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Abstract 

Recently, rapid, non-invasive analytical methods relying on vibrational spectroscopy and 

hyper/multispectral imaging, are increasingly gaining popularity in food science. Although such 

instruments offer a promising alternative to the conventional methods, the analysis of generated data 

demands complex multidisciplinary approaches based on data analytics tools utilization. Therefore, 
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the objective of this work was to (i) assess the predictive power of different analytical platforms 

(sensors) coupled with machine learning algorithms in evaluating quality of ready-to-eat (RTE) 

pineapple (Ananas comosus) and (ii) explore the potentials of The Unscrambler software and the 

online machine-learning ranking platform, SorfML, in developing the predictive models required by 

such instruments to assess quality indices. Pineapple samples were stored at 4, 8, 12°C and dynamic 

temperatures and were subjected to microbiological (total mesophilic microbial populations, TVC) 

and sensory analysis (colour, odour, texture) with parallel acquisition of spectral data. Fourier-

transform infrared, fluorescence (FLUO) and visible sensors, as well as Videometer instrument were 

used. For TVC, almost all the combinations of sensors and Partial-least squares regression (PLSR) 

algorithm from both analytics tools reached values of root mean square error of prediction (RMSE) 

up to 0.63 log CFU/g, as well as the highest coefficient of determination values (R2). Moreover, 

Linear Support Vector Machine (SVM Linear) combined with each one of the sensors reached 

similar performance. For odour, FLUO sensor achieved the highest overall performance, when 

combined with Partial-least squares discriminant analysis (PLSDA) in both platforms with accuracy 

close to 85%, but also with values of sensitivity and specificity above 85%. The SVM Linear and 

MSI combination also achieved similar performance. On the other hand, all models developed for 

colour and texture showed poor prediction performance. Overall, the use of both analytics tools, 

resulted in similar trends concerning the feasibility of the different analytical platforms and 

algorithms on quality evaluation of RTE pineapple. 

Key words: pineapple, quality, vibrational spectroscopy, multispectral imaging, machine learning, 

SorfML  
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1. Introduction 

In the context of tremendous technological change, a growing lack of natural resources, and a 

continuous evolution of consumers’ life-styles and consumption habits across the globe, food 

industry is challenged to provide safe and qualitative food to consumers. To address the need for 

efficient, safe and environmental respectful production, as well as strict communication and 

connection with the consumers, several approaches have been developed (Nychas et al., 2016). 

Among these, analytical methods based on vibrational spectroscopy and hyperspectral / multispectral 

imaging have gained the attention of scientists, since they could fulfill the needs of food industry as 

rapid and efficient methods for assessing food quality (Fengou et al., 2019b; Barbin et al., 2015; 

Papadopoulou et al., 2011; Ammor et al., 2009; Camps & Christen, 2009), safety (Grewal et al., 

2015; Brandily et al., 2011; Davis et al., 2010; Wang et al., 2010) and authentication-adulteration 

(Huyan et al., 2018; Ropodi et al., 2017; Suhandy et al., 2017; Jacquot et al., 2015; Ropodi et al., 

2015; . In contrast with the time-consuming and expensive conventional and molecular-based 

techniques, the aforementioned approaches constitute a non-destructive and sensible alternative, also 

suitable for in-, on-, and at-line monitoring (Efenberger-Szmechtyk et al., 2018; Nychas et al., 2016; 

Kumar et al., 2014). Such tools have been successfully reported in the literature as promising tools 

for quality and safety assessment of different meat products, such as poultry (Barbin et al., 2015; 

Grewal et al., 2015), pork and beef (Fengou et al., 2019a; Ropodi et al., 2017; Ropodi et al., 2015; 

Trinderup et al., 2015; Papadopoulou et al., 2011; Panagou et al., 2014; Ammor et al., 2009; Prieto et 

al., 2009), as well as fish (Fengou et al., 2019b). Their application on olive oil (Guzmán et al., 2015; 

de la Mata et al., 2012), cheese (Jacquot et al., 2015; Subramanian et al., 2011), fruits (Liu et al., 

2015; Coldea et al., 2013; Unay et al., 2011; Camps & Christen, 2009; Suhandy et al., 2009) and 

vegetables (Tsakanikas et al., 2018; Sravan Kumar et al., 2015; Løkke et al., 2013) has also been 

demonstrated at least at the laboratory scale. 

It should be noted that although these instruments/approaches can be considered as efficient, the 
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multivariate nature of the sensor output, is rather complex and usually needs processing and/or 

dimensionality reduction, before the results can be interpreted (Jollife & Cadima, 2016). Nowadays, 

in the food sector, a plethora of machine learning approaches has been proposed by different authors 

in order either to predict or to quantify safety and quality of different foods using fingerprints or 

other ‘omics’ data (den Besten et al., 2018; Ropodi et al., 2016). At the same time open sources 

platforms are contributing in enhancing food safety management system (Tenenhaus-Aziza & 

Ellouze, 2015; Nychas et al., 2008). 

