figure 1. Daily maximum and minimum air temperature and daily rainfall (A) over the period of May 25, 2017 to May 31, 2018, daily ozone concentration (B) and AOT40 during daylight hours (C) from ambient and elevated ozone treatments in the 2017 growing season. Values represent mean \pm SEM (*n* = 3).

257 **3. Results**

252

258 3.1 Climatic conditions and ozone exposure

259 Over the experimental period, air temperature ranged from -5 °C to 30 °C, with an annual

260 average of 11 °C (Fig. 1A). The total rainfall was 324 mm, of which only 13% occurred during

261	the growing season (May-September 2017). Intact soil mesocosms were exposed to ozone in
262	the field from May 25 to October 9, 2017, with a total of 136 days effective exposure (Fig. 1B).
263	During the exposure period, the 24-h mean ozone concentrations were 22.9±0.6 ppb and
264	54.9±6.1 ppb in the ambient and elevated ozone treatments, respectively. As shown in Fig. 1C,
265	AOT40 (accumulated ozone exposure over a threshold of 40 ppb) in the elevated ozone
266	treatment was 31.9±10.1 ppm.h being markedly higher than that (< 0.5 ppm.h) in the ambient
267	treatment.

268 3.2 Seasonal variability of soil microclimate and GHG emissions

269	Soil temperature followed a clear seasonal pattern with an annual mean of 13.7 °C across all
270	treatments (Fig. 2A). Soil temperatures were highest in July 2017 and lowest during January
271	2018. Soil WFPS varied seasonally in response to rainfall and ranged from 12.6% to 87.6%
272	(Fig. 2B). Soil WFPS periodically increased following summer rainfall. Soil water contents
273	steadily increased during the winter season when a large proportion of the annual rainfall
274	occurred. Neither soil temperature nor WFPS differed between treatments (all $P > 0.1$).

Figure 2. Soil temperature (A), water-filled pore space (WFPS) (B) at a depth of 10 cm, and year-round fluxes of CH₄ (C), N₂O (D) and night-time CO₂ (E) from a temperate semi-improved grassland exposed to different levels of ozone and N. The averages of soil microclimate parameters and gas fluxes over the experimental year are shown in the right panel. Values represent mean±SEM (n = 4). The horizontal dashed line marks the zero flux. Grey shading

281 marks the ozone exposure period during the growing season. Results from the linear mixed 282 effects model at $P \le 0.05$ are shown.

283	This semi-improved grassland was a small sink of atmospheric CH ₄ . Across all treatments,
284	CH_4 fluxes ranged from –84.1 to 23.9 μg C m^{-2} h^{-1} (Fig. 2C). During the phase of ozone
285	exposure, CH ₄ uptake rates were significantly affected by elevated ozone with a 14% reduction
286	(P = 0.043) regardless of N fertilizer. A marginally significant interaction between elevated
287	ozone and N fertilizer was detected during the winter season ($P = 0.077$). In parallel with high
288	soil WFPS, CH ₄ fluxes tended to be high and occasionally positive during the winter season.
289	Overall, CH ₄ fluxes were negatively correlated with soil temperature and positively correlated
290	with soil WFPS ($r = -0.41$ and 0.51, both $P < 0.001$; Table 1), indicative of an increase in CH ₄
291	uptake rates with an increase in soil temperature but a decrease of that with an increase in soil
292	water content. Because of the large spatial and temporal variations, neither elevated ozone nor
293	N fertilization had a significant effect on CH4 emissions throughout the experimental period.
294	As with CH_4 , N_2O emissions were temporally and spatially variable (Fig. 2D). Across all
295	treatments, N ₂ O fluxes ranged from –11.6 to 33.3 μg N m ⁻² h ⁻¹ . On a few occasions, fluxes
296	were negative indicating the occurrence of N_2O consumption by the soil. In contrast to CH_4 ,
297	N_2O fluxes correlated positively with soil temperature and negatively with soil WFPS ($r = 0.36$
298	and -0.33 , both $P < 0.001$; Table 1). For both seasons, neither elevated ozone nor N fertilizer

affected N₂O emissions.

300 **Table 1** Pearson correlation coefficients between greenhouse gas (CH₄, N₂O and night-time 301 CO₂) fluxes or ecosystem C fluxes and soil environmental factors (soil temperature and water-302 filled pore space (WFPS) at a depth of 10 cm). NEE, net ecosystem exchange of CO₂; R_{eco} , 303 ecosystem respiration; GEP, gross ecosystem productivity.

Parameter	n	Soil temperature	WFPS	
Greenhouse gas fluxes				
CH_4	123	-0.41***	0.51***	
N_2O	123	0.36***	-0.33***	
Night-time CO ₂	123	0.69***	-0.53***	
Ecosystem C fluxes				
NEE	28	0.04	-0.67***	
$R_{ m eco}$	28	0.45^{*}	0.44^{*}	
GEP	28	0.26	0.67^{***}	

304 *, **, *** Values are significantly different from zero at P < 0.05, 0.01, and 0.001, respectively

305	The variation in seasonal night-time CO ₂ fluxes was more pronounced as compared with
306	CH ₄ and N ₂ O emissions (Fig. 2E). Greatest fluxes occurred during the growing season despite
307	a few occasions when small fluctuations occurred. Lowest emissions occurred after the autumn
308	harvest of aboveground biomass in 2017 and remained relatively stable throughout the winter
309	season. In addition, night-time CO ₂ fluxes were best correlated with soil temperature and WFPS
310	($r = 0.69$ and -0.53 , both $P < 0.001$; Table 1). Overall, night-time CO ₂ fluxes were negatively
311	and positively correlated with CH ₄ and N ₂ O emissions, respectively ($r = -0.41$ and 0.46, both
312	<i>P</i> < 0.001).

