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Abstract—This article presents an intelligent system using deep
learning algorithms and the transfer learning approach to detect
oil palm units in multispectral photographs taken with unmanned
aerial vehicles. Two main contributions come from this piece of
research. First, a dataset for oil palm units detection is carefully
produced and made available online. Although being tailored to
the palm detection problem, the latter has general validity and
can be used for any classification application. Second, we designed
and evaluated a state-of-the-art detection system, which uses a
convolutional neural network to extract meaningful features, and
a classifier trained with the images from the proposed dataset.
Results show outstanding effectiveness with an accuracy peak
of 99.5% and a precision of 99.8%. Using different images
for validation taken from different altitudes the model reached
an accuracy of 97.5% and a precision of 98.3%. Hence, the
proposed approach is highly applicable in the field of precision
agriculture.

Index Terms—Classification, Convolutional neural networks,
Deep learning , Oil palm, Multispectral image processing

I. INTRODUCTION

Worldwide, the oil palm industry leads the supply of oils
and fats. It is a very dynamic sector due to the breadth of
uses of palm oil in different products, from cooking to cleaning
products, as well as in special greases and lubricants, personal
hygiene and cosmetics, production of biodiesel and electrical
energy [1]. In this light, oil palms are valuable and play
an important role in the economy of some countries. As an
example, they are considered by the Colombian Government
as one of the main agricultural products to promote the
substitution of illegal crops and achieve job creation in the
countryside, thus allowing for a sustainable peace process
evolution.

To support the management of the crop, low-cost unmanned
aerial vehicles (UAVs) [2], also known as drones, are being
used for various purposes such as pesticide spraying. An
emerging trend involves their use for acquiring high-resolution
aerial images, to cut the costs as compared to using satellite
images. This approach is convenient as it easily allows for
the generation of both multispectral and thermal images, with
a very accurate resolution [2], [3] and controlled acquisition
process and equipment on the UAVs. With small drones
with spectral cameras, it is possible to take photos and do
tasks such as aerial mapping, plant health monitoring, and
weed detection, among others. All these tasks involve image
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processing tasks, where the first step is the segmentation of the
image and the detection of the crop units (individual plants).

Application domains are varied, but mostly related to pre-
cision farming and agriculture, e.g. from prevention of fires
[4], to the classification of different plant species [5], [6],
early diagnosis of plant diseases [7], [8], or even employed
for counting out single plant units and in the census of live
animals [9].

Most of these processes first require isolating a single palm
tree from those in its surrounding and the elimination of
vegetation with similar characteristics, as e.g. grass or bushes,
from the image. In a nutshell, individual palm tree identifi-
cation is the first step to perform, and the performance of
the subsequent processes depend on the quality and accuracy
of this identification phase. Hence, improving upon the palm
detection process is key to optimally perform several other
tasks.

A. Advances in Crop Units Detection

The rise of Artificial Intelligence (AI) models for image
analysis such as deep learning and associated methods has
attracted the attention of researchers in the field of precision
agriculture [10] with a particular emphasis on embedding it
in the oil palm sector where an informed use of Al in the oil
production process can lead to major improvements with high
economical, environmental and suitability impact [8], [11],
[12]. Indeed, several studies are analysing spectral images with
Al tools for the identification of crop units [13], [14].

Currently, a great deal of research is being carried out
for the detection of oil palm units using these latest deep
learning models, including transfer learning methods [15],
[16] and specific neural systems such as Convolutional Neural
Netowk (CNN) [17], [18]. Many of them use high-resolution
satellite images to train CNN models capable of detecting palm
units and return their exact number in a a given area [19]-
[21]. However, sometimes satellite images are too expensive
or not available in real-time to analyse these crops. Hence,
alternatives making use of UAVs to collect multi-spectral
photographs have been investigated and has been shown to
provide suitable images to detect palm trees with CNNs [22]
and a Support Vector Machines (SVMs) [23].

B. Contributions and Structure of this work

In line with the most best performing research reported in
the literature, this work proposes a novel intelligent system for



the automatic spatial identification of oil palm trees based on:

« the collection of multispectral photographs with an UAV;

o the generation of a data set suitable for designing and
training Al solutions specifically tailored for the identifi-
cation of oil palm units;

o the use of advanced AI methods, i.e. CCNs and SVMs,
to extract the features and identify the units.

Hence, the contribution of this research is two-fold. First,
an original data set was carefully prepared as explained in
section II-B, and made available online at [24] for the research
community to easily work on images that are otherwise
difficult to collect (due to the location and accessibility of
oil palms plantations). Second, a palm detection system based
on “deep transfer learning” is designed and evaluated.

