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Abstract 

Dust particles are transported globally. They can adversely impact both human health and the 

environment, but they also impact transportation infrastructure, agriculture, and industry, 

occasionally severely. The identification of the locations that are the primary sources of dust, 

especially in arid and semi-arid environments, remains a challenge as these sites are often in remote 

or data-scarce regions. In this study, a new method that uses state-of-the-art machine-learning 

algorithms – random forest (RF), support vector machines (SVM), and multivariate adaptive 

regression splines (MARS) – was evaluated for its capacity to spatially model the distribution of 

dust-source potential in eastern Iran. To accomplish this, empirically identified dust-source 
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locations were determined with the ozone monitoring instrument aerosol index and the Moderate-

Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol optical thickness methods. 

The identified areas were divided into training (70%) and validation (30%) sets. Measurements of 

the conditioning factors (lithology, wind speed, maximum air temperature, land use, slope angle, 

soil, rainfall, and land cover) were compiled for the study area and a predictive model was 

developed. To validate the prediction maps, the area-under-the-receiver operating characteristics 

(AUC) curve and true-skill statistics (TSS) were used. The results show that the RF algorithm 

performed best (AUC= 89.4% and TSS= 0.751), followed by the SVM (AUC= 87.5%, TSS= 0.73) 

and the MARS algorithm (AUC= 81%, TSS= 0.69). The results of the RF indicated that wind 

speed and land cover are the most important factors affecting dust generation. The highest dust-

source potential region identified by the RF is in the eastern parts of the study region. This model 

can be applied to other arid and semi-arid environments that experience dust storms to promote 

management that prevents desertification and reduces dust production. 

Keywords: Dust storm; Modelling; GIS; Remote sensing; Iran, 

1. Introduction 

As extreme air pollution events, dust storms significantly elevate particulate matter (PM) (of 

diameter of 10 and 2.5 microns, PM10 and PM2.5) concentrations across affected areas. High PM10

and PM2.5 concentrations can have adverse effects on human respiratory systems and promote 

bronchitis, chronic cough, and other chest illnesses (Goudie, 2009; Panikkath et al., 2013; Yu et 

al., 2013; Perini et al., 2017). The pathological mechanism through which dust induces human 

respiratory and immune systems responses is the increase of oxidative stress in respiratory 
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epithelial cells (Goudie, 2014; Zhang et al., 2016). Environmental epidemiology research has 

shown that dust storms transmit diseases by transporting heavy metals, bacteria, and fungi that 

impact exposed populations (Shotyk et al., 2016; Ardon-Dryer et al., 2020; Goudie, 2020). Beyond 

the health impacts, dust storms also damage transportation infrastructure (i.e., roads and railroads) 

(Yang et al., 2001; Lee, 2018), and agricultural and industrial lands. Additionally, dust storms can 

increase soil salinity, promote desertification, and diminish the quality of water supplies so much 

that great social and economic damages occur (Cao et al., 2015a; Middleton, 2017). Although dust 

storms typically happen in arid and semi-arid environments, they can spread great amounts of PM, 

pollutants, and allergens thousands of km from the source regions (Zoljoodi et al., 2013; Cao et 

al., 2015a). Dust storms also provide nutrients to the open oceans and affect the marine ecology 

(Griffin and Kellogg, 2004; Singh et al., 2008). Identifying potential dust-source areas is critical 

to discern the factors that determine the availability of dust and the mechanisms that generate dust 

storms, and to help anticipate likely impacts.

In general, different approaches have been used to identify dust-source areas: (1) horizontal 

visibility, (2) the mineralogy of dust samples, (3) Lagrangian back-trajectory, (4) satellite-based 

remote sensing, (5) inverse modeling, and (6) Goddard Earth Observing System chemistry (GEOS-

Chem) adjoint modeling techniques (Schepanski et al., 2012). Horizontal visibility analyses 

employ the reports generated from synoptic stations. Although synoptic stations provide a long-

term record of local visibility, the observation network is sparse, very localized, and sited close to 

cities rather than in natural environments or in dust-source areas (Mahowald et al., 2007; 

Schepanski et al., 2012). The horizontal visibility method is also limited in value because 

transported dust can affect measurements at the stations. Consequently, interpretation of visibility 

data to identify the sources of dust is difficult (Rashki et al., 2012; Camino et al., 2015). Given 
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these limitations, reports generated from synoptic stations do not allow the proper identification of 

source areas of dust. Therefore, the other 4 methodologies are more useful solutions to this 

problem. The mineralogical method assesses the transport pathway and source geomorphology of 

dust samples and links the mineral composition of dust to its potential source areas. However, this 

approach requires numerous field investigations and significant laboratory analysis, which are both 

time-consuming and expensive, especially when potential source regions cover large areas 

(Formenti et al., 2011). The Lagrangian back-trajectories method traces the travel path of dust 

backwards to the likely dust-source region (e.g., Alonso-Pérez et al., 2012). Measurements for this 

process require finite, but often large, volume of air. The main shortcomings of this tactic are that 

the Lagrangian model depends upon variables with significant uncertainties (i.e., 

parameterizations and meteorological data that are inputs to the model).  