313 *3.3 Seasonal variability of ecosystem C fluxes*

During the growing season, ecosystem C fluxes were measured seven times in total (Fig. 3). Marked fluctuations in ecosystem C fluxes occurred in July 2017, which may have resulted from substantial variations in soil WFPS (Fig. 3). Ecosystem C fluxes were strongly correlated with soil WFPS (r = 0.44 to 0.67, P < 0.05-0.001; Table 1), while only the seasonal pattern of R_{eco} had a positive relationship with soil temperature (r = 0.45, P < 0.05).

Figure 3 Soil temperature (A), water-filled pore space (WFPS) (B) at a depth of 10 cm, net ecosystem carbon exchange of CO₂ (NEE, C), ecosystem respiration (R_{eco} , D) and gross ecosystem productivity (GEP, E) during the growing season from a temperate semi-improved

323 grassland exposed to different levels of ozone and N. Values represent mean \pm SEM (n = 4).

324 Results from the linear mixed effects model at $P \le 0.05$ are shown.

Across the growing season, elevated ozone significantly decreased NEE (P = 0.017), whereas no effects of N fertilization (P = 0.823) or its interaction with elevated ozone (P = 0.161) were detected (Fig. 3C). Elevated ozone resulted in a 15% reduction of seasonal mean NEE. By contrast, R_{eco} was significantly increased by N fertilization (P = 0.028) but not by elevated ozone or their interaction (P = 0.315 and 0.155; Fig. 3D). Irrespective of ozone exposure, N fertilization significantly increased mean R_{eco} by 11%. Unlike NEE and R_{eco} , none of elevated ozone, N fertilization, or their interaction affected GEP (Fig. 3E).

Figure 4 Aboveground biomass (A) and root biomass (B) in a temperate semi-improved grassland exposed to different levels of ozone and N. Values represent mean±SEM (n = 4). Results from the linear mixed effects model at $P \le 0.05$ are shown.

336 *3.4 Aboveground and root biomass*

337 Harvested aboveground biomass differed significantly between cut events (P < 0.001; Fig. 4A). 338 In the 2017 autumn harvest, aboveground biomass from the N fertilized treatment (mean: 339 703±23 g DM m⁻²) was higher than from the control treatment (mean: 515±20 g DM m⁻², P <340 0.001), but there was no difference between N treatments at the 2018 spring harvest (P = 0.736). 341 Aboveground biomass was affected by elevated ozone in the 2018 spring harvest but not in the 342 2017 autumn harvest. In the 2018 spring harvest, above ground biomass decreased from 238 ± 12 g DM m⁻² in the ambient ozone treatment to 197 ± 13 g DM m⁻² in the elevated ozone treatment 343 (P = 0.03). The average root biomass was 1450 g DM m⁻² and did not differ between either 344 345 elevated ozone or N fertilization treatments (Fig. 4B).

346 3.5 Soil properties, net N-cycling rates and enzyme activities

347 Towards the end of the experiment, neither elevated ozone or N fertilization nor their interaction 348 affected NH4⁺ concentrations, DON or microbial biomass C (Table 2). Nitrate concentrations 349 and microbial biomass N were higher in the elevated ozone plots than in the ambient ozone 350 plots (P = 0.003 and 0.012, respectively), but there was no difference for both parameters 351 between control and N-fertilized plots. A marginally significant interaction between ozone and N fertilizer was detected for DOC (P = 0.081). Microbial biomass C:N ratio was lower in the 352 353 elevated ozone plots than in the ambient ozone plots (P = 0.018). Net N mineralization, which 354 is often used as an index of plant available mineral N, was higher in the elevated ozone 355 treatment than in the ambient ozone treatment (P = 0.056) but did not differ between the control and N fertilized treatments. Further, net nitrification was higher in the elevated ozone than the ambient ozone treatment (P = 0.011).

358	Potential activities in two of studied soil extracellular enzymes were not affected by
359	elevated ozone, N fertilization or their interaction (Table 2). Elevated ozone and N fertilization
360	significantly increased cellobiohydrolase activity by 26% and 73%, respectively ($P = 0.04$ and
361	0.003). Elevated ozone also marginally stimulated leucine aminopeptidase activity by 15% as
362	compared to under ambient ozone ($P = 0.069$).

363 **4. Discussion**

364 In the past decade, many conclusions about the impacts of elvated ozone have been drawn from 365 croplands (Bhatia et al., 2011; Decock et al., 2012; Kou et al., 2015; Tang et al., 2015; Zheng et al., 2011), peatlands (Toet et al., 2017, 2011) and subalpine grasslands (Volk et al., 2011). 366 367 The effects of elevated ozone and N fertilization alone or in combination on GHG emissions 368 and ecosystem C fluxes have been rarely reported, especially in temperate grasslands (Sánchez-Martín et al., 2017; Wang et al., 2019). This is to our knowledge the first study to report how 369 370 GHG emissions, coupled with ecosystem C fluxes, in response to elevated ozone and N 371 fertilization alone or in combination from a temperate semi-improved grassland under fully 372 open-air field conditions.

373 Table 2 Soil properties, net N-cycling rates and potential enzyme activities measured in May

374 2018 from a temperate semi-improved grassland exposed to different levels of ozone and N.

