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Abstract: Providing accurate information on fire effects is critical to 

understanding post-fire ecological processes and to design appropriate 

land management strategies. Multispectral imagery from optical passive 

sensors is commonly used to estimate fire damage, yet this type of data 

is only sensitive to the effects in the upper canopy. This paper 

evaluates the sensitivity of full waveform LiDAR data to estimate the 

severity of wildfires using a 3D radiative transfer model approach. The 

approach represents the first attempt to evaluate the effect of different 

fire impacts, i.e. changes in vegetation structure as well as soil and 

leaf color, on the LiDAR signal. The FLIGHT 3D radiative transfer model 

was employed to simulate full waveform data for 10 plots representative 

of Mediterranean ecosystems along with a wide range of post-fire 

scenarios characterized by different severity levels, as defined by the 

composite burn index (CBI). A new metric is proposed, the waveform area 

relative change (WARC), which provides a comprehensive severity 

assessment considering all strata and accounting for changes in structure 

and leaf and soil color. It showed a strong correlation with CBI values 

(Spearman's Rho = 0.9 ± 0.02), outperforming the relative change of LiDAR 

metrics commonly applied for vegetation modeling, such as the relative 

height of energy quantiles (Spearman's Rho = 0.56 ± 0.07, for the 

relative change of RH60, the second strongest correlation). Logarithmic 

models fitted for each plot based on the WARC yielded very good 

performance with R2 (± standard deviation) and RMSE (± standard 

deviation) of 0.8 (± 0.05) and 0.22 (± 0.03), respectively. LiDAR metrics 

were evaluated over the King Fire, California, U.S., for which pre- and 

post-fire discrete return airborne LiDAR data were available. Pseudo-

waveforms were computed after radiometric normalization of the intensity 

data. The WARC showed again the strongest correlation with field measures 

of GeoCBI values (Spearman's Rho = 0.91), closely followed by the 

relative change of RH40 (Spearman's Rho = 0.89). The logarithmic model 

fitted using WARC offered an R2 of 0.78 and a RMSE of 0.37. The accurate 

results obtained for the King Fire, with very different vegetation 



characteristics compared to our simulated data, demonstrate the 

robustness of the new metric proposed and its generalization capabilities 

to estimate the severity of fires. 

 

 

 

 



Dear Editor, 

Thank you for the opportunity you have given us to improve this manuscript. We are 

also very thankful for the reviewers’ time and thoughtful comments as well as for 

highlighting weaknesses in our previous version. We considered their recommendations 

very seriously and revised the manuscript accordingly. 

Reviewers #3-#5 were highly positive, and following suggestions by reviewer #5, we 

run new simulations to assess the impact of scan angle on the results. We have made 

more major changes in response to Reviewer #2. This reviewer was mainly concerned 

about the degree to which the new proposed metric WARC improved compared to other 

metrics over the King Fire, and to clarify the degree of novelty and implications for 

practical application. We have strengthen the evaluation of the metrics. As suggested by 

the reviewer, we have also compared WARC to a recently proposed metric (PAC) to 

estimate fire severity from discrete return, which demonstrated the superiority of 

WARC over this metric too. Comparison of WARC with PAC was only possible for the 

King Fire case study since the latter metric can only by computed from discrete return 

data. We have also highlighted the interest and novelty of the work; the interest of 

simulating LVIS data or the sensitivity of LiDAR to changes in color; which were some 

of the reviewer’s concerns. 

We have now discussed the limitations of using the King Fire case study, a concern also 

raised by other reviewers. Despite not being an ideal dataset, the availability of pre- and 

post-fire data along with concomitant GeoCBI measures, makes it a very unique dataset 

to assess the potential of LiDAR to estimate severity of fires and an opportunity to show 

the possibility of applying the method to not only full waveform data but to discrete 

return data as well. 

We hope we have made the necessary amendments to the manuscript and addressed all 

questions of the reviewers to make it suitable for publication.  

Next, we provide a detailed answer to the reviewer’s comments. Their comments are in 

black and our answers in blue. 

 

Reviewer #2: Comments on "Evaluating the Potential of Lidar Data for Fire Damage 

Assessment: A Radiative Transfer Model Approach" by García et al. 

 

General comments 

The authors present to using the relative change ratio of waveform area (WARC) from 

full-waveform lidar data to evaluate the fire severity. The authors first used a radiation 

transfer model (RTM) method to simulate full-waveform lidar data with different forest 

conditions and fire severities, and then tested the sensitivity of the proposed WARC 

index to fire severity compared to other normally used change metrics derived from 

lidar. The results showed that WARC significantly outperformed other lidar-derived 

metrics in depicting fire severity. Then, the authors further tested the proposed index by 

using real-word case, the King fire in Serra Nevada Mountain Range, California, USA. 

They simulated full-waveform lidar data from the pre- and post-fire discrete lidar data, 

and found that WARC was still the best index to fire severity, but the superiority was 

much smaller than other commonly used lidar metrics compared to the previous 

Response to reviews and summary of revisions



experiment using RTM simulated data. Overall, the manuscript is easy to follow, 

although the writing and organization of the manuscript can be further improved. 

Moreover, the manuscript has its novelty in methodology, especially that it is one of 

few studies evaluating fire severity from lidar by both considering intensity (author 

claimed this as color information) and structure information. However, I have several 

major concerns from suggesting it being published in RSE in its current form. 

First, although the methods presented here is interesting, the topic and novelty of this 

study might not be enough to be published in RSE in its current form. The current 

manuscript is more on the methodology side.  

First of all, we would like to thank the reviewer for his/her in depth review of the 

manuscript and his/her comments and suggestions to improve it. The reviewer was 

concerned that the novelty of the manuscript lied mainly in its methodological aspect. 

However, as confirmed by the other reviewers, our research is highly innovative and of 

high interest for the RSE audience. Below are several examples of the least reasons to 

justify the value of our work and its relevance to RSE readers: 

- Although we had outlined the timeliness of the research in our previous version, 

we have now emphasized relevance of the topic in lines 60-66 of the new 

version (lines refer to the tracked changes version): 

o “Fire managers require information on fire effects to support strategic 

planning before and during fires, to establish mitigation strategies aimed 

at reducing soil erosion, establishment of invasive species, as well as to 

evaluate the results of prescribed fires {Morgan, 2014 #26}. Therefore, 

accurately quantifying fire effects is necessary to improve our 

understanding of the impact of fires on ecosystem processes as well as 

the carbon cycle. This becomes especially important as with projected 

climate change an increase in forest fires is expected (Stephens et al. 

2013).” 

- We are not aware of any other papers published evaluating the potential of large 

footprint full waveform LiDAR to assess severity of fires. On top of this, we 

tested the novel metric on simulated data and validated our approach over real 

data. 

- As we remarked in lines 474-475, the novelty of this work relies on using a 

radiative transfer model (RTM) approach to appraise the potential of LiDAR 

data for evaluating the impact of fires. The use of RTM allowed us to better 

understand factors affecting the recorded signal. This is relevant because we 

took into account not only the structural changes, as usually evaluated with 

LiDAR data, but also the impact of the proportion of foliage altered (change in 

color) on the LiDAR signal (intensity). We were able to simulate a wide range 

of scenarios impossible to capture in a single fire (e.g. the King Fire) and so, to 

analyze the sensitivity of different LiDAR metrics. Speaking differently, the use 

of LiDAR for environmental applications have been dominated by the use of 

empirical methods. There has long been a rising call from the communities to 

see more physics-based investigation of LiDAR applications. In this regard, our 

work adds positively to this direction.  



- We proposed a new metric to quantify fire damage that was sensitive not only to 

structural changes but to fire induced tree mortality (scorched trees), which 

result in radiometric changes in the remotely sensed (LiDAR) signal and that we 

described as changes in leaf color following the CBI methodology. Moreover, 

the consistency of the metric under different scenarios, simulated and real, 

suggest the potential of broad applicability of the metric. We have highlighted 

this point in the discussion (lines 563-564, tracked changes version): “The 

WARC consistency for both, the simulated data as well as the King Fire case 

study, indicate the potential for the broad applicability of this metric.” 

- The availability of pre- and post-fire LiDAR data with concomitant field 

GeoCBI estimates for a real case study is also a unique aspect of this work. 

Previous studies having field-CBI values only had available post-fire LiDAR 

data (Montealegre et al., 2015) or only related height changes to a modified 

version of the CBI in a sagebrush ecosystem (Wang and Glenn, 2009). 

Furthermore, we estimated CBI values (0-3) whereas previous works just 

attempted to classify severity levels into broad classes (low-high). We stated this 

in lines 500-506: 

o “Montealegre et al. (2014) found good correlation between field 

measured CBI values and a set of post-fire LiDAR metrics, which were 

used to classify burn severity levels. Despite reporting a global accuracy 

of 85.5%, their results are not comparable to ours since they did not 

estimate CBI, but classified severity levels into three broad classes. 

Likewise, Wang and Glenn (2009) classified burn severity levels in 

sagebrush steppe rangelands based on vegetation height changes 

obtaining a global accuracy of 84%.” 

- Whereas previous studies using LiDAR just focused on the structural changes 

caused by fires in vegetation, we have demonstrated that LiDAR can also be 

sensitive to changes induced by fire heat (scorched vegetation) that result in 

radiometric changes. 

- Our approach to compute the severity from LiDAR, based on a stratified change 

of the waveform, resembles the way CBI is computed in the field. We state this 

point in lines 494-496. “In addition to accounting for the changes in structure 

and leaf and soil color, the WARC considered all plot strata, computing the 

changes from the substrate to the upper canopy and averaging at the plot level, 

in the same way the CBI does.” 

- We would also like to make a clarification about the use of color information. 

We did not claim color as intensity. Change in color is the variable assessed in 

the field when measuring severity using the CBI. This change in color results in 

radiometric changes that in turn, changes the energy reflected off the target 

(intensity). We included the following clarification in the paper (lines 219-221): 

o “On the other hand, variation in color of scorched leaves results in 

changes in the spectral reflectance, affecting the returned LiDAR signal.” 

If the authors can further dig deeper on how the proposed method may benefit the 

scientists and managers on study fire behaviors and managing wildfires, it may make 

the manuscript have much broader impact. 



Thanks for the suggestion. We have included additional sentences to highlight how the 

method can improve forest and fire management activities in lines 60-66 (see our 

previous comment). 

 

Second, I have concerns on why the authors used simulated full-waveform lidar data to 

present the superiority of the proposed algorithm. Currently, the evaluation results in 

King Fire regime showed that the proposed WARC metric is not better (the 

improvement in R is very small) compared to other commonly used ldiar metrics, which 

is very concerning.  

We think that the reviewer is missing a paramount point of the manuscript. The main 

advantage of using 3D RTMs is that they allow to evaluate the individual impact of 

instrument/survey characteristics (beam divergence, flying height, sampling density, 

etc) and environmental conditions (e.g. canopy structure, composition) on the LiDAR 

signal (e.g. Gastellou et al., 2016; Disney et al. 2010), by varying them within a wide 

range of values defining different survey configurations and vegetation scenarios. In our 

study, we were just interested in modifying the environmental conditions to represent 

different degrees of severity. This can help improving our understanding of the 

interactions between the LiDAR signal and the vegetation before and after the fire. The 

main objective of our manuscript was to assess the potential of LiDAR data for 

providing a comprehensive characterization of burn severity, beyond structural changes, 

considering all layers of a forest (page 6, lines 135-137 of the original submission). 

Furthermore, because the RTM allows to create what some authors called “virtual 

laboratories” (e.g. Disney et al., 2011), RTM approaches allow creating a broader range 

of scenarios than can be tested on a real case, thus offering better generalization than 

empirical approaches. We opted for simulating full waveform data because these data 

provide better description of the vertical vegetation volume distribution, from the top of 

the canopy to the ground, including the crown volume and understory layer, than 

discrete return data (Lim et al., 2003; Means et al., 1999), which do not sense the full 

vertical distribution of vegetation. This is very important to provide comprehensive 

analysis of the severity of fires as we need to evaluate the ecological change through 

different vegetation strata. To outline this point, we added the following sentence (lines 

154-158): “Evaluation of fire effects requires analyzing changes over different strata, 

from the substrate to the upper canopy. Large footprint full waveform data provide 

better description of the vertical vegetation volume distribution, from the top of the 

canopy to the ground, including the understory layer, than discrete return data {Lim, 

2003 #76}, thus making it ideal to evaluate severity of fires.” 

Regarding the King Fire, it should be noted that it represents a rather unique case, where 

pre-, post- fire and concomitant field measures of GeoCBI were available; a common 

difficulty in estimating severity of fires from LiDAR data. Nevertheless, it just 

represents a particular example or more specifically, a narrow set of the simulated 

scenarios, not covering by far most of the simulated scenarios. Therefore, the RTM is 

the right approach to evaluate the superiority of the WARC metric as compared to other 

structural metrics. Moreover, the fact that WARC also outperformed other metrics in the 

King Fire case study, even if only slightly, just confirms the simulation results. Another 



aspect the reviewer missed to acknowledge is the consistency of the WARC metric, 

which offered the best results for our simulations and for the King Fire case study.  

At least, the authors should present more detailed examples (waveform curves) from the 

real airborne lidar data to discuss the methodology.  

We include now some examples of pseudo-waveforms and the point clouds of several 

plots with different GeoCBI levels. They have been included in the supporting 

information since from our point of view figure 3 shows our point on the impact of 

different fire effects on the LiDAR signal. We added the following sentence to the new 

version of the manuscript (lines 439-442):  

“Pseudo-waveforms generated from discrete return intensity data also showed ability to 

discriminate different degrees of severity (Fig. S6-S9, supporting information). 

Nevertheless, the sensitivity analysis of the LiDAR metrics to the burn severity of the 

King Fire showed important differences with our previous simulations (Fig. 6).” 

From the current results, I am not convinced that WARC is a better choice all the time, 

especially considering the fact that WARC needs full-waveform information, which is 

not available all the time (or needs more processing steps to be derived than common 

lidar metrics). 

We disagree with the reviewer and to a lesser degree, we are puzzled by what the 

reviewer meant by “all the time”, especially because the criticism was targeted at the 

use of full-waveform information to derive WARC—that is exactly what we propose to 

address. To explain further, first, our results showed that WARC offers better 

performance and much more consistency than other metrics (Fig. 4 & 6). Although it is 

a full waveform metric it can also be derived from discrete return data after creating the 

pseudo-waveforms as we demonstrated for the King Fire. The fact that it requires more 

processing steps to be derived (a weakness of our approach from the reviewer’s point of 

view) should not be a limitation to apply a method; the few more processing steps are 

nothing compared to the whole LiDAR data processing flow.  Moreover, the generation 

of pseudo-waveforms from discrete return data is quite common and many examples 

can be found in the literature (e.g. Popescu and Zhao 2008: Farid et al., 2008; Muss et 

al., 2011; Luo et al., 2019). In the King Fire case the improvement was small over the 

best performing metric, but in other cases it would be more significant, as shown by our 

simulations. It should be noted that the King Fire was a megafire, which produced large 

changes in structure. The common approach of deriving a set of LiDAR metrics and 

putting them into a given modeling framework, though simple, may not fully exploit the 

capabilities of LiDAR data. In addition will require additional steps than fitting a model 

to a single variable. WARC does a better job on this aspect and provides better 

generalization. This is now clarified on discussion and conclusion sections (lines 561-

564 and lines 631-634): 

“Moreover, our approach is based on a single simple metric, increasing its 

generalization capability, as opposed to previous studies that included multiple metrics. 

The WARC consistency for both, the simulated data as well as the King Fire case study, 

indicate the potential for the broad applicability of this metric.” 



“Application of the WARC metric to the real case study of the King Fire, California, 

with very different vegetation characteristics of those of our simulated plots, revealed 

the robustness and generalization capability of this metric. Although improvement over 

the best performing common LiDAR metrics was small in this case, the WARC still 

outperformed them.” 

Third, the authors themselves mentioned a similar method proposed by Hu et al. (2019) 

as well, which is very similar to the idea of the WARC metric proposed by the authors. 

In my opinion, the profile area change (PAC) metrics seems to be much simpler metric 

than WARC, since it can be directly derived from discrete point clouds. It would be 

interesting to see a more detailed comparison in the manuscript with PAC. 

In order to provide a comprehensive comparison between both metrics it would be 

necessary to compute PAC from our simulated data. This is not possible since PAC 

cannot be derived from large footprint full waveform data. Nevertheless, we tested the 

metric over the King Fire and found poorer performance of PAC compared to WARC. 

We included the results in the new version of the manuscript (lines 565-575): 

“Recently, Hu et al. (2019) also proposed a single metric to estimate burn severity from 

LiDAR data. The performance of this metric was evaluated against changes in LAI, 

canopy cover and tree height, but not against field measures of CBI or GeoCBI. Their 

metric shows similarities to WARC, as it is based on the change in the area of the height 

percentile profile (PAC), but their metric is computed from the height distribution of 

returns and thus only account for changes in structure. Contrary, WARC is derived from 

the intensity, which is affected by the radiometric changes resulting from the 

modification in soil and leaf color. A comprehensive comparison between PAC and 

WARC was not feasible over our simulated scenarios since PAC can only be derived 

from discrete return data. However, we tested PAC over the King Fire and found poorer 

performance compared to WARC, with R2= 0.55 and RMSE= 0.53.” 

We present here the scatter plot of PAC vs GeoCBI measures for the reviewers’ 

information, but note that our point is made just including R
2
 and RMSE in the paper. 

 

 

 

 

 

 

 

We also present here two examples which can help to understand the limitation of PAC.  

Example 1: The GeoCBI value measured in the field was 2.35, representing high 

severity (low severity: 0.1 to 1.24; moderate severity: 1.25 to 2.24; and high severity: 

2.25 to 3.0). GeoCBI measures of the plot showed low LAI reduction but high 

proportion of foliage altered (scorched trees). As we can see, the structure of the upper 



canopy remained largely unchanged, with most of structural change happening in the 

understory layer. We also present the pseudo-waveforms of the plot. The left panel 

shows the pre-fire point cloud, the central panel the post-fire point cloud, and the right 

panel the x-axis.  The axis has been truncated to better show the change in the returned 

energy for understory and overstory layers.  The PAC value for this plot was 1.2, 

whereas the WARC value was 0.46. 

 

 

 

Example 2: The GeoCBI value measured in the field was 2.5, representing high 

severity. Likewise, according to the field measures, the plot showed low LAI reduction 

but very high proportion of foliage altered (scorched trees). As we can see, the upper 

canopy remained largely unchanged, with most of change happening in the understory 

layer. A much larger proportion of ground returns are observed in the post-fire plot. 

Pseudo-waveforms are also presented. The left panel shows the pre-fire point cloud, the 

central panel the post-fire point cloud, and the right panel the x-axis.  The axis has been 

truncated to better show the change in the returned energy for understory and overstory 

layers.   The PAC value for this plot was 6.5, whereas the WARC value was 0.77.   

 

 

Fourth, I have concerns on the authors certain statements. 1) The waveform area change 

has actually been used before to indicate forest changes, as the authors claimed by 

themselves. In this case, I don't think it is appropriate to claim this method as a new 

method.  

It seems that the reviewer misunderstood our statement. In García et al. (2017) work, 

the metric employed was the canopy area profile, which only considers the canopy 

energy to estimate biomass in a burned area, but it was not used to study forest changes 

as it was only a one time metric. However, we realized that the canopy area showed a 



spatial agreement with a Landsat derived burn severity map and therefore, we came up 

with the WARC metric which is computed using all waveform energy, from the ground 

to the top of the canopy, but requires pre- and post-fire LiDAR data as it computes the 

relative change. Besides, WARC is computed for each fuel stratum and subsequently 

averaged in a similar way as the CBI, which is an innovative aspect of the metric. 

In order to avoid confusion, we have modified the paragraph  (Lines 313-319): “García 

et al., (2017a) calculated the canopy waveform from a post-fire LiDAR campaign, and 

based on a qualitative analysis they observed a very good agreement between this 

metric and a severity map derived from Landsat data. Nevertheless, they only used the 

energy reflected by the canopy to compute the metric, thus missing the information 

from the ground and the vegetation below the height threshold used to separate the 

canopy. Therefore, in this study we modified the metric to account for the total energy 

of the waveform to compute the waveform area in order to include all vertical strata 

affected by the fire.” 