Previous studies have focused on the determination of dust-source areas using remote 

sensing data acquired on days with dust storms (Prospero et al., 2002; Schepanski et al., 2007, 

2012; Ginoux et al., 2012; Baddock et al., 2016; Nabavi et al., 2016; Feuerstein and Schepanski, 

2019). Some indicators have been commonly used to identify the sources: false color composition 

and brightness temperature difference (Bullard et al., 2008; Zhang et al., 2008; Lee et al., 2009; 

Sharma et al., 2009; Hahnenberger and Kathleen, 2014). Parajuli et al. (2014) used the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol optical depth, a land cover 

map, and meteorological and geomorphological factors to identify potential dust source regions. 

Their results reveal that the identification of the spatiotemporal extent of dust sources can be very 

complex and requires a clear understanding the properties of surface features like the geology, land 

cover, and physical and chemical compositions of soils. However, conducting field surveys and 

analyzing the mineral composition of dust samples to identify dust sources is difficult and costly 
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because deserts are usually spatially extensive areas (Wang et al., 2005; Ma et al., 2016). 

Furthermore, the relationships among the geomorphological, environmental, and meteorological 

factors further complicate the source-identification process. With the emergence of artificial-

intelligence and machine-learning algorithms came the opportunity to address these challenges 

more effectively (Lary et al., 2016; Proietti et al., 2016). Machine-learning models are useful for 

extraction of relationships or patterns between a set of variables and a target factor, they can solve 

complex issues, and they can be used to extract information from available data (Olden et al. 2008; 

Naghibi et al., 2016). Recently, Rahmati et al. (2020) used an adaptive neuro-fuzzy inference 

system (ANFIS) for dust source modeling and prediction. Their results indicated that the 

hybridized ANFIS model had a good prediction performance for identifying dust source areas. 

Previous works have identified western Asia (Syria, Iran, Iraq, and the Arabian Peninsula) 

as a major source region for dust using remote sensing techniques (Boloorani et al., 2013; WMO 

and UNEP, 2013). In fact, it is known that Asian dust storms are key influences in global 

biogeochemical cycles (Deng et al., 2007; Chan et al., 2008; Chen et al., 2018). Cao et al. (2015b) 

shows that the midwestern, southwestern, southern, and southeastern parts of Iran have very high 

potential for dust-storm occurrence. However, dust source potential and its driving factors have 

been rarely investigated (Rahmati et al., 2020). To the best of our knowledge, detailed information 

about dust-source areas in all these countries, especially Iran, is still limited. 

This study has developed a novel methodology that assesses three state-of-the-art machine-

learning algorithms – the random forest (RF) method, support vector machines (SVM), and 

multivariate and adaptive regression splines (MARS) technique, – and two remote-sensing 

techniques – ozone monitoring instrument aerosol index, and the MODIS Deep Blue aerosol 

optical thickness – to identify the areas with high map dust-source potential areas. The RF, SVM-
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RBF, and MARS algorithms have achieved acceptable performance responding to several geo-

environmental problems such as groundwater potential, landslides, gullying, floods, forest fires, 

and ecological studies (Leathwick et al., 2006; Conoscenti et al., 2015; Tehrany et al., 2014, 2015; 

Pourghasemi et al., 2017; Golkarian et al., 2018; Sachdeva et al., 2018). Due to the assortment of 

potential algorithms, we selected RF from tree-based models, radial basis function (RBF) kernel 

from SVMs, and MARS from non-parametric regression methods to provide perspective about the 

strengths and weaknesses of each approach in this field of study. To spatially model dust-source 

potential in the study area, several conditioning factors (wind speed, lithology, maximum air 

temperature, land cover, slope, soil, rainfall and land use) were considered potential predictors of 

dust-generation.  

The main objectives of this research are to: (i) model dust-source potential by using RF, 

SVM, and MARS algorithms; (ii) compare the accuracy of the outputs using statistical evaluation 

criteria and the ground-truth; and (iii) determine the importance of each conditioning factor on 

dust-source potential. To the best of our knowledge, this is one of the first efforts to spatially model 

dust source potential using machine learning models. The results demonstrate how machine-

learning models can be used to identify and predict dust-source areas in a representative dust-storm 

area.  