	Ambient ozone			Elevated ozor					
	Control	+Ni	trogen	Control		+ Ni	trogen		
$\mathrm{NH_4^+}(\mathrm{mg}~\mathrm{N}~\mathrm{kg}^{-1})$	4.48±0.54	6.25	±0.54	5.30±0.27		±0.90			
NO_{3}^{-} (mg N kg ⁻¹)	$0.43 \pm 0.03^{B*}$	0.46	±0.21 ^B	$1.28{\pm}0.26^{A}$		1.01	01±0.50 ^A		
DOC (mg C kg ⁻¹)	$336\pm13^{\dagger}$	295±	:14	314±11		318±8			
DON (mg N kg ⁻¹)	59.7±1.8	54.6	±3.1	55.6±2.4		57.1	± 1.0		
Microbial biomass									
C (mg C kg ⁻¹)	2445±67	2371	±103	2548±172		2461	±73		
Microbial biomass									
N (mg N kg ^{-1})	$(mg N kg^{-1})$ 227±3 ^B			259±24 ^A	253±9 ^A				
Microbial biomass	Microbial biomass								
C:N	10.8±0.3 ^A 10.		±0.3 ^A	9.9±0.3 ^B		9.7 ± 0.1^{B}			
Net N	[
mineralization									
(mg N kg ⁻¹ day ⁻¹)	$-0.03\pm0.11^{\ddagger}$	-0.1	5±0.09	0.22±0.15		0.13	±0.15		
Net nitrification									
(mg N kg ⁻¹ day ⁻¹)	$kg^{-1} day^{-1}$) 0.04±0.04 ^B 0.06		±0.09 ^B	0.33 ± 0.06^{A}	0.19 ± 0.08^{A}				
ß-glucosidase									
$(nmol g^{-1} h^{-1})$	$p = 1 g^{-1} h^{-1}$) 126±24		:15	113±2	132±16		-16		
Cellobiohydrolase									
$(nmol g^{-1} h^{-1})$	$16.7{\pm}2.8^{\text{Bb}\$}$	$27.1{\pm}5.7^{Ba}$		$19.7{\pm}3.0^{\text{Ab}}$	36.0 ± 3.5^{Aa}		$\pm 3.5^{Aa}$		
N-acetyl-glucosami	nidase								
$(nmol g^{-1} h^{-1})$	83.6±6	.2	94.3±7.5		83.5±	±7.8	84.3±9.9		
Leucine aminopeptidase									
$(nmol g^{-1} h^{-1})$	nol $g^{-1} h^{-1}$) 42.7±3.4 [‡] 37.8±1.				45.1±	±2.3	47.1±3.8		

375 Values represent mean
$$\pm$$
SEM ($n = 4$).

^{*} Values with different uppercase letters indicate significant differences between ambient and

elevated ozone treatments (linear mixed effects model with the Tukey HSD test at $P \le 0.05$)

378 [†] Marginally significant interaction between ozone and N fertilized treatments (linear mixed

379 effects model at $P \le 0.09$)

380 [‡] Marginally significant effect of elevated ozone (linear mixed effects model at $P \le 0.09$)

- 381 [§] Values with different lowercase letters indicate significant differences between control and
- 382 N-fertilized treatments (linear mixed effects model with the Tukey HSD test at $P \le 0.05$)

383 4.1 Response of CH₄ fluxes to elevated ozone and N fertilization

384 The fluxes of CH₄ from our studied grasslands were generally negative throughout the experimental period, which agrees with the argument that temperate grassland soils generally 385 act as an atmospheric CH₄ sink (Hörtnagl et al., 2018; Smith et al., 2000). We found that 386 387 elevated ozone tended to decrease the magnitude of CH₄ uptake (a slightly significant effect) 388 compared to the ambient plots during the growing season but not the winter period, suggesting 389 a negative impact on the CH₄ uptake capacity. This is unlikely to be related to a direct effect of 390 ozone on soil methanogens and methanotrophs since ozone does not penetrate far into the soil 391 (Blum and Tingey, 1977; Toet et al., 2009). The reduced CH₄ uptake during the growing season 392 could be possibly due to altered methanotroph activity at elevated ozone. Across the one-year 393 period CH₄ emissions were not affected by elevated ozone, which agrees with findings of 394 several studies under OTC conditions (Kanerva et al., 2007; Sánchez-Martín et al., 2017). For 395 example, studies in an annual Mediterranean grassland reveal that ozone exposure for a short-396 term period (49 days) did not affect CH₄ emissions (Sánchez-Martín et al., 2017). Similarly, the three-year field study of Kanerva et al. (2007) reported no overall effect of ozone exposure 397 398 on CH₄ fluxes from ground-planted meadow mesocosms. By contrast, studies in rice fields 399 under either OTC or O₃-FACE conditions show that elevated ozone can decrease CH₄ emissions 400 during the rice growing season (Bhatia et al., 2011; Tang et al., 2015; Zhang et al., 2016). Either 401 a negative or transient effect of elevated ozone on CH₄ emissions from peatlands is also reported
402 (Mörsky et al., 2008; Toet et al., 2011).

403	Although it has been suggested that N addition decreases CH4 uptake in upland ecosystems
404	(Liu and Greaver, 2009), our results show that neither N fertilization nor its interaction with
405	elevated ozone affected CH4 uptake. This is supported by the findings of a meta-analysis where
406	they found that soil CH ₄ uptake in natural or with short-term N fertilization sites showed a non-
407	significant change when N is added (Aronson and Helliker, 2010). Thus, the lack of CH4 uptake
408	in response to N addition could be attributed to a one-time application of N fertilizer into this
409	semi-improved grassland. On the other hand, our result contradicts with their finding that N
410	addition effects on soil CH ₄ uptake may be switched from stimulation to inhibition when N
411	addition exceeds a threshold value of 100 kg N ha ⁻¹ yr ⁻¹ (Aronson and Helliker, 2010). This
412	implies that a shift from stimulation to inhibition of soil CH4 uptake might be related to not only
413	the amount of N added but also the inherent soil N status of the studied system. We are aware
414	of only one previous field study where they examined the interaction effect between elevated
415	ozone and N fertilization on GHG emissions from a simplified annual grassland (Sánchez-
416	Martín et al., 2017). Consistent with our findings, the response of CH ₄ emission to ozone
417	exposure from their experiment site was not N fertilization dependent. While we found either
418	elevated ozone or N fertilization may have a negligible effect on soil CH4 uptake in this
419	temperate grassland, future multiple-year studies are needed to reveal the inter-annual
420	variability and its underlying mechanisms.

