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Abstract. In this chapter we give an overview of techniques for the
modelling and reasoning about reversibility of systems, including out-
of-causal-order reversibility, as it appears in chemical reactions. We con-
sider the autoprotolysis of water reaction, and model it with the Calculus
of Covalent Bonding, the Bonding Calculus, and Reversing Petri Nets.
This exercise demonstrates that the formalisms, developed for express-
ing advanced forms of reversibility, are able to model autoprotolysis of
water very accurately. Characteristics and expressiveness of the three
formalisms are discussed and illustrated.
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1 Introduction

Biological reactions, pathways, and reaction networks have been extensively
studied in the literature using various techniques, including process calculi and
Petri nets. Initial research was mainly focused on reaction rates by the mod-
elling and simulating networks of reactions, in order to analyse or even predict
the common paths through the network. Reversibility was not considered ex-
plicitly. Later on reversibility started to be taken into account, since it plays a
crucial rôle in many processes, typically by going back to a previous state in
the system. Two common types of reversibility are backtracking and causally-
consistent reversibility [8, 25, 19]. Backtracking executes exactly the inverse order
of the forward execution, and causally-consistent reversibility allows undoing ef-
fects before causes, but not necessarily in the exact inverse order. Beyond back-
tracking and causally-consistent reversibility, there is a more general form of
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reversibility, known as out-of-causal-order reversibility [28], which makes it pos-
sible to get to states which cannot be reached by forward reactions alone. Such
sequences of forward and reverse reaction steps are important as they lead to
new chemical structures and new reactions, which would not be possible without
out-of-causal-order reversibility [28]. A typical example is a catalytic reaction: a
catalyst C enables compounds A and B to combine, a combination that would
not normally happen or be very unlikely without the presence of C. Initially,
catalyst C binds with B resulting in a compound BC. Then A combines with
BC creating ABC. Finally, with its job done, C breaks away from ABC, leaving
A and B bonded. This sequence of reactions can be written as follows:

A+B + C → A+BC → ABC → AB + C

This is a typical example of out-of-causal order reversibility since the bond be-
tween B and C is undone before its effect, namely the bond from A to B (which
is not undone at all). The modelling of such reactions is the focus of this chapter.
For further motivation, formal definitions and more illustrating examples of the
various types of reversibility we refer the reader to [8, 25, 19, 28].

1.1 Contribution

This chapter presents and compares three formalisms, the Calculus of Covalent
Bonding (CCB) [15, 16], the Bonding Calculus [1], and Reversing Petri Nets [23],
that have been developed during COST Action IC1405. These models are vari-
ations of existing formalisms and set out to study reversible computation by
allowing systems to reverse at any time leading to previously visited states or
even new states without the need of additional forward actions. The contribution
of this chapter is a comparative overview of the three formalisms, a discussion of
their expressiveness, and a demonstration of their use on a common case study,
namely the autoprotolysis of water reaction.

Our case study was selected to be non-trivial, of manageable size, and to allow
us to exhibit the crucial features of the formalisms. It is a chemical reaction that
involves small molecules, so it is different from biological reactions that involve
proteins and other macromolecules. New modelling techniques may be needed in
order to capture fully reversible behaviour of biological systems, however, in this
chapter we concentrate on chemical reactions, a domain that offers interesting
examples of out-of-causal-order reversibility.

The discussed formalisms enable us to model the intermediate steps of chem-
ical reactions where some bonds are only “helping” to achieve the overall aim
of the reaction: specifically, they are only formed to be broken before the end of
the reactions. Thus, the allowed level of detail makes a more accurate depiction
of the reversibility possible, and allows a more thorough understanding of the
underlying reaction mechanisms compared to higher-level models.
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1.2 Related Work

Process calculi, originally designed for the modelling of sequential and concurrent
computation, have been applied to biochemical and biological systems. The main
instances are the π-calculus [34], BioAmbients [33], the stochastic π-calculus [30],
beta binders [31] and bioPEPA [6]. Another way to model biochemical reactions
is with rule-based formalisms such as BIOCHAM [10], the κ-calculus [7], and
the BioNetGen Language (BNGL) [9]. The formalisms κ and BNGL can be used
to model interactions between proteins, while this is not possible in BIOCHAM.
BNGL allows the use of molecule sites having the same name, which is not
allowed in the κ-calculus.

Most of the formalisms mentioned above do not explicitly represent reversibil-
ity. If an action is the reverse of another action performed before, there is no
explicit knowledge of that in the model. Reversibility was added explicitly to
process calculi in RCCS [8], CCSK [25], and reversible π [17, 18]. CCSK and
RCCS are based on the Calculus of Communicating Systems (CCS) [21]. They
extend CCS by keeping track of past actions and enabling an undo of those. So a
reverse action is the reverse execution of a forward action. These calculi support
backtracking and causally-consistent reversibility. Out-of-causal-order reversibil-
ity was first addressed in CCSK extended with controller processes [28], and in
the context of reversible event structures [27, 26, 37]. CCB [16] allows all types
of reversibility in the context of chemical reactions and in other settings.

Petri nets (PNs) [35] are another formalism that has been widely used to
model and reason about a wide range of applications featuring concurrency and
distribution. They are a graphical language associated with a rich mathematical
theory and supported by a variety of tools. Their use in systems biology dates
back to [32, 12]. Since then, they have been employed for the modelling, analysis,
and simulation of biochemical reactions in metabolic pathways, gene expression,
signal transduction, and neural processes [4, 5, 2]. Indeed, PNs seem to be a
natural framework for representing biochemical systems as they constitute a set
of interdependent transitions/reactions which consume and produce resources,
and are represented graphically in a similar fashion to the systems in question.
Several specialised Petri net classes, such as qualitative, stochastic, continuous,
or hybrid Petri nets and their coloured counterparts, have been used to describe
different biochemical systems [22, 13, 29, 20, 38].

Even though classical PNs and their extensions have been extensively used to
model biochemical systems, they cannot directly model reversibility. Specifically,
when modelling reversible reactions in these formalisms it is required to employ
mechanisms involving two distinct transitions, one for the forward and one for the
reverse version of a reaction. This may result in expanded models and less natural
and/or less accurate models of reversible behaviour. It is also in contrast to the
notion of reversible computation, where the intention is not to return to a state
via arbitrary execution but to reverse the effect of already executed transitions.
For this reason, the formalism of reversing Petri nets [23] has been proposed
to allow systems to reverse already executed transitions leading to previously
visited states or even new ones without the need of additional forward actions.
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Reversing Petri nets have also been extended with a mechanism for controlling
transition reversal by associating transitions with conditions [24].

1.3 Paper organisation

In the next section, we introduce the autoprotolysis of water reaction, which will
be modelled using our three formalisms. This is followed by a section introducing
the formalisms, their syntax and, informally, their operational semantics. We
also give three models of the autoprotolysis of water using the formalisms. In
Section 4, we compare the formalisms and the models of our example reaction,
and we also briefly discuss software support for the three formalisms. Finally,
Section 5 concludes the paper.