2. Material and methods 

2.1. Study area 

The study area includes four cities (Mashhad, Birjand, Zabol, and Zahedan) from three 

provinces (South Khorasan, Razavi Khorasan, and Sistan & Balochestan) in Iran. The study area 

is in the eastern part of Iran. The neighbor states of Tajikestan, Afghanistan, and Pakistan establish 



7 

the eastern boundary of the region, which is roughly delimited by 25°06' to 37°41' N and 55°22' 

to 63°18' E. It encompasses an area of 444,904 km2 (Fig. 1). The region is classified as either arid 

or semi-arid climatologically. According to Cao et al. (2015b), the southern parts of this area are 

significant sources of dust, as evidenced by their investigation of dust storms that occurred between 

2000 and 2013. Dust storms in this region have generated numerous social problems and have led 

to emigration to other regions (Rahmati et al., 2020). This has obligated the Iranian government to 

define the conditions that are dangerous for sensitive people (Cao et al., 2015b).  

Fig. 1 here 

2.2. Method 

A method was developed and run to generate dust-source potential maps using the selected 

three algorithms and validated their results. First, field surveys, weather station data, and 

geological information were used to identify examples of dust source areas. Then, the influencing 

factor data of the dust-source and non-dust-source locations were input into the RF, MARS, and 

SVM algorithms to map dust-source potential (Fig. 1). Finally, the maps were validated using the 

performance assessment indices of area under receiver operating characteristics curve (AUC) and 

true-skill statistics (TSS). 

Fig. 2 here 

2.2.1. Detecting dust source samples on satellite images 

In our previous study (Rahmati et al., 2020), we determined dust sources using two indices 

Deep Blue aerosol optical thickness and the Ozone Monitoring Instrument aerosol index and field 

surveys. The two most widely used algorithms are the dark target (Levy et al., 2013), and deep 

blue (Hsu et al., 2013; Sayer et al., 2014) retrievals, which are used over dark (ocean and forest 
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areas) and bright (deserts) surfaces, respectively. The aerosol index assesses ultraviolet 

wavelengths (Torres et al., 2007). It is a semi-quantitative aerosol-absorbing index. There is very 

low surface reflectivity of ultraviolet wavelengths. According to the literature, the “frequency of 

observation (FOO)” (also termed frequency of occurrence (FOO)) of elevated dust signals can 

identify the persistent dust sources in large-scale regions (Sannazzaro et al., 2014; Moridnejad et 

al., 2015; Baddock et al., 2016). Therefore, we used the FOO approach to produce a verified dust-

source inventory map. In fact, the frequency of occurrence refers to the number of days when 

aerosol optical thickness is greater than its threshold, and the “Angstrom exponent and single 

scattering albedo” fulfil the criteria for being deemed a dust source (Srivastava et al., 2014; Singh 

et al., 2016). Dust particles absorb these wavelengths and reduce their reflectance off the surface. 

This feature can be used to detect dust storms and their dust-storm sources by some indices and 

thresholds (Bullard et al., 2008). Dust storm thresholds of aerosol optical thickness and aerosol 

index were determined based on trial and error, as is suggested by Middelton and Goudie (2001), 

Prospero et al. (2002), and Ginoux et al. (2010). The current study investigated dust storms 

between April 2014 and May 2018. The details of remote sensing analysis and filed surveying can 

be find in Rahmati et al. (2020). The dust-source inventory map includes 85 locations (N = 85) 

were determined to have been dust-source areas for dust storms.  

When running the models, the validation data should be different from those applied in the 

training step (Rahmati et al., 2019). Therefore, the dust-source inventory map (i.e., dependent 

dataset) is commonly partitioned into two groups: training (70% of dust-source locations) and 

validation (30% of dust-source locations). The machine learning models often need two sorts of 

samples to predict dust-source areas: the first group must be representative of the dust-source 

conditions (termed presence or positive cases) and the second group must be representative of 
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stability conditions (called absence or negative cases). In natural disasters modeling, it is generally 

recommended that the balances of positive/negative cases (i.e., dust source/non-dust source) 

should be equal to 1 (Nefeslioglu et al., 2008; Pham et al., 2017; Zêzere et al., 2017; Choubin et 

al., 2019). Therefore, similar to the dust-source dataset, 85 areas were randomly and away from 

the dust source areas selected to represent non-dust-source locations (i.e., negative cases). After 

random selection, those areas were checked to ensure that they were not close to dust-source areas. 

From the sets of dust-source and non-dust-source areas, 70% (i.e., 56 dust-source and 56 non-dust-

source) were randomly extracted to train the models and the remaining 30% (i.e., 29 dust-source 

and 29 non-dust-source areas) were used to validate the results of the models (Fig. 3). The accuracy 

of the models in the training and validation phases termed as goodness-of-fit and predictive 

performance, respectively (Pourghasemi et al., 2017). Since the validation dataset is not used in 

model building/calibration, the predictive performance shows the validity and accuracy of final 

output of the models (Dou et al., 2015). 