422	This semi-improved grassland acted as a source of N ₂ O, although negative N ₂ O fluxes were
423	recorded occasionally, especially during the winter season (Fig. 2D). Our results showed that
424	neither elevated ozone or N fertilization nor their interaction had an appreciable effect on N2O
425	emission over the experimental year. The lack of responsiveness of N_2O emissions to N addition
426	suggests that a one-time application of 100 kg N ha ⁻¹ (the first fertilizer N application to this
427	grassland for >25 years) at the beginning of the experiment would not have been sufficient to
428	produce significant N ₂ O emissions in this semi-improved grassland. Annual N ₂ O emissions
429	from this study were much higher (0.18–0.34 kg N ha ⁻¹ yr ⁻¹) than that (ca. 0.06 kg N ha ⁻¹ yr ⁻¹)
430	from the field study of Marsden et al. (2018) in the same grassland. This is likely due to the
431	differences in microclimate between the two study sites. In their study, the large amount of N
432	applied in the form of sheep urine (ca. 2000 kg N ha ⁻¹ yr ⁻¹) had no marked effect on N ₂ O fluxes
433	(Marsden et al., 2018), which partly supports our finding. Furthermore, N fertilization
434	significantly increased aboveground biomass during the growing season, but had minor
435	resultant effects on plant yield and soil characteristics at the end of the experimental year (Fig.
436	4A; Table 2). Therefore, these findings collectively point to the consumption of applied N
437	fertilizer tightly coupled to plant uptake and microbial immobilization in this semi-improved
438	grassland.

439 To date, the divergent responses of N₂O fluxes to elevated ozone have been reported. For
440 example, some studies showed a decrease in N₂O emissions under elevated ozone (Bhatia et al.,

441	2011; Kou et al., 2015), other reported stimulated emissions (Sánchez-Martín et al., 2017) or
442	no marked effects (Decock et al., 2012; Kanerva et al., 2007) compared to the ambient ozone
443	concentrations. As soil nitrification and denitrification processes are major pathways of N_2O
444	emissions, changes in the substrate availability due to elevated ozone are expected to alter N_2O
445	emissions. We found that elevated ozone resulted in a significant decline of aboveground
446	biomass at the 2018 spring harvest, which may, in turn, contribute to accelerating soil N-cycling
447	(i.e., a build-up of soil nitrate, higher rates of net N mineralization and nitrification; Table 2).
448	The unchanged N ₂ O emissions but stimulated N-cycling processes could be explained by the
449	low intensity of soil N2O emission and/or other pathways being altered which might be
450	primarily responsible for N loss from this system. Indeed, in a soybean agroecosystem under
451	fully open-air conditions, Decock et al. (2012) also demonstrated that elevated ozone stimulated
452	soil N-cycling but had no effect on soil N2O emissions. In contrast, in an annual Mediterranean
453	grassland, ozone exposure reduced the fertilization effect of N on plant growth and thereby
454	resulted in a significant reduction of soil N2O emissions (Sánchez-Martín et al., 2017). Clearly,
455	this was not the case for our study because of the absence of an interaction between elevated
456	ozone and N fertilization on plant yield, especially during the growing season (Fig. 4).
457	Nevertheless, it should be noted that the single N application in our study might counterbalance
458	the negative impact of ozone exposure on plant growth during the growing season.

459 4.3 Effects of elevated ozone and N fertilization on ecosystem C fluxes

460	A growing number of studies have documented the detrimental effects of elevated ozone on
461	grassland plant species, ranging from visible injury of leaves to substantially decreased
462	productivity (Hayes et al., 2007; Volk et al., 2006). In our study, elevated ozone resulted in a
463	small reduction (3.2% for the control plots) but a significant reduction of 17.1% in above ground
464	biomass during the growing and non-growing seasons, respectively (Fig. 4A). During the
465	growing season, elevated ozone caused a significant reduction of NEE (14.9%), which is
466	consistent with other studies in an annual temperate grassland (Calvete-Sogo et al., 2014;
467	Sánchez-Martín et al., 2017) and peatland microcosms (Haapala et al., 2011). Because of the
468	unresponsiveness of total aboveground biomass, the reduced NEE by elevated ozone at the
469	canopy level is likely due to the changed photosynthetic and/or respiration rates (Andersen,
470	2003). We noted that these semi-improved grassland mesocosms had a higher growth rate, in
471	terms of stimulated fluxes of trace gas and night-time CO ₂ (Fig. 2C-E), under the O ₃ -FACE
472	field condition than <i>in situ</i> on the upland site (Marsden et al., 2018). Thus, our results support
473	the view that plant communities with fast-growing rates (i.e., annual and newly established
474	systems) would be more responsive to elevated ozone than these perennial and well established
475	systems that are characterized by slower growth rates (Grantz et al., 2006; Grime, 2000). In
476	contrast, we are aware of a transient effect of elevated ozone on NEE in peatlands (Haapala et
477	al., 2011; Niemi et al., 2002; Rinnan et al., 2003). On a subalpine grassland, Volk et al. (2011)
478	found no effect of elevated ozone on NEE measured during the third growing season. Taken
479	together, our results and those of previous findings suggest that further long-term investigations
480	are warranted to evaluate the inter-annual response of NEE to elevated ozone in grasslands.

481	Ecosystem respiration as the sum of the respiration from plants and heterotrophs was not
482	affected by elevated ozone during the growing season (Figs. 2E and 3D). This is in agreement
483	with findings from other studies in subalpine and annual grasslands (Calvete-Sogo et al., 2014;
484	Volk et al., 2011). Similarly, studies from peatlands suggested no effect of elevated ozone on
485	ecosystem respiration, especially during the first experimental year (Haapala et al., 2011;
486	Kanerva et al., 2007; Toet et al., 2011). In our study, the unchanged ecosystem respiration might
487	be due to the response of heterotrophic respiration to elevated ozone which was unresponsive
488	or masked by the larger proportion of plant respiration (Volk et al., 2011). As expected,
489	stimulation of plant productivity provides more substrate for plant and soil respiration, leading
490	to increases in ecosystem respiration following N fertilization (Figs. 2E and 3D). The positive
491	response of ecosystem respiration to N addition is consistent with that in a subalpine grassland
492	(Volk et al., 2011). In contrast, the lack of N effects on ecosystem respiration in an annual
493	grassland was attributed to the fact that the low N doses were only enough to meet plant N
494	demand but had no effect on the yield or gas exchange rates (Calvete-Sogo et al., 2014). Since
495	the assimilation processes was primarily N-limited, we expected to see the positive response of
496	GEP to N fertilization in this semi-improved grassland. However, the differential responses of
497	NEE and ecosystem respiration to elevated ozone and N fertilization resulted in non-significant
498	changes in GEP, suggesting N fertilization counterbalanced the effect of elevated ozone on
499	GEP in our studied grassland.

