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Abstract Two higher order time stepping methods for solving subdiffusion
problems are studied in this paper. The Caputo time fractional derivatives are
approximated by using the weighted and shifted Grünwald-Letnikov formu-
lae introduced in Tian et al. [Math. Comp. 84 (2015), pp. 2703-2727]. After
correcting a few starting steps, the proposed time stepping methods have the
optimal convergence orders O(k2) and O(k3), respectively for any fixed time
t for both smooth and nonsmooth data. The error estimates are proved by
directly bounding the approximation errors of the kernel functions. Moreover,
we also present briefly the applicabilities of our time stepping schemes to var-
ious other fractional evolution equations. Finally, some numerical examples
are given to show that the numerical results are consistent with the proven
theoretical results.
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1 Introduction

Two higher order time stepping methods based on the weighted and shifted
Grünwald-Letnikov formulae in Tian et al. [34] are introduced and analyzed
for the following subdiffusion problem, with 0 < α < 1,

C
0 D

α
t u(t) +Au(t) = f(t), for 0 < t ≤ T with u(0) = u0, (1)

where A = −∆ and ∆ denotes the Laplacian defined on a regular domain
Ω ⊂ Rd, d = 1, 2, 3 with smooth boundary ∂Ω and D(A) = H1

0 (Ω) ∩H2(Ω).
Here the initial value u0 ∈ L2(Ω) and the smoothness of the source term
f is described in Theorems 1, 2 in Sections 2 and 3, respectively. The time
fractional derivative C

0 D
α
t u(t), 0 < α < 1 is defined in the sense of Caputo,

see, e.g., Diethelm [9],

C
0 D

α
t u(t) =

1

Γ (1− α)

∫ t

0

(t− s)−αut(s) ds.

More generally the operator A in (1) could be any linear, selfadjoint, positive
definite operator with compact inverse, defined in D(A) ⊂ L2(Ω), and satisfies
the following resolvent estimates, with π/2 < θ0 < π, see, e.g., Lubich et al.
[22] and Thomée [33],

‖(zI +A)−1‖ ≤ C|z|−1 for z ∈ Σθ0 = {z 6= 0 : |arg z| < θ0}. (2)

It is easy to see that for any z ∈ Σθ with θ ∈ (π/2, θ0), we have zα ∈ Σθ0
since, with 0 < α < 1,

| arg(zα)| = |α arg(z)| < αθ < θ < θ0,

which implies that, by (2), see, e.g., Jin et al. [13, (2.3)],

‖(zαI +A)−1‖ ≤ C|z|−α, ∀ z ∈ Σθ = {z 6= 0 : |arg z| < θ}. (3)

In Sections 2 and 3, with some suitable approximation zk of z, we shall
choose θ ∈ (π/2, θ0) sufficiently close to π/2 such that zαk ∈ Σθ0 which guar-
antees that (zαk I +A)−1 exists.

Recently, Meerschaert et al. [27] and Tian et al. [34] introduced the weighted
and shifted Grünwald-Letnikov difference operators to approximate the Riemann-
Liouville fractional derivative and applied such difference operators to solve
space fractional partial differential equations under the assumptions that the
solution is sufficiently smooth and satisfies the homogeneous boundary con-
ditions. To our knowledge, we have not seen any works in literature to apply
such weighted and shifted Grünwald-Letnikov difference operator to construct
higher order time discretization schemes for solving the subdiffusion equation
(1). One of the possible reasons for lacking such works may be that the solu-
tion of (1) is not sufficiently smooth and it has the singularity near t = 0. For
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example, in the homogeneous case of (1) with f = 0, one has the following
stability estimate, [29], with ‖ · ‖ the norm in L2(Ω),

‖C0 Dα
t u‖ ≤ Ct−α‖u0‖, (4)

which shows that the α-th order Caputo derivative of the solution of (1) be-
comes unbounded as t → 0. Hence, the C2-regularity assumption, generally,
does not hold for the exact solution of (1). Numerical experiments indicate
that the convergence orders of some numerical methods for solving (1) actually
do not hold uniformly in t even for the smooth data u0, see, e.g., Jin et al. [14],
Stynes et al.[32] and Stynes [31]. Therefore, an attempt has been made in this
paper to consider the higher order time discretization schemes for (1), based
on the weighted and shifted Grünwald-Letnikov schemes developed in Tian
et al. [34] and prove the optimal convergence orders of the proposed schemes
with both smooth and nonsmooth data.

There are several approaches to improve the convergence orders of the nu-
merical methods for solving (1), when the solution is not sufficiently smooth.
One approach is to correct some weights of the numerical methods in order
to capture the singularity of the solution. This idea was first introduced by
Lubich et al. [22] for second order time stepping scheme applied to an evo-
lution equation with positive memory term. After correcting some weights of
the numerical methods, Lubich et al. [22] proved optimal convergence of the
corrected numerical method for both smooth and nonsmooth data. Jin et al.
[16] derived some higher order numerical methods in time for the problem (1),
where the fractional derivatives are approximated by using the convolution
quadrature generated by using the backward difference formulae. By correct-
ing some starting steps of the numerical methods, Jin et al. [16] established
that the corrected numerical methods have optimal order of convergence for
any fixed time t for both smooth and nonsmooth data, see also [13], [15]. Subse-
quently, Yan et al. [36] corrected the starting steps of the L1 scheme for solving
(1) and proved that the modified L1 scheme has the optimal convergence order
O(k2−α), 0 < α < 1. More recently, Xing and Yan [35] analyzed a numerical
method for solving (1), where the Caputo fractional derivative is expressed by
using the Hadamard finite-part integral which is then approximated by using
the quadratic interpolation polynomials. After correcting some starting steps
and some weights of the high-order numerical methods, Xing and Yan [35]
derived the optimal convergence order O(k3−α), 0 < α < 1 of the corrected
numerical methods for both smooth and nonsmooth data. For the recent de-
velopment of the corrections of numerical methods for (1), we refer the readers
to the survey paper [11], see also [37]. For other numerical methods for solving
time fractional diffusion equation, we refer to [14], [5], [6], [7], [8], [10], [20],
[17], [2], [21], [24], [26], [28], [18], [19], [30], [38], [39], [40], etc.