Indeed, the need of computational tools in the area of food science /microbiology has been 

recognised, due to their capacity to analyse high volumes of heterogeneous data generated from the 

innovative technologies (Truong et al., 2019; Granato et al., 2018; Roberts & Cozzolino, 2016). This 

trend is clearly followed by the development of various algorithms, among others these include 

Ordinary Least Squares (OLS), Stepwise Linear modelling (SL), Principal Component Analysis 

(PCA), Partial Least Squares (PLS), Support Vector Machines (SVM), Random Forests (RF) and k-

Nearest Neighbours (kNN) which can be found either in free or not commercial software with user-

friendly and easy-to-use interface. However, choosing the appropriate machine learning approach 

based on the question that should be addressed, is often challenging and involves a comparative 

analysis between various algorithms in order to achieve the best possible and realistic performance. 

This procedure often requires strong statistical and deep interpretation knowledge (Estelles-Lopez et 

al., 2017). 

Even though, the spectroscopic and multispectral imaging techniques have been implemented in a 

broad range of food products, the application of these technologies to fresh-cut and ready-to-eat 

(RTE) produces including pineapple (Ananas comosus), is limited, regardless their popularity and 

market value. Lunadei et al. (2011) evaluated the enzymatic browning of fresh-cut apple slices using 

multispectral imaging, while a second study of Lunadei et al. (2012) focused on the colour quality of 

RTE spinach leaves using the same analytical method. Recently, Tsakanikas et al. (2018) studied the 
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microbial quality of RTE green salads (rocket and baby spinach) using different non-invasive sensors 

based on spectroscopy. As far as RTE pineapple is concerned, only Di Egidio et al. (2009) have 

studied its shelf life using vibrational spectroscopy. Therefore, the aims of this work are (i) to 

develop mathematics models based on data derived from different analytical instruments to predict  

the sensory and microbial quality of RTE pineapple, (ii) to compare the models performance and 

assess the suitability of different algorithms and analytical platforms for monitoring the various 

features (iii) to explore, the capabilities and the limitations provided by each data analytical tool.  

2. Materials and methods 

2.1. Samples analyses 

2.1.1. Sample preparation and storage conditions 

Fresh-cut and RTE pineapple, packed in PVC trays (each containing 220 g of fruit), was supplied by 

a local manufacturer in Athens and transported to the laboratory within 24 hours from their 

production. The pineapples were stored in their original package at three different isothermal 

temperatures, at 4, 8, 12oC and under dynamic temperature conditions (8 hours at 4oC, 8 hours at 8°C 

and 8 hours at 12oC) in high precision (±0.5oC) incubators (MIR-153, Sanyo Electric Co., Osaka, 

Japan). The incubation temperature was recorded at 15-minutes intervals using electronic 

temperature devices (COX TRACER®, Cox Technologies Inc., Belmont, NC, USA). The sampling 

was conducted at regular time intervals, depending on the storage temperature, for a maximum 

period of 10 days. Specifically, the analyses were carried out every 14 and 10 hours ,according to the 

following sampling time points: 0, 14, 24, 38, 48, 62, 72, 86, 96, 110 hours, for the first 5 days and 

every 24 hours until the end of storage. The final time points were 230 hours for 4, 8oC and the 

dynamic temperature conditions, while 134 hours for storage at 12oC.  

For each sampling time point, duplicate samples originating from the same temperature conditions 

but different trays were analyzed. Each sample (tray) was subjected to the following analyses: (i) 
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microbiological analysis and pH measurements; (ii) sensory analysis; (iii) Fourier Transform 

Infrared (FT-IR) spectroscopic measurements; (iv) fluorescence (FLUO) spectroscopic 

measurements; (v) visible (VIS) spectroscopic measurements and (vi) multispectral image (MSI) 

acquisition. Different pineapple parts of the same tray were used for the microbiological analysis to 

prevent any contamination of the samples during the spectroscopic measurements. Four independent 

storage experiments were finally conducted, using four different batches of pineapple. In the case of 

the fourth experimental replication and only for FLUO and VIS data, the corresponding 

spectroscopic measurements were carried out every 24 hours throughout storage. Consequently, the 

total number of samples for FT-IR and MSI sensors was 424, while for FLUO and VIS was 392. 

2.1.2. Microbiological analysis and pH measurements 

A 25 g portion of fresh-cut pineapple was aseptically transferred from each tray to a sterile 

Stomacher bag (Seward Medical, London, UK) , diluted with 225 ml of Ringer buffer solution (Lab 

M Limited, Lanchashire, UK) and homogenized for 60 seconds at 230 rpm in a stomacher device 

(Lab Blender 400, Seward Medical, London, UK). After the preparation of appropriate serial 

dilutions with Ringer solution, the total mesophilic microbial populations (TVC) was determined by 

the spread method on tryptic glycose yeast agar (Plate Count Agar, Biolife, Milan, Italy) , after 

incubation of plates at 25oC for 72 hours. The results were expressed as the average (± standard 

deviation, n=8) log colony forming units per gram (log CFU/g) of fruit. 