Fig. 3 here 

2.2.2. Dust source conditioning factors 

Wind speed  

Dust storms are produced by wind erosion and the most important representation for this 

type of erosion is wind speed. According to the literature, summers correspond with the highest 

dust emission (Washington et al., 2003; Francis et al., 2017; Rashki et al., 2017). During the 

summer season, the region is under the influence of a low pressure system as a consequence of the 

south Asian monsoon pattern, resulting in developing of the “120-day wind” (about May to 

August). This wind type causes frequent dust emission in the study area (Rashki et al., 2013). 
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Therefore, mean wind speed (over the period May 2018 to August 2018) were calculated based on 

data from 27 synoptic stations collected by the Forests, Range and Watershed Management 

Organization (FRWMO). To map wind speed in the study region, wind speed data were obtained 

and interpolated using the inverse-distance weighting method. Wind speeds ranged between 2.2 

and 11.09 m s-1 (Fig. 4a). The eastern parts of the study region experience higher wind speeds than 

other parts throughout the year.  

Fig. 4 here 

Lithology 

Lithology classes are important influences as dust storms are generated in areas sensitive 

lithology rather than in areas with resistant units (Sissakian et al., 2013). The spatial data provided 

in a geographic information system layer of classified lithology was acquired from the Geology 

Survey of Iran (GSI) (1997) at a scale of 1:100,000 with a spatial resolution of 30×30 m. There 

are several lithological units from different geological era, periods, and epochs in the study region 

(Table 1; Fig. 4b). 

Table 1 here 

Maximum air temperature 

Air temperature is an important factor that affects soil moisture and subsequently threshold 

wind velocity (Yang et al., 2012). The lower the soil moisture is, the lower the threshold wind 

velocity is. Decreasing cohesive force through reducing soil moisture lead to this fact that the soil 

surface became more erodible in summer (Li and Zhang, 2012). Therefore, similar to wind speed 

factor, maximum air temperature data were selected for the period May 2018 to August 2018 (i.e., 

when the highest dust emission is occurred). The 27 synoptic meteorological stations provided 
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maximum temperature data for the study period. These values were interpolated for the study area 

using inverse-distance weighting. Maximum air temperature ranged from 42.1° to 49°C; the 

eastern and southern parts of the study area had the highest temperatures (Fig. 4c).  

Land use 

A map of land use classification in the study region in 2018 was acquired from FRWMO 

(2018). There are nine land use categories: surface water, forest, agriculture, gardens, bare land, 

rangeland, salt land, urban, and airport. Salt land and rangeland cover the largest parts of the study 

area with 54.82% and 23.42% of the region, respectively (Fig. 4d).  

Table 2 here 

Slope 

The threshold for wind erosion varies for different lithology and land use types, but it is also 

influenced by slope angle (represented as slope percentage). A digital elevation model at a spatial 

resolution of 30m×30m was obtained from Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) images. A slope map of the study area was created and classified 

from 0 to 185.3% (Fig. 4e).  

Soil 

The susceptibility of a land surface to wind erosion and dust emission is highly dependent 

on characteristics of soils (Grini et al., 2005; Webb and Strong, 2011). Erosive soils without 

vegetation are fields of high potential for dust production (Sissakian et al., 2013). The soil map of 

the study area at a scale of 1:100,000 was obtained from the FRWMO (2018). Thirteen soil types 
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are found in the study area. Rocky lands, aridisols, entisols/aridisols, and rock outcrops/Entisols 

are the major soil types (Fig. 4f; Table 3).  

Table 3 here 

Rainfall  

Rainfall increases soil moisture content that results in increases the cohesive forces between 

soil particles (Kim and Choi, 2015). Rainfall also promotes vegetation that plays an important role 

in reducing wind effects. Therefore, rainfall characteristics in a given area provide vital 

information about dust source areas. Since the study are does not have considerable rainfall during 

the summer, mean annual rainfall data from 27 rain gauge stations were acquired from the 

FRWMO (2018). These data were interpolated using inverse-distance weighting. Annual rainfall 

in the study area ranged from 57.4 to 290.1 mm (Fig. 4g). Rainfall is highest in the northern part 

of the study area and diminishes southward. 

Land cover 

Lands that are devoid of vegetation usually yield significant amounts of dust. Therefore, 

land-cover classes are important for predicting the sources of dust. A land-cover map of the study 

area was obtained from the FRWMO (2018) (Fig. 4h). There are four land-cover classes 

represented on the map. These include bare lands, urban, vegetation, and water body.  

2.2.3. Machine-learning algorithms 

The RF algorithm has been used in several studies to predict locations that might be prone 

to several land-management or resource problems (e.g., landslides, flood susceptibility, and 
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groundwater potential) (Rahmati et al., 2016; Tehrany et al., 2015; Pourghasemi and Kerle, 2016). 