The aim of this paper is to prove that the proposed numerical methods
have the optimal convergence orders O(k2) and O(k3), respectively, by cor-
recting a few starting steps of the numerical methods for both smooth and
nonsmooth datas. Compared to other higher order time stepping methods in
the literature for solving time diffusion problem (1), the proposed methods
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have two advantages: (i) The weights of our numerical methods are much sim-
pler than those obtained by approximating the fractional derivative with the
quadratic interpolating polynomials, see, e.g., in Xing and Yan [35] and fur-
ther, these weights have a special structure as mentioned in Tian et al. [34],
which may be useful for constructing some fast algorithms and also for proving
their stability and error analyses; (ii) The weights of the proposed numerical
schemes are related not only to the order of the fractional derivative, but also
to the shifted numbers, which imply that our methods are more related to the
equation itself, see, e.g., Tian et al. [34].

The main contributions of this paper are as follows.

1. Based on the weighted and shifted Grünwald -Letnikov schemes proposed
in Tian et al. [34], two new corrected higher order time discretization meth-
ods are introduced and the convergence orders are shown to be of O(k2)
and O(k3), respectively for both smooth and nonsmooth data.

2. The error estimates of the corrected numerical methods are proved in both
homogeneous and inhomogeneous cases.

3. With the help of Laplace transform techniques, it is shown that the error
estimates are even suitable for more general elliptic operator A, which
satisfies the resolvent estimate (2).

The paper is organized as follows. In Section 2, we consider the error es-
timates of the time discretization scheme for (1) with the convergence order
O(k2) for both smooth and nonsmooth data. In Section 3, we derive the error
estimates of the time discretization scheme with the convergence order O(k3)
again for both smooth and nonsmooth data. Finally in Section 4, numerical
examples are presented to show that numerical results are consistent with the
theoretical results.

By C, we denote a positive constant independent of discretization param-
eter k, but not necessarily the same at different occurrences.

2 Second order time stepping scheme

In this section, we analyze a second order time discretization scheme for ap-
proximating the solution of the problem (1). After correcting some starting
steps of the scheme, the optimal order of convergence is derived for the prob-
lem with both smooth and nonsmooth data.

Based on Tian et al. [34], we shall introduce a scheme to approximate the
Riemann-Liouville fractional derivative R

0 D
α
t φ(t). Let 0 = t0 < t1 < · · · <

tN = T be a time partition of [0, T ] and k be the step size. We define the
following numerical scheme to approximate R

0 D
α
t φ(t) at t = tn, n ≥ 1

R
0 D

α
t φ(tn) ≈ LD

α
k,p,qφ(tn) :=

α− 2q

2(p− q)
Bαk,pφ(tn) +

2p− α
2(p− q)

Bαk,qφ(tn), (5)

where

Bαk,pφ(tn) = k−α
n+p∑
j=0

g
(α)
j φ(tn−j+p). (6)
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Here g
(α)
j , j = 0, 1, 2, · · · , are generated by the generating function δ1(ζ) =

(1− ζ), that is,

(δ1(ζ))α = (1− ζ)α =

∞∑
j=0

g
(α)
j ζn with g

(α)
j = (−1)j

(
α
j

)
. (7)

When p = 0, q = −1 or q = 0, p = −1, the equation (5) leads to

LD
α
k,p,qφ(tn) = k−α

n∑
j=0

w
(α)
n−jφ(tj), (8)

where

w
(α)
0 =

α+ 2

2
g
(α)
0 , w

(α)
j =

α+ 2

2
g
(α)
j − α

2
g
(α)
j−1, j = 1, 2, · · · , n. (9)

In Table 1, we show the differences numerically between the weights gener-
ated by (9) and by BDF2, i.e., backward difference formula with convergence

order 2, in Jin et al. [16] with n = 5. Here w
(α)
j and b

(α)
j , 0 < α < 1, j =

0, 1, 2, . . . , n denote the weights generated by (9) and by BDF2, respectively
with respect to the different 0 < α < 1.

j 1 2 3 4 5 6

b
(0.2)
j 1.0845 -0.2892 -0.0819 -0.0463 -0.0323 -0.0247

w
(0.2)
j 1.1000 -0.3200 -0.0680 -0.0448 -0.0322 -0.0247

b
(0.4)
j 1.1761 -0.6272 -0.0941 -0.0530 -0.0365 -0.0273

w
(0.4)
j 1.2000 -0.6800 -0.0640 -0.0528 -0.0371 -0.0276

b
(0.6)
j 1.2754 -1.0203 -0.0170 -0.0333 -0.0255 -0.0191

w
(0.6)
j 1.3000 -1.0800 0.0240 -0.0368 -0.0269 -0.0196

b
(0.8)
j 1.3832 -1.4754 0.1721 -0.0066 -0.0105 -0.0084

w
(0.8)
j 1.4000 -1.5200 0.2080 -0.0128 -0.0118 -0.0087

Table 1 Comparison of the weights generated by (9) and BDF2 with n = 5

The corresponding generating function δ(ζ) of the weights w
(α)
j , j = 0, 1, 2, . . .