The pH values of fruit samples were measured after the microbiological analysis, using a digital pH 

meter (RL150, Russell pH Cork, Ireland) with a glass electrode (Metrohm AG, Herisau, 

Switzerland). 
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2.1.3. Sensory analysis 

Two staff members evaluated in duplicate the freshness rate of three different sensory features of the 

samples: odour, colour, and texture.  For each sensory parameter, a score was given; 1 for fresh, 2 for 

intermediate, and 3 for unacceptable. Finally, the samples were classified in two classes: Class 1 for 

fresh (or acceptable) and Class 2 for non-acceptable pineapple samples. The intermediate samples 

were also classified in Class 2  to simplify the pipeline process and interpretation, since the samples 

with score 2 and 3 were commercially unacceptable.  

2.1.4. FT-IR spectroscopy

In parallel to microbiological analysis, FT-IR spectra were collected using a ZnSe 45o HATR 

(Horizontal Attenuated Total Reflectance) crystal (PIKE Technologies, Madison, Wisconsin, United 

States) on a FT-IR-6200 JASCO spectrometer (Jasco Corp., Tokyo, Japan) equipped with a 

triglycine-sulphate (TGS) detector and a Ge/KBr beamspliter. The samples were cut in small slices 

of such dimensions in order to cover the crystal and then, they were covered with a piece of 

aluminum foil. The spectral data were collected over the range of 4000–400cm−1 at room 

temperature (22 ± 2oC), using the Spectra ManagerTM Code of Federal Regulations (CFR) software 

version 2 (Jasco Corp.). Reference spectra, called backgrounds, were collected every 4 samples by 

placing the cleaned blank crystal. For both background and sample readings, 100 scans were 

accumulated at a nominal resolution of 4 cm−1. The collection time for each sample spectrum was 2 

min. At the end of each sampling, the crystal surface was cleaned with detergent, washed with 

distilled water, dried with lint-free tissue, cleaned with acetone and finally dried with lint-free tissue. 

The range 1800 and 870 cm−1 was finally used, since this range includes the metabolic activity of 

spoilage (Di Egidio et al., 2009; Ellis et al., 2002; Al-Jowder et al., 1999). Prior to further analysis, 

the spectral data were mean-centered and scaled (1/SDEV). Additionally, for TVC prediction, the 

spectra were subjected to Standard Normal Variate (SNV) pre-processing to provide the most 
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important information from FT-IR. On the contrary, no pre-treatments were used for sensory 

features. 

2.1.5. Multispectral Image analysis

Multispectral images were captured using the VideometerLab device in 18 different wavelengths 

ranging from UV (405 nm) to short wave NIR (970 nm) (Carstensen & Hansen, 2003). The device 

has been commercialized by Videometer A/S. The spectral radiation is not continuous, but operates  

at wavelengths 405, 435, 450, 470, 505, 525,570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940 

and 970 nm. The system is first calibrated radiometrically and geometrically using well-defined 

standard targets and a light setup is loaded based on the type of the product in each fresh form. The 

samples of pineapple were placed in a petri dish in a way that covered the entire surface and the dish 

was placed inside an Ulbricht sphere. The image acquisition and pre-treatment have been described 

previously in detail (Panagou et al., 2014) and have been implemented using the VideometerLab 

system software (version2.12.39). For each image, the mean reflectance spectra (along with the 

standard deviation values) was calculated by averaging the intensity of pixels at each wavelength. 

Both the mean reflectance values and their standard deviations (in total 36 features) were used for 

model development, as it is considered that the second ones contain relevant and important 

information. As it was mentioned before, the spectral data were mean-centered and scaled (1/SDEV), 

while SNV pre-processing was also performed for odour prediction. 

2.1.6. Visible and fluorescence spectroscopy

The UV-VIS spectrometer used was the Hamamatsu C12880MA (Hamamatsu Photonics K.K., 

Shizuoka, Japan). The device has a spectral range from 850 to 340 nm and spectral resolution of 15 

nm.  It can be employed either for visible or fluorescence range spectroscopy by switching the mode 

of spectrometer and changing the settings. Specifically, the scan count was set at 10 and 3, while 
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integration time at 250 μs and 100.000 μs for acquisition in visible and fluorescence mode, 

respectively. A UV filter with 400 nm cutoff wavelength was placed in the front of the spectrometer 

to obtain spectra only to the visible region. Before the samples measurements, a dark calibration and 

a reference acquisition are performed. Dark calibration is performed with the light source off placing 

the spectrometer on a dark surface for both modes. The white reference was performed with the light 

on using a white material (in our case a folded piece of paper) for visible mode and a non-fluorescent 

reflective reference standard (a black plastic surface) for fluorescence mode, respectively. The 

samples were placed in a petri dish covering the entire surface and 10 measurements (absorbance 

values) were performed in different spots of each sample. The spectral values are expressed as the 

average of the 10 measurements for each wavelength after a normalization step. For both FLUO and 

VIS analytical platforms, the range 700-400nm was used for further analysis. The spectra were 

mean-centered and scaled (1/SDEV). Moreover, in the case of TVC prediction, FLUO spectra were 

subjected to SNV pre-processing, while VIS spectra to first derivative normalization with a second-

order polynomial and a 9-point window. For texture prediction, FLUO spectra were also subjected to 

first derivative normalization with a second-order polynomial and a 9-point window.  