2 Autoprotolysis of Water

We consider a chemical reaction that transfers a hydrogen atom between two
water molecules. This reaction is known as the autoprotolysis of water and is
shown in Figure 1. There, O indicates an oxygen atom and H a hydrogen atom.
The lines indicate bonds. Positive and negative charges on atoms are shown by
⊕ and 	 respectively. The meaning of the curved arrows and the dots will be
explained in the next paragraphs. The reaction is reversible and it takes place
at a relatively low rate, making pure water slightly conductive. We have chosen
this reaction as our example reaction, since it is non-trivial but manageable, and
has some interesting aspects to be represented.

O

H

H

O

H

H

O

H

H

H O

H

+ +

Fig. 1. Autoprotolysis of water.

To model the reaction we need to understand why it takes place and what
causes it. The main reason is that the oxygen in the water molecule is nu-
cleophilic, meaning it has the tendency to bond to another atomic nucleus,
which would serve as an electrophile. This is because oxygen has a high electro-
negativity, therefore it attracts electrons and has an abundance of electrons
around it. The electrons around the atomic nucleus are arranged on electron
shells, where only those in the outer shell participate in bonding. Oxygen has
four electrons in its outer shell, which are not involved in the initial bonding
with hydrogen atoms. These electrons form two lone pairs of two electrons each,
which can form new bonds (lone pairs are shown in Figure 1 by pairs of dots).
All this makes oxygen nucleophilic: it tends to connect to other atomic nuclei by
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forming bonds from its lone pairs. Since oxygen attracts electrons, the hydrogen
atoms in water have a positive partial charge and oxygen has a negative partial
charge.

The reaction starts when an oxygen in one water molecule is attracted by a
hydrogen in another water molecule due to their opposite charges. This results in
a hydrogen bond. This bond is formed out of the electrons of one of the lone pairs
of the oxygen. The large curved arrow in Figure 1 indicates the movements of the
electrons. Since a hydrogen atom cannot have more than one bond, the creation
of a new bond is compensated by breaking the existing hydrogen-oxygen bond
(indicated by the small curved arrow). When this happens, the two electrons,
which formed the original hydrogen-oxygen bond, remain with the oxygen. Since
a hydrogen contains one electron and one proton, it is only the proton that is
transferred, so the process can be called a proton transfer as well as a hydrogen
transfer. The forming of the new bond and the breaking of the old bond are
concerted, meaning that they happen together without a stable intermediate
configuration. As a result we have reached the state where one oxygen atom has
three bonds to hydrogen atoms and is positively charged, represented on the
right side of the reaction in Figure 1. This molecule is called hydronium and
is written as H3O+. The other oxygen atom bonds to only one hydrogen and
is negatively charged, having an electron in surplus. This molecule is called a
hydroxide and is written as OH−.

Note that the reaction is reversible: the oxygen that lost a hydrogen can
pull back one of the hydrogens from the other molecule, the H3O+ molecule.
This is the case since the negatively charged oxygen is a strong nucleophile
and the hydrogens in the H3O+ molecule are all positively charged. Thus, any
of the hydrogens can be removed, making both oxygens formally uncharged, and
restoring the two water molecules. In Figure 1 the curved arrows are given for
the reaction going from left to right. Since the reaction is reversible (indicated
by the double arrow) there are corresponding electron movements when going
from right to left. These are not given in line with usual conventions, but can
be inferred.

In this simple reaction, the forward and the reverse step consist of two steps
each. The breaking of the old and the forming of the new bond occur simultane-
ously. This means that there is no strict causality of actions, since none of them
can be called the cause of the overall reaction. Furthermore, the reverse step can
be done with a different atom to the one used during the forward step because
each of the molecules are in a sense identical and in practice there does not exist
a single “reverse” path corresponding to a forward one.

It should be noted that there are two types of bonding modelled here. Firstly,
we have the initial bonds where two atoms contribute an electron each. Secondly,
the dative or coordinate bonds are formed where both electrons come from one
atom (an oxygen in this case). Both are covalent bonds, and once formed they
cannot be distinguished. Specifically, in the oxygen with three bonds all bonds
are the same and no distinction can be made. If one of the bonds is broken by
a deprotonation (as in the autoprotolysis of water) the two electrons are left
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behind and they form a lone pair. If the broken bond was not previously formed
as a dative bond, the electrons changed their “rôle”. This explains why any
proton can be transferred in the reverse reaction and not just the one that was
involved in the forward path.

3 Formalisms for Reversible Chemical Reactions

3.1 Calculus of Covalent Bonding

In this subsection we introduce the Calculus of Covalent Bonding (CCB) [16],
concentrating on the new general prefixing operator (s; b).P which, together with
a generalised composition operator, produces pairs of concerted actions. Then
we present a CCB model of the autoprotolysis of water.

Definition of CCB We recall the definition of CCB, presenting only the main
ideas. More details can be found in [15, 16]. First, we introduce some preliminary
notions and notations.

Let A be the set of (forward) action labels, ranged over by a, b, c, d, e, f . We
partition A into the set of strong actions, written as SA, and the set of weak
actions, written as WA. Reverse (or past) action labels are members of A, with
typical members a, b, c, d, e, f , and represent undoing of actions. The set P(A∪A)
is ranged over by L.

Let K be an infinite set of communication keys (or keys for short) [25], ranged
over by k, l,m, n. The Cartesian product A×K, denoted by AK, represents past
actions, which are written as a[k] for a ∈ A and k ∈ K. Correspondingly, we
have the set AK that represents undoing of past actions. We use α, β to identify
actions which are either from A or AK. It would be useful to consider sequences
of actions or past actions, namely the elements of (A∪AK)∗, which are ranged
over by s, s′ and sequences of purely past actions, namely the elements of AK∗,
which are ranged over by t, t′. The empty sequence is denoted by ε. We use the
notation “α,s” and “s,s′” to denote a concatenation of elements, which can be
strings or single actions.

We shall also use two sets of auxiliary action labels, namely the set (A) =
{(a) | a ∈ A}, and its product with the set of keys, namely (A)K. These labels
will be used in the auxiliary rules when defining the semantics of CCB. They
denote the execution of a weak action, which makes it possible in the SOS rules
to force breaking of a bond for those actions only.

The syntax of CCB is given below where P is a process term:

P ::= S
∣∣ S def

= P
∣∣ (s; b).P

∣∣ P |Q ∣∣ P \L
The set of process identifiers (constants) PI contains typical elements S

and T . Each process identifier S has a defining equation S
def
= P where P contains

only forward actions (and no past actions). There is also a special identifier 0,
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denoting the deadlocked process, which has no defining equation. For restrictions
L ⊆ A holds.