To present our work, the remainder of this paper is struc-
tured as follows:

« section II describes the data collection process, its pre-
processing for generating a training dataset, the Al
“tools” involved in this work, the methods employed in
this study and evaluation methods to assess the validity
of the proposed system;

« section III present the intelligent system for oil palm unit
detection;

« section IV presents and discusses the results obtained;

o section V concludes this work with final considerations
and identifies possible ways forward for future improve-
ments and new research lines.

II. MATERIALS AND METHODS

A. Collecting multi spectral photographs

Photos were taken using a “Dji Phantom 3” drone equipped
with a “Parrot sequoia” multispectral camera, as shown in
Fig. 1, at 4 different spectrum bands: Green (550 — 590nm),
Red (660 — 700nm), Red Edge (735 — 745nm) and Near
Infrared(790 — 830nm) with a resolution of 1280 x 960 for
each band (except for RGB images, where the resolution is
4608 x 3456). Multiple flights, each one covering 6400 palm
units, were performed at different times of the day and at
different altitudes, i.e. 10m, 20m, 30m, 40m and 50m, to take
photographs under various scenarios. It must be noted that
some of the most common problems in image processing for
precision agriculture are: 1) the same plant can look different
in two separate photos due to different sunlight conditions
during the day, 2) it can be difficult to understand the age of
a plant from the relative size seen in photos taken at different
altitudes; hence, it is useful to acquire images under multiple
configurations of these factors to address these issues in any
study. In total 400 photos were taken at each frequency band,
which means that 4 x 400 = 1600 images were collected.

All the images were taken in the Santa Barbara plantation
owned by Unipalma S.A. [25], a company located in Meta
province of Colombia (4° 13’ 33” N, 73° 14> 50”W) which
supported the collection of the images for this study.

o

(a) Dji Phantom 3

(b) Parrot sequoia

Fig. 1. Collecting photographs in Santa Barbara (Unipalma [25]) with our
UAV (a) equipped with a multispectral camera (b). More images are available
in [26].

B. Building the dataset

To build the training data base we carefully selected 8 of
the Near InfraRed (NIR) images taken at an altitude of 50m.
These are available at [27] — one is shown as an example
in Fig. II-B. Subsequently, these images were cropped into
multiple sub-images having different sizes: those containing
only a complete single oil palm unit, an example is shown in
Fig. II-B, were grouped to form the “poitive” classification
case (i.e. a palm is detected); conversely, those containing
more the one units or incomplete ones, an example can
be seen in Fig. II-B, were grouped to form the “negtive”
classification case (i.e. a whole palm tree is not detected). The
process of accurately selecting positive cases was performed
manually and double-checked to guarantee the appropriateness
of the images. Similarly, negative cases were produced by
cropping rectangular portions of the original images at random
positions and with different aspect ratios. In both cases, images
were inspected and labelled before being associated with the
positive or negative class.

The two image galleries were compressed in two separate
archives, one containing 356 positive instances while the other
one a total of 938 negative instances, both stored in the online
dataset repository [24]. The latter, can be used to train various
classification models.

C. Sliding window

The “sliding window” technique [28], [29] is one of the
most used algorithms to segment the image in object detection.
In its simplest implementation, it consists of a rectangle of
fixed width and height slid through an image from left to right
and from top to bottom with a fixed step size.

Adaptive sliding windows do also exist, see e.g. [30], but
are not required for this study since random window sizes are
more suitable. To insure this, a square sliding window with
initial size of 117 x 117 pixels is run N= 3 times with a
fixed step equal to 32 pixels to process new input images as
shown in Fig.3 and generate sub-images to be subsequently
classified. Each time the sliding window algorithm is run, the
window size randomly varies in the range 117 — 181 pixels
(for images taken at an altitude of 50m). It must be pointed



(b) Positive

(c) Negative

Fig. 2. Generating the training dataset: a NIR images (a) is decomposed to
generate positive (b) and negative (c) instances. The complete gallery of the
original NIR images and the whole dataset (positive plus negative instances)
are available on the online repository [26].

out that if the proposed system is validated with images
taken at different altitudes, these ranges should be adapted
accordingly to achieve optimal classification performances.
For lower altitudes we suggest increasing the range while
we suggest to decrease it for higher altitude values. As an
example, we empirically found the range 309 — 661 to be
optimal for an altitude of 10m. This addresses the issue of
relative size of a palm unit depending on the altitude of the
acquisition flight, thus arising the need of having altitude-
customised boundaries for the sliding window size.