2.2. Data analysis 

2.2.1. The Unscrambler software

Multivariate data analysis was carried out using the data analytics software, The Unscrambler© ver. 

9.7 (CAMO Software AS, Oslo, Norway). Partial-least squares regression (PLSR) was performed for 

the correlation between spectral data and microbial counts where, the spectral data were used as 

independent variables (X) and the TVC as dependent variables (Y). This method is considered 

suitable for spectroscopic data sets where the dimensionality problem exists (many variables but few 

samples) and also when the data show strong collinearity and noise (Gromski et al., 2015; Mehmood 
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et al., 2012; Wold et al., 2001). For sensory features, since they are categorical variables, Partial-least 

squares discriminant analysis (PLSDA) was performed (Barker & Rayens, 2003). 

Prior to PLSR/PLSDA, several pre-processing techniques were tested on each data set with the aim 

to minimize any irrelevant information such as noise, particle size deviations, scattering and drifting 

effects (Li et al., 2018; Dixit et al., 2017; Suhandy & Yulia, 2017; Wang et al., 2015). The selected 

pre-processing procedure was already described in the corresponding section of each analytical 

method.  

The data derived from isothermal storage temperatures were used for the calibration process (training 

set) and those derived from dynamic temperature conditions for external validation (test set). During 

the calibration process, leave-one-out cross validation in parallel with Martens uncertainty test was 

employed in order to eliminate the risk for over-fitting and test the predictive significance of the 

model, but also to select the significant X -variables (Wold et al., 2001; Westad & Martens, 2000). 

The significant independent variables were finally used for the construction of FT-IR and FLUO 

models for texture assessment.   

The prediction performance of the developed PLSR models for each sensor was evaluated based on 

the following statistical parameters: slope (a), offset (b), correlation coefficient (r), the root mean 

square error (RMSE), the normalised root mean square error (NRMSE) (Eq.1) and the coefficient of 

determination ( R2) of the linear regression between the predicted and measured microbiological 

counts. For PLSDA models, the parameters for performance evaluation were accuracy (Eq. 2), 

sensitivity (Eq. 3) and specificity (Eq. 4), where positive samples are the fresh or acceptable and 

negative samples are the non-acceptable samples. 

NRMSE = 
RMSE

max(DV) −  min(DV)

                                                                                                                                                    (Eq.1) 

, where DV is the dependent variable (TVC). 
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Accuracy = 
samples correctly predicted

total number of samples
 x 100 

(Eq. 2) 

Sensitivity = 
true positive samples

true positive samples + false negative samples
 x 100

(Eq. 3) 

Specificity = 
true negative samples

true negative samples + false positive samples
 x 100

(Eq. 4) 

2.2.2. SorfML platform

SorfML is a machine learning classification and regression analysis ranking system 

(www.SorfML.com). Specifically, it is a free web-platform able to automate the procedure of 

identifying the best machine learning method for comparing data from several analytical techniques 

and predict the freshness profiles as well as counts of microorganisms responsible of food spoilage. 

Using SorfML, users are able to securely upload raw experimental data collected using rapid and/or 

non-invasive analytical platform (e.g. Multi/Hyper-spectral imaging, Electronic nose, Gas 

chromatography-Mass spectrometry) in CSV format, and apply various machine learning 

classification and regression modelling algorithms (e.g. SVM, Neural Network, Random forests) in 

order to identify the best combination of analytical platform and machine learning algorithm to 

predict given bacterial species or quality indices. An indicative workflow of the pineapple analysis 

followed in SorfML is presented in Figure 1. 

The algorithms used in this study are k-Nearest Neighbours (kNN) (Silverman & Jones, 1989), 

Ranger, a fast version of Random Forest (Wright & Ziegler, 2017), Linear Support Vector Machine 

(SVM Linear), Radial Support Vector Machine (SVM Radial) (Boser et al., 1992), PLSR (Wold et 

al., 2001) and  PLSDA (Barker & Rayens, 2003). In order to generate each model, the dataset was 

randomly segmented into a training dataset for optimisation, with the 65% of the total samples, and a 
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testing dataset for model validation with the left 35%. The different classes of data were equally 

represented in training as well as testing data set. The raw data were also centered and scaled, but no 

other data pre-processing was performed. 

The predictive power of the developed models for sensory features was evaluated based on accuracy 

parameter, but also sensitivity and specificity were provided. For TVC models, RMSE and NRMSE 

(Eq. 1) parameter for each analytical platform were ranked in heatmaps, while R2 values were also 

presented. Training performance was assessed using k-repeated fold cross-validation with a k value 

of 4 and a total number of 10 repetitions to choose the best parameters for each model. 