in (9) satisfies

(δ(ζ))α =

∞∑
j=0

w
(α)
j ζj =

α+ 2

2
g
(α)
0 +

(α+ 2

2
g
(α)
1 − α

2
g
(α)
0

)
ζ

+
(α+ 2

2
g
(α)
2 − α

2
g
(α)
1

)
ζ2 +

(α+ 2

2
g
(α)
3 − α

2
g
(α)
2

)
ζ3 + · · ·

=
α+ 2

2

(
g
(α)
0 + g

(α)
1 ζ + · · ·+ g(α)n ζn

)
− α

2
ζ
(
g
(α)
0 + g

(α)
1 ζ + · · ·+ g(α)n ζn

)
=
(α+ 2

2
− α

2
ζ
)

(1− ζ)α. (10)
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As in Lubich et al. [22], we denote the discrete Laplace transform of the se-

quence w
(α)
j , j = 0, 1, 2, . . . by w̃(ζ) =

∑∞
j=0 w

(α)
j ζj . We then have, by (10),

w̃(ζ) =

∞∑
j=0

w
(α)
j ζj = δ(ζ)α =

(α+ 2

2
− α

2
ζ
)

(1− ζ)α. (11)

The following lemma gives the series expansion of w̃(ζ) in (11) in terms of
(1− ζ), see, the similar argument used in [16, (16)].

Lemma 1 Let w̃(ζ) be defined by (11). Then, the following expansion holds:

w̃(ζ)1/α =
(

1 +
1

2
(1− ζ) +

1− α
8

(1− ζ)2 + . . .
)

(1− ζ) as ζ → 1.

Proof From (10), we observe that

w̃(ζ)1/α =
(α+ 2

2
− α

2
ζ
)1/α

(1− ζ)

=
(

1 +
1

2
(1− ζ) +

1− α
8

(1− ζ)2 + . . .
)

(1− ζ) as ζ → 1, (12)

where we have used the following binomial expansion, with β ∈ R,

(1 + z)β = 1 + βz +
β(β + 1)

2
z2 + . . . , as z → 0. (13)

This completes the proof of the Lemma 1.

We now introduce a fully discrete scheme for solving (1). Let Th denote a
triangulation of Ω with h the maximal length of the sides on Th. Let Sh ⊂
H1

0 (Ω) denote the piecewise continuous linear finite element space.
For any fixed t ∈ (0, T ], the finite element method of (1) is to find uh(t) ∈

Sh such that

C
0 D

α
t uh(t) +Ahuh(t) = fh(t), for 0 < t ≤ T withuh(0) = u0h, (14)

where Ah : Sh → Sh denotes the discrete analogue of A defined with some
suitable bilinear form a(·, ·) defined on H1

0 (Ω) × H1
0 (Ω) associated with the

operator A, by
(Ahuh, χ) = a(uh, χ), ∀χ ∈ Sh,

and fh = Phf , where Ph : L2(Ω)→ Sh denotes the L2 project operator given
by

(Phv, χ) = (v, χ), ∀χ ∈ Sh.

Here u0h ∈ Sh denotes some approximation of u0 ∈ L2(Ω). When u0 is nons-
mooth, we choose u0h = Phu0 and when u0 is smooth, that is u0 ∈ D(A), we
may choose u0h = Rhu0, where Rh : H1

0 (Ω)→ Sh denotes the Ritz projection
or elliptic projection defined by

a(Rhv, χ) = a(v, χ), ∀χ ∈ Sh.
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Let Vh(t) = uh(t)− u0h. Then, the equation (14) is equivalent to

C
0 D

α
t Vh(t) +AhVh(t) = fh(t)−Ahu0h with Vh(0) = 0. (15)

Since C
0 D

α
t Vh(t) = R

0 D
α
t (Vh(t)− Vh(0)), 0 < α < 1, now (15) is rewritten as

R
0 D

α
t Vh(t) +AhVh(t) = fh(t)−Ahu0h with Vh(0) = 0. (16)

An application of Taylor’s expansion as in Jin et al. [15] yields

fh(t) = fh(0) +Rh(t), Rh(t) = tf ′h(0) +
(
t ∗ f ′′h

)
(t),

where g ∗ h denotes the convolution of g and h.

By the Laplace transform method, we obtain, with ĝ(z) denoting the
Laplace transform of g(t),

zαV̂ (z) +AhV̂h(z) = (fh(0)−Ahu0h)z−1 + R̂h(z).

A use of the inverse Laplace transform shows at t = tn

Vh(tn) =
1

2πi

∫
Γ

ezt(zα +Ah)−1z−1(fh(0)−Ahu0h) dz

+
1

2πi

∫
Γ

ezt(zα +Ah)−1R̂h(z) dz, (17)

where Γ is defined by, see, e.g., Lubich et al. [22], with some θ ∈ (π/2, θ0),

Γ = Γθ := {z ∈ C : | arg z| = θ}. (18)

Now we shall consider the time discretization scheme of (1). To improve
the accuracy near t = 0, we follow the approach in Lubich et al. [22] to correct
the values of the first step in the time discretization.

Let V n ≈ Vh(tn) be the approximation of Vh(tn). We define the following
time discretization scheme for approximating (1)

k−α
n∑
j=0

w
(α)
n−jV

j +AhV
n = an(fh(0)−Ahu0h) +Rh(tn) with V 0 = 0, (19)

where, with c0 = 1/2,

an =

{
1 + c0, n = 1,

1, n ≥ 2.