D. Convolutional Neural Network

The CNN [17] is a deep learning model consisting of a
feed-forward artificial neural network that has convolution
and pooling layers, for feature extraction, and fully connected
layers, for classification tasks [31], [32]. CNNs are suitable for
many applications in a variety of fields and are particularly
suited to the field of computer vision, for which state-of-
the-art pre-trained deep neural network architectures have
successfully been designed [18]. Some of the most prominent
CNN structures are known under the names VGG-16, VGG-
19, Inception V3, ResNet-50 and Xception.

This work makes use of a VGG-16 network without its
last layer (i.e. the fully connected layer equipped with a
“softmax” activation function); its topology is described in
Table I. Further technical information are available from the
documentation of the popular “keras” package [33].

TABLE I
VGG-16 MODEL

Layer type Output Shape Parameters number
input (InputLayer) (224,224.3) 0
block1_convl (Conv2D) 224,224.,64) 1792
blockl_conv2 (Conv2D) (224,224,64) 36928
block1_pool (MaxPooling2D) (112,112,64) 0

block2_convl (Conv2D) (112,112,128) 73856
block2_conv2 (Conv2D) (112,112,128) 147584
block2_pool(MaxPooling2D) (56,56,128) 0
block3_convl (Conv2D) (56,56,256) 295168
block3_conv2 (Conv2D) (56,56,256) 590080
block3_conv3 (Conv2D) (56,56,256) 590080
block3_pool(MaxPooling2D) (28,28,256) 0
block4_convl (Conv2D) (28,28,512) 1180160
block4_conv2 (Conv2D) (28,28,512) 2359808
block4_conv3 (Conv2D) (28,28,512) 2359808
block4_pool(MaxPooling2D) (14,14,512) 0
blockS_convl (Conv2D) (14,14,512) 2359808
block5_conv2 (Conv2D) (14,14,512) 2359808
blockS_conv3 (Conv2D) (14,14,512) 2359808
block5_pool (MaxPooling2D) (7,7,512) 0
flatten (Flatten) (25088) 0
fc1l (Dense) (4096) 102764544
fc2 (Dense) (4096) 16781312
predictions (Dense) (1000) 4097000
Total parameters: 14714688
Trainable parameters: 14714688
Non-trainable parameters: 0

This CNN plays a key role in the proposed system as
it responsible for extracting features from the images to be
classified, as graphically shown in Fig. 3.

E. Transfer learning for feature extraction

Transfer Learning (TL) is a machine learning methodology
to exploit knowledge acquired during a previous a problem,
and used to address a new and different problem [34], [35].
Hence, it can be used for training new models based on
previous training process, in particular when 1) training data
availability is poor or 2) time constraints are preventing from
performing an full training process. Therefore models pre-
trained over extensive datasets with similar features to the new
problem can be used as a high performance starting point.

The TL approach is particularly efficient in image process-
ing, given that it has been observed that deep neural networks
with different sets of natural images seems to learn similar
features [35], [36]. This means that many image classification
problems, including the palm tree detection task, can be dealt
by starting with pre-trained methods. Therefore, the previously
discussed pre-trained CNN is used off-the-shelf in this study
to extract features from input images, as shown in figure 3.



TABLE II
CONFUSION MATRIX
Predicted
Positive Negative
Actual Positive True Positive (TP) False Negative (FN)
Negative | False Positive (FP) | True Negative (TN)

FE. Support Vector Machine

The SVM is a supervised machine learning model used for
classification and regression [37]. The original SVM algorithm
was a linear classifier for a two-class problem, separating
the data with two parallel hyperplanes such that the distance
between them is maximised. The region between the two
hyperplanes is in jargon referred to as “margin”, while the
samples falling in the margin are referred to as the “support
vectors” which are separated in two classes by the “maximum
margin hyperplane” [38].

Although the SVM makes a linear separation in the space
to perform the classification, kernel functions can be used to
map data into a higher dimensional space, thus allowing also
for non-linear classifications. The kernel functions are inner
products in the feature space and the most widely used are
linear, polynomial and Gaussian radial basis [39].

In this work, a SVM is used as a classifier to detect positive
cases.

G. Evaluation methods

The “k-fold” cross-validation method is used to validate the
proposed model. Cross-validation helps us to find the unknown
fit parameters in the classification methods, as well as to
estimate the prediction error of the final model. So we can
estimate how the model will behave in new cases [40].