2) The authors claimed that they used the color information from lidar. I have concerns 

on this. It has been well-known the intensity information is problematic for lidar data to 

be used, even after normalization. Moreover, the change of waveform in pre- and post-

fire lidar data is very likely to be caused by the structure of forests. The authors need to 

provide proofs on this statement. 

In Figure 3 we show different scenarios and how changes in structure and ‘color’ affect 

the waveform. Specifically, figure 3d) corresponds to a scenario for which the main 

effect of the fire is a change in color (scorched trees). 

We acknowledge the issues with the intensity, which is a function of many variables 

such as laser power, incidence angle, target reflectivity and area, atmospheric absorption 

and the range (sensor target distance). Despite the normalization of the intensity, it is 

not possible to derive reflectance from discrete return intensity values. However, this 

variable has proved to be useful for different applications such as estimating biomass 

fractions (García et al., 2010), classify vegetation (Korpela, et al., 2010), detect dead 

standing trees (snags) (Casas et al., 2016), etc. Furthermore, since we are not using 

intensity values of individual returns but at the plot level, we expect the noise in 

intensity to be smoothed (García et al., 2010). 

We agree that pre- and post-fire LiDAR signal will be affected by forest structure. 

However, what we have shown is that in those cases in which structure has not been 

dramatically changed, but the impact of fire is still high, for example scorched trees, 

LiDAR data can detect high severity values. Obviously, in a fire structural and 

radiometric impacts are coupled, but in order to better capture this information, intensity 

data is required. We have outlined this aspect (also in our previous version in lines 484-

488) “Therefore, the WARC considers not only structural, but also foliage alteration 

(change in color), although PCC has a higher impact on the signal than the PFA. 

Despite geometric variables may have a larger influence on intensity than reflectance 

(Korpela et al. 2010), these variables can also be modified as result of tree scorching, 

thus affecting the recorded intensity over burned areas.” 



Finally, the writing the manuscript can be improved. I have listed some specific 

comments for your reference. 

Specific comments 

Line 24: is critical to understanding --> is critical to understand or is critical for 

understanding 

It is our view that the correct form is: “is critical to understanding” since “to” in this 

case is a preposition which should be followed by a gerund (-ing). 

Line 26: generally-->usually or commonly. 

Ok, changed 

Line 26: "yet this is only" inaccurate expression. Maybe rephrased as they are less 

Ok, we have rephrased the sentence to (lines 26-27): “…yet this type of data is only 

sensitive to the effects in the upper canopy.” 

Line 27: on the upper canopy-->in the upper canopy. 

OK, changed. See our comment above. 

Line 27: evaluate-->evaluated. 

We think the present tense in this sentence is correct.  

Line 27: Please give the full name of LiDAR since this is the first time of using this 

abbreviation. 

From our point of view LiDAR is a well-known term nowadays. In fact, many papers 

published in the last few years do not explain the LiDAR acronym. 

Line 30: on the LiDAR signal-->from the LiDAR signal. 

We we want to evaluate the impact that fire effects have on the signal recorded by the 

LiDAR sensor. Therefore, “on the LiDAR signal” is correct. 

Line 37: LiDAR metrics? What metrics? You need to clarify this in the abstract. 

We have changed the sentence, following the reviewer’s comment, to (lines 37-38): 

“outperforming the relative change of LiDAR metrics commonly applied for vegetation 

modeling, such as the relative height of energy quantiles” 

Line 52: environmental-->environment. 

From our point of view environmental is correct since we refer to a type of fire effect: 

environmental impacts. Nevertheless, we have added a comma to improve the reading 

of the sentence. The new sentence is (line 53-57): “The impact of fires encompasses a 

wide variety of effects, from environmental, such as vegetation pattern distribution, 

habitat quality and particulate and greenhouse gases emissions (Bond et al. 2005; Casas 

et al. 2016; Nikonovas et al. 2017; van der Werf et al. 2010), to socio-economic, 

including health issues related to air quality, property damage or even human casualties 

(Chuvieco et al. 2014; Fowler 2003).” 



 

Line 57-58: The change of vegetation composition and vegetation structure caused by 

wildfires can also be a continental or global-scale impact. Please rephrase. 

We think the examples are correct. It is true that fires contribute to the global vegetation 

pattern since it is a global phenomenon, while the effects of a single fire on vegetation 

composition and structure are local, its effect on the air quality for example can be a 

continental issue, for example. 

Line 65: The use of the appropriate terminology-->The use of an appropriate 

terminology 

Changed. 

Lien 66: has been subject-->has been a subject 

Changed. 

Line 68: Delete therefore. 

The sentence has been rephrased (lines 69-72): “Some authors advocate for the use of 

fire severity when considering immediate fire effects as a result of the combustion 

process and the term burn severity when considering longer-term effects, thus including 

therefore ecosystem response processes (Lentile et al. 2006).” 

 

Line 128: Add and before founded. 

We do not think “and” should be added before founded, as founded is used as synonym 

of based on. 

Line 145: You have defined radiation transfer model as RTM. 

Ok, changed to: “…the FLIGHT 3D RTM was…” 

Line 180: Have you missed the rule to define layer D? 

It has been corrected and now it reads (lines 195-199): These strata are: A) substrate 

(rock and soil, duff, litter, and downed woody fuels); B) herbs, low shrubs and trees ≤ 1 

m tall; C) tall shrubs and trees ≤ 5 m; D) suppressed and intermediate trees (10 ≤ DBH 

≤ 25 cm; 8 ≤ canopy height ≤20 m); and E) dominant and co-dominant trees (DBH > 25 

cm; canopy height >20 m). 

Line 189: miss a comma before the variables. 

Corrected 

Line 220-221: Can you simulate the ground conditions with different portions of bare 

earth (soil)? 

We used soil proportions observed in the field for reference plots used to create our 

scenarios, which can be considered realistic in a Mediterranean environment. We have 

added the following sentence to clarify this point (Lines 241-243): “The proportion of 



soil, grass and litter was set based on our knowledge of the study area of the reference 

plots used to create the scenarios.”   

Moreover, as we stated in line 259, our simulations correspond to an initial assessment 

(immediately to a few weeks after the fire), so we simulated expected proportions of 

charcoal and ash based on the pre-fire scenario.   

Line 325-326: But you never used the imagery in the manuscript! 

We have changed the sentence to (lines 347-348): “For this site an exceptional set of 

airborne data were collected (see Stavros et al., (2016) for detailed information on the 

available dataset) including pre and post-fire LiDAR” 

Line 339: Will the normalization result change if you further smaller the radius of the 

plots? 

Yes, the radius impacts the normalization as it affects the sampling. However, an 

analysis of the impact of the radius of the plot on the normalization is out of the scope 

of the paper. We made the plots as large as possible to have a significant sampling 

(number of returns within the plot), but small enough to avoid including returns from 

other covers, for example crowns at the edge of the roads. 

 

 

Line 345: in what footprint you simulated the waveform lidar and compare the field 

measurements? 

The simulated data were based on a typical Mediterranean scenario. The field data used 

to create the scenarios were collected in Spain (García et al., 2010). The King Fire 

occurred in California and there was no field data to validate waveforms. Nevertheless, 

the methodology used has been widely applied.  

 

Line 345-349: Exactly! In your previous RTM-based simulation results, you keep a 

constant portion of soil in the simulation (a low number). If it is a pure bare ground, a 

total burn down of vegetation may actually increase the intensity of ground returns, 

even after intensity normalization. It is necessary to discuss this in the results and 

discussion. 

The scenario described by the reviewer is not realistic, at least in a Mediterranean 

environment as the one used for our simulations, so there is no point in simulating such 

a pure bare ground scenario. Second, the reviewer is confusing the effect of canopy 

occlusion with the proportion of bare ground in the substrate (including soil, litter, duff, 

and in the post-fire situation, charcoal and ash). The situation we described in lines 379-

383 happens when there is a dense canopy present reducing the number of returns from 

the ground due to the attenuation. After the fire, we may have many more returns 

(especially single returns) from the ground and that is why the amplitude of the ground 

peak in the pseudo-waveform can be larger than for the pre-fire situation. For that 

reason, we applied the constraint to avoid relative changes in the substrate > 1.  



Line 354: How many field measurements have you used? How did they get measured? 

Details are needed. 

We have now included the number of plots evaluated in the field, when describing the 

datasets available for the King Fire (lines 349-352): “In addition, a field assessment of 

severity was carried out between November 2014 and January 2015 over 52 plots, 22 of 

which were located within the pre- and post-fire LiDAR surveys. Plots were positioned 

using GPS measurements and the ecological damage caused by the fire was assessed 

using the GeoCBI index.” 

Line 377-379: Again, the current assumption that the bare ground only accounts for a 

few of the ground composition. The ratio change of bare ground may lead to different 

response in the intensity of returns near ground. You need to discuss this here. 

See our previous comment above.  

Line 381-384: How did you determine the this? Moreover, the results of Figure 3 B and 

D are very similar to me. 

From our LUT. For every scenario we defined the proportion of foliage altered (change 

in color) and the proportion of foliage consumed (LAI reduction). In 3B changes are 

structural and radiometric, yet in figure 3D they are mainly radiometric (with very low 

structural change). The fact that the results are similar, reinforces our assumption that 

we can use LiDAR to detect this kind of changes (change in color). This can only be 

observed if intensity is used. 

 

Line 402-403: Maybe I misunderstood, but I still feel very confused on why the loss of 

lower canopy vegetation have a negative correlation with fire severity. It might have 

weak correlations, but should be still positive correlated to fire severity. 

This is because lower percentiles only account for the substrate and part of the 

understory whereas fires can affect the whole vegetation strata. This point is stated in 

line 428-430. The reviewer should have in mind that the Spearman’s rank correlation 

was computed for all simulated scenarios. 

Line 404: This information here, including Figure 5, is very similar to those in previous 

section. Maybe consider it to be merged with previous section. 

Done 

Line 412-417: this result is very troubling to me. The improvements of WARC on fire 

severity modelling is very tiny in real-word cases, especially considering the more 

computation requirement by the WARC method. 

WARC showed the strongest correlation with the field measured Geo-CBI values as 

compared to the rest of the metrics. There was a wide dispersion in the other metrics, 

but it is true the best of these performed close to WARC in this instance. WARC also 

showed much more consistency than other metrics, with the strongest correlation for 

both the simulated as well as for the real data. Percentile metrics (RH25, RH50, 

RH75,…) are widely applied but they are not consistent, for example a given 

percentile/s can be used to model a biophysical variable for a given site and dataset, and 

for another dataset, a different model can be selected. Therefore, it is likely that for the 



King Fire we found RH40 the second strongest predictor, but for other fires it would 

probably by another percentile the one to be selected. 

Despite more processing is required when applied to discrete return data, since a 

pseudo-waveform has to be created, and additional processing is also required if 

intensity is to be used. However, our point is precisely that using intensity provides very 

useful information to characterize fire damage, better than only the distribution of 

returns. Moreover, some authors have reported that simulating pseudo waveform 

provide more information than just using the distribution of returns (e.g. Muss et al., 

2011). If large footprint full waveform data is available, computation of WARC is as 

simple as any other metric, including PAC. 

Line 425-429: Can you make more detailed analysis on your spatial map? For example, 

how does the proposed method perform in different vegetation conditions, terrain 

conditions, etc. 

We have added the following information (lines 462-471 and lines 600-609): 

“The LiDAR data covered the Rubicon Valley, which was characterized by high 

severity levels (estimated GeoCBI ≥2.25). Moderate severity is observed near the edge 

of the burn area, as well as the bottom of the valley, and a low severity patch at the 

north east part of the fire (Fig. 8). The topographic characteristics of the valley, with a 

concave shape and steep slopes that favored strong winds and fire spread {Coen, 2018 

#62}, explained the high severity observed.  Our results show good agreement with the 

Monitoring Trends in Burn Severity (MTBS) product (Fig. S10, supporting 

information), downloaded from https://mtbs.gov (last access on 20th February 2020). 

The MTBS product showed lower severity at the edge of the fire, as well as some larger 

patches of moderate severity in the north west Rubicon Valley than our LiDAR-based 

estimates.” 

 “Although a thorough comparison between the LiDAR and Landsat-products is out of 

the scope of our study, differences between the two products could be explained by the 

different acquisition time of the post-fire LiDAR and Landsat data. The LiDAR data 

was collected shortly after the fire, thus representing an initial severity assessment. 

Meanwhile, the Landsat image was acquired nearly a year after the fire and so, it 

corresponded to an extended assessment, which could be influenced by vegetation 

recovery processes. Moreover, the inability of Landsat data to capture fire damage to 

the understory and substrate, particularly under unaffected dense canopies, can result in 

higher uncertainties in moderate severity areas {Chuvieco, 2007 #34;Miller, 2015 #36}, 

contributing also to the differences between the two products.” 

 

Line 482-487: I don't quite agree with the explanation here. If the authors want to make 

this point, the authors have to present results on the differences in accuracy between the 

WARC method and common lidar metrics under fire severities. 

The reviewer probably thinks only about discrete return LiDAR data. We haVE already 

compared the performance of WARC with other metrics commonly used from full 

waveform LiDAR. In addition, we have now included the performance of PAC, as 

suggested by the reviewer, and found much better performance of WARC, probably 



because PAC only considers the distribution of returns not taking into account intensity. 

See also our prior response on the results of PAC  

 

Line 492-499: It would be interesting to include PAC into your comparison, especially 

considering that it is very easy to implement. 

Done. See our previous response.   

 

Figure 8: Can you show a comparison with the results derived from WARC and other 

commonly used satellite imagery index (such as dNBR). 

Done, see our previous comment on the discussion about the severity map. 

 

Reviewer #3: General: 

This is an excellent paper! I say this as a frequent critic of CBI, because of the way it 

discards much of the useful information contained in all the component biophysical 

measures that get collapsed into it. But I also acknowledge its utility as a ground-based 

severity metric, in large part due to its simplicity, especially for managers. The authors 

do a great job acknowledging the many specific fire effects that comprise the CBI, as an 

aggregated metric of severity. I especially appreciate the thorough awareness of how 

fire causes complex ecological changes to vegetation (all strata) and the ground surface. 

In other words, the reasoning for why WARC surpasses other remote sensing of fire (or 

burn) severity metrics is well founded. That said, they should not go quite so far as to 

say that this is "proven", which they do twice in this paper, by my count. 

I anticipate that this paper will be highly cited, as another application of lidar, 

specifically waveform lidar. It will have relevance for the utility of GEDI data. Given 

that the FLIGHT model has been parameterized for photon-counting lidars also (L148), 

I wonder if ICESAT-2 may also have some utility for severity assessments also, albeit 

diminished because of the lack of intensity information. Some comment on that in the 

Discussion would be warranted. 

Thank you. We greatly appreciate the reviewer’s comments and encouragement on the 

manuscript. We have considered his comments, especially the insufficient evidence of 

the manuscript to use the word “proved”. Regarding ICESat-2, it is our view that given 

the different characteristics of the sensor (photon counting) would require further 

analysis and so, discussion on the potential of this sensor it is out of the scope of our 

paper. Nevertheless, this is a very interesting avenue for future research. Our answer to 

each of his comments follows (lines refer to the tracked changes version): 

 

Specific comments: 

Last highlight. Supporting evidence from this one paper is insufficient to use the word 

"proved". 

We have changed “proved” to “showed”. 

L451. I would expect charcoal to greatly decrease the intensity at 1064 nm, but white 

ash should conversely increase it. However, rarely does the proportion of white ash 



cover approach the proportion of black char cover, let alone exceed it. Thus, an overall 

decrease. This sentence therefore needs to be rephrased. 

The sentence has been rephrased (Lines 488-493): “The effect on the LiDAR signal of 

the change in soil color, as result of charcoal and ash deposition, was evident in the 

amplitude of the ground peak, showing a clear reduction as the proportion of change in 

soil color increased. In our simulations the proportion of charcoal, with lower 

reflectance than the unburned substrate, was much higher than ash, with higher 

reflectance than the unburned substrate but rather ephemeral, thus reducing the substrate 

reflectance.”  

L483. "Proved". Same comment as my first specific comment above. 

Done. See our previous comment. We have also changed the word proved in: 

Lines 621-622 of original submission: The new sentence reads: “The potential of 

LiDAR data to perform comprehensive evaluations of the severity of wildfires has been 

evaluated.” 

“the metric proved to be able” has been changed to “LiDAR was able to capture” (Line 

624). 

 “proved the robustness and generalization capability of this metric” has been changed 

to “revealed the robustness and generalization capability of this metric” (line 632-633). 

“In this study we have proved” has been changed to “The potential of LiDAR data to 

estimate severity as measured by integrated indices such as the CBI and the GeoCBI 

was evaluated” (Line 635-636). 

 

Fig. 3. Change the units on the x axes so you don't have to express the numbers in 

exponential notation; it really clutters the figure. 

Done 

Fig. 5. The x and y axes are all identical, so eliminate all of the white space between the 

component graphs, and they will all fit on a single page and be easier to read/interpret. 

Done 

 

Reviewer #4: This is a very interesting and well written paper that brings together a 

wide range of ideas about remote sensing of fire severity. The paper is easy to follow 

and well presented but there were a few things that were unclear to me: 

Thank you for your encouraging comments and suggestions, which have helped to 

correct the flaws of the previous version. Detailed information on the changes made 

follows (lines refer to the tracked changes version). 

 

1. I don't think the general audience will be familiar with the terms 'snags' - this needed 

some explanation 



The term has been explained. Line 131  of the track-changes version: “to vegetation 

regrowth or presence of dead standing trees, so-called snags (Goetz et al. 2010).” 

 

2. Please explain and justify the use of Spearmans Rho - this bypasses examining the 

form of the relationships, which may or may not have been informative. Ie linear, non-

linear, monotonic, non-monotonic 

We have explained the reason to select Spearman’s rank correlation. Lines 340-342: 

“To assess the sensitivity of each metric to severity we computed the Spearman’s rank 

correlation between the relative change of the metrics and the CBI since the variables 

did not fulfil the assumptions to compute Pearson’s correlation coefficient”. 

 

3. There is reference to change in the color of leaves and understory, which may be true 

for the visual estimates of CBI, but a 1064 lidar does not see color, it sees differences in 

scattering (ie spectral reflectance). This could be reviewed and revised. 

We agree with the reviewer on the fact that LiDAR does not see color but changes in 

spectral reflectance at the wavelength the sensor operates. We have tried to make this 

point clearer in the new version of the manuscript (lines 216-221): “In order to use 

remote sensing data, and more specifically LiDAR data, to evaluate the severity of fires, 

it is important to have in mind how the ecological changes observed in the field 

translate into the remotely sensed signal. Hence, changes in cover represent structural 

changes that LiDAR data can accurately capture. On the other hand, variation in color 

of scorched leaves results in changes in the spectral reflectance, affecting the returned 

LiDAR signal.” 

In addition, in lines 405-407, we have modified the text. Now it reads: “The second 

moderate severity scenario (CBI=1.83; Fig. 3D) demonstrates the sensitivity of the 

LiDAR waveform to damage due to changes in color, resulting in changes in the 

spectral reflectance, rather than changes in the vegetation structure.” 

Lines 594-596 have also been changed: “Contrary, WARC is derived from the intensity, 

which is affected by the radiometric changes resulting from the modification in soil and 

leaf color.” 

 

4. My major criticism is that the simulations were of LVIS data but the Kings data sets 

were from two different sensors. This makes the comparisons rather untidy. 

Furthermore since the before and after ALS data for the Kings fire were very different, 

this make it a slightly weak test case. I do not suggest any reanalysis of the data sets, but 

a much stronger critical reflection on these points is really needed. 