Applying the discrete Laplace transform in both sides of (19), we obtain

∞∑
n=1

(
k−α

n∑
j=1

w
(α)
n−jV

j
)
ζn +

∞∑
n=1

(AhV
n)ζn

=
( ζ

1− ζ
+ c0ζ

)
(fh(0)−Ahu0h) +

∞∑
n=1

Rh(tn)ζn. (20)
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It is easy to see with Ṽ (ζ) =
∑∞
j=0 V

jζj

∞∑
n=1

( n∑
j=1

w
(α)
n−jV

j
)
ζn =

( ∞∑
j=0

w
(α)
j ζj

)
(V 1ζ + V 2ζ2 + · · · ) = w̃(ζ)Ṽ (ζ),

which implies by (20) that

Ṽ (ζ) = (k−αw̃(ζ) +Ah)−1
(( ζ

1− ζ
+ c0ζ

)
(fh(0)−Ahu0h) +

∞∑
n=1

Rh(tn)ζn
)
.

Further, with w̃(ζ) given in (11), we set

zk = k−1w̃(ζ)
1
α , (21)

and

µ(ζ) = kzk

( ζ

1− ζ
+ c0ζ

)
= w̃(ζ)

1
α

( ζ

1− ζ
+ c0ζ

)
. (22)

By the inverse discrete Laplace transform, it follows for n ≥ 1 and using the
variable change ζ = e−zk that

V n =
1

2πi

∫
|ζ|=ρ

ζ−n−1Ṽ (ζ)dζ =
k

2πi

∫
Γk

eztn Ṽ (e−zk) dz

=
1

2πi

∫
Γk

eztn(zαk +Ah)−1z−1k µ(ζ)
(
fh(0)−Ahu0h

)
dz

+
1

2πi

∫
Γk

eztn(zαk +Ah)−1k
( ∞∑
n=1

Rh(tn)ζn
)
dz, (23)

where, see Lubich et al. [22], with Γ defined in (18),

Γk = {z ∈ Γ : |=z| ≤ π/k}. (24)

Below, we state our main result in this section whose proof will be provided
subsequently.

Theorem 1 Let Vh(tn) and V n be defined in (17) and (23), respectively. As-

sume that u0 ∈ L2(Ω) and f ∈ C1([0, T ];L2(Ω)) and
∫ tn
0

(tn−s)α−1‖f ′′(s)‖ ds <
∞ for tn ∈ (0, T ]. Then, there is a positive constant C, independent of k, such
that for 0 < α < 1

‖Vh(tn)− V n‖ ≤ Ck2
(
t−2n ‖u0‖+ tα−2n ‖f(0)‖

+ tα−1n ‖f ′(0)‖+

∫ tn

0

(tn − s)α−1‖f ′′(s)‖ ds
)
.

To prove Theorem 1, the following two lemmas will be useful.
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Lemma 2 Let zk and µ(ζ) with ζ = e−zk be defined by(21) and (22), respec-
tively. Assume that

K1(z) = z−1(zα +Ah)−1Ah, K2(z) = z−1(zα +Ah)−1. (25)

Then with Γk defined by (24), the following estimates hold:

|µ(e−zk)− 1| ≤ C|zk|2, z ∈ Γk, (26)

C|z| ≤ |zk| ≤ C|z|, z ∈ Γk, (27)∥∥µ(ζ)K1(zk)−K1(z)
∥∥ ≤ Ck2|z|, z ∈ Γk, (28)∥∥µ(ζ)K2(zk)−K2(z)
∥∥ ≤ Ck2|z|1−α, z ∈ Γk. (29)

Proof We first show (26). Now, zk is uniformly bounded for any z ∈ Γk since,
with θ ∈ (π/2, θ0),

|zk| = |z|k =
|=z|
sin θ

k ≤
π
k

sin θ
k =

π

sin θ
= const., for z ∈ Γk.

Further we note that, by (22) and Lemma 1 with c0 = 1/2,

µ(ζ)− 1 = w̃(z)1/α
( ζ

1− ζ
+ c0ζ

)
− 1

=
(

1 +
1

2
(1− ζ) +

1− α
8

(1− ζ)2 + . . .
)

(1− ζ)
( ζ

1− ζ
+ c0ζ

)
− 1

=
(

1 +
1

2
(1− ζ) +

1− α
8

(1− ζ)2 + . . .
)(
ζ + c0ζ(1− ζ)

)
− 1

=
(

1 +
1

2
(1− ζ) +

1− α
8

(1− ζ)2 + . . .
)(

1 + (c0 − 1)(1− ζ)− c0(1− ζ)2
)
− 1

= O
(
(1− ζ)2

)
as ζ → 1,

and this implies that

µ(e−zk)− 1 = O
(
(1− e−zk)2

)
= O

(
(zk)2

)
as zk → 0.

Hence, there exists δ0 > 0 with 0 < δ0 ≤ π
sin θ such that (26) holds for

0 ≤ |zk| ≤ δ0, z ∈ Γk.
For large zk with δ0 ≤ |zk| ≤ π

sin θ , we now note by (22) that

µ(ζ)− 1 = w̃(ζ)
1
α

( ζ

1− ζ
+ c0ζ

)
=
(α+ 2

2
− α

2

) 1
α

(1− ζ)
( ζ

1− ζ
+ c0ζ

)
.

This is continuous at any ζ 6= 1, which implies that µ(e−zk)− 1 is continuous
at any z 6= 0. Since every continuous function is bounded on the closed and
bounded domain, therefore, µ(e−zk)−1 is bounded on δ0 ≤ |zk| ≤ π

sin θ , z ∈ Γk.
Then,

|µ(e−zk)− 1| ≤ C = Cδ−20 δ20 ≤ Cδ−20 |zk|2 ≤ C|zk|2. (30)

Hence, (26) also holds for δ0 ≤ |zk| ≤ π
sin θ , z ∈ Γk which completes the

estimate (26).
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In order to prove the estimate (27), it suffices to show | zzk | is bounded for

any z ∈ Γk. Now, a use of (21) yields

|z|
|zk|

=
|zk|

|w̃(e−zk)
1
α |
, z ∈ Γk.