Furthermore, to evaluate its performances the most signifi-
cant metrics based on the confusion matrix (see Table II) are
used as well. These are defined as described below in (1), (2),
(3) and (4):

TP + TN

Accuracy = (1)
TP 4+ TN + FP 4 FN
TP

Precision = —— 2)

TP 4+ FP

TP

Recall = ———— 3
T TP EN )
Fl =2 Precision - Recall @

" Precision + Recall

III. THE PROPOSED DEEP TRANSFER LEARNING MODEL

The methods described in section II are employed together
as outlined in Fig. 3 to form the proposed oil palm unit
detection system.

This process consists of four main steps:

1) Preparation of a suitable dataset: source images are

not suitable inputs for a detection system and require

processing to be transformed into smaller “fragments”
that can be labelled, in this case according to the pres-
ence/absence of a single whole oil palm unit, before being
fed into a classifier. In this study this is achieved with
the methods described in section II-B which led to the
creation of the dataset for palm trees detection archived
in [24]. This dataset is suitable for binary classification in
which a “positive” outcome is the detection of an oil palm
tree while a “negative” one consists in detection of an
incomplete palm, a different object or plant, or multiple
palms.

2) Features extraction: to achieve optimal classification, in
this step all images from the prepared dataset are trans-
formed into a more informative format highlighting their
key characteristics. This process, aka feature extraction,
is efficiently performed with TL using a VGG-16 CNN
without its last layer (as explained in section II-E) and
pre-trained over the large-scale ImageNet database [41].
Advantages of using ImageNet include the availability
of various training objects and shapes that lead to a
fine tuning of the VGG-16 parameters (see Table I) that
could not be obtained otherwise. Furthermore, rotated
version of training objects are included to make sure that
performances of the CNN are not dependent on rotation
of the inputs images. In fact this database has been
thought to perform object recognition, amongst a total of
1000 available objects, and this is why pre-trained CNN
architectures terminate with a “softmax” layer that is
responsible classifying the objects in their classes. How-
ever, this part is not of interest for this study, given that
we want to use the CNN for feature extraction purposes
only. We later deal with our particular classification to
have higher detection accuracy. Therefore, we exploit the
VGG-16 architecture until its penultimate layer, which
returns features. It is worth mentioning that some authors
suggest to eliminate the so-called “last block”, consisting
of three layers, to perform a more general feature extrac-
tion process for tasks that do not require object detection
[42]. However, identifying palm trees can be seen as a
very specific case of object detection and we empirically
observed better performances, for this specific application
domain, by removing only the last layer.

Under the configuration described previously, temporary
copies of the labelled images from the previous step are
then resized into the same 224 x 224 format, which is
a requirement for using the pre-trained VGG-16 CNN
[33], and then processed into 4096 features for each
input image. This number of features is the outcome of
several intermediate processing steps taking place in the
network’s layers, each one returning a different number
of outputs. As an example, the second layer has the
following structure (224,224,64), which means that is
returns 64 images in the 224 x 224 format, as graphically
shown in Fig.4. From this figure it can be seen how the
CNN has already started picking up common patterns.
3) Training the classifier: the totality of the features ob-
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Fig. 3. A general overview of the proposed system, from preparing the training dataset for transfer learning to feature extractions and classification.

4)

tained from the previous step, which are represented with
numerical descriptors suitable for any classifier, form an
accurate training set to fine tune the oil palm detection
process.

In this study, the classifier is a SVM with linear kernel —
a description of this method is given in section II-F. This
was selected empirically amongst other tested classifica-
tion methods based on: K-NN [43], [44], artificial neural
networks [45], [46], decision trees [47], [48] and SVMs
equipped with the non-linear kernel functions (refer to
section II-F for details) which were compared against
each other by using 10—fold cross-validation and the
evaluation metrics indicated in section II-G.

With reference to Fig. 3, these first three steps refer to
the preliminary phase shown in the top row. Subsequently,
the classification process can be executed with any new
photo as input (bottom row).

Qil palm unit detection: for any new photo entering our
proposed system, see bottom row of Fig. 3, the number
of outputs (in terms of detection) depends on its content,
i.e. the number of oil palm units in the image. These
can be efficiently recognised with the previously trained
classifier (i.e. step 3) only if fed with smaller versions of
the original image (resembling the ones used for training).
Indeed, no classifier wold be able to work optimally by
considering the original image as a whole.

Thus, the sliding windows mechanism described in sec-
tion II-C must be first employed to segment the input
image and create a gallery containing copped portions
from different central positions and with different sizes.
This is followed by the feature extraction process taking

place with the same methodology explained in step 2
(with the only difference that in step 2 features were used
to train the classifier while in this step they represent the
inputs to be classified).