We have a general prefixing operator (s; b).P , where s is a non-empty se-
quence of actions or past actions. This operator extends the prefixing operator
in [28]. The action b is a weak action and it can be omitted, in which case the
prefixing is written as (s).P and is called the simple prefix. The simple prefix
(which is still a sequence) is the prefixing operator in [28]. Exactly one of the
actions in s in (s).P may be a weak action from WA. A weak action in s is only
allowed for the simple prefix, in the (s; b) operator b is the only allowed weak
action. If s is a sequence that contains a single action, then the action is a strong
action and the operator is the prefixing operator of CCS [21]. We omit trailing 0s
so, for example, (s).0 is written as (s). The new feature of the operator (s; b).P
is the execution of the weak action b, which can happen only after all the actions
in s have taken place. Performing b then forces undoing one of the past actions
in s (by the concert rule in Figure 4). If a (s; b) operator is followed by another
sequence of actions, where all actions in s have already taken place, then there is
a non-deterministic choice of either doing b or progressing to the next sequence
of actions (see act1 and act2).

P | Q represents two systems P and Q which can perform actions or reverse
actions on their own, or which can interact with each other according to a com-
munication function γ. As in the calculus ACP [11], the communication function
is a partial function γ : A×A → A which is commutative and associative. The
function γ is used in the operational semantics to define when two processes can
interact. Processes P and Q in P | Q can also perform a pair of concerted actions,
which is the new feature of our calculus. We also have the ACP-like restriction
operator \L, where L is a set of labels. It prevents actions from taking place
and, due to the synchronisation algebra used, it also blocks communication. If
γ(a, b) = c then a.P and b.Q cannot communicate in (a.P | b.Q) \ c.

The set Proc of process terms is ranged over by P,Q and R. In the setting
of CCB these terms are simply called processes. We define the semantics of our
calculus using SOS rules (Figures 2–4) and rewrite rules (Figure 5).

We use some predicates and functions, which are formally defined in [16].
Informally, a process P is standard, written std(P ), if it contains no past actions
(hence no keys). A key n is fresh in Q, written fsh[n](Q), if Q contains no past
action with the key n. Function k returns the keys in a sequence of actions,
whereas keys returns the keys in a process, and fn gives the actions of a process
which could be executed.

The forward and reverse SOS rules for CCB are given in Figures 2 and 3.
Figure 4 contains the SOS rules that define the new concerted actions transitions.
The rule concert defines when a pair of concerted actions takes place. This enables
the linking of forming and breaking of bonds, and therefore a degree of control
over the reversing of actions. The modelling in the next section will give examples
of the application. Note that the concert rule uses lookahead [36]. Lookahead is
a property of SOS rules, where a variable appears both on the right hand side
and on the left hand side of a transition in the premises. for example P ′ and Q′
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act1
std(P ) fsh[k](s, s′)

(s, a, s′; b).P
a[k]−−→ (s, a[k], s′; b).P

act2
P

a[k]−−→ P ′ fsh[k](t)

(t; b).P
a[k]−−→ (t; b).P ′

par
P

a[k]−−→ P ′ fsh[k](Q)

P | Q a[k]−−→ P ′ | Q
com

P
a[k]−−→ P ′ Q

d[k]−−→ Q′

P | Q c[k]−−→ P ′ | Q′
(∗)

res
P

a[k]−−→ P ′

P\L a[k]−−→ P ′\L
a /∈ L con

P
a[k]−−→ P ′

S
a[k]−−→ P ′

S
def
= P

Fig. 2. Forward SOS rules for CCB. The condition (*) is γ(a, d) = c, and b ∈ WA.
Recall that s is a sequence of actions and past actions and t is a sequence of purely
past actions.

rev act1
std(P )

(s, a[k], s′; b).P
a[k]−−→ (s, a, s′; b).P

rev act2
P

a[k]−−→ P ′

(t; b).P
a[k]−−→ (t; b).P ′

rev par
P

a[k]−−→ P ′ fsh[k](Q)

P | Q a[k]−−→ P ′ | Q
rev com

P
a[k]−−→ P ′ Q

d[k]−−→ Q′

P | Q c[k]−−→ P ′ | Q′
(∗)

rev res
P

a[k]−−→ P ′

P\L a[k]−−→ P ′\L
a /∈ L rev con

P
a[k]−−→ P ′

P
a[k]−−→ S

S
def
= P ′

Fig. 3. Reverse SOS rules for CCB. The condition (*) is γ(a, d) = c, and b ∈ WA.

in concert. The rule concert par requires that k is fresh in Q, correspondingly as
in par. Moreover, we need to ensure that when we reverse h with the key l in P
we do not leave out any actions with the key l in Q which make up a multiaction
communication with the key l. Hence, we also include the premise fsh[l](Q) in
concert par. The rule concert act requires, correspondingly as act, that k is fresh
in t. Our operational semantics guarantees that if a standard process evolves to
(t; b).P , for some P , and P reverses an action with the key l, then l is fresh in
t. Hence, we do not include fsh[l](t) in the premises of concert act. Overall, the
transitions in Figures 2–4 are labelled with a[k] ∈ AK, or with c[l] ∈ AK, or
with concerted actions (a[k], c[l]).

Next, we recall the main new rewrite rules for a reduction relation for CCB
in Figure 5. All the rules can be found in [15, 16] but here we only give rules
for promotion of actions. These are prom, move-r, and move-l which promote
weak bonds (here b) to strong bonds (here a). The rule prom applies to the full
version of our prefix operator (with the ; construct), and move-r and move-l apply
only to the simple prefix. These three rules are here to model what happens in
chemical systems: a bond on a weak action is temporary and as soon as there
is a strong action that can accommodate that bond (as the result of concerted
actions) the bond establishes itself on the strong action thus releasing the weak
action. In order to align the use of these three rules to what happens in chemical
reactions, we insist that they are used as soon as they becomes applicable, a
formal definition is given in [15, 16].
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aux1
std(P ) fsh[k](t)

(t; b).P
(b)[k]−−−→ (t; b[k]).P

aux2
P

(b)[k]−−−→ P ′ fsh[k](t)

(t; b′).P
(b)[k]−−−→ (t; b′).P ′

concert
P

(b)[k]−−−→ P ′ P ′
a[l]−−→ P ′′ Q

α[k]−−→ Q′ Q′
d[l]−−→ Q′′

P | Q
{e[k],f [l]}
−−−−−−→ P ′′ | Q′′

(∗)

concert act
P
{a[k],h[l]}−−−−−−→ P ′ fsh[k](t)

(t; b).P
{a[k],h[l]}−−−−−−→ (t; b).P ′

concert par
P
{a[k],h[l]}−−−−−−→ P ′ fsh[k](Q) fsh[l](Q)

P | Q {a[k],h[l]}−−−−−−→ P ′ | Q

concert res
P
{a[k],h[l]}−−−−−−→ P ′

P\L {a[k],h[l]}−−−−−−→ P ′\L
(∗∗)

Fig. 4. SOS rules for concerted actions in CCB. The condition (*) is 1. α = c∨α = (c)
and ∃c ∈ A|γ(b, c) = e, and 2. γ(a, d) = f . The condition (**) is a, h /∈ L ∪ (L). Recall
that t ∈ AK∗, and b ∈ WA.

prom : (s, a, s′; b[k]).P ⇒ (s, a[k], s′; b).P if a ∈ SA, b ∈ WA

move-r : (s, a, s′, b[k], s′′).P ⇒ (s, a[k], s′, b, s′′).P if a ∈ SA, b ∈ WA

move-l : (s, b[k], s′, a, s′′).P ⇒ (s, b, s′, a[k], s′′).P if a ∈ SA, b ∈ WA

Fig. 5. New reduction rules for CCB. Sequences s, s′, s′′ are members of (A ∪AK)∗.