To show | zzk | is bounded for any z ∈ Γk, we consider two cases: one for the
small zk and the other for the large zk.

For the small zk, observe that

lim
x→0

x

w̃(e−x)
1
α

= lim
x→0

x

(
∑∞
j=0 w

(α)
j (e−x)j)

1
α

= lim
x→0

x

(xα + d1x2+α + d2x3+α + . . . )
1
α

= lim
x→0

1

(1 + d1x2 + . . . )
1
α

= 1,

which implies that |z||zk| is bounded for 0 ≤ |zk| ≤ δ0, z ∈ Γk with some suitable

δ0 > 0, 0 < δ0 ≤ π
sin θ .

For the large zk, we note that |z||zk| is continuous at any w = zk 6= 0, z ∈ Γk
which implies the boundedness of |z||zk| for large |zk| with δ0 ≤ |zk| ≤ π

sin θ , z ∈
Γk. Thus, we complete the estimate (27). Similarly, it is easy to show that | zkz |
is also bounded for any z ∈ Γk.

For (28), we first observe with ζ = e−zk that

zk − z =

(∑∞
j=0 w

(α)
j (e−zk)j

) 1
α − zk

k
=

(zk)(1 + d1(zk)2 + . . . )
1
α − zk

k

=
(zk)(1 + d1

α (zk)2 + . . . )− zk
k

= k−1O
(
(zk)3

)
, as zk → 0.

This implies that there exists 0 < δ0 ≤ π
sin θ such that

|zk − z| ≤ Ck2|z3|, for 0 ≤ |zk| ≤ δ0, z ∈ Γk.

For large |zk| with δ0 ≤ |zk| ≤ π
sin θ , z ∈ Γk, an application of (27) shows

|zk − z| ≤ |zk|+ |z| ≤ C|z| ≤ C(k2|z|3)
1

|zk|2
≤ C(k2|z|3)

1

δ20
≤ C(k2|z|3).

Hence,

|zk − z| ≤ C(k2|z|3), for z ∈ Γk. (31)

Following the idea of the proof in Lubich et al. [22, (4.6)] and noting that
‖K ′1(z)‖ ≤ C|z|−2 in [22, (3.12)], we obtain by mean value theorem and using
(31),

‖K1(zk)−K1(z)‖ ≤ C|z|−2k2|z|3 ≤ Ck2|z|, for z ∈ Γk. (32)
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As in the proof of [36, Lemma 3.12], and noting that |K1(zk)| ≤ C|zk|−1 ≤
C|z|−1, z ∈ Γk, we now arrive by (32) and (26) at∥∥µ(ζ)K1(zk)−K1(z)

∥∥ ≤ ∥∥(µ(ζ)− 1
)
K1(zk)

∥∥+
∥∥K1(zk)−K1(z)

∥∥
≤ C|zk|2|z|−1 + Ck2|z| ≤ Ck2|z|, z ∈ Γk,

which completes the proof of (28).
Finally in order to estimate (29), a use of the mean value theorem, (31)

with K2(z) = z−1(zα +Ah)−1 and ‖K ′2(z)‖ ≤ C|z|−2−α yields

‖K2(zk)−K2(z)‖ ≤ C|z|−2−αk2|z|3 ≤ Ck2|z|1−α, z ∈ Γk. (33)

Further, noting that |K2(zk)| ≤ C|zk|−1−α ≤ C|z|−1−α, z ∈ Γk, we obtain, by
(33) and (26),∥∥µ(ζ)K2(zk)−K2(z)

∥∥ ≤ ∥∥(µ(ζ)− 1
)
K2(zk)

∥∥+
∥∥K2(zk)−K2(z)

∥∥
≤ |zk|2C|z|−1−α + Ck2|z|1−α ≤ Ck2|z|1−α, z ∈ Γk,

which shows (29).
Altogether, it concludes the proof of the Lemma 2.

In the following lemma, with zk defined in (21), we claim that zαk ∈ Σθ0
for some θ0 ∈ (π2 , π).

Lemma 3 Let θ > π/2 be sufficiently close to π/2. Let zk be defined by (21).
Then we have, for some θ0 ∈ (π/2, π), with Γk defined by (24),

zαk ∈ Σθ0 , for z ∈ Γk. (34)

Proof By the definition of zk in (21) and the expression of w̃(ζ) in Lemma 1,
we obtain

zαk = k−α
(α+ 2

2
− α

2
ζ
)

(1− ζ)α = k−α
(α

2
(1− ζ)α+1 + (1− ζ)α

)
. (35)

It suffices to show that both α
2 (1− ζ)α+1 and (1− ζ)α lie in Σθ0 for all z ∈ Γk.