 

We acknowledge that the King Fire case may not be the ideal to validate our 

simulations. Nevertheless, it is also an opportunity to test the applicability of the method 

to not only LVIS (or large footprint full waveform data) but to airborne discrete LiDAR 

data, which are more common. In addition, creating pseudo-waveforms from airborne 

discrete data has been done in some other studies and allowed to apply the WARC 

metrics. We have now discussed the weakness and strengths of the King Fire example 

in Lines 545-554 



“The King Fire case study has its limitations to test the robustness of the metrics since 

the LiDAR data has different pre- and post-fire survey configurations and sensors and 

the data were not full waveform. This issues require further research to draw more 

definitive conclusions. Nevertheless, the application of the WARC metric to the King 

Fire, with different vegetation characteristics than those of our simulated plots, showed 

the robustness and generalization capabilities of this metric to estimate severity. The 

availability of pre- and post-fire LiDAR data along with concomitant field measures of 

the GeoCBI, makes it a unique dataset to evaluate the potential of LiDAR data for the 

assessment of fire severity. Furthermore, it also allows to demonstrate the possibility of 

applying the method to the more frequent airborne LiDAR discrete return data by 

generating pseudo-waveforms.”  

 

 

Reviewer #5: This manuscript presents an interesting approach to evaluate the 

suitability of the proposed LiDAR metric WARC to assess severity levels in terms of 

CBI index values using the radiative transfer model (RTM) Flight. This research is 

novel as there exist not many example in literature of the use of 3D RTM that simulate 

the LiDAR signal to assess severity. In addition, the authors propose the use of a new 

metric not commonly used. However, there exists some concerns about the 

methodology that should be met before publication. 

First of all, form my point of view the tittle is too generic and should give more detailed 

information on the work performed and the main objective of the research, to assess the 

sensitivity or behavior of LiDAR waveform to fire damage. Besides, the authors claim 

that "The approach represents the first attempt to evaluate the effect of different fire 

impacts, i.e. changes in vegetation structure as well as soil and leaf color, on the LiDAR 

signal". There exist several studies that relate LiDAR metrics to the CBI index 

measured in the field, as mentioned by the authors, and this index accounts for soil and 

leave color. Accordingly, I suggest that the authors reformulate this statement. I will go 

deeper on this topic later. 

We are very thankful for the useful and interesting points raised by the reviewer. We 

have made the necessary changes to comply with the reviewer suggestions (lines refer 

to the tracked changes version). 

Regarding the title, though it may seems generic, since we applied the method to both, 

full waveform and discrete return data, we decided to maintain the original title. 

 

1. Introduction. 

Line 127, "These previous studies have been based on a set of structural metrics derived 

from the height distribution of returns, founded on the changes in vegetation structure 

produced by fires. However, they fail to provide a complete characterization of the 

severity as they focus only on structural changes rather than considering tree mortality 

or change in leaf color (scorched leaves) or soil (charred soil)". I do not agree with this 

sentences. As I mentioned before, the studies cited relate CBI, that accounts for not only 

structural changes but also changes in leave color and soil, to LiDAR metrics related to 

the distribution of heights in the returns in the case of discrete sensors.  



To the best of our knowledge there are only two studies evaluating severity of fires from 

LiDAR and using CBI as field measure. The first one (Wang and Glenn 2009) used a 

modified version of CBI to measure severity in a sagebrush environment. These authors 

only evaluated changes in height, yet while useful in a sagebrush environment, it clearly 

does not fully characterize the ecological damage of the fire in a forest environment. 

The second study (Montealegre et al 2014) compared LiDAR metrics to a broad 

classification of severity levels based field measure CBI. Nevertheless, this paper only 

used post-fire LiDAR data within the burned area. Moreover, the metrics were derived 

from the height distribution of return above 1m, therefore, they did not fully 

characterize the fire impact either, regardless if field measured CBI does it. There is 

obviously a relation between the impact of the fire in the upper canopy, and the impact 

in the understory and substrate layers, but it is indirect. Moreover, in low to moderate 

burn severity areas, their approach would fail to estimate fire damage, as it happens 

from optical data. Our approach provides a more comprehensive evaluation of the fire 

damage. 

These metrics are not only structural metrics as the distribution of returns depend on the 

energy scattered back in both types of sensors, discrete and full-waveform. From my 

point of view this sentence should also be reformulated or softened. 

Although the energy reflected back to the sensors obviously determines whether a return 

is recorded or not, the distribution of returns depends on: canopy structure, triggering 

threshold, survey and sensor characteristics (flying height, pulse width, beam 

divergence…), target reflectance, among other factors. We should bear in mind that two 

objects with different spectral properties (reflectance) can be detected if the illuminated 

area is big enough (see Baltavias, 1999: minimum detectable object). This means that as 

long as the backscattered energy is above the triggering threshold, we would have a 

return but no information of the spectral characteristics unless the intensity is also 

recorded and used. Note that intensity is a function of reflectance of the target but it is 

not possible to derive reflectance from discrete return data. So in the case of fire caused 

damages, if intensity is not used, we would be just focusing on the impact of fire on the 

vegetation structure (change in cover as measured by CBI) but not changes related to 

leaf color, which translate into changes in the spectral reflectance and so in the intensity 

recorded by the LiDAR system. 

Besides, the introduction lack a through revision of approaches devoted to 3D RTM 

with capabilities to simulate the LiDAR response.  

We have added the following information in this regards in the new version of the 

manuscript (Lines 120-127): “Assessments of fire impacts using LiDAR data have been 

based so far on empirical relationships. Although RTM approaches have been applied to 

LiDAR data, they focused on the retrieval of biophysical information such as LAI, 

canopy height or fractional cover {Bye, 2017 #65}, assessment of the impact of sensor 

and survey characteristics on canopy height estimation {Disney, 2010 #78}, or to 

generate a fuel type LiDAR library {Lamelas-Gracia, 2019 #77}, but no research has 

been done yet on the simulation of LiDAR data to assess fire impacts, which can help 

improving our understanding of the capabilities of LiDAR systems to assess the severity 

of wildfires.” 



Why the flight model was selected? was this model previously tested to simulate the 

LiDAR response of forest environments? 

The suitability of the 3D RTM FLIGHT to simulate full waveform and photon counting 

LiDAR data has been previously proved (e.g. North, 2010: Bye et al., 2018: Montesano 

et al.,2015, Morton et al.,2014 ). We included this sentence to support the selection of 

FLIGHT RTM in our simulations (lines 164-167): “The suitability of the FLIGHT 3D 

RTM to simulate full waveform and photon counting LiDAR data in forest 

environments have been widely demonstrated {Bye, 2017 #65;Montesano, 2015 

#69;Morton, 2014 #79;North, 2010 #47;Rosette, 2013 #81}.”  

 

2.1. LiDAR full waveform simulations. 

Lines 158-159. From the information included in Table 1 it follows that all simulations 

were performed with an azimuthal view. However, previous research that simulated the 

LVIS response to fuel types (see Lamelas et al. 2019) concluded the importance of this 

sensor parameter. Do you think this parameter may have influence the difference of 

results between the simulations and the king Fire case study? At least this should be 

mentioned in the discussion section. 

Lamelas, M.T., Riaño, D., Ustin, S.L. (2019). A LiDAR signature library simulated 

from 3-dimensional Discrete Anisotropic Radiative Transfer (DART) model to classify 

fuel types using spectral matching algorithms. GIScience and Remote Sensing, 56 (7), 

988-1023. https://doi.org/10.1080/15481603.2019.1601805. 

Lamelas et al., 2019 simulated off-nadir observations of up to 20º, which is wider than 

the scan angle of the LVIS sensor 

(https://lvis.gsfc.nasa.gov/Home/instrumentdetails.html), and far beyond the expected 

scan angle of LVIS operations, normally not exceeding 6º (Hancock et al., 2019). We 

have run simulations at 3º and 6º and evaluated the impact of scan angle on the 

observations and observed no consistent bias in most of the metrics. Correlation 

between metrics remained above 0.9 for all metrics but RH25, RH20, RH10 and HTRT. 

In the case of WARC, correlation was higher than 0.99.  

We added the following sentences in this regard (lines 526-538): “Lamelas et al., {, 

2019 #83} reported the impact of scan angle on fuel type classification using the 

spectral angle mapper (SAM) classifier over an LVIS LiDAR signature library created 

from simulated waveforms. Although these authors found scan angle an important 

source of error in the classification, it was probably due to the large scan angles tested 

up to 20º, beyond the scan-angle limit of the LVIS sensor 

(https://lvis.gsfc.nasa.gov/Home/instrumentdetails.html; last access on 14th March 

2020), and the sensitivity of the SAM algorithm to even small changes in the shape of 

the waveform. We tested the impact of off-nadir observations, up to 8 º {Hancock, 2019 

#84; table 1}, on the metrics and found no consistent bias on most of them. Correlation 

between the nadir and off-nadir metrics remained above 0.9 for all metrics but RH25, 

RH20, RH10 and HTRT. In the case of WARC, correlation was higher than 0.99. These 

results agrees with Hancock et. {, 2019 #84}, who also found no impact of scan angles 

less than 8º on the metrics derived from simulated LVIS waveforms.” 

https://doi.org/10.1080/15481603.2019.1601805
https://lvis.gsfc.nasa.gov/Home/instrumentdetails.html


 

Lines 168-169 and 220. The substrate stratum was modeled as a plane with slope <5°. 

May the presence of steeper slopes have influenced the results? This should at least be 

mentioned or discussed. This could be the cause of differences between simulation and 

King Fire results. 

Although slope can affect the filtering of ground returns, the data had been gone 

through a quality check and the effect of small errors in the filtering, on the generated 

pseudo waveform can be neglected. Therefore, we do not think this is the cause of the 

differences between simulation and King Fire results.  

We added the following sentence in the discussion for clarification (lines 518-522): 

“Our simulations considered relatively flat terrain, with slope <5º, reducing the impact 

of slope on the signal. Therefore, further research is needed to assess the influence of 

this parameter in the results. In the case of pseudo-waveforms created from discrete 

return data, although slope can affect ground filtering algorithms {Montealegre, 2015 

#82}, the convolution of ground and understory over steep terrain would be less 

problematic.” 

 

2.2. Definition of postfire effects scenarios. 

Line 215. "For this study we assumed that understory was composed of the same 

species as the overstory". May this assumption have influence the results? Also requires 

a short discussion. More over considering the main objective formulated "assess the 

sensitivity of LiDAR data for fire Damage assessment. 

Obviously, assuming that the understory was composed of the same species as the 

overstory is a simplication of the real world. Nevertheless, this approximation do not 

have a significant impact in the method as we evaluated the relative change of the 

waveform. Using reflectance data for common shrub species in Mediterranean 

environments could result in a more accurate representation of the real world, but this 

would also require more complex parameterization and eventually it could reduce the 

generalization power of the approach. Moreover, using the same species for the 

understory and overstory layer is quite common in simulating severity of fires from 

remote sensing data (Chuvieco et al., 2006; Chuvieco et al., 2007; de Santis et al., 2010) 

We added the following sentence in the discussion for clarification (Lines 523-525): 

“Additionally, we assumed the same species for the understory and the overstory layers. 

This assumption should not significantly affect the results since our approach to 

estimate severity is based on the relative change of the waveform, this assumption 

should not affect the results.” 

 

2.4. Modeling severity from LiDAR 

Line 315, "In the case of the WA metric, the relative change of each stratum was 

derived and the average of the three was computed to provide a plot value; the CBI at 

the plot level is computed in the same way". Did the authors try to calculate the change 

in WA for the whole waveform? This may have solved the problems encountered with 

the use of different thresholds, improving generalization. 



Although this could solved the problems of using different thresholds, computing the 

area of the whole waveform would imply the loss of an important characteristic of the 

WARC metric, which attempts to evaluate damage at different strata and average them, 

like CBI does. Moreover, in the case of the pseudo-waveform by computing the change 

per stratum and averaging we reduced the impact of occlusion (we applied a constraint 

to the lower layer limiting the change in area to 1). Lines 378-379: “This can result in a 

relative change > 1, which could result in an overestimation of severity at the plot level; 

therefore, in these cases the relative change was constrained to 1.” 

 

2.5. The King Fire case study 

Line 321. "In order to validate our method over a real scenario, we used as a case study 

the King Fire". What are the authors validating, the assessment of severity with RTM 

(main objective) or the new metric proposed (second objective)? From my point of view 

with the methodology proposed for validation and the results presented (see comments 

to section 3.4.), the authors only can validate the proposed metric and this should be 

also discussed due to the slightly better results obtained from the correlation of WARC 

with CBI in comparison to the other metrics, summed up to the differences in sensor 

parameters, field measure of severity and environmental conditions. 

The main objective of the study is to evaluate the potential of LiDAR data to assess 

severity of fires. To do so, we used an RTM approach which allowed to simulate a wide 

variety of fire scenarios, unfeasible to test from actual data. Severity is assessed from 

changes in LiDAR metrics.  

We have rephrased the sentence (lines 344-345): “The King Fire served to evaluate the 

potential of the LiDAR metrics to estimate severity over a real scenario.” 

We also discussed the limitations of our case study for example lines 545-554: “The 

King Fire case study has its limitations to test the robustness of the metrics since the 

LiDAR data has different pre- and post-fire survey configurations and sensors and the 

data were not full waveform. This issues require further research to draw more 

definitive conclusions. Nevertheless, the application of the WARC metric to the King 

Fire, with different vegetation characteristics than those of our simulated plots, showed 

the robustness and generalization capabilities of this metric to estimate severity. The 

availability of pre- and post-fire LiDAR data along with concomitant field measures of 

the GeoCBI, makes it a unique dataset to evaluate the potential of LiDAR data for the 

assessment of fire severity. Furthermore, it also allows to demonstrate the possibility of 

applying the method to the more frequent airborne LiDAR discrete return data by 

generating pseudo-waveforms.” 

Regarding the slightly better results of WARC compared to other metrics we modified 

the text (Lines 555-564): “Contrary to the simulation results, structural metrics showed 

almost the same sensitivity as the WARC for the King Fire, most probably due to large 

fuel amounts consumed by the fire (Coen et al. 2018). Although structural metrics have 

shown significant differences between burned and unburned areas in boreal forests 

(Goetz et al. 2010; Wulder et al. 2009), and can be useful to evaluate specific impacts of 

fires, such as biomass consumed, the ability of these metrics to provide an integrated 

measure of severity, such as the CBI or the GeoCBI, which also accounts for tree 



mortality, may be limited. Moreover, our approach is based on a single simple metric, 

increasing its generalization capability, as opposed to previous studies that included 

multiple metrics. The WARC consistency for both, the simulated data as well as the 

King Fire case study, indicate the potential for the broad applicability of this metric.” 

 

Line 327. "In addition, a field assessment of severity was carried out using the GeoCBI 

index". How many plots? Environmental characteristics? CBI range? Date of 

acquisition? This information may have influence the results as mentioned before. 

This information has been included lines 349-352: “In addition, a field assessment of 

severity was carried out between November 2014 and January 2015 over 52 plots, 22 of 

which were located within the pre- and post-fire LiDAR surveys. Plots were positioned 

using GPS measurements and the ecological damage caused by the fire was assessed 

using the GeoCBI index.” 

Line 332. "Based on the intensity of the returns, the discrete return data was converted 

into a pseudo waveform as described in García et al., (2017b). As mentioned before the 

influence of the difference in sensor between simulation and validation should be 

discussed. 

Done. See our previous comment 

3.1. Sensitivity of full waveform LiDAR to severity 

Fig. 3 is very illustrative, however I would have expected to have also information on 

the values of the relative change of the metrics in different CBI values. In addition, to 

illustrate the importance of WA computation in different strata, it would have been 

interesting to include this value in Fig.3 where the value of CBI by strata is also 

included. 

The purpose of figure 3 is to show the influence of different severity scenarios, 

including structural and change in color effects, on the LiDAR signal (waveforms), not 

the metrics derived from them. Moreover, adding the information suggested by the 

reviewer would have cluttered the figure. Therefore, we have kept figure 3 as it was. 

3.3. Lidar-Based severity modeling. 

This should be part of methodology and not results. 

Done. The section has been removed and merged into section 3.2. 

3.4. The king fire case study 

I would have expected to see also the values of the metrics and graphs in Fig .3 in 

different severity values for the real data of King Fire. This would allow to assess the 

behavior of the RTM. 

We include now some examples of pseudo-waveforms and the point clouds of several 

plots with different GeoCBI levels. However, we have not included these examples in 

the main text but in the supporting information since figure 3 shows our point on the 

impact of different fire effects on the LiDAR signal. We added a sentence to the new 

version of the manuscript (lines 439-442): “Pseudo-waveforms generated from discrete 

return intensity data also showed ability to discriminate different degrees of severity 

(Fig. S6-S9, supporting information). Nevertheless, the sensitivity analysis of the 



LiDAR metrics to the burn severity of the King Fire showed important differences with 

our previous simulations (Fig. 6).” 

Finally, there are some minor comments: 

Line 3, number 4 in Martín and not Pilar. 

Corrected 

Line 97-98, NBR reference required. 

Done 

Line 335, the terms of the equations should be explained. 

Done 

Line 715, reference incomplete. 

Done 

Line 725 reference incomplete. 

Done 

In general in tables acronyms should be defined to better understanding. 

All parameters are described in the second column of table 1. In table 2, the only 

acronym is LAI, defined in the main text. In table 3, CBI, PFA and PCC are also 

defined in the main text. Furthermore, their meaning is explained in brackets.  
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ABSTRACT 23 

Providing accurate information on fire effects is critical to understanding post-fire ecological 24 

processes and to design appropriate land management strategies. Multispectral imagery from 25 

optical passive sensors is generally commonly used to estimate fire damage, yet this is type of 26 

data is only sensitive to the effects oin the upper canopy. In tThis paper, we  evaluates the 27 

sensitivity of full waveform LiDAR data to estimate the severity of wildfires using a 3D 28 

radiative transfer model approach. The approach represents the first attempt to evaluate the effect 29 

of different fire impacts, i.e. changes in vegetation structure as well as soil and leaf color, on the 30 

LiDAR signal. The FLIGHT 3D radiative transfer model was employed to simulate full 31 

waveform data for 10 plots representative of Mediterranean ecosystems along with a wide range 32 

of post-fire scenarios characterized by different severity levels, as defined by the composite burn 33 

index (CBI). A new metric is proposed, the waveform area relative change (WARC), that which 34 

provides a comprehensive severity assessment considering all strata and accounting for changes 35 

in structure and leaf and soil color. It showed a strong correlation with CBI values (Spearman’s 36 

Rho = 0.9 ± 0.02), outperforming the relative change of LiDAR metrics commonly applied for 37 

vegetation modeling, such as the relative height of energy quantiles (Spearman’s Rho = 0.56 ± 38 

0.07, for the relative change of RH60, the second strongest correlation). Logarithmic models 39 

fitted for each plot based on the WARC yielded very good performance with R
2
 (± standard 40 

deviation) and RMSE (± standard deviation) of 0.8 (± 0.05) and 0.22 (± 0.03), respectively. This 41 

approach wasLiDAR metrics were evaluated over the King Fire, California, U.S., for which pre- 42 

and post-fire discrete return airborne pre- and post-fireLiDAR  data was were available. Pseudo-43 

waveforms were computed after radiometric normalization of the intensity data. The WARC 44 

showed again the strongest correlation with field measures of GeoCBI values (Spearman’s Rho = 45 
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0.91), although closely followed by the relative change of RH40 (Spearman’s Rho = 0.89). The 46 

logarithmic model fitted using WARC offered an R
2
 of 0.78 and a RMSE of 0.37. The accurate 47 

results obtained for the King Fire, with very different vegetation characteristics compared to our 48 

simulated data, demonstrate the robustness of the new metric proposed and its generalization 49 

capabilities to estimate the severity of fires. 50 

Keywords: LiDAR, radiative transfer models, full waveform simulation, fire effects, severity, 51 

King Fire.  52 

1. INTRODUCTION 53 

The impact of fires encompasses a wide variety of effects, from environmental, such as 54 

vegetation pattern distribution, wildlife habitat quality and particulate and greenhouse gases 55 

emissions (Bond et al. 2005; Casas et al. 2016; Nikonovas et al. 2017; van der Werf et al. 2010), 56 

to socio-economic, including health issues related to air quality, property damage or even human 57 

casualties (Chuvieco et al. 2014; Fowler 2003). Fire impacts also vary spatially, from landscape 58 