3. Results  

3.1. Microbiological spoilage and pH data

The initial level of TVC (mean ± standard deviation, n=8) was 5.09 ± 0.60 log CFU/g, while the final 

populations were 7.14 ± 0.50, 7.69 ± 0.40, 7.52 ± 0.30 and 7.91 ±0.20 log CFU/g during storage at 4, 

8, 12°C and under dynamic conditions, respectively. The growth was more rapid at the highest 

temperature. 

No significant differences on pH measurements were found between the different temperatures and 

during storage. Specifically, the mean (mean ± standard deviation, n=8) initial pH value was 

3.45±0.05 and the final values were 3.57±0.04, 3.55±0.07, 3.55±0.17, 3.52±0.17 at 4, 8, 12°C and 

under dynamic conditions, respectively. 

3.2 TVC prediction models

Concerning TVC, the linear regression between the predicted (estimated) and the measured 

(observed) TVC values is presented in Table 1 and Figure 2 for The Unscrambler, and in Figure 3

for SorfML. The solid lines in Figures 2 and 3 are the ideal y=x lines, while the dashed ones 

determine the ±1 log unit area.  Additionally, SorfML platform provides a ranking of performance 
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(with RMSE and NRMSE values) of the various models developed for each analytical platform and 

machine learning algorithm, which is illustrated in a heatmap plot (Figure 4). In Table 2, the R2

values are also presented for each model developed on SorfML software. 

Starting with The Unscrambler, the a and b values of the linear regression between the estimated and 

the observed TVC values have a narrow range from 0.57 to 0.61 and 2.61 to 3.00, respectively. 

Additionally, the RMSE and NRMSE values are quite low for all sensors. Actually, the RMSE 

values are close to 0.5 log CFU/g. The R2 values are under 0.6 for all the sensors, while the r value 

ranges from 0.70 to 0.77. The FLUO and VIS models exhibit the highest r and R2 values, as well as 

the lowest RMSE and NRMSE values. The number of components selected for each PLSR model is 

presented in Table 3. 

In SorfML, RMSE values for all the studied sensors and algorithms were also below 1 log CFU/g. 

For almost all sensors, PLSR and SVM Linear algorithms exhibit the lowest values of RMSE (and 

NRMSE), with a range from 0.58 to 0.64 log CFU/g and the highest R2 values, with a range from 

0.41 to 0.50. On the other hand, Ranger, kNN and SVM Radial exhibit the highest RMSE values, 

above 0.65 log CFU/gr, as well as the lowest R2 values.  The regression lines between the estimated 

and the measured TVC values for non-linear models are not presented in Figure 3. The best model 

accuracy was achieved through the PLSR model combined with FLUO sensor, showing the lowest 

RMSE/NRMSE values and the highest R2 values. The tuning parameters selected for each model in 

SorfML software are presented in Table 4.

3.3 Sensory prediction models

Due to the limited data used for sensory analysis, the corresponding results are presented in the 

Supplementary section.  Table S1 presents the number of acceptable and non-acceptable (in terms of 

freshness) samples for the three sensory features. It should be noted that for colour and texture, the 

number of fresh samples are four and three times higher than that of non-acceptable, while for odour, 
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the samples are more equally distributed to both classes. The  prediction performance of the models 

developed for each one of the tested analytical platforms are summarized in Table S2 for The 

Unscrambler. The accuracy ranking of models generated for sensory features on SorfML software is 

illustrated in Figures S1A-C, while Table S3 provides also the corresponding values of sensitivity 

and specificity.  

For The Unscrambler, none of the models reaches 90% of accuracy. The models for texture 

prediction have the lowest accuracy values, while for colour and odour, exceed 80% for almost all 

the sensors. However, in the case of colour, the satisfactory accuracy values of models are not 

followed by similar sensitivity and specificity values. As far as the odour prediction is concerned, , 

FLUO model is the only model, which has the highest values of both sensitivity (88.46%) and 

specificity (85.90%), and also the highest value of accuracy (86.54%) among the analytical 

platforms.  

In SorfML, the accuracy percentage of all the models generated for all of the three features, do not 

exceed 89.23%.  As far as the colour and texture is concerned, the models with accuracy values 

above 80%, show also high sensitivity and low specificity. For odour, FLUO combined with 

PLSDA, SVM Radial and SVM Linear, but also MSI combined with SVM Linear, show the highest 

accuracy values. The combinations with the best accuracy, as well as, sensitivity and specificity  

values are FLUO and PLSDA, together with  MSI and SVM Linear.  

4. Discussion  

The introduction of spectroscopic and optical sensing (computer vision) methods in food science and 

their growing application in a wide range of food products is becoming a clear trend during the last 

decade. Although these analytical techniques offer rapid and in many cases efficient answers in a 

non-destructive way, the manipulation of the data and the interpretation of results are still a great 

challenge (Zhou et al., 2019). 
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Data analysis tools is a set of technology, that enable users to analyze and visualize data in order to 

identify trends and correlations with the goal of supporting decision making. Therefore, data analysis 

software is considered to be a central requirement for any sector / business (Vassakis et al., 2018). 