Recall that z ∈ Γk satisfies =(zk) ∈ (0, π] and arg(z) = θ with θ > π
2 . Note

that zαk depends on z continuously [13, proof of Lemma 3.6]. It suffices to
consider the case for z with arg(z) = π

2 and =(zk) ∈ (0, π]. In other words,
suppose that we can prove α

2 (1 − ζ)α+1 ∈ Σθ0 for all z with arg(z) = π
2 and

=(zk) ∈ (0, π], then since zk depends on z continuously, there exist θ0 ∈ (0, π)
such that α

2 (1 − ζ)α+1 ∈ Σθ0 . Note that arg(z) = π
2 with =(zk) ∈ (0, π]

implies that ζ = e−zk = e−iϕ, ϕ ∈ (0, π]. We next show α
2 (1 − ζ)α+1 ∈ Σθ0

and (1− ζ)α ∈ Σθ0 for ζ = e−iϕ, ϕ ∈ (0, π]. Write

1− ζ = 1− e−iϕ = 1− cosϕ+ i sinϕ,

then, 0 < <(1 − ζ) = 1 − cosϕ < 1 and 0 < =(1 − ζ) = sinϕ < 1 for
ϕ ∈ (0, π]. Thus, we arrive at arg α

2 (1 − ζ)α+1 ∈ (0, π) with 0 < α < 1 and
arg(1− ζ)α ∈ (0, π2 ) with 0 < α < 1. Then, there exists θ0 ∈ (π2 , π) such that
zαk ∈ Σθ0 and this completes the proof.
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Remark 1 In Jin et al. [13, Lemma 3.7], the authors have proved that for all
−π ≤ θ < π, there exists θ0 ∈ (π/2, π) such that zαk ∈ Σθ0 for all z ∈ Σθ.
Actually in our analysis, we only need to show zαk ∈ Σθ0 for all z ∈ Γk for
some θ > π/2 sufficiently close to π/2.

Lemma 4 Let zk be defined as in (21), then, there is a positive constant C
independent of k such that∥∥∥(zα +Ah)−1z−2 − (zαk +Ah)−1

(
k

∞∑
n=1

tnζ
n
)∥∥∥ ≤ Ck2|z|−α.

Proof Apply Lemmas 2, 3 to arrive at∥∥∥(zα +Ah)−1z−2 − (zαk +Ah)−1
(
k

∞∑
n=1

tnζ
n
)∥∥∥

≤ ‖(zα +Ah)−1z−2 − (zαk +Ah)−1z−2k ‖+
∥∥∥(zαk +Ah)−1z−2k

(
1− z2kk

∞∑
n=1

tnζ
n
)∥∥∥.

≤ C
(∥∥(zα +Ah)−2zα−3

∥∥+
∥∥(zα +Ah)−1z−3

∥∥)‖zk − z‖
+
∥∥(zαk +Ah)−1

∥∥ |zk|−2 ∣∣∣1− w̃(ζ)
2
α

ζ

(1− ζ)2

∣∣∣
≤ Ck2|z|−α.

This completes the rest of the proof.

Now we turn to the proof of Theorem 1.

Proof (Proof of Theorem 1) Subtracting (17) from (23), we arrive at

Vh(tn)− V n = I1 + I2,

where, with K2(z) defined by (25),

I1 =
1

2πi

∫
Γ/Γk

eztn(zα +Ah)−1z−1(fh(0)−Ahu0h) dz

+
1

2πi

∫
Γk

eztn
(
K2(z)− µ(e−zk)K2(zk)

)
(fh(0)−Ahu0h) dz

=I11 + I12,

I2 =
1

2πi

∫
Γ

eztn(zα +Ah)−1R̂h(z) dz

− 1

2πi

∫
Γk

eztn(zαk +Ah)−1
(
k

∞∑
n=1

Rh(tn)ζn
)
dz = I21 + I22.

For I1, apply the bound ‖(zα +Ah)−1Ah‖ ≤ C, (3), (28) and (29) to obtain

‖I1‖ ≤ Ck2t−2n ‖u0h‖+ Ck2tα−2n ‖fh(0)‖.
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For I2, we note that

I21 =
1

2πi

∫
Γ

eztn(zα +Ah)−1R̂1
h(z) dz

− 1

2πi

∫
Γk

eztn(zαk +Ah)−1
(
k

∞∑
n=1

R1
h(tn)ζn

)
dz,

I22 =
1

2πi

∫
Γ

eztn(zα +Ah)−1R̂2
h(z) dz

− 1

2πi

∫
Γk

eztn(zαk +Ah)−1
(
k

∞∑
n=1

R2
h(tn)ζn

)
dz,

where

Rh(t) = tf ′h(0) +
(
t ∗ f ′′h

)
(t) =: R1

h(t) +R2
h(t).

For I21, we easily bound it as

‖I21‖ =
∥∥∥ 1

2πi

∫
Γ

eztn(zα +Ah)−1z−2 dzf ′h(0)

− 1

2πi

∫
Γk

eztn(zαk +Ah)−1
(
k

∞∑
n=1

R1
h(tn)ζn

)
dz
∥∥∥

=
∥∥∥ 1

2πi

∫
Γ/Γk

eztn(zα +Ah)−1z−2 dzf ′h(0)

− 1

2πi

∫
Γk

eztn
(

(zα +Ah)−1z−2 − (zαk +Ah)−1
(
k

∞∑
n=1

tnζ
n
))

dzf ′h(0)
∥∥∥.

An application of Lemma 4 yields

‖I21‖ ≤ Ck2tα−1n ‖f ′h(0)‖. (36)

For I22, following the arguments as in Jin et al. [13], [15], we arrive at

‖I22‖ ≤ Ck2
∫ tn

0

(tn − s)α−1‖f ′′h (s)‖ ds.

Together these estimates complete the proof of Theorem 1.

3 Third order time discretization method

In this section, we introduce a third order time discretization scheme for solving
(1) based on the weighted and shifted Grünwald-Letnikov difference operator
introduced in Tian et al. [34].