We shall call henceforth the transitions derived by the forward SOS rules
the forward transitions and, the transitions derived by the reverse SOS rules the
reverse transitions. Correspondingly, there are the concerted (action) transitions.

The autoprotolysis of water in CCB When modelling the autoprotolysis of
water in CCB, we shall model the hydrogen and oxygen atoms as processes H
and O as follows, where h, o are actions representing the bonding capabilities of
the atoms and n, p representing negative and positive charges, respectively. H ′

and O′ are process constants, and p and n are weak actions.

H
def
= (h; p).H ′ O

def
= (o, o, n).O′

The synchronisation function γ is as follows:

γ(h, o) = ho γ(n, p) = np γ(n, h) = nh

Each water molecule is a structure consisting of two hydrogen atoms and one
oxygen atom which are bonded appropriately. We shall use subscripts to distin-
guish the individual copies of atoms and actions; for example H1 is a specific
copy of hydrogen defined by (h1; p).H ′1, similarly for O1 defined as (o1, o2, n).O′1.
The atoms are composed with the parallel composition operator “|” using the
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communication keys (which are natural numbers) to combine actions into bonds.
So a water molecule is modelled by the following process, where the key 1 shows
that h1 of H1 has bonded with o1 of O1 (correspondingly for key 2). The restric-
tion \{h1, h2, o1, o2} ensures that these actions cannot happen on their own, but
only together with their partners, forming a bond.

((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n).O′1) \ {h1, h2, o1, o2}

The system of two water molecules in Figure 1 is represented by the parallel
composition of two water processes, where the restriction \{n, p} represses ac-
tions n, p from taking place separately by forcing them to combine into bonds
(according to γ).

(((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n).O′1) \ {h1, h2, o1, o2} |
((h3[3]; p).H ′3 | (h4[4]; p).H ′4 | (o3[3], o4[4], n).O′2) \ {h3, h4, o3, o4}) \ {n, p}

Following a general principle in process calculi in the style of CCB we can move
the restrictions to the outside. The rule used can be written as (P | Q) \ L =
P \ L | Q if the actions of L are not used in Q. Applying this gives us a water
molecule modelled as follows:

((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n).O′1) | (h3[3]; p).H ′3 |
(h4[4]; p).H ′4 | (o3[3], o4[4], n).O′2)) \ {h1, h2, o1, o2} \ {h3, h4, o3, o4} \ {n, p}

Note the hi, oj , and n are not restricted: this allows us to break bonds via
concerted actions involving these actions. We will see an example of this shortly.
We now leave out the restrictions to improve readability.

Actions n in O1 and p in H3 combine (we use the new key 5), representing
a transfer of a proton from one atom of oxygen (O2 in our model) to another
one (O1 in our model). As a hydrogen atom consists of a proton and an elec-
tron, and the electron stays in such a transfer, it can either be called a proton
transfer or the transfer of a (positively charged) hydrogen atom. We perform
the transfer of H3 from O2 to O1. The creation of the bond with key 5 from
O1 to H3 forces a break of the bond with key 3 (between h3 and o3) due to the
property of the operator (s; b).P discussed earlier. These two reactions happen
almost simultaneously so we represent them as a pair of concerted actions.

(h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n).O′1 | (h3[3]; p).H ′3

| (h4[4]; p).H ′4 | (o3[3], o4[4], n).O′2)

{np[5],h3o3[3]}−−−−−−−−−→
((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n[5]).O′1 | (h3; p[5]).H ′3

| (h4[4]; p).H ′4 | (o3, o4[4], n).O′2

We have now arrived at the state on the right hand side in Figure 1. There are
weak bonds between n and p (denoted by key 5) and strong bonds between hi
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and oj for all appropriate i, j. Since H3 is weakly bonded to O1 and its strong
capability h3 has become available, the bond 5 gets promoted to the stronger
bond, releasing the capability p of H3. We represent this change as a rewrite and
we obtain the following process:

((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n[5]).O′1 | (h3; p[5]).H ′3

| (h4[4]; p).H ′4 | (o3, o4[4], n).O′2

⇒
((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n[5]).O′1) | (h3[5]; p).H ′3)

| (h4[4]; p).H ′4 | (o3, o4[4], n).O′2

Note that we wrote h3, o3 and the key 5, the actions and keys affected by the
promotion, in bold font to improve readability. We shall do correspondingly
below.

Oxygen O1 is still blocked, which represents it being fully bonded (and pos-
itively charged). Oxygen O2 has a free n capability and can remove any of the
hydrogens from O1. As a result the process can reverse to its original state.

We show this by again transferring H3. We then execute promotion again:

(((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n[5]).O′1) | (h3[5]; p).H ′3)

| (h4[4]; p).H ′4 | (o3, o4[4], n).O′2
{np[3],nh3[5]}−−−−−−−−−→

(((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2],n).O′1) | (h3;p[3]).H ′3)

| (h4[4]; p).H ′4 | (o3, o4[4],n[3]).O′2

⇒
(((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2],n).O′1) | (h3[3];p).H ′3)

| (h4[4]; p).H ′4 | (o3[3], o4[4],n).O′2

This corresponds to the original process. Putting back restrictions we obtain

((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n).O′1 | (h3[3]; p).H ′3

| (h4[4]; p).H ′4 | (o3[3], o4[4], n).O′2) \ {h1, h2, o1, o2} \ {h3, h4, o3, o4} \ {n, p}

and then if we apply the movement of restrictions in reverse we get

(((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n).O′1) \ {h1, h2, o1, o2} |
((h3[3]; p).H ′3 | (h4[4]; p).H ′4 | (o3[3], o4[4], n).O′2) \ {h3, h4, o3, o4}) \ {n, p}

3.2 Bonding Calculus

In this subsection we recall briefly the Bonding Calculus [1], and illustrate its
expressiveness by modelling the autoprotolysis of water.
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Definition of the Bonding Calculus The abstraction “processes as interac-
tions” from process calculi is used in the Bonding Calculus, but processes are not
able to communicate values in order to interact. Just like in the BNGL [9], the
Bonding Calculus allows the use of molecule sites having the same name, while
this is not possible in the κ-calculus. While the κ-calculus describes molecules
as a set of sites and uses rules to manipulate these sites between two or more
molecules, in the Bonding Calculus a molecule is described by the sequence of
operations it can perform on its sites (including also non-deterministic choices),
regardless of the form of the other molecules. This allows to use the composi-
tionality of the process calculus.

The syntax of the Bonding Calculus syntax is presented in Figure 6. Let us
consider the set N of natural numbers, the set N = {x, x+, x−, . . . } of bond
names, the set M = {a, b, . . . } of molecules and the set P = {P,Q, . . .} of
processes. A multiset over N is defined as a partial function N : N → N. In the
Bonding Calculus each molecule has a unique name, and the bond x between
two molecules a and b is denoted by {a−x b}.