(e.g. changes in vegetation composition and structure) to continental or global scales (e.g. 59 

biomass burning emissions); and over time, including the fire environment, post-fire 60 

environment and the response phases of the so-called fire continuum (Jain et al. 2004). Fire 61 

managers require information on fire effects to support strategic planning before and during fires, 62 

to establish mitigation strategies aimed at reducing soil erosion, establishment of invasive 63 

species, as well as to evaluate the results of prescribed fires {Morgan, 2014 #26}. Therefore, 64 

accurately quantifying fire effects is necessary to improve our understanding of the impact of 65 

fires on ecosystem processes as well as to develop appropriate forest and fire management 66 
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strategiesas well as the carbon cycle. This becomes especially important as with projected 67 

climate change an increase in forest fires is expected (Stephens et al. 2013).  68 

Fire damage is generally described in terms of its severity, which represents the ecological 69 

change caused by fire (Lentile et al. 2006). The use of the an appropriate terminology to describe 70 

post-fire effects has been a subject of discussion. Some authors advocate for the use of fire 71 

severity when considering immediate fire effects as a result of the combustion process and the 72 

term burn severity when considering longer-term effects, thus including therefore ecosystem 73 

response processes (Lentile et al. 2006). On the other hand, Keeley (2009) recommend not 74 

including ecosystem response in fire or burn severity measures since some of the ecosystems 75 

response processes are not related to the severity of the fire event, and in such a case the 76 

interchangeable use of both terms would not be problematic. Similar to French et al. (2008) and 77 

Morgan et al. (2014), hereinafter we will use the generic term severity to generally describe the 78 

ecological change produced by fires.   79 

A plethora of field measures has been designed to quantify severity according to the particular 80 

objectives of the fire damage assessment. These measures include changes in soil characteristics 81 

such as color, structure or hydrophobicity (Lewis et al. 2006; Neary et al. 1999), tree mortality 82 

(Hood et al. 2018; Whittier and Gray 2016) or biomass consumed (Garcia et al. 2017a). Key and 83 

Benson ( 2006) proposed the composite burn index (CBI), which integrates different post-fire 84 

effects into a single semi-quantitative index ranging from 0 (unburned) to 3 (completely burned). 85 

The CBI was designed to serve as a field validation of remotely sensed estimations of burn 86 

severity. De Santis and Chuvieco (2009) proposed a modified version of the CBI, the GeoCBI, 87 

that improved severity estimations from remote sensing by accounting for the fractional cover 88 

and leaf area index (LAI) changes of the intermediate and upper canopy strata. Despite the 89 
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generalized acceptance and application of the CBI/GeoCBI, particularly in remote sensing 90 

studies, they are highly subjective. Morgan et al. (2014) recommend to directly measure fire 91 

effects, which can be later integrated according to an objective severity measurement instead of 92 

collapsing them into a single integrated severity index, such as the CBI.     93 

The heterogeneity of fire effects both in space and time make remote sensing techniques a 94 

suitable alternative to field measures given their comprehensive and systematic view of the 95 

Earth. Most attempts have been based on the use of multispectral imagery due to the spectral 96 

changes associated with vegetation removal, soil exposure, decrease in moisture content of soil 97 

and vegetation, or carbon and ash deposition that result from fires (Jakubuaskas et al. 1990). The 98 

potential of remotely sensing data, particularly Landsat imagery, for mapping wildfire severity 99 

has been demonstrated across the world from boreal forests to savannas (Boer et al. 2008; 100 

Landmann 2003; Viana-Soto et al. 2017; Whitman et al. 2018). The most common approach to 101 

derive severity from optical remote sensing develops empirical relations between the normalized 102 

burn ratio (NBR) {Key,  2006 #27} or some of its derivatives, namely the differenced NBR 103 

(dNBR) (Miller and Thode 2007) or the relative dNBR (RdNBR) (Miller et al. 2009), with the 104 

CBI or the GeoCBI. More recently, methods based on radiative transfer models (RTM) have 105 

been developed to improve the retrieval of severity estimates from the spectral information 106 

recorded by spaceborne sensors (Chuvieco et al. 2007; De Santis et al. 2010; Disney et al. 2011). 107 

RTM approaches can help improving our understanding of the factors modifying reflectance and 108 

offer better universality than empirical approaches, yet their performance is subject to an 109 

appropriate model parameterization. Performance of the different severity retrieval approaches 110 

using optical data varies widely in terms of R
2
 and RMSE but in general, low and high severity 111 

values are accurately predicted while larger errors are found for intermediate severity values 112 
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(Chuvieco et al. 2007; De Santis and Chuvieco 2007). This can be explained by the inability of 113 

Landsat data to accurately capture the actual fire damage to under- and mid-story vegetation in 114 

low and moderate severity areas, especially under high canopy cover (Miller and Quayle 2015).     115 

LiDAR data provide detailed 3dD information on forest structure and, so it can evaluate the 116 

severity on different strata. Specific fire caused damage such as changes in vegetation structure 117 

(McCarley et al. 2017; Wulder et al. 2009), biomass consumption (Garcia et al. 2017a), LAI 118 

changes (Hu et al. 2019) or habitat suitability (Casas et al. 2016), have been generally estimated 119 

from LiDAR data, rather than an integrated measure of severity as that provided by CBI. While 120 

only changes in the overstory layer are generally assessed, LiDAR has potential to separate 121 

biomass consumption at different canopy levels (Alonzo et al. 2017). Assessments of fire 122 

impacts using LiDAR data have been based so far on empirical relationships. Although RTM 123 

approaches have been applied to LiDAR data, they focused on the retrieval of biophysical 124 

information such as LAI, canopy height or fractional cover {Bye, 2017 #65}, assessment of the 125 

impact of sensor and survey characteristics on canopy height estimation {Disney, 2010 #78}, or 126 

to generate a fuel type LiDAR library {Lamelas-Gracia, 2019 #77}, but no research has been 127 

done yet on the simulation of LiDAR data to assess fire impacts, which can help improving our 128 

understanding of the capabilities of LiDAR systems to assess the severity of wildfires.  The 129 

simplest approach to burn assessment consists of evaluating vegetation height changes. Although 130 

this successfully correlated to field measures in a sagebrush ecosystem (Wang and Glenn 2009), 131 

over forest areas this variable alone may not capture severity appropriately due to vegetation 132 

regrowth or presence of dead standing trees, so-called snags (Goetz et al. 2010). Differences 133 

between LiDAR derived digital elevation models (DEMs) have been also utilized to estimate soil 134 

consumption in peat swamps (Reddy et al. 2015). So far, only a study in a Mediterranean forest 135 
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in Spain applied LiDAR data to classify the severity of fires using a logistic regression between 136 

LiDAR and field measured CBI values (Montealegre et al. 2014). Nevertheless, the metrics only 137 

considered returns above 1 m not completely evaluating fire effects on the ecosystem.  138 

These previous studies have beenwere based on a set of structural metrics derived from the 139 

height distribution of returns, founded on the changes in vegetation structure produced by fires. 140 

However, they fail to provide a complete characterization of the severity, as they focus only on 141 

structural changes rather than also considering tree mortality or change in leaf color (scorched 142 

leaves) or soil (charred soil). This is particularly relevant for scorched trees that may retain 143 

leaves at the moment of the LiDAR survey, thus preserving the pre-fire structure. On the other 144 

hand, LiDAR has proved successful to detect snags using intensity data (Casas et al. 2016; Wing 145 

et al. 2015). Therefore, further research is required to assess the utility of LiDAR data for 146 

providing an integrated estimation of the severity of wildfires. The main goal of this research 147 

was to assess the potential of LiDAR data for providing a comprehensive characterization of the 148 

burn severity of fires, beyond structural changes, considering all layers of a forest. The specific 149 

objectives were to: 1) assess the sensitivity of LiDAR data to different severity degrees as 150 

measured by CBI using a 3D RTM; 2) develop a new integrated LiDAR metric that better 151 

captures severity of a forest plot; 3) evaluate the proposed metric over an actual fire occurrence 152 

in a fire prone environment using pre- and post-fire airborne LiDAR data. 153 

2. Methods 154 

2.1. LiDAR full waveform simulations 155 

Evaluation of fire effects requires analyzing changes over different strata, from the substrate 156 

to the upper canopy. Large footprint full waveform data provide better description of the 157 
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vertical vegetation volume distribution, from the top of the canopy to the ground, including 158 

the understory layer, than discrete return data {Lim, 2003 #76}, thus making it ideal to 159 

evaluate severity of fires. 160 

In order to evaluate the sensitivity of LiDAR data to different degrees of severity, the 161 

FLIGHT 3D radiative transfer modelRTM was selected to simulate LiDAR waveforms under 162 

different severity levels, including an unburned scenario representing the pre-fire conditions. 163 

FLIGHT was originally developed to model vegetation bidirectional reflectance (North 1996) 164 

and later extended to model LiDAR waveforms (North et al. 2010) and photon counting 165 

LiDAR returns (Chen et al. 2020; Montesano et al. 2015). The suitability of the FLIGHT 3D 166 

RTM to simulate full waveform and photon counting LiDAR data in forest environments 167 

have been widely demonstrated {Bye, 2017 #65;Montesano, 2015 #69;Morton, 2014 168 

#79;North, 2010 #47;Rosette, 2013 #81}. The model is based on Monte Carlo evaluation of 169 

photon transport within a 3D representation of the vegetation, and can be configured for both 170 

airborne and satellite instruments. Waveforms are simulated by uniformly sampling the path 171 

of photons within the instantaneous field of view of the LiDAR sensor at a given position, 172 

accumulating the path length (equivalent to the time of signal) and energy from both laser 173 

and solar sources. Multiple orders of scattering are accounted for and the contribution of 174 

successive orders of scattering is reduced using an exponential function until contributions 175 

approach zero. The energy is binned into m bins, the width of which is defined by the sensor 176 

model temporal sampling. For this study the set of parameters defining the LiDAR sensor 177 

corresponded to the Land, Vegetation and Ice Sensor (LVIS) (Blair et al. 1999), listed in 178 

Table 1. 179 

Insert Table 1 180 
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A forest plot or stand representation in FLIGHT can be generated statistically using 181 

fractional cover and crown size range values. Alternatively, if field measurements or airborne 182 

LiDAR data enabling tree delineation are available, a more realistic representation can be 183 

realized. Tree crowns are modeled using ellipsoidal or conical geometric primitives of given 184 

horizontal and vertical dimensions. The overlap between neighboring crowns is limited using 185 

a simple growth model. Within each crown, vegetation is represented as a turbid medium 186 

described by leaf area density, leaf-angle distribution, and the optical properties of the scene 187 

components, namely leaves, branch, shoot and ground. The ground is approximated using a 188 

planar surface with defined slope angle. In order to be able to simulate post-fire effects on 189 

different forest strata, including cases in which there is a tree canopy and understory 190 

vegetation both with various levels of fire damage, the FLIGHT model was modified to 191 

allow definition of different properties for understory and overstory vegetation.  192 

2.2. Definition of post-fire effects scenarios 193 

Simulation of fire effects first required the selection of a reference measure of fire damage. 194 

We used the CBI, which has been previously applied in other remote sensing simulation 195 

approaches for burn severity estimation from passive optical data (Chuvieco et al. 2007; 196 

Chuvieco et al. 2006; De Santis et al. 2010). The CBI consists of a visual assessment of fire 197 

effects on up to five vertical strata of the field plot under consideration. These strata are: A) 198 

substrate (rock and soil, duff, litter, and downed woody fuels); B) herbs, low shrubs and trees 199 

≤ 1 m tall; C) tall shrubs and trees ≤ 5 m; D) suppressed and intermediate trees (10 ≤ DBH ≤ 200 

25 cm; 8 ≤ canopy height ≤20 m); and E) dominant and co-dominant trees (10 ≤ DBH ≤ > 25 201 

cm; 8 ≤ canopy height ≤>20 m).  Fire effects are evaluated by analyzing soil charring, 202 

organic matter consumption, proportion of fuel consumed (change in cover), altered foliage 203 
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(proportion of brown leaves), canopy mortality and char height. CBI also accounts for 204 

ecosystem response processes such as presence of colonizers or percentage of resprouting. 205 

All these changes are expressed relative (%) to the pre-fire situation (Key and Benson 2006). 206 

Each stratum is evaluated individually and rated between 0 and 3, and finally averaged to 207 

provide an estimate of the burn severity at the plot level. Although the CBI was initially 208 

designed to validate severity estimates derived from Landsat imagery, the variables 209 

considered to assess the ecological change caused by the fire makes it suitable also for 210 

LiDAR data.  211 

With the purpose of simulating scenarios showing diverse degrees of post-fire severity using 212 

FLIGHT, we made some simplifications of the CBI taking into account those variables that 213 

LiDAR can actually measure. Similarly to Chuvieco et al. (2007), the first simplification 214 

consisted in reducing the five strata of the CBI to three by grouping strata B and C into the 215 

understory vegetation stratum, and strata D and E into the overstory stratum. The CBI 216 

variables considered for the simulations included charcoal and ash proportion for the 217 

substrate (soil charring); whereas for the understory and overstory layers, the percentage of 218 

foliage altered (PFA), i.e. change in leaf color, ; and percentage of cover change (PCC) were 219 

evaluated. In order to use remote sensing data, and more specifically LiDAR data, to evaluate 220 

the severity of fires, it is important to have in mind how the ecological changes observed in 221 

the field translate into the remotely sensed signal. Hence, Cchanges in cover represent 222 

structural changes that LiDAR data can accurately capture; . On the other hand, variation in 223 

leaf color of scorched leaves results in changes in the spectral reflectance, affecting the 224 

returned LiDAR signal intensity. 225 
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Because severity is measured in relation to the vegetation conditions before the fire event, a 226 

pre-fire scenario was simulated for 10 plots representing typical Mediterranean vegetation 227 

(Table 2). Further details about vegetation in these plots can be found in Garcia et al., (2010).  228 

Insert Table 2 229 

Field measurements of tree height, diameter at breast height (DBH), crown size and LAI 230 

defined the structural characteristics of the overstory vegetation. Likewise, measurements of 231 

LAI, height and diameter of shrubs described the understory vegetation. Because tree 232 

location was not measured in the field, each individual was randomly set within the plot of 233 

25 m diameter, equivalent to the LVIS footprint. Regarding the optical properties of leaves, 234 

reflectance was measured using an ASD Fieldspec® 3 spectroradiometer (Analytical Spectral 235 

Devices Inc., Boulder, CO, USA), with a spectral resolution of 2–10 nm in the range of 400–236 

2500 nm. Transmittance values were estimated using Prospect-5D (Féret et al. 2017) for oak 237 

leaves and the LIBERTY model (Dawson et al. 1998) for pine needles (see supporting 238 

information). For this study we assumed that understory was composed of the same species 239 

as the overstory; therefore, the optical properties of the overstory were applied. In addition to 240 

leaf properties, FLIGHT requires tree-bark reflectance factor which was measured in the 241 

field using an ASD Fieldspec® 3attached to an ASD Plant Probe based on 25 measurements 242 

collected over three different individuals (Melendo-Vega et al. 2018). The substrate stratum 243 

was modeled as a plane with slope <5° and its optical properties defined by a mixture of soil 244 

(≤10%), grass (20-30%) and leaf litter (60-40%). The proportion of soil, grass and litter was 245 

set based on our knowledge of the study area of the reference plots used to create the 246 

scenarios.  Grass and soil reflectance values, measured over a medium-moisture sandy soil, 247 

were provided by Melendo-Vega (personal communication, 2019). Leaf litter corresponding 248 
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to dry leaves and needles of holm oak (Quercus ilex L.) and black pine (Pinus nigra Arn.) 249 

were measured using an ASD FieldSpec® 3 spectroradiometer (see supporting information 250 

for more details). Despite measuring the reflectance of each cover in the range of 400-2500 251 

nm, we use here only the 1064 nm wavelength, at which the LVIS sensor operates.  252 

In order to simulate post-fire scenarios representing a wide range of severity levels, CBI 253 

values resulting from changes in color and cover for each of the three strata considered were 254 

combined in the range [0, 3] at 0.5 step values. Tables 3 and 4 show the relative change of 255 

each variable and stratum associated with each CBI value, and their combination to yield the 256 

CBI of the understory and overstory strata. 257 

Insert Table 3  258 

Insert Table 4 259 

The substrate stratum of the post-fire scenarios was comprised of soil, charcoal and ash. 260 

Bearing in mind the low persistence of the ash signal, which is usually blown away by the 261 

wind shortly after the fire, the ash cover was limited to a maximum of 15% of the plot.  This 262 

would represent a situation of up to a few weeks after a fire, i.e. an initial assessment (Key 263 

and Benson 2006). Soil reflectance values were the same for the pre-fire scenario whereas 264 

the spectra for charcoal and ash were measured in the field with a GER-2600 265 

spectroradiometer (Geophysical & Environmental Research Corporation, Millbrook, NY) 266 

and provided by Chuvieco et al., (personal communication, 2019). The final spectrum for the 267 

post-fire substrate layer was a linear combination of the reflectance of the three components 268 

weighted by their proportion according to the CBI values as specified in Table 3. 269 

As for the changes in understory and overstory strata the same two variables were 270 

considered, PCC and PFA. PCC was simulated as a reduction in the LAI. Based on the 271 
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reference values of the CBI definition we assigned CBI values of 1, 2 and 3 to relative LAI 272 

reductions of 15%, 70% and 100% (Key and Benson 2006), whereas all intermediate values 273 

in Table 3 were linearly interpolated. With regards PFA, simulations were realized as a linear 274 

combination of green and scorched leaves/needles weighted by their proportion according to 275 

the CBI values (Table 3). Although in previous studies the spectral characteristics of 276 

scorched leaves were assimilated to senescent leaves (Chuvieco et al. 2007; Chuvieco et al. 277 

2006), in this work we measured the spectra of scorched leaves in the laboratory using an 278 

ASD FieldSpec® 3 spectroradiometer attached to a ASD plant probe and leaf clip (Analytical 279 

Spectral Devices Inc., Boulder, CO, USA)  provided with a low-intensity bulb specially 280 

designed for collecting non-destructive data from vegetation and other heat-sensitive targets. 281 

Samples of holm oak leaves and black pine needles were scorched to different degrees (see 282 

supporting information) and averaged to provide a single post-fire value for holm oak and 283 

black pine, respectively. Transmittance values were simulated using leaf level simulation 284 

models.  Reference values of the CBI definition assigned CBI values of 1, 2 and 3 to relative 285 

changes in leaf color of 25%, 80% and 100% respectively (Key and Benson 2006), and 286 

intermediate values in Table 3 were obtained by linear interpolation. After the proportion of 287 

green and brown leaves was set, FLIGHT distributed them randomly within each tree crown. 288 

Once the variables for each CBI scenario and stratum were defined, they were all combined 289 

to represent the CBI at the plot level. Considering the seven scenarios for the substrate and 290 

the 49 possibilities for each of the vegetation strata (Tables 3 and 4), 16807 simulated 291 

scenarios were possible. However, in order to avoid unrealistic simulations such as high 292 

overstory CBI with low understory CBI values, we applied the same set of filters as 293 

Chuvieco et al., (2007, 2006 #48): 1) CBI (understory) > CBI (substrate); 2) CBI 294 
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(understory) > CBI (overstory); 3) CBI (understory) < 4 * CBI (substrate); 4) (PCC-PCCe) ≤ 295 

PCC ≤ (PCC+PCCe). The last filter was applied to avoid unrealistic combinations of PCC 296 

and PFA. PCCe was calculated applying the following equations (Chuvieco et al. 2007): 297 

                      , for the understory (1) 

                      , for the overstory (2) 

These filters were considered adequate for this study since they were based on field 298 

observations carried out in the same study area as the field data used to characterize our 299 

plots. After filtering out unrealistic scenarios, 1348 simulations were run for each of the 10 300 

plots considered.  301 

2.3. Derivation of LiDAR metrics to estimate severity 302 

A common pre-processing procedure of the waveform was applied prior to computing the 303 

LiDAR metrics from the simulated waveforms for each of the pre- and post-fire scenarios. 304 

First, the waveform was smoothed by applying a Gaussian filter with a width size of 5 bins. 305 