Let us define the following weighted and shifted Grünwald-Letnikov dif-
ference operator LD

α
k,p,q,r to approximate the Riemann-Liouville fractional

derivative operator R
0 D

α
t by
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R
0 D

α
t φ(t) ≈ LD

α
k,p,q,rφ(t) := λ1B

α
k,pu(t) + λ2B

α
k,qφ(t) + λ3B

α
k,rφ(t), (37)

where p, q, r are integers and mutually nonequal, and Bαk,pφ(tn) are defined by
(6) and

λ1 =
12qr − (6q + 6r + 1)α+ 3α2

12(qr − pq − pr + p2)
,

λ2 =
12pr − (6p+ 6r + 1)α+ 3α2

12(pr − pq − qr + q2)
,

λ3 =
12pq − (6p+ 6q + 1)α+ 3α2

12(pq − pr − qr + r2)
.

When p = 0, q = −1, r = −2, we obtain

λ1 =
24 + 17α+ 3α2

24
, λ2 =

−22α− 6α2

24
, λ3 =

5α+ 3α2

24
, (38)

and we then arrive for n ≥ 2 at

0D
α
t φ(tn) ≈ LD

α
k,p,q,rφ(tn) := λ1B

α
k,0φ(tn) + λ2B

α
k,−1φ(tn) + λ3B

α
k,−2φ(tn).

(39)
Thus, we obtain

LD
α
k,p,q,rφ(tn) =λ1k

−α
n∑
j=0

g
(α)
j φ(tn−j) + λ2k

−α
n−1∑
j=0

g
(α)
j φ(tn−j−1)

+ λ3k
−α

n−2∑
j=0

g
(α)
j φ(tn−j−2)

=k−αλ1g
(α)
0 φ(tn) + k−α(λ1g

(α)
1 + λ2g

(α)
0 )φ(tn−1)

+ k−α(λ1g
(α)
2 + λ2g

(α)
1 + λ3g

(α)
0 )φ(tn−2)

+ k−α(λ1g
(α)
3 + λ2g

(α)
2 + λ3g

(α)
1 )φ(tn−3) + · · ·

=k−α
n∑
j=0

w
(α)
n−jφ(tj), (40)

where

w
(α)
j =


λ1g

(α)
0 , j = 0,

λ1g
(α)
1 + λ2g

(α)
0 , j = 1,

λ1g
(α)
j + λ2g

(α)
j−1 + λ3g

(α)
j−2, j = 2, 3, · · · , n.

The discrete Laplace transform of w
(α)
j , j = 0, 1, 2, . . . is given by

w̃(ζ) =

∞∑
j=0

w
(α)
j ζj = λ1g

(α)
0 +

(
λ1g

(α)
1 + λ2g

(α)
0

)
ζ

+
(
λ1g

(α)
2 + λ2g

(α)
1 + λ3g

(α)
0

)
ζ2 +

(
λ1g

(α)
3 + λ2g

(α)
2 + λ3g

(α)
0

)
ζ3 + · · ·

= (λ1 + λ2ζ + λ3ζ
2)(1− ζ)α. (41)
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Below, following the idea in Lemma 1, we consider the series expansion of
the function w̃(ζ) in (41).

Lemma 5 Let w̃(ζ) be defined by (41). Then,

w̃(ζ)1/α =
(

1− λ2 + 2λ3
α

(1− ζ) + . . .
)

(1− ζ) as ζ → 1. (42)

Proof From (41), the binomial expansion (13) and λ1 + λ2 + λ3 = 1, it now
follows that

w̃(ζ)1/α =
(
λ1 + λ2ζ + λ3ζ

2
)1/α

(1− ζ)

=
(

1− (λ2 + 2λ3)(1− ζ) + λ3(1− ζ)2
)1/α

(1− ζ)

=
{

1 +
1

α

(
− (λ2 + 2λ3)(1− ζ) + λ3(1− ζ)2

)
+

1
α ( 1

α − 1)

2

(
− (λ2 + 2λ3)(1− ζ) + λ3(1− ζ)2

)2
+ . . .

}
(1− ζ)

=
(

1− λ2 + 2λ3
α

(1− ζ) + . . .
)

(1− ζ) as ζ → 1. (43)

This concludes the rest of the proof.

Next, we turn to the solution of (16) when fh(t) is written as

fh(t) = fh(0) + f ′h(0)t+Rh(t), Rh(t) =
t2

2!
f ′′h (0) + (

t2

2!
∗ f ′′′h )(t), (44)

where g ∗ h denotes the convolution of g and h.

An application of the Laplace transform to (16) with respect to the time
variable t yields

V̂h(t) = (zα +Ah)−1
(
(fh(0)−Ahu0h)z−1 + f ′h(0)z−2 + R̂h(z)

)
. (45)

By the inverse Laplace transform, the solution of (16) takes the following form
at t = tn,

Vh(tn) =
1

2πi

∫
Γ

ezt(zα +Ah)−1z−1(fh(0)−Ahu0h) dz

+
1

2πi

∫
Γ

ezt
(

(zα +Ah)−1z−2f ′h(0) + (zα +Ah)−1R̂h(z)
)
dz. (46)
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Let V n ≈ Vh(tn), n = 0, 1, 2, · · · , N denote the approximate solution of the
following time discretization scheme for solving (16), with V 0 = 0,

k−α
n∑
j=0

w
(α)
n−jV

j +AhV
n =fh(0)−Ahu0h + f ′h(0)tn +Rh(tn)

+ a1(fh(0)−Ahu0h) + b1kf
′
h(0), n = 1,

(47)

k−α
n∑
j=0

w
(α)
n−jV

j +AhV
n =fh(0)−Ahu0h + f ′h(0)tn +Rh(tn)