Finally, the obtained features enter the -classification
stage, where the previously trained (i.e. at step 3) model
is used to detect oil palms unit by making positive or
negative decisions.

IV. RESULTS

The proposed system underwent the 10—fold Cross-
Validation (CV) process for which the corresponding confu-
sion matrix values are displayed in Table III. These are used to
evaluate the performances of the detection process in terms of
the performance metrics defined in section II-G — a summary
of the results is reported in Table IV.

TABLE III
CONFUSION MATRIX OF THE 10-FOLD CROSS-VALIDATION

Predicted
Positive | Negative
Positive 351 5
Actual
Negative | 2 936

At a first glance, it is evident that the proposed classifica-
tion process perform optimally with a more than satisfactory
accuracy of 99.5%. It is worth noting that none of employed
metrics has an inferior value, and with the precision metric
displaying a performance peak of 99.8%. This points out the
effectiveness of the selected methods for addressing these spe-
cific application domains in the field of precision agriculture.



Fig. 4. Example of an output from the second layer of the employed pre-trained VGG-16 CNN.

To further highlight the suitability of our model for oil
palm units detection, a second “validation” test was performed
with a randomly chosen UAV image from those collected at a
different altitude of 20m ( which is displayed in Fig. 5). Fig. 5
shows a small section of that image used. As can be seen in the
figure, in the image there are 6 palms to identify as individual
plants. Those that were well classified are enclosed in a green
rectangle, and a red one shows the palm that was not identified.
It was expected that this was not identified because there is
only part of the palm visible and the classifier is trained to
recognise a palm only when it is complete.

Due to the different altitude, the maximum range for the side
of the square sliding window, see section II-C, was adjusted
to 277 — 469. Since the classifier is trained with images
taken at an altitude of 50m, one may expect a deterioration
of the performances. However, results (shown in the second
row of the Table IV) indicate a very good classification
precision of 98.3% and slightly inferior values for accuracy,

Fig. 5. Validation UAV photograph. Unlike the images in [27], this pho-
tographs was shot at an altitude of 20m.



F1 and recall. Hence, only a marginal deterioration of the
classification performance is recorded, but the outcome is still
very satisfactory.

TABLE IV
RESULTS OF THE PROPOSED MODEL WITH CROSS-VALIDATION 10-FOLD

Database Accuracy F1 Precision  Recall
Training data (CV) 99.5% 99.6% 99.8% 99.5%
Validation 97.5% 97.1% 98.3% 97.7%

It is important to note that this palm prediction problem,
when doing it with the window technique, is going to have
many sub-images that have the same palm or pieces of the
same palm. This can give a wrong idea of the prediction
percentage when we analyse the sub-images, increasing the
number of miss-classified palms, when they were possibly
already classified correctly by some window. This is why in
future works it is recommended to do the validation on the
number of palms detected per image.

V. CONCLUSION AND FUTURE WORK

In conclusion, the proposed system is highly effective,
which leads to the following considerations:

o the use of TL is proven to be valid also in precision
agriculture to pursue plants recognition;

« the jointly used of CNNs and SVM seems to be promising
considering that very good results are ac hived by using a
modification of a well-known VGG-16 (with the last layer
removed) and a SVM with a simple linear kernel, without
having to perform any modification on their algorithmic
structures;

« in addition to being very accurate, the proposed approach
is very flexible as it can be used straightaway for identi-
fying similar plants, or a different variety if a new dataset
is created for the training and validation;

« the proposed classification method has a high potential
impact since this technology can be used in large plan-
tations to identify e.g. diseased units, or units needing
assisted pollination.

Despite the satisfactory results, we have identified some
strategies to further improve the proposed system which will
be investigated in the future. Some interesting points to be
considered in our follow up research are:

o considering a higher number of modern classifiers and
feature extraction methods (and their possible combina-
tion) might lead to better results or more flexible systems;

« to increase the number images in the dataset and prevent
possible overfitting. Increasing the data will also help
us, in addition to cross-validation, to be able to leave
a validation set and use it to assess the performance of
our prediction model;

o a smarter alternative to the sliding window technique
which, unlike what happens in the current system, has
a null probability of selecting the same palm twice will

result into a better classification and a faster system (i.e.
classification repeats do not occur). A simple approach to
solve this could consist in the modification of the window
pitch when a palm is detected, so that the next window is
positioned next the previous one without causing overlap.
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