500 4.4 Short-term effects of elevated ozone and N fertilization on belowground processes

501	While the intact grassland mesocosms were exposed to ozone only for one growing season, our
502	results indeed showed that soil N dynamics were altered at the end of the experimental year.
503	Increased soil mineral N availability under elevated ozone may be due to the significant
504	reduction of aboveground biomass during the non-growing season, which may have contributed
505	to reduced plant N uptake. On the other hand, we found that the activities of cellobiohydrolase
506	and leucine aminopeptidase were higher in the elevated ozone plots than in the ambient plots,
507	suggesting that elevated ozone stimulates microbes in the soil to produce enzymes that degrade
508	cellulose and peptide-containing moieties. Parallel to the marginal increase of net N
509	mineralization, our results suggest an increased soil N mineralization by elevated ozone in this
510	grassland soil. Under elevated ozone, the unchanged soil NH4 ⁺ is likely related to increased
511	microbial N immobilization, whereas stimulated soil net nitrification may have resulted in an
512	accumulation of soil NO ₃ ⁻ . Consistent with our findings, other studies in the O ₃ -FACE systems
513	have reported the increased soil mineral N availability under elevated ozone in both soybean
514	and wheat fields (He et al., 2014; Wu et al., 2016). Note that our soil sampling was carried out
515	in early spring of 2018, which probably contributes to masking the possible N fertilization effect
516	or its interaction with ozone, especially during the growing season. As soil mineral N
517	availability is mainly regulated by plant uptake and microbial-mediated N transformation
518	processes (Schimel and Bennett, 2004), our results collectively point to a positive feedback of
519	soil N transformation in this semi-improved grassland to short-term of ozone exposure.

5. Conclusions

521 To our knowledge, this study is the first to report the effects of elevated ozone on GHG and 522 ecosystem C fluxes in temperate grasslands under fully open-air field conditions. Our results 523 demonstrate that elevated ozone may reduce atmospheric CH₄ uptake and net C uptake during 524 the growing season in this semi-improved grassland. Given that the reported responses of CH_4 525 emission and NEE to elevated ozone are still inconsistent and controversial yet, we speculate 526 that the depressed CH₄ uptake under elevated ozone could be transient, which warrants further 527 investigation. The lack of any interaction between elevated ozone and N fertilization is likely 528 due to the one-time N fertilization at the beginning of experiment, which probably was not 529 synchronized with the occurrence of ozone injury of the plants. Further, our results suggest that 530 short-term of ozone treatment may have contributed to accelerated soil N cycling in this 531 grassland. Further investigations are warranted to examine the long-term impact of elevated 532 ozone on ecosystem production and function.

533 Acknowledgements

This work was supported by the European Commission under Horizon 2020 for a Marie Skłodowska-Curie Actions COFUND Fellowship (663830-BU-048); and the Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network for Low Carbon, Energy and Environment. We thank Aled Williams for technical support in running the O₃-FACE facility.

539 **Reference**

540	Ainsworth, E., Yendrek, C.R., Sitch, S., Collins, W.J., Emberson, L.D., 2012. The effects of
541	tropospheric ozone on net primary productivity and implications for climate change. Annu.
542	Rev. Plant Biol. 63, 637-61. doi:10.1146/annurev-arplant-042110-103829
543	Andersen, C.P., 2003. Source-sink balance and carbon allocation below ground in plants
544	exposed to ozone. New Phytol. 157, 213–228. doi:10.1046/j.1469-8137.2003.00674.x
545	Aronson, A.E.L., Helliker, B.R., 2010. Methane flux in non-wetland soils in response to
546	nitrogen addition: a meta-analysis Linked references are available on JSTOR for this
547	article: Methane flux in non-wetland soils in response to nitrogen addition: a meta-
548	analysis. Ecology 91, 3242-3251. doi:10.2307/20788157
549	Bates, D., Mächler, M., Bolker, B., Walker, S., 2014. Fitting linear mixed-effects models using
550	lme4. arXiv Prepr. arXiv1406.5823.
551	Bhatia, A., Ghosh, A., Kumar, V., Tomer, R., Singh, S.D., Pathak, H., 2011. Effect of elevated
552	tropospheric ozone on methane and nitrous oxide emission from rice soil in north India.
553	Agric. Ecosyst. Environ. 144, 21–28. doi:10.1016/j.agee.2011.07.003
554	Blum, U., Tingey, D.T., 1977. A study of the potential ways in which ozone could reduce root
555	growth and nodulation of soybean. Atmos. Environ. 11, 737-739. doi:10.1016/0004-
556	6981(77)90182-2
557	Brookes, P.C., Landman, A., Pruden, G., Jenkinson, D.S., 1985. Chloroform fumigation and
558	the release of soil nitrogen: A rapid direct extraction method to measure microbial
559	biomass nitrogen in soil. Soil Biol. Biochem. 17, 837-842. doi:10.1016/0038-

560 0717(85)90144-0

	561	Calvete-Sogo.	Н.,	Elvira.	S.,	Sanz, J.,	. (González	-Fernár	ndez.	I	García-	Gómez.	Н.,	Sánchez
--	-----	---------------	-----	---------	-----	-----------	-----	----------	---------	-------	---	---------	--------	-----	---------