Bonds L ::= ∅ (empty)

p {a−x b} (bond)

p L ] L (union)

Actions α ::= x(b) (bond)

p x(b) (unbond)

Processes P ::= 0 (empty)

p α.P (action prefix)

p P +Q (choice)

p P | Q (parallel)

p if a mL b then P else Q (testing)

p A(b1, . . . , bn) (identifier)

Definition A(a1, . . . , an) ::= P (recursion)

System S ::= P || L .

Fig. 6. Syntax of the Bonding Calculus

A bond prefix x(b) is used to indicate the availability of a molecule with
name b to create a new bond with name x, while an unbond prefix x(b) indicates
the availability of b to destroy an existing bond x. Creating or breaking a bond
leads to an update of the global bond memory L. As several similar bonds can
exist between the same molecules, L is actually a multiset of bonds.

The process 0 denotes inactivity. The availability to perform an action α, and
then to continue the execution as process P is denoted by the process α.P . The
process P +Q offers a choice between the processes P and Q, while the process
P | Q allows the execution of processes P and Q in parallel, with possible
interactions between them by using appropriate actions.
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As we work with bonds, we use the function m: M× NN ×M → Bool to
check whether between two molecules there exist certain bonds. For example,
a mN b checks for the existence of all bonds in N between the molecules a and b;
it returns true when such bonds exist, and false otherwise. When we consider
N = ∅, then a m∅ b checks if at least a bond exists between the two molecules.
When b = ε, then a mN ε checks if a has all of bonds from N , regardless of
the molecules he has them with. The Boolean result a mN b used in the testing
process is defined formally as:

a mN b =



(
⊎
x∈N
{a−x b}) ∈ L N 6= ∅ and a 6= b 6= ε

(
⊎
x∈N
{a−x b}) ∩ L 6= ∅ N = ∅ and a 6= b 6= ε

∧
x∈N

(|L|a,x = |N |x) N 6= ∅ and a 6= ε and b = ε

undefined otherwise,

where |L|a,x is the number of bonds containing the molecule a and bond name x
that appear in the multiset L, while |N |x is the number of occurrences of x in N .

Depending on the truth value of a mNb, the process if a mNb then P else Q
executes either P or Q. An identifier A(b1, . . . , bn) is used to provide recursion
by creating new instances of processes defined as A(a1, . . . , an) = P , where
ai 6= aj for all i 6= j ∈ {1, . . . , n}; the new process is defined as A(b1, . . . , bn) =
P{b1/a1, . . . , bn/an}, where {bi/ai} denotes the replacement of variable ai by
value bi. A system S is given as a composition of a process P and the multiset
of bonds L, written as P || L.

The structural congruence relation ≡ is the least congruence such that
(P,+,0) and (P, |,0) are commutative monoids and the unfolding law
A(b1, . . . , bn) ≡ P{b1/a1, . . . , bn/an} holds whenever A(a1, . . . , an) = P .

The calculus presented in [1] was intended to model the creation and breaking
of covalent bonds. In order to be able to model both covalent and hydrogen
bonds, we apply a minor update to the operational semantics in [1] because
we need two instances of the rules used to create and to break bonds. The only
difference between the two instances of the same rule is given by the names of the
bonds appearing in the interacting processes, and by the fact that a bond cannot
be created using the names x+ and x− if other bonds exist between the same
molecules; more details about this restriction are given in the example below.

The operational semantics of the Bonding Calculus is given in Figure 7. The
rules (CREATE1) and (CREATE2) describe the creation of a new bond {a−x b},
while the rules (REMOVE1) and (REMOVE2) describe the breaking of a bond
{a −x b}. If there exist two bonds {a −x b} in L, then any of these bonds is
broken. The rule (PAR) is used to compose processes in parallel, while the rules
(TRUE) and (FALSE) choose one of the branches of the testing process based
on the result of the checking. The rule (IDE) describes the recursion, while the
(STRUCT) rule indicates the fact that we reason up to the structural congruence.
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(CREATE1)
P = x(b).P ′ + P ′′ Q = x(a).Q′ +Q′′

(P | Q) || L −→ (P ′ | Q′) || L ] {a−x b}

(CREATE2)
P = x+(b).P ′ + P ′′ Q = x−(a).Q′ +Q′′ a m∅ b is false w.r.t. L

(P | Q) || L −→ (P ′ | Q′) || L ] {a−x b}

(REMOVE1)
P = x(b).P ′ + P ′′ Q = x(a).Q′ +Q′′ a mx b is true w.r.t. L

(P | Q) || L −→ (P ′ | Q′) || L\{a−x b}

(REMOVE2)
P = x+(b).P ′ + P ′′ Q = x−(a).Q′ +Q′′ a mN b is true w.r.t. L

(P | Q) || L −→ (P ′ | Q′) || L\{a−x b}

(PAR)
P || L −→ P ′ || L

(P | Q) || L −→ (P ′ | Q) || L

(TRUE)
a mN b is true w.r.t. L

(if a mN b then P else Q) || L −→ P || L

(FALSE)
a mN b is false w.r.t. L

(if a mN b then P else Q) || L −→ Q || L

(IDE)
P{b1/a1, . . . , bn/an} −→ P ′

A(b1, . . . , bn) −→ P ′
if A(a1, . . . , an) = P

(STRUCT)
S1 → S′1 S1 ≡ S2 S2 → S′2

S′1 → S′2

Fig. 7. Operational Semantics of the Bonding Calculus.

The autoprotolysis of water in the Bonding Calculus We use two types
of bond names, namely c and h, to stand for the covalent and hydrogen bonds,
respectively. Using our calculus, the system composed of two molecules of water
is described by:

MolOxy2(O1) | MolHy1(H1) | MolHy1(H2)

| MolOxy2(O2) | MolHy1(H3) | MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O2 −c H3, O2 −c H4}

where the molecules are those of hydrogen and oxygen that are described below:

MolHy0(Hi) = c(Hi).MolHy1(Hi)

MolHy1(Hi) = c(Hi).MolHy0(Hi) + h+(Hi).MolHy2(Hi);

MolHy2(Hi) = c(Hi).c(Hi).h
+(Hi).MolHy1(Hi).

MolOxy0(Oi) = c(Oi).MolOxy1(Oi);

MolOxy1(Oi) = c(Oi).MolOxy0(Oi) + c(Oi).MolOxy2(Oi);

MolOxy2(Oi) = c(Oi).MolOxy1(Oi) + h−(Oi).MolOxy3(Oi).

MolOxy3(Oi) = h−(Oi).MolOxy2(Oi).
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Each molecule of water is a structure consisting of one molecule of oxygen
and two molecules of hydrogen which are properly bonded. For example, the
process MolOxy2(O1) | MolHy1(H1) | MolHy(H2) together with the bonds
{O1 −c H1, O1 −c H2} model one molecule of water. We use unique names
for the molecules given as Oi (for oxygen) and Hi (for hydrogen), while the
processes having the names MolHy i and MolOxy i identify processes modelling
hydrogen and oxygen molecules with i bonds, respectively. For example, the pro-
cess MolOxy1(Oi) can either create or break bonds, and this is why we use the
operator + to describe such a (non-deterministic) choice.