There have been many successful applications of this method. RF uses “bagger and random feature 

selection” techniques together to predict the target variable (Ho, 1998). The main advantage of the 

RF is that it mixes several “binary decision trees” to yield highly accurate projections of the 

patterns of the phenomena of importance (Breiman, 2001). RF models produce highly accurate 

predictions as these models diminish the instability that was seen in previous renditions of tree-

based models. RF extracts random binary models that employ a portion of the cases in a 

“bootstrapping” analysis (Tehrany et al., 2014; Pourghasemi and Kerle, 2016). RF enhances 

diversity among the classification trees through regrouping the data and altering the predictive 

factors (Naghibi et al., 2016). The important parameters in RF could be regarded as “the number 

of trees and the number of factors” that are implemented to define the split “at each node” (Vorpahl 

et al. 2012). An advantage of the RF model is that it evaluates the relative importance of the 

conditioning factors based on mean-decrease accuracy (Archer and Kimes, 2008; Grömping, 

2009). 

MARS, by contrast, is a technique to fit adaptive non-linear regression. It implements 

piecewise- basis functions for modelling the response factor with corresponding input factors 

(Friedman, 1991). This algorithm conducts a non-parametric modelling technique that does not 

require normal distributions of the factors (Friedman, 1991; Balshi et al., 2009). MARS involves 

dividing the range of the interpretive factors to groups by creating a linear regression equation for 

the groups (Chen et al., 2017). A basic and more comprehensive description of MARS can be 

found in Friedman (1991). 

SVM, initially built by Vapnik (1998) and Cherkassky and Mulier (2007), is a supervised 

classifier for binary issues. SVM operates under the process of minimizing structural risk, which 
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eliminates the shortcomings of the more common empirical risk-minimization methods when 

using limited datasets for training of the model (Betrie et al., 2013). SVM segregates hyper-plane 

formation from the selected dataset for training (Tehrany et al., 2014). It creates the “hyper-plane” 

in the middle of the highest margin (Pradhan, 2013). Accuracy of the findings of SVM are 

influenced by the kernel type. This research used the radial basis function (RBF) because of the 

advantages it offers compared to other kernel types, such as its higher interpolation ability 

(Tehrany et al., 2015).  

In this study, the format of predictive files (i.e., independent variables) was converted to ASCII 

files. Both presence and absence points were merged and used as the dependent variable. The 

construction of the database and extraction of information were done using “raster”, “rgdal”, 

“maptools”, “modelmap”, “sp”, “dismo”, “biomod2”, “sdmtools”, and “sdmvspecies”. All models 

were implemented with the package "sdm" in R software that developed by Naimi and Araújo 

(2016). 

2.2.4. Performance assessment 

Validation is an important step in any modelling exercise. In this study, ROC curve was 

plotted and TSS was calculated to determine the usefulness of the models (Naghibi et al., 2017, 

2019; Rahmati et al., 2019). TSS was implemented in this research study because it considers 

“omission and commission errors” (Rahmati et al., 2019). ROC, on the other hand, was selected 

for this study because it reveals overall performance of a binary model and the impact of other 

indices such as sensitivity, specificity, true positive rate, true negative rate, false positive rate, and 

false negative rate. The ROC curve plots true positive rate (TPR) versus false positive rate (FPR) 

to describe the quality of a model (Tien Bui et al., 2016a). The area under the curve (AUC) ranges 
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from 0 to 1; the higher the value, the better the performance. Considering elements of a confusion 

matrix (TP, TN, FP, and FN) (Table 4), TPR and FPR are defined as: 

��� = �� (�� + ��)⁄                                (1) 

FPR = �� (�� + ��⁄ )                                (2) 

where TP and TN show true positive and true negative, respectively; and FP and FN depict false 

positive and false negative, respectively. TSS is calculated as (Fukuda et al., 2013; Rahmati et al., 

2018): 

��� = ��� − ���                    (3) 

In an analytic expression of the ROC curve, AUC metric can be calculated as (Eq. 4): 

��� = ∫ �(���) ���� =
�

�
1 − ∫ �(���) ����

�

�
                     (4) 

Table 4 here 

In this study, the accuracy of the models in the training (i.e., goodness-of-fit) and validation 

(i.e., predictive performance) steps was assessed using TSS and AUC metrics. The goodness-of-

fit just reflects how well the model fits the training data set (Dodangeh et al., 2012; Pourghasemi 

et al., 2017). Hence, the prediction power of the model cannot be judged by the goodness-of-fit, 

because it is determined by the presence data (here sampled dust-source locations) that were 

already used to calibrate the model (Frattini et al., 2010; Bui et al., 2013). Therefore, predictive 

performance is well-known as the main step for comparing the accuracy of the models (Rahmati 

et al., 2019). Importantly, as explained before (section 2.2.1), dust-source locations that identified 

by analyzing satellite images were assessed by field surveying.  
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3. Results and discussion 