- 562 Martín, L., Alonso, R., Bermejo-Bermejo, V., 2014. Current ozone levels threaten gross
- 563 primary production and yield of Mediterranean annual pastures and nitrogen modulates
- 564 the response. Atmos. Environ. 95, 197–206. doi:10.1016/j.atmosenv.2014.05.073
- 565 Crawley, M.J., 2012. The R book. John Wiley & Sons.
- 566 Defra, 2016. Agriculture in the United Kingdom 2015. Department for Environment, Food and
- 567 Rural Affairs, London, UK.
- 568 Decock, C., Chung, H., Venterea, R., Gray, S.B., Leakey, A.D.B., Six, J., 2012. Elevated CO₂
- and O_3 modify N turnover rates, but not N_2O emissions in a soybean agroecosystem. Soil

570 Biol. Biochem. 51, 104–114. doi:10.1016/j.soilbio.2012.04.015

- 571 DeForest, J.L., 2009. The influence of time, storage temperature, and substrate age on potential
- 572 soil enzyme activity in acidic forest soils using MUB-linked substrates and I-DOPA. Soil
- 573 Biol. Biochem. 41, 1180–1186. doi:10.1016/j.soilbio.2009.02.029
- 574 FAO, 1981. FAO-UNESCO Soil Map of the World 1:5000000. Volume V: Europe, UNESCO,
 575 Paris, France.
- 576 Fowler, D., Amann, M., Anderson, F., Ashmore, M., Cox, P., Depledge, M., Derwent, D.,
- 577 Grennfelt, P., Hewitt, N., Hov, O., Jenkin, M., Kelly, F., Liss, P., Pilling, M., Pyle, J., J.
- 578 S., Stevenson, D., 2008. Ground-level Ozone in the 21st Century: Future Trends, Impacts
- and Policy Implications. R. Soc. Sci. Policy Rep. 15(08).

580	Fuhrer, J.,	Val Martin, M	., Mills, O	G., Heald,	C.L.,	Harmens,	Н.,	Hayes,	F.,	Sharps,	К.,	Bender,
-----	-------------	---------------	-------------	------------	-------	----------	-----	--------	-----	---------	-----	---------

- J., Ashmore, M.R., 2016. Current and future ozone risks to global terrestrial biodiversity
 and ecosystem processes. Ecol. Evol. 6, 8785–8799. doi:10.1002/ece3.2568
- root/shoot allocation and growth. Plant, Cell Environ. 29, 1193–1209.
 doi:10.1111/j.1365-3040.2006.01521.x

Grantz, D.A., Gunn, S., Vu, H.B., 2006. O3 impacts on plant development: A meta-analysis of

- 586 Grime, J.P., 2000. The Response of Two Contrasting Limestone Grasslands to Simulated
- 587 Climate Change. Science (80-.). 289, 762–765. doi:10.1126/science.289.5480.762
- 588 Haapala, J.K., Mörsky, S.K., Rinnan, R., Saarnio, S., Martikanen, P.J., Holopainen, T., Silvola,
- 589 J., 2011. Long-term effects of ozone on CO₂ exchange in peatland microcosms. Atmos.

590 Environ. 45, 4002–4007. doi:10.1016/j.atmosenv.2011.04.057

- 591 Hart, S.C., Stark, J.M., Davidson, E.A., Firestone, M.K., 1994. Nitrogen mineralization,
- 592 immobilization, and nitrification. Methods Soil Anal. Part 2. Microbiol. Biochem. Prop.
- 593 985–1018. doi:10.2136/sssabookser5.2.c42
- Hayes, F., Jones, M.L.M., Mills, G., Ashmore, M., 2007. Meta-analysis of the relative
- sensitivity of semi-natural vegetation species to ozone. Environ. Pollut. 146, 754–762.
- 596 doi:10.1016/j.envpol.2006.06.011

- 597 He, Z., Xiong, J., Kent, A.D., Deng, Y., Xue, K., Wang, G., Wu, L., Van Nostrand, J.D., Zhou,
- 598 J., 2014. Distinct responses of soil microbial communities to elevated CO₂ and O₃ in a
- 599 soybean agro-ecosystem. ISME J. 8, 714–26. doi:10.1038/ismej.2013.177

600	Hörtnagl, L., Barthel, M., Buchmann, N., Eugster, W., Butterbach-Bahl, K., Díaz-Pinés, E.,
601	Zeeman, M., Klumpp, K., Kiese, R., Bahn, M., Hammerle, A., Lu, H., Ladreiter-Knauss,
602	T., Burri, S., Merbold, L., 2018. Greenhouse gas fluxes over managed grasslands in
603	Central Europe. Glob. Chang. Biol. 24, 1843–1872. doi:10.1111/gcb.14079
604	IPCC, 2007. Summary for Policymakers, in: Solomon, S., Qin, D., Manning, M., Chen, Z.,
605	Marquis, M., Averyt, K.B., M.Tignor, Miller, H.L. (Eds.), Climate Change 2007: The
606	Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
607	Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,
608	Cambridge, United Kingdom and New York, NY, USA.
609	Kanerva, T., Regina, K., Rämö, K., Ojanperä, K., Manninen, S., 2007. Fluxes of N ₂ O, CH ₄ and
610	CO_2 in a meadow ecosystem exposed to elevated ozone and carbon dioxide for three years.
611	Environ. Pollut. 145, 818-828. doi:10.1016/j.envpol.2006.03.055
612	Kou, T.J., Cheng, X.H., Zhu, J.G., Xie, Z.B., 2015. The influence of ozone pollution on CO ₂ ,
613	CH4, and N2O emissions from a Chinese subtropical rice-wheat rotation system under
614	free-air O ₃ exposure. Agric. Ecosyst. Environ. 204, 72–81.
615	doi:10.1016/j.agee.2015.02.013
616	Linn, D.M., Doran, J.W., 1984. Aerobic and Anaerobic Microbial Populations in No-till and
617	Plowed Soils1. Soil Sci. Soc. Am. J. 48, 794–799.