Now we present the steps of one of the possible sequences of reactions mod-
elling the autoprotolysis of water. The system of two molecules of water can be
rewritten as follows (where we extend the definitions for the processes that will
interact in the next step, and bold the actions to be executed):

c(O1).MolOxy1(O1) + h−(O1).MolOxy3(O1) | MolHy1(H1) | MolHy1(H2)

| MolOxy2(O2) | MolHy1(H3) | c(H4).MolHy0(H4) + h+(H4).MolHy2(H4)

|| {O1 −c H1, O1 −c H2, O2 −c H3, O2 −c H4}

This leads to the next system, where we again bold the processes to be executed:

MolOxy3(O1) | MolHy1(H1) | MolHy1(H2)

| c(O2).MolOxy1(O2) + h−(O2).MolOxy3(O1) | MolHy1(H3)

| c(H4).c(H4).h+(H4).MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O1 −h H4, O2 −c H3, O2 −c H4}

The creation of the hydrogen bond forces the break of the other bond in which the
hydrogen molecule H4 is involved. This leads to the following system containing
the H3O and HO molecules:

MolOxy3(O1) | MolHy1(H1) | MolHy1(H2)

| c(O2).MolOxy0(O2) + c(O2).MolOxy2(O2)

| MolHy1(H3) | c(H4).h+(H4).MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O1 −h H4, O2 −c H3}

Since some bonds are weaker, the system is evolving to:

h−(O1).MolOxy2(O1) | MolHy1(H1) | MolHy1(H2)

| MolOxy2(O2) | MolHy1(H3) | h+(H4).MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O1 −h H4, O2 −c H3, O2 −c H4}
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followed by the breaking of the hydrogen bond O1 −h H4:

MolOxy2(O1) | MolHy1(H1) | MolHy1(H2)

| MolOxy2(O2) | MolHy1(H3) | MolHy1(H4)

|| {O1 −c H1, O1 −c H2, O2 −c H3, O2 −c H4}

The obtained system contains again two water molecules of water.

3.3 Reversing Petri Nets

In this subsection we present Reversing Petri Nets [23] (RPNs, pronounced as
‘reversing Petri nets’), an extension of Petri nets developed for the modelling re-
versing computations, and we employ the formalism to model the autoprotolysis
of water.

Definition of RPNs We consider an extension of reversing Petri nets suit-
able for describing chemical reactions by allowing multiple tokens of the same
type as well as the possibility for transitions to break bonds. Thus, a transition
may simultaneously create and/or destroy bonds, and its reversal results in the
opposite effect. Formally, a Reversing Petri net is defined as follows:

Definition 1. A reversing Petri net (RPN) is a tuple (P, T,A,AV , B, F ) where:

1. P is a finite set of places and T is a finite set of transitions.
2. A is a finite set of base or token types ranged over by a, b, . . .. A = {a | a ∈ A}

contains a “negative” version for each token type. We assume that for any
token type a there may exist a finite number of token instances. We write
a1, . . . , for instances of type a and AI for the set of all token instances.

3. AV is a finite set of token variables. We write type(v) for the type of variable
v and assume that type(v) ∈ A for all v ∈ AV .

4. B ⊆ A × A is a finite set of undirected bond types ranged over by β, γ, . . ..
We use the notation a−b for a bond (a, b) ∈ B. B = {β | β ∈ B} contains a
“negative” version for each bond type. BI ⊆ AI × AI is a finite set of bond
instances, where we write βi for elements of B.

5. F : (P × T ∪ T × P ) → P(AV ∪ (AV × AV ) ∪ A ∪ B) is a set of directed
labelled arcs.

A reversing Petri net is built on the basis of a set of tokens or bases. These
are organised in a set of token types A, where each token type is associated with
a set of token instances. Token instances correspond to the basic entities that
occur in a system and they may occur as stand-alone elements but as compu-
tation proceeds they may also merge together to form bond instances. Places
and transitions have the standard meaning and are connected via directed arcs,
which are labelled by a set of elements from AV ∪ (AV × AV ) ∪ A ∪ B. Intu-
itively, these labels express the requirements for a transition to fire when placed
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on arcs incoming the transition, and the effects of the transition when placed on
the outgoing arcs. Graphically, a RPN is portrayed as a directed bipartite graph
where token instances are indicated by •, places by circles, transitions by boxes,
and bond instances by lines between token instances.

Before we recall the semantics of RPNs we need to introduce some notation.
Note that in what follows we omit the discussion of negative tokens and negative
bonds as they are not relevant to our case study. We write ◦t = {x ∈ P |
F (x, t) 6= ∅} and t◦ = {x ∈ P | F (t, x) 6= ∅} for the incoming and outgoing
places of transition t, respectively. Furthermore, we write pre(t) =

⋃
x∈P F (x, t)

for the union of all labels on the incoming arcs of transition t, and post(t) =⋃
x∈P F (t, x) for the union of all labels on the outgoing arcs of transition t.

Definition 2. A reversing Petri net is well-formed, if for all t ∈ T :

1. AV ∩ pre(t) = AV ∩ post(t),
2. F (t, x) ∩ F (t, y) ∩AV = ∅ for all x, y ∈ P , x 6= y.

Thus, a reversing Petri net is well-formed if (1) whenever a variable exists in
the incoming arcs of a transition then it also exists on the outgoing arcs, which
implies that transitions do not erase tokens, and (2) tokens/bonds cannot be
cloned into more than one outgoing places.

As with standard Petri nets the association of token/bond instances to places
is called a marking such that M : P → 2AI∪BI , where we assume that if
(u, v) ∈M(x) then u, v ∈M(x). In addition, we employ the notion of a history,
which assigns a memory to each transition H : T → N. Intuitively, a history of
H(t) = 0 for some t ∈ T captures that the transition has not taken place, or ev-
ery execution of it has been reversed, and a history of H(t) = k, k > 0, captures
that the transition had k forward executions that have not been reversed. Note
that H(t) > 1 may arise due to the consecutive execution of the transition with
different token instances. A pair of a marking and a history, 〈M,H〉, describes
a state of a RPN with 〈M0, H0〉 the initial state, where H0(t) = 0 for all t ∈ T .

Finally, we define con(ai, C), where ai ∈ AI and C ⊆ 2AI∪BI , to be the
token instances connected to ai as well as the bonds creating these connections
according to set C.

Forward Execution. During the forward execution of a transition in a RPN, a
set of tokens and bonds, as specified by the incoming arcs of the transition, are
selected and moved to the outgoing places of the transition, as specified by the
transition’s outgoing arcs, possibly forming or destructing bonds, as necessary.
Due to the presence of multiple instances of the same token type, it is possible
that different token instances are selected during the transition’s execution.