Although a large number of tools are available nowadays, only a limited number of these have 

proven to be useful for food science. The two applied statistical software, The Unscrambler and 

SorfML, provide a user-friendly and easy-to-use interface for analyzing large experimental datasets. 

These automated platforms also provide the opportunity for scientists, let alone food microbiologists 

with limited statistical and mathematical knowledge, to perform the challenging task of data mining 

and predictive modelling. However, the users are responsible for learning the advantages and the 

limitations of each platform and also realize that conflicting outputs are even possible (Nunes et al., 

2015).  

The Unscrambler software provides the option of limited in number and only linear algorithms, 

namely PLSR and PLSDA. On the other hand, SorfML platform offers the wide option of choosing 

linear and non-linear algorithms often used in data analysis. The approach of using different 

algorithms for the same data, allows comparing the performance of each created model and evaluate 

their suitability for different scenarios (Estelles-Lopez et al., 2017). Apart from algorithms, the big 

differences between the two data analytics tools lie on the segmentation of data in training and 

prediction set, the pre-processing of data and the cross-validation method.  

Starting with data segmentation on The Unscrambler, the testing of the models was performed on 

samples stored in dynamic temperature conditions, since these data include the information from all 

temperatures and are also considered as a simulation of real life in the food supply chain (Tsakanikas 

et al., 2018). On the other hand, in SorfML, the data were randomly segmented ensuring that all 

temperature and storage time groups were equally represented in both data sets and finally provided 

a less biased selection of sample. Furthemore, using The Unscrambler, various pre-processing 

methods were tested and those with the best results were finally applied. The purpose was to remove 
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the irrelevant information from data and facilitate their interpretation. However, in SorfML, the data 

were subjected to the minimum treatment, with the aim not to lose important information. As far as 

the cross validation was concerned, leave-one-out (or full-cross) was used in the The Unscrambler, 

while k-fold cross-validation used in SorfML. Full-cross validation is a common method, where all 

samples are used in an exhaustive way providing repeatability of the results, but also may lead to 

over-optimistic results. On the other hand, a k-fold partitioning could result in folds where samples 

are not represented in an equal manner (Ropodi et al., 2016). 

Besides all these different approaches, the summarized results indicate similar trends about sensors 

and algorithms ability to assess the quality of RTE pineapple. Specifically, for TVC assessment, all 

the sensors combined with PLSR algorithm show satisfactory performance in both The Unscrambler 

and SorfML. In The Unscrambler, the best models with slight differences compared to the others, are 

that based on FLUO and VIS data. In SorfML, FLUO and PLSR combination also exhibits the best 

performance with slight differences compared to the other PLSR models.. Apart from PLSR 

algorithm, it is indicative that SVM Linear combined with every sensor is also appropriate for TVC 

prediction. Contrarily, non-linear algorithms, tested in SorfML, do not manage to predict the 

spoilage of RTE pineapple.  

An important observation on these results is that the R2 values are quite low, even for the best model 

performances. It could be argued that according to these low R2 values the prediction performance is 

poor. However, despite the widely held belief for the usefulness of coefficient of determination, there 

is no guarantee that a high value of this parameter is indicative of ‘goodness of fit’. The value of R2

strongly depends on the width of the prediction interval and the variability present in the data 

(Granato et al., 2014). In food microbiology, 0.5 log deviations are common even within the same 

laboratory but also, RMSE values under 1 log CFU/g, is a rather acceptable result for food 

microbiology applications. Moreover, the variability inside the experimental replications (batches), 

as well as between the two biological replicates (duplicate samples) of the same experimental 
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replication is too high. The latter issue is very common in plant origin products due to the strong 

impact of various factors such as, cultivar, geographical region, and agricultural practices.  

For sensory features, the results were presented in order to reveal a potential trend which would be 

helpful for further investigation. The results derived from the two platforms show similar 

conclusions. Regarding the low number of non-acceptable over the fresh samples for colour and 

texture, the models generated by both software are biased over the fresh samples. Consequently, the 

presence of a data set with a more balanced proportion of the two classes, could possibly result in 

better model performances and safer conclusions for colour and texture assessment. For odour, 

FLUO sensor and PLSDA algorithm emerged as one of the most appropriate combinations for both 

tools.  Additionally, SorfML software indicates that the combination of MSI and SVM Linear may 

be also appropriate for odour assessment in pineapple. 