Second, a background noise threshold was applied to identify the signal beginning and end, 306 

that is, the first and last height bins where the returned energy is detected above the noise 307 

threshold, thus representing the interaction of the laser with surface elements. Subsequently, 308 

we derived a set of metrics previously applied for the estimation of structural attributes of 309 

vegetation and to assess forest disturbances and therefore, were expected to capture the 310 

changes caused by fire on vegetation. From the total waveform energy, the 1
st
 to 9

th
 deciles 311 

of the energy relative to the ground elevation, identified as the last Gaussian peak fitted to the 312 

waveform, were computed as well as the 25
th

 and 75
th

 percentiles. The height/median ratio 313 

(Drake et al. 2002) was computed and from the canopy height profile (CHP) we derived the 314 
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quadratic mean canopy height (QMCH), the mean canopy height (MCH), representing the 315 

average height of the CHP (Lefsky et al. 1999), and the coefficient of variation of the CHP 316 

(Bouvier et al. 2015). García et al., (Garcia et al. 2017a) calculated the canopy waveform 317 

area to account for the biomass consumed by a wildfire in Californiafrom a post-fire LiDAR 318 

campaign, and based on a qualitative analysis they observed a very good agreement between 319 

this metric and a severity map derived from Landsat data. Nevertheless, they only used the 320 

energy reflected by the canopy to compute the metric, thus missing the information from the 321 

ground and the vegetation below the height threshold used to separate the canopy. Therefore, 322 

in this study we modified the metric to account forused the total energy of the waveform to 323 

compute the waveform area (WA) in order to include all vertical strata affected by the fire. 324 

Moreover, since the plot CBI is the average of the CBI values of the strata considered, three 325 

in our simulations, we divided the waveform into three parts corresponding to the substrate, 326 

the understory and the overstory strata, and the area of each part was calculated. Because the 327 

ground signal is convolved with the energy reflected from low vegetation, even for flat 328 

surfaces, we applied different height thresholds from 0.3 to 1.2 m at 0.15 intervals, to 329 

separate the ground and the understory parts of the signal. Regarding the separation of 330 

understory and overstory vegetation, although the CBI establishes a threshold of 5 m, we 331 

reduced this threshold to 2 m, based on the characteristics of the vegetation used to model the 332 

10 simulated plots.   333 

2.4. Modeling severity from LiDAR 334 

Severity is estimated as the change occurred relative to the pre-fire conditions, therefore it 335 

was estimated from LiDAR data as the relative change of the metrics computed from the pre-336 

fire and post-fires simulated waveforms. Since the post-fire magnitude of the metrics was 337 
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generally smaller than the pre-fire magnitude, we computed the absolute value of the 338 

difference to avoid negative values (eq.3): 339 

     
                        

          
  (3) 

 where RCLM is the relative change of a given LiDAR metric, and LMpre-fire and LMpost-fire 340 

represent the value of the metric before and after the fire, respectively. In the case of the 341 

waveform area relative change (WARC) metric, the relative change of each stratum was 342 

derived and the average of the three was computed to provide a plot value; the CBI at the plot 343 

level is computed in the same way. 344 

To assess the sensitivity of each metric to severity we computed the Spearman’s rank 345 

correlation between the relative change of the metrics and the CBI since the variables did not 346 

fulfil the assumptions to compute Pearson’s correlation coefficient. 347 

2.5. The King Fire case study  348 

In orderThe King Fire served to validate our evaluate the potential of the methodLiDAR 349 

metrics to estimate severity over a real scenario, we used as a case study the King Fire, 350 

which. The King Fire started in July 2014 and was controlled in October 2014 burning over 351 

50000 ha in Eldorado National Forest located in the Sierra Nevada Mountain Range, 352 

California, U.S. For this site an exceptional set of airborne data were collected (see Stavros et 353 

al., {, 2016 #85} for detailed information on the available dataset) including pre- and post-354 

fire LiDAR, as well as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the 355 

MODIS/ASTER airborne simulator (MASTER) imagery. Detailed information can be 356 

obtained from Stavros et al., (2016). In addition, a field assessment of severity was carried 357 
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out between November 2014 and January 2015 over 52 plots, 22 of which were located 358 

within the pre- and post-fire LiDAR surveys. Plots were positioned using GPS measurements 359 

and the ecological damage caused by the fire was assessed using the GeoCBI index. In 360 

addition, a field assessment of severity was carried out using the GeoCBI index. Table 5 361 

shows the characteristics of the available LiDAR data and figure Fig. 1 shows the study area.  362 

Insert Table 5 363 

Insert Figure 1 364 

Based on the intensity of the returns, the discrete return data was converted into a pseudo-365 

waveform as described in García et al., (2017b). Previously, the intensity was normalized to 366 

eliminate the impact of the range on the intensity values as follows (García et al. 2010): 367 

       
 

    
  (4) 

 where In is the normalized intensity, Iraw is the intensity value before normalization, R is the 368 

range (sensor-target distance) and Rs is the standard range, which was set to 1000 m. This 369 

normalization removed the dependence of intensity on the sensor-target distance.; however 370 

However, due to the differences in the sensors used for the pre- and post-fire surveys, such as 371 

the radiometric resolution, it was necessary to carry out a between-sensors normalization. We 372 

selected 500+ plots over pseudo-invariant features encompassing roads and bare-soil across 373 

the study site. The radius of these plots was set to 2 m to avoid including other covers, 374 

particularly at the edge of the roads. Consequently, a linear model was fit (Fig. 2) and the 375 

pre-fire intensity values were normalized by applying the following equation:  376 

                            (5) 
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where Isensor_n is the pre-fire sensor intensity normalized to the post-fire sensor and In is the 377 

range normalized intensity values of the pre-fire data. 378 

Insert Figure 2 379 

After generating the pseudo-waveforms, the set of metrics previously described were derived 380 

and their relative change computed. Due to the signal attenuation through the canopy, 381 

particularly in areas of dense cover, ground returns can be missed if the amount of energy 382 

reflected is lower than the triggering threshold of the sensor, resulting in a smaller amplitude 383 

of the ground and understory signal in the pseudo-waveform. After the fire, when the canopy 384 

is removed and most of the returns come from the ground, the amplitude of the ground peak 385 

can be much larger than that of the pre-fire waveform, despite the lower reflectance of the 386 

charcoal. This can result in a relative change > 1, which could result in an overestimation of 387 

severity at the plot level; therefore, in these cases the relative change was constrained to 1.  388 

The Spearman’s rank correlation between the derived variables and the field measured 389 

GeoCBI was computed, and a model was calibrated using a jackknife approach, based on the 390 

variable showing the strongest correlation. The model fit was evaluated in terms of its R
2
 and 391 

the RMSE, and subsequently applied to the part of the study area covered by the bi-392 

temporalpre- and post-fire LiDAR data to generate a LiDAR severity map. 393 

3. Results  394 

3.1. Sensitivity of full waveform LiDAR to severity 395 

The sensitivity of LiDAR waveforms to different degrees of severity was first qualitatively 396 

evaluated according to the changes observed in the post-fire waveform relative to the pre-fire 397 

waveform one for the different scenarios simulated (Fig. 3). 398 
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Insert figure 3.  399 

For the low severity scenario (CBI=1.0; Fig. 3A), only the understory and the substrate are 400 

affected. The waveforms show a reduction in the amplitude of the lowest peak as well as 401 

some a reduction for the understory part of the waveform (enlarged window). It should be 402 

noted that part of the effect of the understory change is reflected in the substrate section of 403 

the waveform due to the convolution of the ground and the low vegetation energy. The 404 

overstory part of the waveform remains unchanged since this stratum was unburned in this 405 

scenario. For the first moderate severity scenario (CBI= 2.0; Fig. 3B) a greater difference can 406 

be observed between the unburned and the burned signals. The largest effect occurs in the 407 

substrate and understory strata, which had a larger proportion of charcoal on the ground as 408 

well as a large reduction of the understory LAI, with the remaining leaves totally scorched. A 409 

smaller change occurred in the overstory given the lower severity of this stratum, with only a 410 

small reduction in LAI and partial scorching of the leaves. As expected, Thethe high severity 411 

scenario (CBI=2.42; Fig. 3C) showed, as expected, the largest change in the waveform given 412 

the large proportion of charcoal in the substrate as well as the large reduction in LAI for both 413 

vegetation strata. The second moderate severity scenario (CBI=1.83; Fig. 3D) demonstrates 414 

the sensitivity of the LiDAR waveform to damage due to changes in color, resulting in 415 

changes in the spectral reflectance, rather than changes in the vegetation structure. Thus, a 416 

smaller amplitude is observed in the upper part of the waveform of the burned scenario, 417 

which is the result of a canopy that has been scorched but retains most of its leaves. 418 

Likewise, the lower part of waveform showed a significant reduction as result of the 419 

substrate charring and the scorching of the understory vegetation.  420 

 421 
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3.2. LiDAR metrics assessment 422 

LiDAR metrics were computed using different height thresholds to separate the understory 423 

from the substrate part of the waveform. The best results were obtained for a 0.45 m height 424 

threshold, although differences with a 0.6 m threshold were negligible; . thereforeTherefore, 425 

the results shown throughout the rest of the text correspond to the former threshold. Fig. 4 426 

shows the Spearman’s rank correlation coefficient values between the relative change of the 427 

metrics derived from the waveforms and the CBI of the simulated scenarios. 428 

Insert figure 4.  429 

The WARC presented the strongest correlation with the CBI values, with a mean Spearman’s 430 

Rho value of 0.9. This metric also showed a very good consistency among the 10 different 431 

simulated plots, with a standard deviation of 0.02 and a range of variation comprised between 432 

0.86 and 0.93. The relative change of the structural metrics commonly derived from LiDAR 433 

data showed a moderate correlation with the CBI, with a mean value of approximately 0.55 434 

and a much larger dispersion than the WARC. For instance, the relative height of the 60
th

 435 

percentile of the energy, which was ranked second, showed a mean Spearman’s Rho value of 436 

0.56, with a standard deviation of 0.07 and a range of variation between 0.49 and 0.69. A 437 

similar behavior was observed for the other structural metrics although negative correlations 438 

were found for the lower percentiles, since they just represent the lower part of the signal, i.e. 439 

the substrate and the understory layers. 440 

3.3. LiDAR-based severity modeling 441 

After identifying the best LiDAR-based metric to estimate CBI we fitted a logarithmic model 442 

for each of the forest plots simulated (Fig. 5).  443 
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Insert figure 5. 444 

The models showed very good performance with a mean R
2
 of 0.8 (± 0.05) and values 445 

ranging between 0.73 and 0.86. The mean RMSE was 0.22 (± 0.03) and values that varied 446 

between 0.18 and 0.26. 447 

 448 

3.4.3.3. The King Fire case study 449 

Pseudo-waveforms generated from discrete return intensity data also showed ability to 450 

discriminate different degrees of severity (Fig. S6-S9, supporting information). Nevertheless, 451 

The the sensitivity analysis of the LiDAR metrics to the burn severity of the King Fire 452 

showed important differences with our previous simulations (Fig. 6). The WARC once again 453 

showed the strongest correlation with field measured GeoCBI values (Spearman’s Rho = 454 

0.91); however, the structural metrics derived from the pseudo-waveforms showed much 455 

stronger correlation than that obtained for the simulated data. Thus, the RH40, the relchp_cv, 456 

the RH90, the MCHP and the QMCH yielded a Spearman’s Rho value of 0.89, 0.87, 0.86, 457 

0.81 and 0.8, respectively. The weakest correlation was obtained for the HTRT variable, with 458 

a Spearman’s Rho correlation of 0.19. 459 

Insert figure 6. 460 

The height thresholds used to separate the three strata considered had a significant impact on 461 

the estimation of severity from the LiDAR data, obtaining the best results using a height 462 

threshold of 0.45 m to separate the understory from the substrate, and a height threshold of 5 463 

m to separate the overstory from the understory strata.  464 
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The model fitted (Fig. 7) to the estimate GeoCBI values from the WARC using the jackknife 465 

approach was:                            with a standard deviation of the 466 

parameters of 0.05 and 0.02, respectively. This model offered an R
2
 of 0.78 and a RMSE of 467 

0.37. This model was subsequently applied to the part of the King Fire for which pre- and 468 

post-fire LiDAR data were available to produce the LiDAR-based severity map shown in 469 

Fig. 8. 470 

Insert figure 7.  471 

Insert figure 8.  472 

The LiDAR data covered the Rubicon Valley, which was characterized by high severity 473 

levels (estimated GeoCBI ≥2.25). Moderate severity is observed near the edge of the burn 474 

area, as well as the bottom of the valley, and a low severity patch at the north east part of the 475 

fire (Fig. 8). The topographic characteristics of the valley, with a concave shape and steep 476 

slopes that favored strong winds and fire spread {Coen, 2018 #62}, explained the high 477 

severity observed.  Our results show good agreement with the Monitoring Trends in Burn 478 

Severity (MTBS) product (Fig. S10, supporting information), downloaded from 479 

https://mtbs.gov (last access on 20
th

 February 2020). The MTBS product showed lower 480 

severity at the edge of the fire, as well as some larger patches of moderate severity in the 481 

north west Rubicon Valley than our LiDAR-based estimates.  482 

4. Discussion 483 

LiDAR metrics showed different degrees of sensitivity to the severity of fires. Our simulation 484 

approach represents the first attempt to evaluate the combined effect of different fire impacts, 485 

i.e. changes in color and changes in structure, on the LiDAR signal. The relative change of 486 

commonly LiDAR derived metrics showed moderate correlation towith CBI values. These 487 

https://mtbs.gov/
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metrics were proposed for the estimation of important forest structural variables, such as 488 

biomass or wood volume (Bouvier et al. 2015; Drake et al. 2002). Therefore, they are more 489 

sensitive to fuel consumed, but failed to capture  than to color changes associated with leaf 490 

color ofcharred soil and scorched vegetation, which are related to vegetation mortality 491 

induced by fire (Fig. 4). The new metric proposed,  (WARC,) showed the strongest 492 

correlation and very high consistency across the different forest plots simulated. The WAIt 493 

was computed from the energy recorded by the sensor, which in addition to the range, is 494 

affected by target reflectance, size, orientation, density and the illuminated area (Korpela et 495 

al. 2010). Therefore, the WARC considers not only structural, but also foliage alteration 496 

(change in color), although PCC had has a higher impact on the signal than the PFA. Despite 497 

geometric variables may have a larger influence on intensity than reflectance (Korpela et al. 498 

2010), these variables can also be modified as result of tree scorching, thus affecting the 499 

recorded intensity over burned areas. The effect on the LiDAR signal of the change in soil 500 

color, as result of charcoal and ash deposition, was evident in the amplitude of the ground 501 

peak, showing a clear reduction as the proportion of change in soil color increased. In our 502 

simulations the proportion of charcoal, with lower reflectance than the unburned substrate, 503 

was much higher than ash, with higher reflectance than the unburned substrate but rather 504 

ephemeral, thus reducing the substrate reflectance.The effect of the change in soil color as 505 

result of charcoal and ash deposition, with lower reflectance than the unburned soil, was 506 

evident in the amplitude of the ground peak, showing a clear reduction as the proportion of 507 

charcoal and ash on the substrate increased.  508 

In addition to accounting for the changes in structure and leaf and soil color, the WARC 509 

considered all plot strata, computing the changes from the substrate to the upper canopy and 510 
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averaging at the plot level, in the same way the CBI does. Therefore, the severity estimation 511 

based on WARC provides a more comprehensive evaluation of severity than other 512 

approaches previously published. For instance, Klauberg et al., (2019) derived a set of crown 513 

metrics from airborne LiDAR to classify crown fire severity in a conifer forest; h. However, 514 

they did not assess the damage caused in the understory and substrate layers. Montealegre et 515 

al. (2014) found good correlation between field measured CBI values and a set of post-fire 516 

LiDAR metrics, which were used to classify burn severity levels. Despite reporting a global 517 

accuracy of 85.5%, their results are not comparable to ours since they did not estimate CBI, 518 

but classified severity levels into three broad classes. Likewise, Wang and Glenn (2009) 519 

classified burn severity levels in sagebrush steppe rangelands based on vegetation height 520 

changes obtaining a global accuracy of 84%. While the use ofcalculating height differences 521 

can be useful for sagebrush ecosystems, this metric may not be the most adequate to evaluate 522 

severity in forested areas, for instance due to the presence of snags, as suggested by Goetz et 523 

al. (2010), and confirmed by our simulation results.  524 

The separation of the strata in the computation of WARC can impact the results and need to 525 

be adjusted to the study area. The separation between understory and overstory vegetation 526 

was set to 2m for our simulations given the relatively short trees of the simulated plots. For 527 

the King Fire with much taller trees, the original 5m thresholds established for the CBI 528 

protocol (Key and Benson 2006) yielded better results. Regarding the separation between 529 

understory and substrate layers, the 0.45 m threshold worked well for the simulated and the 530 

King Fire study site; h. However, the convolution of the signal is expected to be higher in 531 

low severity areas as well as in steep terrain (Harding and Carabajal 2005; Huang et al. 532 

2017). Our simulations considered relatively flat terrain, with slope <5º, reducing the impact 533 



25 
 

of slope on the signal. Therefore, further research is needed to assess the influence of this 534 

parameter in the results. In the case of pseudo-waveforms created from discrete return data, 535 

although slope can affect ground filtering algorithms {Montealegre, 2015 #82}, the 536 

convolution of ground and understory over steep terrain would be less problematic. 537 

Additionally, we assumed the same species for the understory and the overstory layers. This 538 

assumption should not significantly affect the results since our approach to estimate severity 539 

is based on the relative change of the waveform, this assumption should not affect the results. 540 

Lamelas et al., {, 2019 #83} reported the impact of scan angle on fuel type classification 541 

using the spectral angle mapper (SAM) classifier over an LVIS LiDAR signature library 542 

created from simulated waveforms. Although these authors found scan angle an important 543 

source of error in the classification, it was probably due to the large scan angles tested up to 544 

20º, beyond the scan-angle limit of the LVIS sensor 545 

(https://lvis.gsfc.nasa.gov/Home/instrumentdetails.html; last access on 14
th

 March 2020), and 546 

the sensitivity of the SAM algorithm to even small changes in the shape of the waveform. 547 

We tested the impact of off-nadir observations, up to 8 º {Hancock, 2019 #84; table 1}, on 548 

the metrics and found no consistent bias on most of them. Correlation between the nadir and 549 

off-nadir metrics remained above 0.9 for all metrics but RH25, RH20, RH10 and HTRT. In 550 

the case of WARC, correlation was higher than 0.99. These results agrees with Hancock et. 551 

{, 2019 #84}, who also found no impact of scan angles less than 8º on the metrics derived 552 

from simulated LVIS waveforms.  553 

We run the FLIGHT model in forward mode to evaluate the sensitivity of full waveform 554 

LiDAR to a wide range of severity levels (Fig. 5). Inversion of the FLIGHT radiative transfer 555 

model has been applied for the estimation of forest structural parameters from LiDAR 556 

https://lvis.gsfc.nasa.gov/Home/instrumentdetails.html
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waveforms (Bye et al. 2017), so a similar approach should be possible for the retrieval of 557 

severity. Other studies already applied an RTM inversion to directly retrieve CBI values but 558 

from multispectral data (Chuvieco et al. 2007; De Santis et al. 2010). 559 

The application of the WARC metric to the King Fire, with different vegetation 560 

characteristics than those of our simulated plots, proved the robustness and generalization 561 

capabilities of this metric to estimate severity. The King Fire case study has its limitations to 562 

test the robustness of the metrics since the LiDAR data has different pre- and post-fire survey 563 

configurations and sensors and the data were not full waveform. This issues require further 564 

research to draw more definitive conclusions. Nevertheless, the application of the WARC 565 

metric to the King Fire, with different vegetation characteristics than those of our simulated 566 

plots, showed the robustness and generalization capabilities of this metric to estimate 567 

severity. The availability of pre- and post-fire LiDAR data along with concomitant field 568 

measures of the GeoCBI, makes it a unique dataset to evaluate the potential of LiDAR data 569 

for the assessment of fire severity. Furthermore, it also allows to demonstrate the possibility 570 

of applying the method to the more frequent airborne LiDAR discrete return data by 571 

generating pseudo-waveforms. 572 

Contrary to the simulation results, structural metrics showed almost the same sensitivity as 573 

the WARC for the King Fire, most probably due to large fuel amounts consumed by the fire 574 