3.1. Dust storm potential maps 

Using the training dataset as well as RF, SVM and MARS algorithms, three dust-source 

potential maps were prepared for the study area (Fig. 5a- c). These maps were classified into four 

categories (low, medium, high, and very high) using an equal-interval classification scheme to 

enable comparison of the model outputs (Figs. 6a-c). The four categories (low to very high) 

covered 17.6, 39.7, 35.3, and 7.4% of the study area, respectively, on the RF model map. The SVM 

algorithm, predicted (low to very high) 22.1, 34.8, 33.6, and 9.5%, respectively. The MARS model 

predicted 37.4, 13.4, 7.3, and 41.9%, respectively. Our results showed that Sistan and Zabol basins 

are core sources of dust storm which is in line with findings of Cao et al., (2015b). These areas 

include the areas surrounding Khaf, Sangan, Aliabad, Ghasem Abad, and Hoseynabad in the 

northeastern parts of the study region. In addition, the results of Prospero et al. (2002) indicated 

that the areas surrounding the city of Zabol – including Hamun-e Saberi, Hamun-e Puzak, and 

Daryacheh-ye-Hamun – are main sources of dust storm in eastern Iran. The results of this study 

also showed high dust source potential for these areas. These findings are consistent with our 

previous study in this study area (Rahmati et al., 2020) that applied hybridized adaptive neuro-

fuzzy inference system (ANFIS) models. 

Fig. 5 here 

Fig. 6 here 

3.2. Importance of the conditioning factors 

The importance of the conditioning factors was evaluated with the results produced by the 

RF algorithm by calculating the mean decrease accuracy (Table 5). Wind speed (PC = 29.5) was 
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shown to make the greatest contribution to the model. This was followed by land cover type (PC 

= 25.3), soil type (PC = 14.8), and maximum air temperature (PC = 9.5). Whereas slope, lithology, 

and rainfall contributed least to the prediction of dust-source potential. 

Table 5 here 

The importance of wind speed could be related to its role in initiating dust storms, the main 

driving force behind this phenomenon (Liu et al., 2004). The results are consistent with Alizadeh-

Choobari et al. (2014), which evaluated the relationship between wind speeds and dust-storm 

activity in a portion (the Sistan area) of this study area. They found that strong near-surface wind 

speeds generate substantial dust emissions from the Sistan area. Lee et al. (2009) proved that in 

flat areas, winds easily reach the erosion threshold, and thus initiate dust storms. 

Land cover also influences both soil and wind speed. Soil properties often reflect the amount 

of vegetative cover and various types of land cover generate greater or less drag on wind due to 

roughness length and can create windbreaks that reduce wind speed. Two categories of land cover, 

bare lands and salt lands, are more likely to be sources of dust as they lack vegetation and the 

wind-erosion threshold is at its lowest (i.e., most easily surpassed). Lee et al. (2012) indicated that 

land cover management of anthropogenic activities strongly affects the spatial pattern of dust 

generation. 

Soil is the third important factor in dust-source modelling. This is because the erosion 

threshold is directly tied to the soil characteristics and therefore dust-storm occurrence is heavily 

influenced by soil type. The majority of dust sources in the region are ephemeral lakes (sometimes 

known as playas) which have surfaces covered in fine particles (Goudie, 2018). This agrees with 

the conclusions of Hahnenberger and Nicoll (2014) which said that playas are the land surfaces 
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most susceptible to wind erosion and dust production. Erosion-sensitive soils have more potential 

to be dust source areas (Sissakian et al., 2013). Therefore, this soil quality may be an effective 

distinguishing factor to predict dust potential. 

3.3. Performance of the models 

Goodness-of-fit of models were shown in Table 6. The RF, SVM, and MARS algorithms 

had AUC values of 0.92, 0.898, and 0.86, respectively. Additionally, they had TSS values of 0.785, 

0.758, and 0.721, respectively. Consideration of only goodness-of-fit is insufficient to judge the 

capability of models because it is determined based on the training dataset that used in model 

calibration (Tien Bui et al., 2012; Tehrany et al., 2015). The prediction performance must be 

assessed to investigate the predictive skill of models (Tien Bui et al., 2013; Pourghasemi et al., 

2017). The predictive performance of the models was summarized in Table 7. The results showed 

that the RF (AUC = 0.894, TSS = 0.751) was the most effective model based on ground-truth data. 

SVM was the second best model (AUC = 0.875, TSS = 0.73), followed by MARS model (AUC = 

0.81, TSS = 0.69). Therefore, the predictive performance analysis reveals RF to provide the best 

performance. The performance of models can be classified based on the AUC metric: < 70% (fair), 

70 – 80% (good), 80 – 90% (very good), and > 90% (excellent). Since all three models showed an 

AUC value higher than 0.8 in the validation step, they classified as very good models for 

generating valid dust-source potential maps. 