To conclude, the implementation of different data analytics tools requires wide knowledge of their 

range of applications and limitations and the results should always be evaluated critically. In this 

study, the results indicate that both The Unscrambler and SorfML revealed similar trends for the 

various analytical platforms. Specifically, the assessment of pineapple spoilage could be potentially 

achieved by the various types of vibrational spectroscopy (FTIR, FLUO and VIS) as well as, 

multispectral imaging. As far as the sensory features are concerned, the odour, could be possibly 

assessed by FLUO spectroscopy, conducting a more complete and representative analysis. .  It is also 

indicative that the possibility of testing various algorithms may lead to new options and more reliable 

results. However, further research including feature selection analysis and data fusion strategies may 

be crucial in developing even more robust and accurate models (Tsakanikas et al., 2018).  
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Sensor a b r RMSE NRMSE R2

FT-IR 0.61 2.61 0.70 0.59 13.43 0.43 

MSI 0.61 2.78 0.74 0.53 12.06 0.54 

FLUO 0.59 2.96 0.77 0.51 11.61 0.58 

VIS 0.57 3.00 0.77 0.51 11.61 0.58 

Table 1. Performance metrics of the PLSR models, based on the different analytical platforms 

(sensors), for  the TVC prediction of RTE pineapple on The Unscrambler software. (a: slope, b: offset, 

r: correlation coefficient, RMSE: root mean square error (log CFU/g), NRMSE: normalised root mean 

square error (%), R2: coefficient of determination) 
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Sensor Algorithm R2

FT-IR 

Knn 0.07 

Ranger 0.16 

SVM Linear 0.42 

SVM Radial 0.12 

PLSR 0.42 

MSI 

Knn 0.09 

Ranger 0.13 

SVM Linear 0.44 

SVM Radial 0.12 

PLSR 0.41 

FLUO 

Knn 0.22 

Ranger 0.19 

SVM Linear 0.46 

SVM Radial 0.39 

PLSR 0.5 

VIS 

Knn 0.08 

Ranger 0.21 

SVM Linear 0.48 

SVM Radial 0.26 

PLSR 0.27 

Table 2. The coefficient of determination (R2) of the models derived from the various combinations 

of the different analytical platforms (sensors) and algorithms, for the TVC prediction of RTE pineapple 

on SorfML software.  
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Feature Sensor 
PLSR/PLSDA 

nc 

TVC 

FT-IR 7 

MSI 11 

FLUO 7 

VIS 12 

Colour 

FT-IR 7 

MSI 5 

FLUO 6 

VIS 7 

Odour 

FT-IR 6 

MSI 10 

FLUO 6 

VIS 7 

Texture 

FT-IR 5 

MSI 1 

FLUO 3 

VIS 6 

Table 3. Number of latent variables for PLSR and PLSDA models developed for the TVC and 

sensory features prediction of RTE pineapple on The Unscrambler software. 
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Model
Sensory 
Feature 

kNN Ranger 
SVM 
Linear

SVM Radial 
PLSR/ 

PLSDA 

k mtry splitrule 
min.no
de.size 

c sigma c nt 

FT-IR 

TVC 13 963 variance 5 1 0.03 4 7 

Colour 5 7 extratrees 1 1 0.02 1 8 

Odour 23 620 gini 1 1 0.02 128 7 

Texture 9 11 extratrees 1 1 0.01 0.25 7 

MSI 

TVC 17 31 variance 5 1 0.05 2 11 

Colour 23 2 extratrees 1 1 0.05 0.25 5 

Odour 11 26 gini 1 1 0.06 16 14 

Texture 15 2 extratrees 1 1 0.06 0.5 14 

FLUO

TVC 33 122 extratrees 5 1 0.01 8 7 

Colour 9 67 gini 1 1 0.01 0.5 7 

Odour 17 57 gini 1 1 0.01 4 5 

Texture 11 113 gini 1 1 0.01 32 11 

VIS 

TVC 27 94 variance 5 1 0.02 4 6 

Colour 5 2 extratrees 1 1 0.02 0.5 5 

Odour 5 104 gini 1 1 0.02 16 11 

Texture 5 85 gini 1 1 0.02 4 15 

Knn: k=number of neighbours considered,  

Ranger: mtry=number of variables to possibly split at in each node, splitrule=splitting rule,  

min.node.size=minimal node size,  

SVM: c=cost of constraints violation, sigma=scale parameter of the hypothesized (zero-mean) Laplace distribution 

estimated by maximum likelihood 

PLSR/PLSDA: nt=number of components 

Table 4. Tuning parameters used in the development of the different models for the TVC and sensory 

features prediction of RTE pineapple on SorfML software. 
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Sensor 
Sensory 
Feature 

Number 
of Fresh 

Number of  

Non-Acceptable 

Total 
Number 

FT-IR /      
MSI 

Colour  333 91 

424 Odour 147 277 

Texture 314 110 

FLUO /   
VIS 

Colour  314 78 

392 Odour 143 249 

Texture 292 100 

Table S1. Total number of the measured fresh (acceptable) and non-acceptable samples for each 

sensory feature. 
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Sensor 
Sensory 
Feature 

Accuracy (%) Sensitivity (%) Specificity (%) 

FT-IR 

Colour 83.04 97.62 39.29 

Odour 76.79 50.00 84.88 

Texture 72.32 90.00 28.13 

MSI 

Colour 85.71 100 42.86 

Odour 83.04 61.54 89.53 

Texture 72.32 95.00 15.63 

FLUO 

Colour 84.62 93.67 56.00 

Odour 86.54 88.46 85.90 

Texture 70.19 90.54 20.00 

VIS 

Colour 81.73 98.73 28.00 

Odour 83.65 57.69 92.31 

Texture 68.27 90.54 13.33 

Table S2. Performance metrics of the PLSDA models based on  the different analytical platforms 

(sensors), for the sensory features prediction of RTE pineapple on The Unscrambler software. 