- 618 doi:10.2136/sssaj1984.03615995004800040019x
- 619 Liu, L., Greaver, T.L., 2009. A review of nitrogen enrichment effects on three biogenic GHGs:

the CO₂ sink may be largely offset by stimulated N_2O and CH_4 emission. Ecol. Lett. 12,

- 621 1103–1117. doi:10.1111/j.1461-0248.2009.01351.x
- 622 Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichstein, M., Papale, D., Piao, S.L.,
- 623 Schulze, E.D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer,
- 624 C., Black, K.G., Bonal, D., Bonnefond, J.M., Chambers, J., Ciais, P., Cook, B., Davis,
- 625 K.J., Dolman, A.J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T.,
- 626 Gr??nwald, T., Guidolotti, G., Hanson, P.J., Harding, R., Hollinger, D.Y., Hutyra, L.R.,
- 627 Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B.E., Le Maire, G.,
- 628 Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L.,
- 629 Montagnani, L., Moncrieff, J., Moors, E., Munger, J.W., Nikinmaa, E., Ollinger, S. V.,
- 630 Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M.J., Seufert, G., Sierra, C., Smith,
- 631 M.L., Tang, J., Valentini, R., Vesala, T., Janssens, I.A., 2007. CO₂ balance of boreal,
- temperate, and tropical forests derived from a global database. Glob. Chang. Biol. 13,
- 633 2509–2537. doi:10.1111/j.1365-2486.2007.01439.x
- Marsden, K.A., Holmberg, J.A., Jones, D.L., Chadwick, D.R., 2018. Sheep urine patch N₂O
- 635 emissions are lower from extensively-managed than intensively-managed grasslands.
- 636 Agric. Ecosyst. Environ. 265, 264–274. doi:10.1016/j.agee.2018.06.025
- 637 Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, T., Gregory, J.M., Kitoh,
- 638 A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J.,
- 639 Zhao, Z.C., 2007. Global climate projections, in: Solomon, S., Qin, D., Manning, M.,
- 640 Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), IPCC, 2007:

- 641 Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to
- 642 the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
- 643 Cambridge, UK, Cambridge University Press, pp. 747–846.
- Mills, G., Harmens, H., Wagg, S., Sharps, K., Hayes, F., Fowler, D., Sutton, M., Davies, B.,
- 645 2016. Ozone impacts on vegetation in a nitrogen enriched and changing climate. Environ.
 646 Pollut. 208, 898–908. doi:10.1016/j.envpol.2015.09.038
- 647 Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., Büker, P., 2011.
- 648 Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe
- 649 (1990-2006) in relation to AOT40- and flux-based risk maps. Glob. Chang. Biol. 17, 592–
- 650 613. doi:10.1111/j.1365-2486.2010.02217.x
- 651 Miranda, K.M., Espey, M.G., Wink, D.A., 2001. A rapid, simple spectrophotometric method
- for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol. Chem. 5, 62–71.
- 653 doi:10.1006/niox.2000.0319
- 654 Mörsky, S.K., Haapala, J.K., Rinnan, R., Tiiva, P., Saarnio, S., Silvola, J., Holopainen, T.,
- 655 Martikainen, P.J., 2008. Long-term ozone effects on vegetation, microbial community and
- 656 methane dynamics of boreal peatland microcosms in open-field conditions. Glob. Chang.
- 657 Biol. 14, 1891–1903. doi:10.1111/j.1365-2486.2008.01615.x
- Mulvaney, R.L., 1996. Nitrogen-Inorganic Forms, in: Sparks, D.L. (Ed.), Methods of Soil
- 659 Analysis Part 3—Chemical Methods. Soil Science Society of America, American Society
- of Agronomy, Madison, WI, pp. 1123–1184. doi:10.2136/sssabookser5.3.c38

- 661 Niemi, R., Martikainen, P.J., Silvola, J., Holopainen, T., 2002. Ozone effects on Sphagnum
- 662 mosses, carbon dioxide exchange and methane emission in boreal peatland microcosms.
- 663 Sci. Total Environ. 289, 1–12. doi:10.1016/S0048-9697(01)01012-9
- Niu, S., Wu, M., Han, Y., Xia, J., Zhang, Z., Yang, H., Wan, S., 2010. Nitrogen effects on net
 ecosystem carbon exchange in a temperate steppe. Glob. Chang. Biol. 16, 144–155.
- 666 doi:10.1111/j.1365-2486.2009.01894.x
- R Development Core Team, 2015. R: A language and environment for statistical computing.
 Vienna, Austria.
- 669 Rinnan, R., Impiö, M., Silvola, J., Holopainen, T., Martikainen, P.J., 2003. Carbon dioxide and
- 670 methane fluxes in boreal peatland microcosms with different vegetation cover Effects of 671 ozone or ultraviolet-B exposure. Oecologia 137, 475–483. doi:10.1007/s00442-003-
- 672 1366-5
- Rodwell, J.S., 1992. British plant communities. Volume 3. Grasslands and montane
 communities, Cambridge University Press, Cambridge, UK. Cambridge University Press,
 Cambridge, UK.
- 676 Saiya-Cork, K., Sinsabaugh, R., Zak, D., 2002. The effects of long term nitrogen deposition
- on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34,
- 678 1309–1315. doi:10.1016/S0038-0717(02)00074-3
- Sánchez-Martín, L., Bermejo-Bermejo, V., García-Torres, L., Alonso, R., de la Cruz, A.,
 Calvete-Sogo, H., Vallejo, A., 2017. Nitrogen soil emissions and belowground plant