(Coen et al. 2018). Although structural metrics have shown significant differences between 575 

burned and unburned areas in boreal forests (Goetz et al. 2010; Wulder et al. 2009), and can 576 

be useful to evaluate specific impacts of fires, such as biomass consumed, the ability of these 577 

metrics to provide an integrated measure of severity, such as the CBI or the GeoCBI, which 578 

also accounts for tree mortality, may be limited. Moreover, our approach is based on a single 579 
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simple metric, increasing its generalization capability, as opposed to previous studies that 580 

included multiple metrics, reducing their generalization capability. The WARC consistency 581 

for both, the simulated data as well as the King Fire case study, indicate the potential for the 582 

broad applicability of this metric. Recently, Hu et al. (2019) also proposed a single metric to 583 

estimate burn severity from LiDAR data. The performance of this metric was evaluated 584 

against changes in LAI, canopy cover and tree height, but not against field measures of CBI 585 

or GeoCBI. Their metric shows similarities to WARC, as it is based on the change in the area 586 

of the height percentile profile (PAC), but their metric is computed from the height 587 

distribution of returns and thus only account for changes in structure. Instead Contrary, 588 

WARC is derived from the intensity, which is affected by the radiometric changes resulting 589 

from capturing changes the modification in soil and leaf color. Moreover,A comprehensive 590 

comparison between  PAC and WARC was not feasible over our simulated scenarios since 591 

PAC can only be derived from discrete return data. However, we tested PAC over the King 592 

Fire and found poorer performance compared to WARC, with R
2
= 0.55 and RMSE= 0.53.the 593 

performance of PAC was evaluated against changes in LAI, canopy cover and tree height. 594 

Therefore, its ability to capture changes in the understory and the substrate is uncertain yet.   595 

The capabilities of the WARC were evaluated against integrated measures of severity, the 596 

CBI and the GeoCBI; h. However, it has the potential for evaluating specific fire effects, for 597 

instance biomass consumption (Garcia et al. 2017a), to be later introduced into a single 598 

integrated severity index as Morgan et al. (2014) propose. 599 

The model fitted to estimate GeoCBI values from the WARC offered good performance 600 

(R
2
=0.78 and RMSE=0.37) but there is still room for improvement. The use of the same 601 

sensor with identical system settings and the same survey configuration for the pre- and post-602 
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fire acquisitions would also reduce the noise in the intensity data.First, by improving the 603 

radiometric normalization of the intensity data. W In addition, we used a simple radiometric 604 

normalization of the intensity data to remove the effect of range variation across the study 605 

area produced by rough topography and the different flight height of the two LiDAR 606 

datasets. Better intensity normalization would help to improve our results reducing the noise 607 

of the intensity values used to generate the pseudo-waveforms. More robust normalization 608 

approaches have been proposed in the literature including an exponent factor to the range 609 

ratio to account for energy attenuation through the canopy, as well as a parameter to account 610 

for the automatic gain control (Gatziolis 2011; Korpela et al. 2010). Better intensity 611 

normalization would help to improve our results reducing the noise of the intensity values 612 

used to generate the pseudo-waveforms; h However, the available data did not allow the 613 

application of such normalization methods. Moreover, our between-sensor calibration model 614 

was derived from non-vegetated surfaces characterized by single returns. Therefore, its 615 

application to other types of returns (2
th

 – 4
th

) may not be optimum. Despite this, the noise 616 

introduced in this group of returns by our between-sensor calibration is expected to be small, 617 

since the improvement in consistency of intensity values after normalization is less 618 

substantial in 2
nd

 and subsequent returns than for 1
st
 and single returns (Gatziolis 2011). The 619 

use of the same sensor with identical system settings and the same survey configuration for 620 

the pre- and post-fire acquisitions would also reduce the noise in the intensity data. 621 

The severity map derived using the WARC metric showed good agreement with the MTBS 622 

Landsat-based map, but showed some overestimation over the north west part of the Rubicon 623 

Valley. Although a thorough comparison between the LiDAR and Landsat-products is out of 624 

the scope of our study, differences between the two products could be explained by the 625 
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different acquisition time of the post-fire LiDAR and Landsat data. The LiDAR data was 626 

collected shortly after the fire, thus representing an initial severity assessment. Meanwhile, 627 

the Landsat image was acquired nearly a year after the fire and so, it corresponded to an 628 

extended assessment, which could be influenced by vegetation recovery processes. 629 

Moreover, the inability of Landsat data to capture fire damage to the understory and 630 

substrate, particularly under unaffected dense canopies, can result in higher uncertainties in 631 

moderate severity areas {Chuvieco, 2007 #34;Miller, 2015 #36}, contributing also to the 632 

differences between the two products. 633 

Our method requires having pre- and post-fire LiDAR data, which is a constraint given the 634 

limited spatial and temporal coverage of airborne LiDAR sensors. The method is potentially 635 

applicable to the recently launched Global Ecosystem Dynamics Investigation (GEDI) sensor 636 

onboard the International Space Station (Dubayah et al. 2014; Stysley et al. 2016). The 637 

sampling scheme should be taken into account, as it will not provide co-registered footprints. 638 

In such a case, an object-based approach couldcan be applied by comparing typical average 639 

pre- and post-fire waveforms for each object. Additionally, integration of LiDAR and optical 640 

data (Klauberg et al. 2019; Kwak et al. 2010) could improve the assessment of fire caused 641 

damage by exploiting the synergy of the structural and the functional information derived 642 

from LiDAR and multispectral data, respectively. 643 

5. Conclusions 644 

A new method proved tThe potential of LiDAR data to perform comprehensive evaluations 645 

of the severity of wildfires has been evaluated. It relies on a simple singleA new metric is 646 

proposed, WARC, that which accounts for the changes in all strata. Whereas previous studies 647 
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using LiDAR just focused on the structural changes caused by fires in vegetation, we have 648 

demonstrated that LiDAR was Moreover, the metric proved to be able to capture severity 649 

beyond structural changes, as it is also sensitive to leaf scorching, which is related to tree 650 

mortality, and soil color changes. 651 

The 3D FLIGHT radiative transfer model run in a forward mode enabled the evaluation of 652 

the sensitivity of LiDAR metrics to the severity of fires over a large range of severity levels. 653 

Our results demonstrated that common LiDAR metrics, which were developed for vegetation 654 

modeling, are less appropriate to estimate the fire severity than WARC.   655 

Application of the WARC metric to the real case study of the King Fire, California, with very 656 

different vegetation characteristics of those of our simulated plots, proved revealed the 657 

robustness and generalization capability of this metric. Although differences 658 

withimprovement over the best performing common LiDAR metrics were was very small in 659 

this case, the WARC still outperformed all other metricsthem.  660 

In this study we have proved tThe potential of LiDAR data to estimate severity as measured 661 

by integrated indices such as the CBI and the GeoCBI was evaluated; yet, it can also be 662 

applied to assess specific fire effects that can be subsequently used in integrated evaluations 663 

of severity of wildfires. 664 
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ABSTRACT 23 

Providing accurate information on fire effects is critical to understanding post-fire ecological 24 

processes and to design appropriate land management strategies. Multispectral imagery from 25 

optical passive sensors is commonly used to estimate fire damage, yet this type of data is only 26 

sensitive to the effects in the upper canopy. This paper evaluates the sensitivity of full waveform 27 

LiDAR data to estimate the severity of wildfires using a 3D radiative transfer model approach. 28 

The approach represents the first attempt to evaluate the effect of different fire impacts, i.e. 29 

changes in vegetation structure as well as soil and leaf color, on the LiDAR signal. The FLIGHT 30 

3D radiative transfer model was employed to simulate full waveform data for 10 plots 31 

representative of Mediterranean ecosystems along with a wide range of post-fire scenarios 32 

characterized by different severity levels, as defined by the composite burn index (CBI). A new 33 

metric is proposed, the waveform area relative change (WARC), which provides a 34 

comprehensive severity assessment considering all strata and accounting for changes in structure 35 

and leaf and soil color. It showed a strong correlation with CBI values (Spearman’s Rho = 0.9 ± 36 

0.02), outperforming the relative change of LiDAR metrics commonly applied for vegetation 37 

modeling, such as the relative height of energy quantiles (Spearman’s Rho = 0.56 ± 0.07, for the 38 

relative change of RH60, the second strongest correlation). Logarithmic models fitted for each 39 

plot based on the WARC yielded very good performance with R
2
 (± standard deviation) and 40 

RMSE (± standard deviation) of 0.8 (± 0.05) and 0.22 (± 0.03), respectively. LiDAR metrics 41 

were evaluated over the King Fire, California, U.S., for which pre- and post-fire discrete return 42 

airborne LiDAR data were available. Pseudo-waveforms were computed after radiometric 43 

normalization of the intensity data. The WARC showed again the strongest correlation with field 44 

measures of GeoCBI values (Spearman’s Rho = 0.91), closely followed by the relative change of 45 
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RH40 (Spearman’s Rho = 0.89). The logarithmic model fitted using WARC offered an R
2
 of 46 

0.78 and a RMSE of 0.37. The accurate results obtained for the King Fire, with very different 47 

vegetation characteristics compared to our simulated data, demonstrate the robustness of the new 48 

metric proposed and its generalization capabilities to estimate the severity of fires. 49 

Keywords: LiDAR, radiative transfer models, full waveform simulation, fire effects, severity, 50 

King Fire.  51 

1. INTRODUCTION 52 

The impact of fires encompasses a wide variety of effects, from environmental, such as 53 

vegetation pattern distribution, wildlife habitat quality and particulate and greenhouse gases 54 

emissions (Bond et al. 2005; Casas et al. 2016; Nikonovas et al. 2017; van der Werf et al. 2010), 55 

to socio-economic, including health issues related to air quality, property damage or even human 56 

casualties (Chuvieco et al. 2014; Fowler 2003). Fire impacts also vary spatially, from landscape 57 

(e.g. changes in vegetation composition and structure) to continental or global scales (e.g. 58 

biomass burning emissions); and over time, including the fire environment, post-fire 59 

environment and the response phases of the so-called fire continuum (Jain et al. 2004). Fire 60 

managers require information on fire effects to support strategic planning before and during fires, 61 

to establish mitigation strategies aimed at reducing soil erosion, establishment of invasive 62 

species, as well as to evaluate the results of prescribed fires (Morgan et al. 2014). Therefore, 63 

accurately quantifying fire effects is necessary to improve our understanding of the impact of 64 

fires on ecosystem processes as well as the carbon cycle. This becomes especially important as 65 

with projected climate change an increase in forest fires is expected (Stephens et al. 2013).  66 
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Fire damage is generally described in terms of its severity, which represents the ecological 67 

change caused by fire (Lentile et al. 2006). The use of an appropriate terminology to describe 68 

post-fire effects has been a subject of discussion. Some authors advocate for the use of fire 69 

severity when considering immediate fire effects as a result of the combustion process and the 70 

term burn severity when considering longer-term effects, thus including ecosystem response 71 

processes (Lentile et al. 2006). On the other hand, Keeley (2009) recommend not including 72 

ecosystem response in fire or burn severity measures since some of the ecosystems response 73 

processes are not related to the severity of the fire event, and in such a case the interchangeable 74 

use of both terms would not be problematic. Similar to French et al. (2008) and Morgan et al. 75 

(2014), hereinafter we will use the generic term severity to generally describe the ecological 76 

change produced by fires.   77 

A plethora of field measures has been designed to quantify severity according to the particular 78 

objectives of the fire damage assessment. These measures include changes in soil characteristics 79 

such as color, structure or hydrophobicity (Lewis et al. 2006; Neary et al. 1999), tree mortality 80 

(Hood et al. 2018; Whittier and Gray 2016) or biomass consumed (Garcia et al. 2017a). Key and 81 

Benson ( 2006) proposed the composite burn index (CBI), which integrates different post-fire 82 

effects into a single semi-quantitative index ranging from 0 (unburned) to 3 (completely burned). 83 

The CBI was designed to serve as a field validation of remotely sensed estimations of burn 84 

severity. De Santis and Chuvieco (2009) proposed a modified version of the CBI, the GeoCBI, 85 

that improved severity estimations from remote sensing by accounting for the fractional cover 86 

and leaf area index (LAI) changes of the intermediate and upper canopy strata. Despite the 87 

generalized acceptance and application of the CBI/GeoCBI, particularly in remote sensing 88 

studies, they are highly subjective. Morgan et al. (2014) recommend to directly measure fire 89 
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effects, which can be later integrated according to an objective severity measurement instead of 90 

collapsing them into a single integrated severity index, such as the CBI.     91 

The heterogeneity of fire effects both in space and time make remote sensing techniques a 92 

suitable alternative to field measures given their comprehensive and systematic view of the 93 

Earth. Most attempts have been based on the use of multispectral imagery due to the spectral 94 

changes associated with vegetation removal, soil exposure, decrease in moisture content of soil 95 

and vegetation, or carbon and ash deposition that result from fires (Jakubuaskas et al. 1990). The 96 

potential of remotely sensing data, particularly Landsat imagery, for mapping wildfire severity 97 

has been demonstrated across the world from boreal forests to savannas (Boer et al. 2008; 98 

Landmann 2003; Viana-Soto et al. 2017; Whitman et al. 2018). The most common approach to 99 

derive severity from optical remote sensing develops empirical relations between the normalized 100 

burn ratio (NBR) (Key and Benson 2006) or some of its derivatives, namely the differenced 101 

NBR (dNBR) (Miller and Thode 2007) or the relative dNBR (RdNBR) (Miller et al. 2009), with 102 

the CBI or the GeoCBI. More recently, methods based on radiative transfer models (RTM) have 103 

been developed to improve the retrieval of severity estimates from the spectral information 104 

recorded by spaceborne sensors (Chuvieco et al. 2007; De Santis et al. 2010; Disney et al. 2011). 105 

RTM approaches can help improving our understanding of the factors modifying reflectance and 106 

offer better universality than empirical approaches, yet their performance is subject to an 107 

appropriate model parameterization. Performance of the different severity retrieval approaches 108 

using optical data varies widely in terms of R
2
 and RMSE but in general, low and high severity 109 

values are accurately predicted while larger errors are found for intermediate severity values 110 

(Chuvieco et al. 2007; De Santis and Chuvieco 2007). This can be explained by the inability of 111 
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Landsat data to accurately capture the actual fire damage to under- and mid-story vegetation in 112 

low and moderate severity areas, especially under high canopy cover (Miller and Quayle 2015).     113 

LiDAR data provide detailed 3D information on forest structure, so it can evaluate the severity 114 

on different strata. Specific fire caused damage such as changes in vegetation structure 115 

(McCarley et al. 2017; Wulder et al. 2009), biomass consumption (Garcia et al. 2017a), LAI 116 

changes (Hu et al. 2019) or habitat suitability (Casas et al. 2016), have been generally estimated 117 

from LiDAR data, rather than an integrated measure of severity as that provided by CBI. While 118 

only changes in the overstory layer are generally assessed, LiDAR has potential to separate 119 

biomass consumption at different canopy levels (Alonzo et al. 2017). Assessments of fire 120 

impacts using LiDAR data have been based so far on empirical relationships. Although RTM 121 

approaches have been applied to LiDAR data, they focused on the retrieval of biophysical 122 

information such as LAI, canopy height or fractional cover (Bye et al. 2017), assessment of the 123 

impact of sensor and survey characteristics on canopy height estimation (Disney et al. 2010), or 124 

to generate a fuel type LiDAR library (Lamelas-Gracia et al. 2019), but no research has been 125 

done yet on the simulation of LiDAR data to assess fire impacts, which can help improving our 126 

understanding of the capabilities of LiDAR systems to assess the severity of wildfires.  The 127 

simplest approach to burn assessment consists of evaluating vegetation height changes. Although 128 

this successfully correlated to field measures in a sagebrush ecosystem (Wang and Glenn 2009), 129 

over forest areas this variable alone may not capture severity appropriately due to vegetation 130 

regrowth or presence of dead standing trees, so-called snags (Goetz et al. 2010). Differences 131 

between LiDAR derived digital elevation models (DEMs) have been also utilized to estimate soil 132 

consumption in peat swamps (Reddy et al. 2015). So far, only a study in a Mediterranean forest 133 

in Spain applied LiDAR data to classify the severity of fires using a logistic regression between 134 
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LiDAR and field measured CBI values (Montealegre et al. 2014). Nevertheless, the metrics only 135 

considered returns above 1 m not completely evaluating fire effects on the ecosystem. 136 

These previous studies were based on a set of structural metrics derived from the height 137 

distribution of returns, founded on the changes in vegetation structure produced by fires. 138 

However, they fail to provide a complete characterization of the severity, as they focus only on 139 

structural changes rather than also considering tree mortality or change in leaf color (scorched 140 

leaves) or soil (charred soil). This is particularly relevant for scorched trees that may retain 141 

leaves at the moment of the LiDAR survey, thus preserving the pre-fire structure. On the other 142 

hand, LiDAR has proved successful to detect snags using intensity data (Casas et al. 2016; Wing 143 

et al. 2015). Therefore, further research is required to assess the utility of LiDAR data for 144 

providing an integrated estimation of the severity of wildfires. The main goal of this research 145 

was to assess the potential of LiDAR data for providing a comprehensive characterization of the 146 

severity of fires, beyond structural changes, considering all layers of a forest. The specific 147 

objectives were to: 1) assess the sensitivity of LiDAR data to different severity degrees as 148 

measured by CBI using a 3D RTM; 2) develop a new integrated LiDAR metric that better 149 

captures severity of a forest plot; 3) evaluate the proposed metric over an actual fire occurrence 150 

in a fire prone environment using pre- and post-fire airborne LiDAR data. 151 

2. Methods 152 

2.1. LiDAR full waveform simulations 153 

Evaluation of fire effects requires analyzing changes over different strata, from the substrate 154 

to the upper canopy. Large footprint full waveform data provide better description of the 155 

vertical vegetation volume distribution, from the top of the canopy to the ground, including 156 
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the understory layer, than discrete return data (Lim et al. 2003), thus making it ideal to 157 

evaluate severity of fires. 158 

In order to evaluate the sensitivity of LiDAR data to different degrees of severity, the 159 

FLIGHT 3D RTM was selected to simulate LiDAR waveforms under different severity 160 

levels, including an unburned scenario representing the pre-fire conditions. FLIGHT was 161 

originally developed to model vegetation bidirectional reflectance (North 1996) and later 162 

extended to model LiDAR waveforms (North et al. 2010) and photon counting LiDAR 163 

returns (Chen et al. 2020; Montesano et al. 2015). The suitability of the FLIGHT 3D RTM to 164 

simulate full waveform and photon counting LiDAR data in forest environments have been 165 

widely demonstrated (Bye et al. 2017; Montesano et al. 2015; Morton et al. 2014; North et al. 166 

2010; Rosette et al. 2013). The model is based on Monte Carlo evaluation of photon transport 167 

within a 3D representation of the vegetation, and can be configured for both airborne and 168 

satellite instruments. Waveforms are simulated by uniformly sampling the path of photons 169 

within the instantaneous field of view of the LiDAR sensor at a given position, accumulating 170 

the path length (equivalent to the time of signal) and energy from both laser and solar 171 

sources. Multiple orders of scattering are accounted for and the contribution of successive 172 

orders of scattering is reduced using an exponential function until contributions approach 173 

zero. The energy is binned into m bins, the width of which is defined by the sensor model 174 

temporal sampling. For this study the set of parameters defining the LiDAR sensor 175 

corresponded to the Land, Vegetation and Ice Sensor (LVIS) (Blair et al. 1999), listed in 176 

Table 1. 177 

Insert Table 1 178 
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A forest plot or stand representation in FLIGHT can be generated statistically using 179 

fractional cover and crown size range values. Alternatively, if field measurements or airborne 180 