Sensor Algorithm 
Sensory 
Feature 

Sensitivity 
(%) 

Specificity 
(%) 

Sensor Algorithm 
Sensory 
Feature 

Sensitivity 
(%) 

Specificity 
(%) 
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FT-IR 

Knn 

Colour 91.15 10.71 

MSI 

Knn 

Colour 95.61 46.43 

Odour 24.00 80.82 Odour 58.00 76.71 

Texture 99.06 10.71 Texture 97.17 21.43 

Ranger 

Colour 92.04 14.29 

Ranger 

Colour 99.12 42.86 

Odour 46.00 72.60 Odour 48.00 87.67 

Texture 93.40 28.57 Texture 97.17 17.86 

SVM 
Linear 

Colour 99.11 28.57 

SVM 
Linear 

Colour 100.00 21.43 

Odour 74.00 73.97 Odour 84.00 86.30 

Texture 99.06 17.86 Texture 93.40 32.14 

SVM 
Radial 

Colour 97.35 10.71 

SVM 
Radial 

Colour 93.86 50.00 

Odour 36.00 75.34 Odour 50.00 80.82 

Texture 100.00 10.71 Texture 98.11 14.29 

PLSDA 

Colour 92.92 39.29 

PLSDA 

Colour 100.00 35.71 

Odour 82.00 75.34 Odour 78.00 82.19 

Texture 96.23 10.71 Texture 91.51 35.71 

FLUO 

Knn 

Colour 98.15 39.13 

VIS 

Knn 

Colour 95.33 34.78 

Odour 83.67 75.00 Odour 57.14 59.38 

Texture 95.00 12.50 Texture 87.88 25.00 

Ranger 

Colour 97.22 39.13 

Ranger 

Colour 96.26 21.74 

Odour 67.35 84.38 Odour 65.31 84.38 

Texture 97.00 29.17 Texture 92.93 25.00 

SVM 
Linear 

Colour 100.00 26.09 

SVM 
Linear 

Colour 95.33 60.87 

Odour 79.59 90.63 Odour 73.47 76.56 

Texture 100.00 8.33 Texture 86.87 33.33 

SVM 
Radial 

Colour 97.22 30.43 

SVM 
Radial 

Colour 97.20 34.78 

Odour 79.59 92.19 Odour 63.27 64.06 

Texture 97.00 29.17 Texture 97.98 12.50 

PLSDA 

Colour 99.07 26.09 

PLSDA 

Colour 98.13 26.09 

Odour 85.71 85.94 Odour 81.63 71.88 

Texture 93.00 33.33 Texture 94.95 33.33 

Table S3. The specificity and sensitivity values of the PLSDA models, derived from the various combinations of  the 

different analytical platforms (sensors) and algorithms, for the sensory features prediction of RTE pineapple on SorfML 

software. The accuracy values are presented in heatmaps.



33 

Figure 1. Workflow of  SorfML. The workflow is divided into five sections with a different colour 

according to which part of the methodology the step belongs to. 
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Figure 2. The linear regression between the predicted and the measured by the PLSR model TVC 

values of prediction based on A)  FTIR, B) MSI, C) FLUO, D) VIS data for RTE pineapple, using 

The Unscrambler software (solid line: the ideal y=x line; dashed lines: the ± 1 log unit area). 

A 

C D 

B 
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A   i) A   ii) 

B   i) B   ii) 

C   i) C   ii) 

D   i) D   ii) 
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Figure 3. The linear regression between the predicted and the measured by i) SVM Linear and ii) 

PLSR models  TVC values of prediction based on A) FTIR, B) MSI, C) FLUO, D) VIS data for RTE 

pineapple, using SorfML  software (solid line: the ideal y=x line; dashed lines: the ± 1 log unit area).  

Figure 4. Performance heatmap of the different models developed for each analytical platform 

for the TVC prediction of RTE pineapple. In each heatmap, the rows belong to the five different 

algorithms, while the columns are the four different analytical platforms. The RMSE (log CFU/g) and 

NRMSE (%) values are presented. The colour key depicts the extreme intensity for the extreme values. 

The colour key begins from green (higher performance) to red (lower performance). 
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Figure S1. Performance heatmaps of the different models developed for each analytical platform for the  

A) Colour, B) Odour and C) Texture prediction of RTE pineapple. In each heatmap, the rows belong to the 

five different algorithms, while the columns are the four different analytical platforms. The accuracy (%) values 

are  presented for the sensory features. The colour key depicts the extreme intensity for the extreme values. The 

colour key begins from red (lower performance) to green (higher performance). 

A B A B 
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