Table 6 here 

Table 7 here 

The direct comparison of the results of this study with our previous work in this study area 

(Rahmati et al., 2020) provides a suitable platform for judging the predictive skill of the models 
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employed in this study. The most accurate model in our previous study was the hybridized ANFIS-

DE model (i.e., hybridized ANFIS and differential evolution metaheuristic algorithm) with an 

AUC value of 84.1%, whereas the best model in the current study was RF (AUC = 89.4%). Even 

the second best model was SVM (AUC = 87.5%) in this study had a better accuracy than ANFIS-

DE model in our previous work.  

The high-accuracy dust-source potential map produced by the RF algorithm could be the 

result of several advantages that the method possesses. The iterative nature of RF is unique among 

the models, as this effectively bootstraps the data for more robust and flexible predictions (Hudak 

et al., 2008). Moreover, the RF model differs fundamentally from other tree-based models (like 

the decision tree or the boosted regression tree) as it iteratively and randomly samples the data and 

variables to generate a forest (i.e., a large group) (Belgiu and Drăguţ, 2016). Furthermore, random 

subsets of predictor variables prevent problems produced by overfitting (Breiman, 2001). 

However, the RF and SVM algorithms are better choices for this purpose. Consequently, the dust-

source potential maps of these models are similar, but both are very different from the map 

produced by the MARS model. Naghibi et al. (2018) states that the high efficacy of the RF 

algorithm in classification issues can be a function of its capacity to handle large datasets and to 

model larger numbers of input factors. Catani et al. (2013) indicated that RF is also capable of 

detecting non-linear relationships between the response and input factors, which makes it stronger 

than linear algorithms. This could be a very important trait for models to be used for land 

management, as the relationships between environmental phenomena (i.e., dust storms) and topo-

hydrological and geo-environmental factors are not linear and are often complex. Breiman (2001) 

stated that RF does not have an overfitting issue and can manage the inclusion of outliers within 

the training data. Feature selection and pruning are two other techniques that can make the results 
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of tree-based models more accurate and may make them more useful more generally. Tien Bui et 

al. (2016b) stated that SVMs can model sophisticated, non-linear relationships. SVM has also 

robustness to noise.  

Kamani et al. (2015) assessed heavy-metal contamination in street dusts in Zahedan (a part 

of this study area), Iran and provided evidence that people suffer from this problem. Public health 

implications influence migration from this region. Derakhshandeh et al. (2014) reported the results 

of a public survey about the influence of dust storms on people’s desire to migrate from Ahvaz (a 

city in western Iran). They showed that residents tend to move from Ahvaz if they can overcome 

financial barriers preventing them from leaving. Based on our data, the population of 5,800 rural 

districts in the study region is currently decreasing, which can cause severe damage to local 

economies and to social conditions both in those rural areas and the cities to which they migrate. 

4. Conclusion 

Considering the health problems that are caused by dust storms, this study assessed a new 

method for assessing the areas of genesis for dust storms. Three advanced machine-learning 

algorithms (RF, SVM, and MARS) were assessed to identify likely dust source locations. The 

findings reported here lead to three main conclusions: 

 The RF algorithm yielded the best dust-source potential map, followed by SVM and MARS. 

The results of this study highlight the benefits of tree-based and support vector machine 

algorithms for modelling complex, nonlinear phenomenon like dust-source potential. The 

current methodology takes advantages from remote sensing data and techniques in order to 

define dust source areas which reduces the costs and makes it possible to achieve acceptable 

results in a lower time. Implementation of the remote sensing data makes it possible to apply 
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the methodology even in data scarce regions which is another positive feature of the current 

methodology. Considering the advantages of the methodology, it is suggested to apply the 

methodology to assess the main dust-source areas in the Middle East, including parts of Iran, 

Iraq, Syria, and the Arabian Peninsula.  

 Wind speed had the greatest contribution to the model. This was followed by land cover type, 

soil type, and maximum air temperature. However, slope, lithology, and rainfall contributed 

least to the prediction of dust-source potential. 