LiDAR data enabling tree delineation are available, a more realistic representation can be 181 

realized. Tree crowns are modeled using ellipsoidal or conical geometric primitives of given 182 

horizontal and vertical dimensions. The overlap between neighboring crowns is limited using 183 

a simple growth model. Within each crown, vegetation is represented as a turbid medium 184 

described by leaf area density, leaf-angle distribution, and the optical properties of the scene 185 

components, namely leaves, branch, shoot and ground. The ground is approximated using a 186 

planar surface with defined slope angle. In order to be able to simulate post-fire effects on 187 

different forest strata, including cases in which there is a tree canopy and understory 188 

vegetation both with various levels of fire damage, the FLIGHT model was modified to 189 

allow definition of different properties for understory and overstory vegetation.  190 

2.2. Definition of post-fire effects scenarios 191 

Simulation of fire effects first required the selection of a reference measure of fire damage. 192 

We used the CBI, which has been previously applied in other remote sensing simulation 193 

approaches for burn severity estimation from passive optical data (Chuvieco et al. 2007; 194 

Chuvieco et al. 2006; De Santis et al. 2010). The CBI consists of a visual assessment of fire 195 

effects on up to five vertical strata of the field plot under consideration. These strata are: A) 196 

substrate (rock and soil, duff, litter, and downed woody fuels); B) herbs, low shrubs and trees 197 

≤ 1 m tall; C) tall shrubs and trees ≤ 5 m; D) suppressed and intermediate trees (10 ≤ DBH ≤ 198 

25 cm; 8 ≤ canopy height ≤20 m); and E) dominant and co-dominant trees (DBH > 25 cm; 199 

canopy height >20 m).  Fire effects are evaluated by analyzing soil charring, organic matter 200 

consumption, proportion of fuel consumed (change in cover), altered foliage (proportion of 201 
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brown leaves), canopy mortality and char height. CBI also accounts for ecosystem response 202 

processes such as presence of colonizers or percentage of resprouting. All these changes are 203 

expressed relative (%) to the pre-fire situation (Key and Benson 2006). Each stratum is 204 

evaluated individually and rated between 0 and 3, and finally averaged to provide an estimate 205 

of the burn severity at the plot level. Although the CBI was initially designed to validate 206 

severity estimates derived from Landsat imagery, the variables considered to assess the 207 

ecological change caused by the fire makes it suitable also for LiDAR data.  208 

With the purpose of simulating scenarios showing diverse degrees of post-fire severity using 209 

FLIGHT, we made some simplifications of the CBI taking into account those variables that 210 

LiDAR can actually measure. Similarly to Chuvieco et al. (2007), the first simplification 211 

consisted in reducing the five strata of the CBI to three by grouping strata B and C into the 212 

understory vegetation stratum, and strata D and E into the overstory stratum. The CBI 213 

variables considered for the simulations included charcoal and ash proportion for the 214 

substrate (soil charring); whereas for the understory and overstory layers, the percentage of 215 

foliage altered (PFA), i.e. change in leaf color; and percentage of cover change (PCC) were 216 

evaluated. In order to use remote sensing data, and more specifically LiDAR data, to evaluate 217 

the severity of fires, it is important to have in mind how the ecological changes observed in 218 

the field translate into the remotely sensed signal. Hence, changes in cover represent 219 

structural changes that LiDAR data can accurately capture. On the other hand, variation in 220 

color of scorched leaves results in changes in the spectral reflectance, affecting the returned 221 

LiDAR signal. 222 
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Because severity is measured in relation to the vegetation conditions before the fire event, a 223 

pre-fire scenario was simulated for 10 plots representing typical Mediterranean vegetation 224 

(Table 2). Further details about vegetation in these plots can be found in Garcia et al. (2010).  225 

Insert Table 2 226 

Field measurements of tree height, diameter at breast height (DBH), crown size and LAI 227 

defined the structural characteristics of the overstory vegetation. Likewise, measurements of 228 

LAI, height and diameter of shrubs described the understory vegetation. Because tree 229 

location was not measured in the field, each individual was randomly set within the plot of 230 

25 m diameter, equivalent to the LVIS footprint. Regarding the optical properties of leaves, 231 

reflectance was measured using an ASD Fieldspec® 3 spectroradiometer (Analytical Spectral 232 

Devices Inc., Boulder, CO, USA), with a spectral resolution of 2–10 nm in the range of 400–233 

2500 nm. Transmittance values were estimated using Prospect-5D (Féret et al. 2017) for oak 234 

leaves and the LIBERTY model (Dawson et al. 1998) for pine needles (see supporting 235 

information). For this study we assumed that understory was composed of the same species 236 

as the overstory; therefore, the optical properties of the overstory were applied. In addition to 237 

leaf properties, FLIGHT requires tree-bark reflectance factor which was measured in the 238 

field using an ASD Fieldspec® 3attached to an ASD Plant Probe based on 25 measurements 239 

collected over three different individuals (Melendo-Vega et al. 2018). The substrate stratum 240 

was modeled as a plane with slope <5° and its optical properties defined by a mixture of soil 241 

(≤10%), grass (20-30%) and leaf litter (60-40%). The proportion of soil, grass and litter was 242 

set based on our knowledge of the study area of the reference plots used to create the 243 

scenarios.  Grass and soil reflectance values, measured over a medium-moisture sandy soil, 244 

were provided by Melendo-Vega (personal communication, 2019). Leaf litter corresponding 245 
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to dry leaves and needles of holm oak (Quercus ilex L.) and black pine (Pinus nigra Arn.) 246 

were measured using an ASD FieldSpec® 3 spectroradiometer (see supporting information 247 

for more details). Despite measuring the reflectance of each cover in the range of 400-2500 248 

nm, we use here only the 1064 nm wavelength, at which the LVIS sensor operates.  249 

In order to simulate post-fire scenarios representing a wide range of severity levels, CBI 250 

values resulting from changes in color and cover for each of the three strata considered were 251 

combined in the range [0, 3] at 0.5 step values. Tables 3 and 4 show the relative change of 252 

each variable and stratum associated with each CBI value, and their combination to yield the 253 

CBI of the understory and overstory strata. 254 

Insert Table 3  255 

Insert Table 4 256 

The substrate stratum of the post-fire scenarios was comprised of soil, charcoal and ash. 257 

Bearing in mind the low persistence of the ash signal, which is usually blown away by the 258 

wind shortly after the fire, the ash cover was limited to a maximum of 15% of the plot.  This 259 

would represent a situation of up to a few weeks after a fire, i.e. an initial assessment (Key 260 

and Benson 2006). Soil reflectance values were the same for the pre-fire scenario whereas 261 

the spectra for charcoal and ash were measured in the field with a GER-2600 262 

spectroradiometer (Geophysical & Environmental Research Corporation, Millbrook, NY) 263 

and provided by Chuvieco et al., (personal communication, 2019). The final spectrum for the 264 

post-fire substrate layer was a linear combination of the reflectance of the three components 265 

weighted by their proportion according to the CBI values as specified in Table 3. 266 

As for the changes in understory and overstory strata the same two variables were 267 

considered, PCC and PFA. PCC was simulated as a reduction in the LAI. Based on the 268 
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reference values of the CBI definition we assigned CBI values of 1, 2 and 3 to relative LAI 269 

reductions of 15%, 70% and 100% (Key and Benson 2006), whereas all intermediate values 270 

in Table 3 were linearly interpolated. With regards PFA, simulations were realized as a linear 271 

combination of green and scorched leaves/needles weighted by their proportion according to 272 

the CBI values (Table 3). Although in previous studies the spectral characteristics of 273 

scorched leaves were assimilated to senescent leaves (Chuvieco et al. 2007; Chuvieco et al. 274 

2006), in this work we measured the spectra of scorched leaves in the laboratory using an 275 

ASD FieldSpec® 3 spectroradiometer attached to a ASD plant probe and leaf clip (Analytical 276 

Spectral Devices Inc., Boulder, CO, USA) provided with a low-intensity bulb specially 277 

designed for collecting non-destructive data from vegetation and other heat-sensitive targets. 278 

Samples of holm oak leaves and black pine needles were scorched to different degrees (see 279 

supporting information) and averaged to provide a single post-fire value for holm oak and 280 

black pine, respectively. Transmittance values were simulated using leaf level simulation 281 

models.  Reference values of the CBI definition assigned CBI values of 1, 2 and 3 to relative 282 

changes in leaf color of 25%, 80% and 100% respectively (Key and Benson 2006), and 283 

intermediate values in Table 3 were obtained by linear interpolation. After the proportion of 284 

green and brown leaves was set, FLIGHT distributed them randomly within each tree crown. 285 

Once the variables for each CBI scenario and stratum were defined, they were all combined 286 

to represent the CBI at the plot level. Considering the seven scenarios for the substrate and 287 

the 49 possibilities for each of the vegetation strata (Tables 3 and 4), 16807 simulated 288 

scenarios were possible. However, in order to avoid unrealistic simulations such as high 289 

overstory CBI with low understory CBI values, we applied the same set of filters as 290 

Chuvieco et al., (2007, 2006 #48): 1) CBI (understory) > CBI (substrate); 2) CBI 291 
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(understory) > CBI (overstory); 3) CBI (understory) < 4 * CBI (substrate); 4) (PCC-PCCe) ≤ 292 

PCC ≤ (PCC+PCCe). The last filter was applied to avoid unrealistic combinations of PCC 293 

and PFA. PCCe was calculated applying the following equations (Chuvieco et al. 2007): 294 

                      , for the understory (1) 

                      , for the overstory (2) 

These filters were considered adequate for this study since they were based on field 295 

observations carried out in the same study area as the field data used to characterize our 296 

plots. After filtering out unrealistic scenarios, 1348 simulations were run for each of the 10 297 

plots considered.  298 

2.3. Derivation of LiDAR metrics to estimate severity 299 

A common pre-processing procedure of the waveform was applied prior to computing the 300 

LiDAR metrics from the simulated waveforms for each of the pre- and post-fire scenarios. 301 

First, the waveform was smoothed by applying a Gaussian filter with a width size of 5 bins. 302 

Second, a background noise threshold was applied to identify the signal beginning and end, 303 

that is, the first and last height bins where the returned energy is detected above the noise 304 

threshold, thus representing the interaction of the laser with surface elements. Subsequently, 305 

we derived a set of metrics previously applied for the estimation of structural attributes of 306 

vegetation and to assess forest disturbances and therefore, were expected to capture the 307 

changes caused by fire on vegetation. From the total waveform energy, the 1
st
 to 9

th
 deciles 308 

of the energy relative to the ground elevation, identified as the last Gaussian peak fitted to the 309 

waveform, were computed as well as the 25
th

 and 75
th

 percentiles. The height/median ratio 310 

(Drake et al. 2002) was computed and from the canopy height profile (CHP) we derived the 311 
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quadratic mean canopy height (QMCH), the mean canopy height (MCH), representing the 312 

average height of the CHP (Lefsky et al. 1999), and the coefficient of variation of the CHP 313 

(Bouvier et al. 2015). García et al., (Garcia et al. 2017a) calculated the canopy waveform 314 

from a post-fire LiDAR campaign, and based on a qualitative analysis they observed a very 315 

good agreement between this metric and a severity map derived from Landsat data. 316 

Nevertheless, they only used the energy reflected by the canopy to compute the metric, thus 317 

missing the information from the ground and the vegetation below the height threshold used 318 

to separate the canopy. Therefore, in this study we modified the metric to account for the 319 

total energy of the waveform to compute the waveform area in order to include all vertical 320 

strata affected by the fire. Moreover, since the plot CBI is the average of the CBI values of 321 

the strata considered, three in our simulations, we divided the waveform into three parts 322 

corresponding to the substrate, the understory and the overstory strata, and the area of each 323 

part was calculated. Because the ground signal is convolved with the energy reflected from 324 

low vegetation, even for flat surfaces, we applied different height thresholds from 0.3 to 1.2 325 

m at 0.15 intervals, to separate the ground and the understory parts of the signal. Regarding 326 

the separation of understory and overstory vegetation, although the CBI establishes a 327 

threshold of 5 m, we reduced this threshold to 2 m, based on the characteristics of the 328 

vegetation used to model the 10 simulated plots.   329 

2.4. Modeling severity from LiDAR 330 

Severity is estimated as the change occurred relative to the pre-fire conditions, therefore it 331 

was estimated from LiDAR data as the relative change of the metrics computed from the pre-332 

fire and post-fire simulated waveforms. Since the post-fire magnitude of the metrics was 333 



16 
 

generally smaller than the pre-fire magnitude, we computed the absolute value of the 334 

difference to avoid negative values (eq.3): 335 

     
                        

          
  (3) 

 where RCLM is the relative change of a given LiDAR metric, and LMpre-fire and LMpost-fire 336 

represent the value of the metric before and after the fire, respectively. In the case of the 337 

waveform area relative change (WARC) metric, the relative change of each stratum was 338 

derived and the average of the three was computed to provide a plot value; the CBI at the plot 339 

level is computed in the same way. 340 

To assess the sensitivity of each metric to severity we computed the Spearman’s rank 341 

correlation between the relative change of the metrics and the CBI since the variables did not 342 

fulfil the assumptions to compute Pearson’s correlation coefficient. 343 

2.5. The King Fire case study  344 

The King Fire served to evaluate the potential of the LiDAR metrics to estimate severity over 345 

a real scenario. The King Fire started in July 2014 and was controlled in October 2014 346 

burning over 50000 ha in Eldorado National Forest located in the Sierra Nevada Mountain 347 

Range, California, U.S. For this site an exceptional set of airborne data were collected (see 348 

Stavros et al., (2016) for detailed information on the available dataset) including pre- and 349 

post-fire LiDAR. In addition, a field assessment of severity was carried out between 350 

November 2014 and January 2015 over 52 plots, 22 of which were located within the pre- 351 

and post-fire LiDAR surveys. Plots were positioned using GPS measurements and the 352 
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ecological damage caused by the fire was assessed using the GeoCBI index.  Table 5 shows 353 

the characteristics of the available LiDAR data and Fig. 1 shows the study area.  354 

Insert Table 5 355 

Insert Figure 1 356 

Based on the intensity of the returns, the discrete return data was converted into a pseudo-357 

waveform as described in García et al., (2017b). Previously, the intensity was normalized to 358 

eliminate the impact of the range on the intensity values as follows (García et al. 2010): 359 

       
 

    
  (4) 

 where In is the normalized intensity, Iraw is the intensity value before normalization, R is the 360 

range (sensor-target distance) and Rs is the standard range, which was set to 1000 m. This 361 

normalization removed the dependence of intensity on the sensor-target distance. However, 362 

due to the differences in the sensors used for the pre- and post-fire surveys, such as the 363 

radiometric resolution, it was necessary to carry out a between-sensors normalization. We 364 

selected 500+ plots over pseudo-invariant features encompassing roads and bare-soil across 365 

the study site. The radius of these plots was set to 2 m to avoid including other covers, 366 

particularly at the edge of the roads. Consequently, a linear model was fit (Fig. 2) and the 367 

pre-fire intensity values were normalized by applying the following equation:  368 

                            (5) 

where Isensor_n is the pre-fire sensor intensity normalized to the post-fire sensor and In is the 369 

range normalized intensity values of the pre-fire data. 370 

Insert Figure 2 371 
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After generating the pseudo-waveforms, the set of metrics previously described were derived 372 

and their relative change computed. Due to the signal attenuation through the canopy, 373 

particularly in areas of dense cover, ground returns can be missed if the amount of energy 374 

reflected is lower than the triggering threshold of the sensor, resulting in a smaller amplitude 375 

of the ground and understory signal in the pseudo-waveform. After the fire, when the canopy 376 

is removed and most of the returns come from the ground, the amplitude of the ground peak 377 

can be much larger than that of the pre-fire waveform, despite the lower reflectance of the 378 

charcoal. This can result in a relative change > 1, which could result in an overestimation of 379 

severity at the plot level; therefore, in these cases the relative change was constrained to 1.  380 

The Spearman’s rank correlation between the derived variables and the field measured 381 

GeoCBI was computed, and a model was calibrated using a jackknife approach, based on the 382 

variable showing the strongest correlation. The model fit was evaluated in terms of its R
2
 and 383 

the RMSE, and subsequently applied to the part of the study area covered by the pre- and 384 

post-fire LiDAR data to generate a LiDAR severity map. 385 

3. Results  386 

3.1. Sensitivity of full waveform LiDAR to severity 387 

The sensitivity of LiDAR waveforms to different degrees of severity was first qualitatively 388 

evaluated according to the changes observed in the post-fire waveform relative to the pre-fire 389 

one for the different scenarios simulated (Fig. 3). 390 

Insert figure 3.  391 

For the low severity scenario (CBI=1.0; Fig. 3A), only the understory and the substrate are 392 

affected. The waveforms show a reduction in the amplitude of the lowest peak as well as a 393 
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reduction for the understory part of the waveform (enlarged window). It should be noted that 394 

part of the effect of the understory change is reflected in the substrate section of the 395 

waveform due to the convolution of the ground and the low vegetation energy. The overstory 396 

part of the waveform remains unchanged since this stratum was unburned in this scenario. 397 

For the first moderate severity scenario (CBI= 2.0; Fig. 3B) a greater difference can be 398 

observed between the unburned and the burned signals. The largest effect occurs in the 399 

substrate and understory strata, which had a large proportion of charcoal on the ground as 400 

well as a large reduction of the understory LAI, with the remaining leaves totally scorched. A 401 

smaller change occurred in the overstory given the lower severity of this stratum, with only a 402 

small reduction in LAI and partial scorching of the leaves. As expected, the high severity 403 

scenario (CBI=2.42; Fig. 3C) showed the largest change in the waveform given the large 404 

proportion of charcoal in the substrate as well as the large reduction in LAI for both 405 

vegetation strata. The second moderate severity scenario (CBI=1.83; Fig. 3D) demonstrates 406 

the sensitivity of the LiDAR waveform to damage due to changes in color, resulting in 407 

changes in the spectral reflectance, rather than changes in the vegetation structure. Thus, a 408 

smaller amplitude is observed in the upper part of the waveform of the burned scenario, 409 

which is the result of a canopy that has been scorched but retains most of its leaves. 410 

Likewise, the lower part of waveform showed a significant reduction as result of the 411 

substrate charring and the scorching of the understory vegetation.  412 

3.2. LiDAR metrics assessment 413 

LiDAR metrics were computed using different height thresholds to separate the understory 414 

from the substrate part of the waveform. The best results were obtained for a 0.45 m height 415 

threshold, although differences with a 0.6 m threshold were negligible. Therefore, the results 416 
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shown throughout the rest of the text correspond to the former threshold. Fig. 4 shows the 417 

Spearman’s rank correlation coefficient values between the relative change of the metrics 418 

derived from the waveforms and the CBI of the simulated scenarios. 419 

Insert figure 4.  420 

The WARC presented the strongest correlation with the CBI values, with a mean Spearman’s 421 

Rho value of 0.9. This metric also showed a very good consistency among the 10 different 422 

simulated plots, with a standard deviation of 0.02 and a range of variation comprised between 423 

0.86 and 0.93. The relative change of the structural metrics commonly derived from LiDAR 424 

data showed a moderate correlation with the CBI, with a mean value of approximately 0.55 425 

and a much larger dispersion than the WARC. For instance, the relative height of the 60
th

 426 

percentile of the energy, which was ranked second, showed a mean Spearman’s Rho value of 427 

0.56, with a standard deviation of 0.07 and a range of variation between 0.49 and 0.69. A 428 

similar behavior was observed for the other structural metrics although negative correlations 429 

were found for the lower percentiles, since they just represent the lower part of the signal, i.e. 430 

the substrate and the understory layers. 431 

After identifying the best LiDAR-based metric to estimate CBI we fitted a logarithmic model 432 

for each of the forest plots simulated (Fig. 5).  433 

Insert figure 5. 434 

The models showed very good performance with a mean R
2
 of 0.8 (± 0.05) and values 435 

ranging between 0.73 and 0.86. The mean RMSE was 0.22 (± 0.03) and values that varied 436 

between 0.18 and 0.26. 437 

 438 
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3.3. The King Fire case study 439 