A transition is forward-enabled in a state 〈M,H〉 of a reversing Petri net if
there exists a selection of token instances available at the incoming places of the
transition matching the requirements on the transitions incoming arcs. Formally:

Definition 3. Given a RPN (P, T,A,AV , B, F ), a state 〈M,H〉, and a tran-
sition t, we say that t is forward-enabled in 〈M,H〉 if there exists a surjective
function U : pre(t) ∩AV → AI such that:
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1. for all v ∈ pre(t), if type(v) = a then type(U(v)) = a
2. for all a ∈ F (x, t), then U(a) ∈ M(x) and for all (a, b) ∈ F (x, t), then

(U(a), U(b)) ∈M(x),
3. for all (a, b) ∈ post(t)− pre(t) then (U(a), U(b)) 6∈M(x) for all x ∈ ◦t.

Thus, t is enabled in state 〈M,H〉 if (1) there is a type-respecting assign-
ment of token instances to the variables on the incoming edges, with (2) the
token instances originating from the appropriate input places of the transition
and connected with bonds as required by the variable bonds occurring on the
incoming edges, and (3) if a bond occurs in the outgoing edges of the transi-
tion but not the incoming ones, then the selected instances associated with the
bond’s variables should not be bonded together in the incoming places of the
transition (thus transitions do not recreate bonds). We refer to U as a forward
enabling assignment.

To execute a transition t according to an enabling assignment U , the selected
token instances, along with their connected components, are relocated to the
outgoing places of the transition as specified by the outgoing arcs, with bonds
created and destructed accordingly. Furthermore, the history of the executed
transition is increased by one.

Definition 4. Given a RPN (P, T,A,AV , B, F ), a state 〈M,H〉, and an en-

abling assignment U , we write 〈M,H〉 t→S 〈M ′, H ′〉 where for all x ∈ P :

M ′(x) = M(x)−
⋃

a∈f(x,t)

con(U(a),M(x)) ∪
⋃

a∈f(t,x),U(a)∈M(y)

con(U(a), S)

where S = (M(y) − {(U(a), U(b)) | (a, b) ∈ F (y, t)}) ∪ {(U(a), U(b)) | (a, b) ∈
F (t, x)}

and H ′(t′) =

{
H(t′) + 1, if t′ = t
H(t′), otherwise

Reversing Execution. We now move on to reversing transitions. A transition can
be reversed in a certain state if it has been previously executed and there exist
token instances in its output places that match the requirements on its outgoing
arcs. Specifically, we define the notion of reverse enabledness as follows:

Definition 5. Consider a RPN (P, T,A,AV , B, F ), a state 〈M,H〉, and a tran-
sition t. We say that t is reverse-enabled in 〈M,H〉 if (1) H(t) 6= 0, and (2) there
exists a surjective function W : post(t) ∩AV → AI such that:

1. for all v ∈ post(t), if type(v) = a then type(W (v)) = a,
2. for all a ∈ F (t, x), then W (a) ∈ M(x) and for all (a, b) ∈ F (t, x), then

(W (a),W (b)) ∈M(x),
3. for all (a, b) ∈ pre(t)− post(t) then (W (a),W (b)) 6∈M(x) for all x ∈ ◦t.

Thus, a transition t is reverse-enabled in 〈M,H〉 if (1) the transition has been
executed and (2) there exists a type-respecting assignment of token instances,
from the instances in the out-places of the transition, to the variables on the
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outgoing edges of the transition, and where the instances are connected with
bonds as required by the transition’s outgoing edges. Also we do not recreate
existing bonds when going backwards. We refer to W as a reversal enabling
assignment. To implement the reversal of a transition t according to a reversal
enabling assignment W , the selected instances are relocated from the outgoing
places of the transition to the incoming places, as specified by the incoming arcs
of the transition, with bonds created and destructed accordingly.

Definition 6. Given a RPN (P, T,A,AV , B, F ), a state 〈M,H〉, and a tran-
sition t reverse-enabled in 〈M,H〉 with W a reversal enabling assignment, we

write 〈M,H〉 t
 〈M ′, H ′〉 where for all x:

M ′(x) = M(x)−
⋃

a∈f(t,x)

con(W (a),M(x)) ∪
⋃

a∈f(x,t),W (a)∈M(y)

con(W (a), S)

where S = (M(y)− {(W (a),W (b)) | (a, b) ∈ F (t, y)}) ∪ {(W (a),W (b)) | (a, b) ∈
F (x, t)}

and H ′(t′) =

{
H(t′)− 1, if t′ = t
H(t′), otherwise

The autoprotolysis of water in RPNs Figure 8 shows the graphical repre-
sentation of the forming of a water molecule as a RPN. In this model, we assume
two token types, H for hydrogen and O for oxygen. They are instantiated via
four token instances of H (H1, H2, H3, and H4) and two token instances of O,
(O1 and O2). The net consists of five places and three transitions and the edges
between them are associated with token variables and bonds, where we assume
that type(o) = type(o1) = type(o2) = O and type(h) = type(h1) = type(h2) =
type(h3) = type(h4) = H. Looking at the transitions, transition t1 models the
formation of a bond between a hydrogen token and an oxygen token. Precisely,
the transition stipulates a selection of two such molecules with the use of vari-
ables o and h on the incoming arcs of the transition which are bonded together,
as described in the outgoing arc of the transition. Subsequently, transition t2
completes the formation of a water molecule by selecting an oxygen token from
place x and a hydrogen token from place v and forming a bond between them,
placing the resulting component at place y. Note that the selected oxygen in-
stance in this transition will be connected to a hydrogen token via a bond created
by transition t1; this bond is preserved and the component resulting from the
creation of the new o− h bond will be transferred to place y. Finally, transition
t3 models the autoprotolysis reaction: assuming the existence of two distinct
oxygen instances, as required by the variables o1 and o2 on the incoming arc of
the transition, connected with hydrogen instances as specified in F (y, t3), the
transition breaks the bond o2−h3 and forms the bond o1−h3. As such, assum-
ing the existence of two water molecules at place y, the transition will form a
hydronium (H+

3 O) and a hydroxin (OH−) molecule in place z of the net. The re-
versibility semantics of RPNs ensures that reversing the transition t3 will result
in the re-creation of two water molecules placed at y, while the use of variables
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Fig. 8. RPN model of the formation of a water molecule.
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Fig. 9. RPN model of the execution of the autoprotolysis of water.
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allows the formation of water molecules consisting of different bonds between
the hydrogen and oxygen instances.

The first net in Figure 9 shows the system after the execution of tran-
sition t1 with enabling assignment U(h) = H1, U(o) = O1. Note that the
term [1] written over transition t1 captures that at this point H(t1) = 1 since
the transition has been executed once. This notation is generally used for his-
tories in the graphical representation with occasional missing histories corre-
sponding to histories equal to 0. Subsequently, we have the model after ex-
ecution of transition t2 with enabling assignment U(h) = H2, U(o) = O1,
creating the bond O1 − H2, thus forming the first water molecule. A second
execution of transitions t1 and t2 results in the second molecule of water in
the system, placed again at place y, as shown in the third net in the figure.
At this state, transition t3 is forward-enabled and, with enabling assignment
U(o1) = O1, U(o2) = O2, U(h1) = H1, U(h2) = H2, U(h3) = H3, U(h4) = H4,
we have the creation of the hydronium and hydroxide depicted at place z in the
fourth net of the figure. At this stage, transition t3 is now reverse-enabled and
the last net in the figure illustrates the state resulting after reversing t3 with
reversal enabling assignment W (o1) = O1,W (o2) = O2,W (h1) = H1,W (h2) =
H3,W (h3) = H2,W (h4) = H4.