 The dust-source potential map of the study region can therefore be used by land-use planners 

for dust storm prevention and dust-storm mitigation by focusing on land use management in 

their source areas. The planners are suggested to focus on high potential dust sources in the 

Eastern Iran such as Sistan and Zabol, Khaf, Sangan, Aliabad, Ghasem Abad, Hoseynabad, 

Hamun-e Saberi, Hamun-e Puzak, and Daryacheh-ye-Hamun. Mulching at high dust source 

potential areas could be a good option to control wind erosion and dust storm form the sources 

areas. Additionally, for the Hamun lakes which is dried now, the managers could have some 

plans to rehabilitate the lake by restoration of its feeding rivers. 
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Fig. 1 Flowchart of the study. 
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Fig. 2 Location of the study area in Iran. Photographs showing the severity of the dust storms 

in the study area: (A) Mashhad, (B) Zabol, and (C) Zahedan. (photographs were taken by the 

authors) 
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Fig. 3 Training and validation groups of dust source sites 
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Fig. 4 Distributions of dust-production factors: (a) wind speed, (b) geology, (c) maximum air 

temperature, (d) land use, (e) slope, (f) soil, (g) rainfall, and (h) land cover 
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Fig. 4 (continued) 
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Fig. 5 The maps of dust source potential using a) RF, and b) SVM, and c) MARS 
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Fig. 6 The maps of dust source potential class using a) RF, and b) SVM, and c) MARS 
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Table 1 Lithology of the study area. 

Age 
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it

Description 
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Eon Era Period Epoch 
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ha

ne
ro
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ic
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te
rn

ar
y

Holocen
e 

G14 Qs Sand dunes and sand sheet 46.39 

T
er

ti
ar

y

N
eo

ge
ne

Pliocene G3 Plms Marl, shale, sandstone and conglomerate 9.75 

Miocen
e 

G19 Murmg Gypsiferous marl 6.83 

Oligocen
e 

G4 Olm,s,c 
Red and green silty, gypsiferous marl, 
sandstone and gypsum 

4.87 

G2 L.E-Odi Diorite 0.98 

Paleogen
e 

Eocene G15 Ef 
Eocene flysch in general, composed of 
shale, marl, sandstone, conglomerate and 
limestone 

15.27 

M
es

oz
oi

c

Cretaceous 

G5 ba Basalt and basaltic andesite pillow lavas 0.04 

G7 db Diabase 0.18 

G6 Kab Blue - grey marl and shale 5.14 

G1 am Amphibolite 0.0004 

G11 gsch Glaucophane schist 0.26 

Jurassic 

G16 Jks Alternation of sandstone and shale 5.25 

G10 di-gb Gabbro to diorite, diorite and trondhjemite 0.06 

G13 hz Harzburgite 0.14 

Triassic G18 TRmi Shale and sandstone with coal seams 2.44 

P
al

eo
zo

ic

Permian G17 sp1 Spilitic andesite and diabasic tuff 1.97 

Carboniferous G9 Cs 
Light olive-green shale with intercalations 
of quartzarenite and fossiliferous 
limestone 

0.16 

Devonian 

G8 Dp 
Light red to white, thick bedded 
quartzarenite with dolomite intercalations 
and gypsum 

0.08 

G12 Dsh 
Alternation of shale, marl, and 
fossiliferous limestone, locally with 
intercalations of quartz arenite 

0.11 
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Table 2 Land use of the study area 

Number Code Land use type Area (%) 

1 W Water body 1.88 

2 F Forest 3.79 

3 A Agriculture 7.80 

4 G Garden 0.005 

5 B Bare land 4.39 

6 R Rangeland 23.42 

7 S Salt land 54.82 

8 U Urban 3.67 

9 Airport Airport 0.18 

Table 3 Soil type of the study area 

Number Code Soil Area (%) 

1 Badlands Badlands 0.75 

2 Dune lands Dune lands 4.15 

3 Marsh Marsh 0.26 

4 Playa Playa 1.12 

5 S1 Rock Outcrops/Entisols 11.57 

6 S2 Rock Outcrops/Inceptisols 2.26 

7 Rocky lands Rocky lands 31.71 

8 Salt flats Salt flats 3.58 

9 Urban Urban 0.02 

10 Water body Water body 0.35 

11 S3 Aridisols 29.86 

12 S4 Entisols/Aridisols 13.20 

13 S5 Inceptisols 1.10 
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Table 4 Confusion matrix elements. 

Observed 

Predicted 

Non-dust source (−) Dust source (+) 

Non-dust source (−) (−|−) True negative (TN) 
(+|−) False positive (FP; Error Type 
I) 

Dust source (+) 
(−|+) False negative (FN; Error Type 
II) 

(+|+) True positive (TP) 

Table 5 Results of variable contributions using the RF. 

Variable Percent contribution (PC) 

Wind speed 29.5 

Land cover 25.3 

Soil type 14.8 

Maximum air temperature 9.5 

Land use 7.8 

Rainfall  6.3 

Geology 4.7 

Slope 2.1 

Table 6 Goodness-of-fit of models. 

Evaluation 
criteria 

Models 

RF SVM MARS 

AUC 0.92 0.898 0.86 

TSS 0.785 0.758 0.721 
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Table 7 Predictive performance of models. 

Evaluation 
criteria 

Models 

RF SVM MARS 

AUC 0.894 0.875 0.81 

TSS 0.751 0.73 0.69 