Pseudo-waveforms generated from discrete return intensity data also showed ability to 440 

discriminate different degrees of severity (Fig. S6-S9, supporting information). Nevertheless, 441 

the sensitivity analysis of the LiDAR metrics to the burn severity of the King Fire showed 442 

important differences with our previous simulations (Fig. 6). The WARC once again showed 443 

the strongest correlation with field measured GeoCBI values (Spearman’s Rho = 0.91); 444 

however, the structural metrics derived from the pseudo-waveforms showed much stronger 445 

correlation than that obtained for the simulated data. Thus, the RH40, the relchp_cv, the 446 

RH90, the MCHP and the QMCH yielded a Spearman’s Rho value of 0.89, 0.87, 0.86, 0.81 447 

and 0.8, respectively. The weakest correlation was obtained for the HTRT variable, with a 448 

Spearman’s Rho correlation of 0.19. 449 

Insert figure 6. 450 

The height thresholds used to separate the three strata considered had a significant impact on 451 

the estimation of severity from the LiDAR data, obtaining the best results using a height 452 

threshold of 0.45 m to separate the understory from the substrate, and a height threshold of 5 453 

m to separate the overstory from the understory strata.  454 

The model fitted (Fig. 7) to the estimate GeoCBI values from the WARC using the jackknife 455 

approach was:                            with a standard deviation of the 456 

parameters of 0.05 and 0.02, respectively. This model offered an R
2
 of 0.78 and a RMSE of 457 

0.37. This model was subsequently applied to the part of the King Fire for which pre- and 458 

post-fire LiDAR data were available to produce the LiDAR-based severity map shown in 459 

Fig. 8. 460 
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Insert figure 7.  461 

Insert figure 8.  462 

The LiDAR data covered the Rubicon Valley, which was characterized by high severity 463 

levels (estimated GeoCBI ≥2.25). Moderate severity is observed near the edge of the burn 464 

area, as well as the bottom of the valley, and a low severity patch at the north east part of the 465 

fire (Fig. 8). The topographic characteristics of the valley, with a concave shape and steep 466 

slopes that favored strong winds and fire spread (Coen et al. 2018), explained the high 467 

severity observed.  Our results show good agreement with the Monitoring Trends in Burn 468 

Severity (MTBS) product (Fig. S10, supporting information), downloaded from 469 

https://mtbs.gov (last access on 20
th

 February 2020). The MTBS product showed lower 470 

severity at the edge of the fire, as well as some larger patches of moderate severity in the 471 

north west Rubicon Valley than our LiDAR-based estimates.  472 

4. Discussion 473 

LiDAR metrics showed different degrees of sensitivity to the severity of fires. Our simulation 474 

approach represents the first attempt to evaluate the combined effect of different fire impacts, 475 

i.e. changes in color and changes in structure, on the LiDAR signal. The relative change of 476 

commonly LiDAR derived metrics showed moderate correlation with CBI values. These 477 

metrics were proposed for the estimation of important forest structural variables, such as 478 

biomass or wood volume (Bouvier et al. 2015; Drake et al. 2002). Therefore, they are more 479 

sensitive to fuel consumed than to color changes associated with charred soil and scorched 480 

vegetation, related to vegetation mortality induced by fire (Fig. 4). The new metric proposed, 481 

WARC, showed the strongest correlation and very high consistency across the different 482 

forest plots simulated. It was computed from the energy recorded by the sensor, which in 483 

https://mtbs.gov/
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addition to the range, is affected by target reflectance, size, orientation, density and the 484 

illuminated area (Korpela et al. 2010). Therefore, the WARC considers not only structural, 485 

but also foliage alteration (change in color), although PCC has a higher impact on the signal 486 

than the PFA. Despite geometric variables may have a larger influence on intensity than 487 

reflectance (Korpela et al. 2010), these variables can also be modified as result of tree 488 

scorching, thus affecting the recorded intensity over burned areas. The effect on the LiDAR 489 

signal of the change in soil color, as result of charcoal and ash deposition, was evident in the 490 

amplitude of the ground peak, showing a clear reduction as the proportion of change in soil 491 

color increased. In our simulations the proportion of charcoal, with lower reflectance than the 492 

unburned substrate, was much higher than ash, with higher reflectance than the unburned 493 

substrate but rather ephemeral, thus reducing the substrate reflectance.  494 

In addition to accounting for the changes in structure and leaf and soil color, the WARC 495 

considered all plot strata, computing the changes from the substrate to the upper canopy and 496 

averaging at the plot level, in the same way the CBI does. Therefore, the severity estimation 497 

based on WARC provides a more comprehensive evaluation than other approaches 498 

previously published. For instance, Klauberg et al., (2019) derived a set of crown metrics 499 

from airborne LiDAR to classify crown fire severity in a conifer forest. However, they did 500 

not assess the damage caused in the understory and substrate layers. Montealegre et al. 501 

(2014) found good correlation between field measured CBI values and a set of post-fire 502 

LiDAR metrics, which were used to classify burn severity levels. Despite reporting a global 503 

accuracy of 85.5%, their results are not comparable to ours since they did not estimate CBI, 504 

but classified severity levels into three broad classes. Likewise, Wang and Glenn (2009) 505 

classified burn severity levels in sagebrush steppe rangelands based on vegetation height 506 
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changes obtaining a global accuracy of 84%. While calculating height differences can be 507 

useful for sagebrush ecosystems, this metric may not be the most adequate to evaluate 508 

severity in forested areas, for instance due to the presence of snags, as suggested by Goetz et 509 

al. (2010), and confirmed by our simulation results.  510 

The separation of the strata in the computation of WARC can impact the results and need to 511 

be adjusted to the study area. The separation between understory and overstory vegetation 512 

was set to 2m for our simulations given the relatively short trees of the simulated plots. For 513 

the King Fire with much taller trees, the original 5m thresholds established for the CBI 514 

protocol (Key and Benson 2006) yielded better results. Regarding the separation between 515 

understory and substrate layers, the 0.45 m threshold worked well for the simulated and the 516 

King Fire study site. However, the convolution of the signal is expected to be higher in low 517 

severity areas as well as in steep terrain (Harding and Carabajal 2005; Huang et al. 2017). 518 

Our simulations considered relatively flat terrain, with slope <5º, reducing the impact of 519 

slope on the signal. Therefore, further research is needed to assess the influence of this 520 

parameter in the results. In the case of pseudo-waveforms created from discrete return data, 521 

although slope can affect ground filtering algorithms (Montealegre et al. 2015), the 522 

convolution of ground and understory over steep terrain would be less problematic. 523 

Additionally, we assumed the same species for the understory and the overstory layers. This 524 

assumption should not significantly affect the results since our approach to estimate severity 525 

is based on the relative change of the waveform, this assumption should not affect the results. 526 

Lamelas et al., (2019) reported the impact of scan angle on fuel type classification using the 527 

spectral angle mapper (SAM) classifier over an LVIS LiDAR signature library created from 528 

simulated waveforms. Although these authors found scan angle an important source of error 529 



25 
 

in the classification, it was probably due to the large scan angles tested up to 20º, beyond the 530 

scan-angle limit of the LVIS sensor (https://lvis.gsfc.nasa.gov/Home/instrumentdetails.html; 531 

last access on 14
th

 March 2020), and the sensitivity of the SAM algorithm to even small 532 

changes in the shape of the waveform. We tested the impact of off-nadir observations, up to 533 

8º (Hancock et al. 2019; table 1), on the metrics and found no consistent bias on most of 534 

them. Correlation between the nadir and off-nadir metrics remained above 0.9 for all metrics 535 

but RH25, RH20, RH10 and HTRT. In the case of WARC, correlation was higher than 0.99. 536 

These results agrees with Hancock et al. (2019), who also found no impact of scan angles 537 

less than 8º on the metrics derived from simulated LVIS waveforms.  538 

We run the FLIGHT model in forward mode to evaluate the sensitivity of full waveform 539 

LiDAR to a wide range of severity levels (Fig. 5). Inversion of the FLIGHT radiative transfer 540 

model has been applied for the estimation of forest structural parameters from LiDAR 541 

waveforms (Bye et al. 2017), so a similar approach should be possible for the retrieval of 542 

severity. Other studies already applied an RTM inversion to directly retrieve CBI values but 543 

from multispectral data (Chuvieco et al. 2007; De Santis et al. 2010). 544 

The King Fire case study has its limitations to test the robustness of the metrics since the 545 

LiDAR data has different pre- and post-fire survey configurations and sensors and the data 546 

were not full waveform. This issues require further research to draw more definitive 547 

conclusions. Nevertheless, the application of the WARC metric to the King Fire, with 548 

different vegetation characteristics than those of our simulated plots, showed the robustness 549 

and generalization capabilities of this metric to estimate severity. The availability of pre- and 550 

post-fire LiDAR data along with concomitant field measures of the GeoCBI, makes it a 551 

unique dataset to evaluate the potential of LiDAR data for the assessment of fire severity. 552 

https://lvis.gsfc.nasa.gov/Home/instrumentdetails.html
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Furthermore, it also allows to demonstrate the possibility of applying the method to the more 553 

frequent airborne LiDAR discrete return data by generating pseudo-waveforms. 554 

Contrary to the simulation results, structural metrics showed almost the same sensitivity as 555 

the WARC for the King Fire, most probably due to large fuel amounts consumed by the fire 556 

(Coen et al. 2018). Although structural metrics have shown significant differences between 557 

burned and unburned areas in boreal forests (Goetz et al. 2010; Wulder et al. 2009), and can 558 

be useful to evaluate specific impacts of fires, such as biomass consumed, the ability of these 559 

metrics to provide an integrated measure of severity, such as the CBI or the GeoCBI, which 560 

also accounts for tree mortality, may be limited. Moreover, our approach is based on a single 561 

simple metric, increasing its generalization capability, as opposed to previous studies that 562 

included multiple metrics. The WARC consistency for both, the simulated data as well as the 563 

King Fire case study, indicate the potential for the broad applicability of this metric. 564 

Recently, Hu et al. (2019) also proposed a single metric to estimate burn severity from 565 

LiDAR data. The performance of this metric was evaluated against changes in LAI, canopy 566 

cover and tree height, but not against field measures of CBI or GeoCBI. Their metric shows 567 

similarities to WARC, as it is based on the change in the area of the height percentile profile 568 

(PAC), but their metric is computed from the height distribution of returns and thus only 569 

account for changes in structure. Contrary, WARC is derived from the intensity, which is 570 

affected by the radiometric changes resulting from the modification in soil and leaf color. A 571 

comprehensive comparison between PAC and WARC was not feasible over our simulated 572 

scenarios since PAC can only be derived from discrete return data. However, we tested PAC 573 

over the King Fire and found poorer performance compared to WARC, with R
2
= 0.55 and 574 

RMSE= 0.53.  575 
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The capabilities of the WARC were evaluated against integrated measures of severity, the 576 

CBI and the GeoCBI. However, it has the potential for evaluating specific fire effects, for 577 

instance biomass consumption (Garcia et al. 2017a), to be later introduced into a single 578 

integrated severity index as Morgan et al. (2014) propose. 579 

The model fitted to estimate GeoCBI values from the WARC offered good performance 580 

(R
2
=0.78 and RMSE=0.37) but there is still room for improvement. The use of the same 581 

sensor with identical system settings and the same survey configuration for the pre- and post-582 

fire acquisitions would reduce the noise in the intensity data. In addition, we used a simple 583 

radiometric normalization of the intensity data to remove the effect of range variation across 584 

the study area produced by rough topography and the different flight height of the two 585 

LiDAR datasets. Better intensity normalization would help to improve our results reducing 586 

the noise of the intensity values used to generate the pseudo-waveforms. More robust 587 

normalization approaches have been proposed in the literature including an exponent factor 588 

to the range ratio to account for energy attenuation through the canopy, as well as a 589 

parameter to account for the automatic gain control (Gatziolis 2011; Korpela et al. 2010). 590 

However, the available data did not allow the application of such normalization methods. 591 

Moreover, our between-sensor calibration model was derived from non-vegetated surfaces 592 

characterized by single returns. Therefore, its application to other types of returns (2
th

 – 4
th

) 593 

may not be optimum. Despite this, the noise introduced in this group of returns by our 594 

between-sensor calibration is expected to be small, since the improvement in consistency of 595 

intensity values after normalization is less substantial in 2
nd

 and subsequent returns than for 596 

1
st
 and single returns (Gatziolis 2011).  597 
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The severity map derived using the WARC metric showed good agreement with the MTBS 598 

Landsat-based map, but showed some overestimation over the north west part of the Rubicon 599 

Valley. Although a thorough comparison between the LiDAR and Landsat-products is out of 600 

the scope of our study, differences between the two products could be explained by the 601 

different acquisition time of the post-fire LiDAR and Landsat data. The LiDAR data was 602 

collected shortly after the fire, thus representing an initial severity assessment. Meanwhile, 603 

the Landsat image was acquired nearly a year after the fire and so, it corresponded to an 604 

extended assessment, which could be influenced by vegetation recovery processes. 605 

Moreover, the inability of Landsat data to capture fire damage to the understory and 606 

substrate, particularly under unaffected dense canopies, can result in higher uncertainties in 607 

moderate severity areas (Chuvieco et al. 2007; Miller and Quayle 2015), contributing also to 608 

the differences between the two products. 609 

Our method requires having pre- and post-fire LiDAR data, which is a constraint given the 610 

limited spatial and temporal coverage of airborne LiDAR sensors. The method is potentially 611 

applicable to the recently launched Global Ecosystem Dynamics Investigation (GEDI) sensor 612 

onboard the International Space Station (Dubayah et al. 2014; Stysley et al. 2016). The 613 

sampling scheme should be taken into account, as it will not provide co-registered footprints. 614 

In such a case, an object-based approach could be applied by comparing typical average pre- 615 

and post-fire waveforms for each object. Additionally, integration of LiDAR and optical data 616 

(Klauberg et al. 2019; Kwak et al. 2010) could improve the assessment of fire caused damage 617 

by exploiting the synergy of the structural and the functional information derived from 618 

LiDAR and multispectral data, respectively. 619 

 620 
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5. Conclusions 621 

The potential of LiDAR data to perform comprehensive evaluations of the severity of 622 

wildfires has been evaluated. A new metric is proposed, WARC, which accounts for the 623 

changes in all strata. Whereas previous studies using LiDAR just focused on the structural 624 

changes caused by fires in vegetation, we have demonstrated that LiDAR was able to capture 625 

severity beyond structural changes, as it is also sensitive to leaf scorching, which is related to 626 

tree mortality, and soil color changes. 627 

The 3D FLIGHT radiative transfer model run in a forward mode enabled the evaluation of 628 

the sensitivity of LiDAR metrics to the severity of fires over a large range of severity levels. 629 

Our results demonstrated that common LiDAR metrics, which were developed for vegetation 630 

modeling, are less appropriate to estimate the fire severity than WARC.   631 

Application of the WARC metric to the real case study of the King Fire, California, with very 632 

different vegetation characteristics of those of our simulated plots, revealed the robustness 633 

and generalization capability of this metric. Although improvement over the best performing 634 

common LiDAR metrics was small in this case, the WARC still outperformed them.  635 

The potential of LiDAR data to estimate severity as measured by integrated indices such as 636 

the CBI and the GeoCBI was evaluated; yet, it can also be applied to assess specific fire 637 

effects that can be subsequently used in integrated evaluations of severity of wildfires. 638 

 639 

 640 

 641 
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Parameter Description Unit Value 

X0,Y0,Z0 
Sensor position relative to the center of 

the scene 
m 0, 0, 10000 

0,0 Sensor azimuth and zenith angle deg 0, 0 

 Half width angle of beam divergence mrad 1 

FOV FOV divergence half angle mrad 1,9 

 Half pulse duration at relative power ns 7 

Et Pulse energy mJ 5 

t Recording bin width ns 1 

Table 1. FLIGHT LiDAR sensor model parameters corresponding to the LVIS sensor. 
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Plot Main vegetation 

type 

Understory Overstory Stand 

density 

(trees/ha) mean 

height (m) 

LAI 

(m
2
/m

2
) 

mean 

height (m) 

LAI 

(m
2
/m

2
) 

1 Quecus ilex L.; 

Pinus nigra Arn. 

0.55 1.18 4.75 1.63 224 

2 Pinus nigra Arn. 0.89 0.82 7.24 3.16 160 

3 Pinus nigra Arn. 0.78 1.17 12.95 6.34 320 

4 Pinus nigra Arn. 1.12 0.48 7.00 3.11 496 

5 Quecus ilex L.; 

Pinus nigra Arn. 

1.57 0.21 6.79 3.78 416 

6 Pinus nigra Arn. 2.90 1.29 7.08 4.8 608 

7 Quecus ilex L.; 

Pinus nigra Arn. 

0.98 2.53 6.89 3.65 208 

8 Quecus ilex L.; 

Pinus nigra Arn. 

1.19 (0.77) 3.1 6.81 2.37 304 

9 Pinus nigra Arn. 1.35 (1.21) 1.9 7.03 3.02 288 

10 Quecus ilex L.; 

Pinus nigra Arn. 

0.91 (0.48) 1.5 5.85 3.74 192 

Table 2. Characteristics of the vegetation of the study area used to model the forest plots. 
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Substrate Understory and Overstory 

CBI % change in 

color 

PFA 

(% of brown leaves) 

PCC 

( % LAI reduction) 

0 0 0 0 

0.5 5 12.5 7.5 

1 10 25 15 

1.5 25 52.5 42.5 

2 40 80 70 

2.5 60 95 85 

3 80 100 100 

Table 3: Relative change of the variables assessed associated with each CBI value simulated. 

 

  CBI-Percentage of Foliage Altered 

C
B

I-
P

er
ce

n
ta

g
e 

o
f 

C
o
v
er

 C
h
an

g
e 

 0 0.5 1 1.5 2 2.5 3 

0 0 0.25 0.5 0.75 1 1.25 1.5 

0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 

1 0.5 0.75 1 1.25 1.5 1.75 2 

1.5 0.75 1 1.25 1.5 1.75 2 2.25 

2 1 1.25 1.5 1.75 2 2.25 2.5 

2.5 1.25 1.5 1.75 2 2.25 2.5 2.75 

3 1.5 1.75 2 2.25 2.5 2.75 3 

Table 4: CBI values resulting from the combination of the percentage of cover change and 

foliage altered for the vegetation strata. 
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Sensor 

 

Survey Date 

 

Flight height 

(m) 

Scan angle 

(˚) 

Point density 

(p/m
2
) 

Optech 

Gemini 

1-7 November 

2012 600-800 14 7.3 

Riegl Q1560 

13-14 January 

2015 2100 30 9.9 

Table 5. Characteristics of the airborne LiDAR data available for the King Fire. 
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Figure 1. Location of the study area. Enlarged window: King Fire perimeter. 

Background: Landsat-OLI post-fire image (25
th

 January 2015) RGB: SWIR, NIR, 

Red. 

Figure 2. Scatter plot of pre-fire intensity values after the between-sensors 

normalization and the post-fire intensity for the pseudo-invariant features. The 

black dashed line represents the fit line. The gray solid line represents the Y=X line. 

Figure 3. Waveform examples for different severity scenarios. A) Low severity 

scenario in which only the substrate and understory layers are affected by the fire. 

B) Moderate severity scenario with high severity for the substrate and understory 

layers and a slightly affected overstory. C) High severity scenario with high fire 

damage for all layers. D) Moderate severity scenario in which the main effect on 

vegetation layers is a change in soil and leaf color. 

Figure 4. Spearman’s rank correlation coefficient between CBI and the relative 

change of the waveform derived metrics. Error bars represent ±1 standard 

deviation. 

Figure 5. Scatter plots of CBI vs WARC values and fitted logarithmic models for 

each of the 10 forest plots simulated. 

Figure 6. Spearman’s rank correlation coefficient between field measured GeoCBI 

and the relative change of the pseudo-waveform derived metrics for the King Fire. 

Figure 7. Scatter plot of GeoCBI vs WARC values and fitted logarithmic model for 

the King Fire case study. 

Figure 8. Severity map of the King Fire derived from the WARC model using pre- 

and post-fire airborne LiDAR data. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig 7. 
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Fig. 8 
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