- 681 processes in Mediterranean annual pastures are altered by ozone exposure and N-inputs.
- 682 Atmos. Environ. 165, 12–22. doi:10.1016/j.atmosenv.2017.06.030
- 683 Schimel, J.P., Bennett, J., 2004. Nitrogen mineralization: Challenges of a changing paradigm.
- 684 Ecology 85, 591–602. doi:10.1890/03-8002
- 685 Sicard, P., Anav, A., De Marco, A., Paoletti, E., 2017. Projected global ground-level ozone
- 686 impacts on vegetation under different emission and climate scenarios. Atmos. Chem. Phys.
- 687 17, 12177–12196. doi:10.5194/acp-17-12177-2017
- 688 Sitch, S., Cox, P.M., Collins, W.J., Huntingford, C., 2007. Indirect radiative forcing of climate
- change through ozone effects on the land-carbon sink. Nature 448, 791–794.
 doi:10.1038/nature06059
- 691 Smith, K.A., Dobbie, K.E., Ball, B.C., Bakken, L.R., Sitaula, B.K., Hansen, S., Brumme, R.,
- 692 Borken, W., Christensen, S., Priemé, A., Fowler, D., Macdonald, J.A., Skiba, U.,
- 693 Klemedtsson, L., Kasimir-Klemedtsson, A., Degórska, A., Orlanski, P., 2000. Oxidation
- of atmospheric methane in Northern European soils, comparison with other ecosystems,
- and uncertainties in the global terrestrial sink. Glob. Chang. Biol. 6, 791–803.
- 696 doi:10.1046/j.1365-2486.2000.00356.x
- 697 Tang, H., Liu, G., Zhu, J., Kobayashi, K., 2015. Effects of elevated ozone concentration on CH₄
- 698 and N₂O emission from paddy soil under fully open-air field conditions. Glob. Chang.
- 699 Biol. 21, 1727–1736. doi:10.1111/gcb.12810
- 700 Toet, S., Ineson, P., Peacock, S., Ashmore, M., 2011. Elevated ozone reduces methane

- 701 emissions from peatland mesocosms. Glob. Chang. Biol. 17, 288–296.
 702 doi:10.1111/j.1365-2486.2010.02267.x
- 703 Toet, S., Oliver, V., Ineson, P., McLoughlin, S., Helgason, T., Peacock, S., Stott, A.W., Barnes,
- J., Ashmore, M., 2017. How does elevated ozone reduce methane emissions from
 peatlands? Sci. Total Environ. 579, 60–71. doi:10.1016/j.scitotenv.2016.10.188
- 706 Toet, S., Subke, J.A., D'Haese, D., Ashmore, M.R., Emberson, L.D., Crossman, Z., Evershed,
- R.P., Barnes, J.D., Ineson, P., 2009. A new stable isotope approach identifies the fate of
 ozone in plant-soil systems. New Phytol. 182, 85–90. doi:10.1111/j.14698137.2009.02780.x
- Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil
 microbial biomass C. Soil Biol. Biochem. 19, 703–707. doi:10.1016/00380717(87)90052-6
- 713 Volk, M., Bungener, P., Contat, F., Montani, M., Fuhrer, J., 2006. Grassland yield declined by
- 714 a quarter in 5 years of free-air ozone fumigation. Glob. Chang. Biol. 12, 74–83.
 715 doi:10.1111/j.1365-2486.2005.01083.x
- Volk, M., Obrist, D., Novak, K., Giger, R., Bassin, S., Fuhrer, J., 2011. Subalpine grassland
 carbon dioxide fluxes indicate substantial carbon losses under increased nitrogen
- 718 deposition, but not at elevated ozone concentration. Glob. Chang. Biol. 17, 366–376.
- 719 doi:10.1111/j.1365-2486.2010.02228.x
- 720 Volk, M., Wolff, V., Bassin, S., Ammann, C., Fuhrer, J., 2014. High tolerance of subalpine

721	grassland to long-term ozone exposure is independent of N input and climatic drivers.
722	Environ. Pollut. 189, 161–168. doi:10.1016/j.envpol.2014.02.032
723	Wang, J., Hayes, F., Turner, R., Chadwick, D.R., Mills, G., Jones, D.L., 2019. Effects of four
724	years of elevated ozone on microbial biomass and extracellular enzyme activities in a
725	semi-natural grassland. Sci. Total Environ. 660, 260–268.
726	doi:10.1016/j.scitotenv.2019.01.040
727	Williamson, J.L., Mills, G., Hayes, F., Jones, T., Freeman, C., 2016. How do increasing
728	background concentrations of tropospheric ozone affect peatland plant growth and carbon
729	gas exchange? Atmos. Environ. 127, 133-138. doi:10.1016/j.atmosenv.2015.12.004
730	Wu, H., Li, Q., Lu, C., Zhang, L., Zhu, J., Dijkstra, F.A., Yu, Q., 2016. Elevated ozone effects
731	on soil nitrogen cycling differ among wheat cultivars. Appl. Soil Ecol. 108, 187-194.
732	doi:10.1016/j.apsoil.2016.08.015
733	Wu, J., Joergensen, R., Pommerening, B., Chaussod, R., Brookes, P.C., 1990. Measurement of
734	soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol.
735	Biochem. 22, 1167–1169. doi:10.1016/0038-0717(90)90046-3
736	Yendrek, C.R., Leisner, C.P., Ainsworth, E.A., 2013. Chronic ozone exacerbates the reduction
737	in photosynthesis and acceleration of senescence caused by limited N availability in
738	Nicotiana sylvestris. Glob. Chang. Biol. 19, 3155–3166. doi:10.1111/gcb.12237
739	Zhang, J., Tang, H., Zhu, J., Lin, X., Feng, Y., 2016. Divergent responses of methanogenic
740	archaeal communities in two rice cultivars to elevated ground-level O ₃ . Environ. Pollut.

- 741 213, 127–134. doi:10.1016/j.envpol.2016.01.062
- 742 Zheng, F., Wang, X., Lu, F., Hou, P., Zhang, W., Duan, X., Zhou, X., Ai, Y., Zheng, H., Ouyang,
- 743 Z., Feng, Z., 2011. Effects of elevated ozone concentration on methane emission from a
- rice paddy in Yangtze River Delta, China. Glob. Chang. Biol. 17, 898–910.
- 745 doi:10.1111/j.1365-2486.2010.02258.x