4 Evaluation

We have presented three formalisms which can be used to model chemical re-
actions. CCB is a reversible version of ACP that employs communication keys
to record executed actions. Its main feature is a mechanism to link forming and
breaking of bonds, which gives rise to a type of explicit reversibility we call
“locally controlled reversibility”. We have modelled a simple covalent chemi-
cal reaction in CCB. A similar modelling approach can be used to model more
complex atoms and reactions, for example, involving carbon atoms [16]. Finally,
CCB can also be used to model reactions beyond simple chemical reactions [14].
In CCB, we can actually distinguish different instances of the same atom or
molecule, and of identical actions in a process via the use of subscripts. As men-
tioned above, the reverse reaction in the autoprotolysis of water can work by
transferring any of the hydrogens of the hydronium. When reversing the reac-
tion in CCB, instead of the transition in Section 3.1, we could also have done
this (writing the transition and the rewrite together):

(((h1[1]; p).H ′1 | (h2[2]; p).H ′2 | (o1[1], o2[2], n[5]).O′1) | (h3[5]; p).H ′3)

| (h4[4]; p).H ′4 | (o3, o4[4], n).O′2
{np[3],nh1[1]}−−−−−−−−−→⇒

(((h1[3]; p).H ′1 | (h2[2]; p).H ′2 | (o1[5], o2[2],n).O′1) | (h3[5]; p).H ′3)

| (h4[4]; p).H ′4 | (o3[3], o4[4],n).O′2

The result is different from that in Section 3.1, but identical from a chemical
point of view, since the hydrogens are all identical. On the other hand a technique
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called isotopic labelling can be used to trace atoms by using different isotopes
of, in this case hydrogen, confirming that the different options happen in reality.
In CCB, we can trace the atoms as well as show which results are identical from
a chemical point of view (see Section 6.5 of [16]).

The Bonding Calculus is suitable for modelling in a natural way the autopro-
tolysis of water by using only bond and unbond actions. Simulations by using a
software platform can describe the dynamics of the bonding systems, and so it is
possible to test the validity of some underlying assumptions. Also, we can verify
various properties of the bonding compounds described by using the calculus.

Reversing Petri Nets are Petri net structures that assume tokens to be dis-
tinct and persistent. During the execution of transitions individual tokens can be
bonded/unbonded with each other, and the creation/destruction of these bonds
is considered to be the effect of a transition, whereas their destruction/creation
is the effect of the transition’s reversal. Reversing Petri Nets are a natural choice
to model and analyse biochemical reaction systems, such as the autoprotolysis
of water, which by nature has multi-party interactions, is inherently concurrent,
and features reversible behaviour. In particular, the feature of token multiplicity
and the use of variables allows to non-deterministically select different com-
binations of atoms of a particular element when creating molecules. Also the
ability of transitions to break bonds allows to model concerted actions where,
for example, a transition simultaneously destroys a water molecule and creates
a hydronium whose reversal results in the opposite effect. Moreover, the collec-
tive token interpretation adopted in the framework, treating all tokens of the
same type as equivalent, allows the reaction to reverse into two different water
molecules than the original ones, i.e. using different instances of the atoms (as
is possible in CCB). Note that the presented model abstracts away the posi-
tive/negative charge of the atoms and captures the existence of electrons by the
enabledness of transitions. A model at a lower level of abstraction would be pos-
sible by introducing tokens to represent the electrons bonded to the associated
atom tokens to illustrate the relevant charges.

The three formalisms presented can model our example fairly well but, as
expected, there are some differences. In order to evaluate each formalism, we
consider as first criterion if all chemically valid interactions between the com-
pounds of the reaction can be represented well in our formalisms. CCB shows the
linked forming and breaking of bonds. RPNs can also express these concerted
actions, since a transition enables the simultaneous creation and destruction of
bonds. In the Bonding Calculus, this link is not expressed. Each of the for-
malisms can perform the forward reaction using any of the hydrogens involved.
CCB and RPNs can perform the reverse reaction by transferring arbitrary hy-
drogens, whereas the Bonding Calculus in the reverse reaction permits only the
transfer of exactly those hydrogens that were used in the forward reaction. All
models presented use subscripts and enable the tracking of atoms.

The other criterion for assessing the suitability of our formalisms for the
modelling of chemical reactions is to ask if they enable in the produced model any
transitions that actually do not occur in reality. Each formalism does not permit
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a H3O
+ molecule to be formed directly. CCB allows one reaction which is not

realistic: If there are many water molecules and therefore several hydroxide and
water molecules at the same time, it is possible that the remaining hydrogen is
transferred from the hydroxide to a water. In reality, this is not possible since the
hydroxide is strongly negatively charged and no hydrogen bond can form. Due to
the nondeterministic behaviour of processes written with the ‘+’ operator, such
as those for hydrogen and oxygen in Subsection 3.2, the Bonding Calculus also
presents the same problem. However, this is not the case for RPNs since, on the
one hand, a transition’s conditions make restrictions on the types of molecules
that will participate in a transition firing or its reversal and, on the other hand,
places impose a form of locality for molecules. For instance, in the autoprotolysis
example, each place is the location of specific types of molecules, e.g., transition
t3 modelling the autoprotolysis reaction is only applied on water molecules and
its reversal only on pairs of a hydronium and a hydroxide molecule, as required.

There are a number of software tools that can aid simulation and analysis
for our formalisms. Regarding the Bonding Calculus, we can simulate various
bonding descriptions by using an existing software platform called UPPAAL (as
shown in [1]). For CCB, there is a simulation tool presented in [14]. It allows
a much closer form of representation of chemical notation than that possible
with a typical programming language. Reversing Petri nets have been shown
to be closely related to Coloured Petri Nets, as a subset of the former model
has been encoded into the latter [3]. Thus, an algorithmic translation can be
implemented that transforms RPNs to CPNs in an automated manner using the
transformation techniques discussed in [3]. This allows RPNs to exploit tools
such as CPNTools that support traditional models of Petri nets.

5 Conclusion

We have presented the Calculus of Covalent Bonding, the Bonding Calculus,
and Reversing Petri Nets as models of chemical reactions and reversible pro-
cesses in general. We have shown that they can all model the out-of-causal-order
reversibility present in such reactions. We have also noted that the two process
calculi allow few reactions which do not happen in reality. This is due to the mod-
elling that abstracts away from some chemical properties of atoms and molecules
such as, for example, spacial arrangement and distance between molecules. In
future work, we plan to develop these formalisms further and apply them to the
modelling and reasoning about reversible biochemical reactions and processes.
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