+ a2(fh(0)−Ahu0h) + b2kf
′
h(0), n = 2,

(48)

k−α
n∑
j=0

w
(α)
n−jV

j +AhV
n =fh(0)−Ahu0h + f ′h(0)tn +Rh(tn), n ≥ 3, (49)

where w
(α)
j , j = 0, 1, 2, · · · are defined by (40) and the coefficients a1, a2, b1, b2

satisfy

a1 =
11

12
, a2 = − 5

12
, (50)

and

b1 + b2 =
1

12
. (51)

Now we come to the following main theorem in this section

Theorem 2 Let Vh(tn) and V n be the solutions of (16) and (47)-(49), re-

spectively. Assume that u0 ∈ L2(Ω) and f ∈ C2([0, T ];L2(Ω)) and
∫ tn
0

(tn −
s)α−1‖f ′′′(s)‖ ds < ∞ for tn ∈ (0, T ]. Let u0h = Phu0, then there exists a
positive constant C independent of k such that

‖Vh(tn)− V n‖ ≤ Ck3
(
t−3n ‖u0‖+ tα−3n ‖f(0)‖+ tα−2n ‖f ′(0)‖+ tα−1n ‖f ′′(0)‖

+

∫ tn

0

(tn − s)α−1‖f ′′′(s)‖ ds
)
.

To prove Theorem 2, we need the following lemmas.

Lemma 6 With w̃(ζ) given by (41), let zk and µ(ζ) with ζ = e−zk be defined
by

zk = k−1w̃(ζ)
1
α , (52)

and

µ(ζ) = kzk

( ζ

1− ζ
+

2∑
j=1

ajζ
j
)

= w̃(ζ)
1
α

( ζ

1− ζ
+

2∑
j=1

ajζ
j
)
. (53)
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Further, let K1(z) and K2(z) be given by (25). Then, with Γk as in (24), the
following estimates hold:

|µ(e−zk)− 1| ≤ C|zk|3, z ∈ Γk, (54)

C|z| ≤ |zk| ≤ C|z|, z ∈ Γk, (55)∥∥µ(ζ)K1(zk)−K1(z)
∥∥ ≤ Ck3|z|2, z ∈ Γk, (56)∥∥µ(ζ)K2(zk)−K2(z)
∥∥ ≤ Ck3|z|2−α, z ∈ Γk. (57)

Proof The proof is similar to the proof of Lemma 2. For each inequality, again
two cases such as the small zk and the large zk are considered.

For (54), a use of Lemma 5 yields, with a1 = 11/12, a2 = −5/12 by (50),

µ(ζ)− 1 = w̃(z)1/α
( ζ

1− ζ
+ a1ζ + a2ζ

2
)
− 1

=
(

1− λ2 + 2λ3
α

(1− ζ) + . . .
)

(1− ζ)
( ζ

1− ζ
+ a1ζ + a2ζ

2
)
− 1

=
(

1− λ2 + 2λ3
α

(1− ζ) + . . .
)(
ζ + a1ζ(1− ζ) + a2ζ

2(1− ζ)
)
− 1

=
(

1− λ2 + 2λ3
α

(1− ζ) + . . .
)

·
(

1 + (a1 + a2 − 1)(1− ζ)− (a1 + 2a2)(1− ζ)2 + a2(1− ζ)3
)
− 1

= O
(
(1− ζ)3

)
as ζ → 1,

and then this implies that

µ(e−zk)− 1 = O
(
(1− e−zk)3

)
= O

(
(zk)3

)
as zk → 0.

Hence (54) holds for small zk with 0 ≤ |zk| ≤ δ0 with some positive δ0 >
0, 0 ≤ δ0 <

π
sin(θ) , θ ∈ (π/2, θ0). Note that µ(ζ) is continuous at any point

except ζ 6= 1, which implies that, following the argument as in (30), µ(e−zk)−1
is bounded for large zk with δ0 ≤ |zk| ≤ π

sin(θ) . Hence (54) follows.

We next estimate (55). With w̃(ζ) defined by (41), we arrive at

|z|
|zk|

=
|zk|

|w̃(e−zk)
1
α |
.

Hence,

lim
x→0

x

w̃(e−x)
1
α

= lim
x→0

x

(
∑∞
j=0 w

(α)
j (e−x)j)

1
α

= lim
x→0

x

(xα + d1x3+α + d2x4+α + . . . )
1
α

= lim
x→0

1

(1 + d1x3 + . . . )
1
α

= 1,



18 Yanyong Wang et al.

which implies that |z|
|zk| is bounded for small |zk| with 0 ≤ |zk| ≤ δ0, z ∈ Γk

for some suitable 0 < δ0 ≤ π
sin θ . Note also that |z|

|zk| is continuous at any

w = zk 6= 0, z ∈ Γk, which implies that |z||zk| is also bounded for large |zk| with

δ0 ≤ |zk| ≤ π
sin θ , z ∈ Γk. Hence, we proved the boundedness of |z||zk| for any

z ∈ Γk. Similarly, we may show that |zk||z| is also bounded for any z ∈ Γk. Thus,

we derive the estimate (55).
To estimate (56), we observe that

zk − z =

(∑∞
j=0 wj(e

−zk)j
) 1
α − zk

k
=

(zk)(1 + d1(zk)3 + . . . )
1
α − zk

k

=
(zk)(1 + d1

α (zk)3 + . . . )− zk
k

= k−1O
(
(zk)4

)
, as zk → 0,

which implies that there exists 0 < δ0 ≤ π
sin θ such that

|zk − z| ≤ Ck3|z4| for 0 ≤ |zk| ≤ δ0, z ∈ Γk.

For large |zk|, with δ0 ≤ |zk| ≤ π
sin θ , z ∈ Γk, we have, by (55),

|zk − z| ≤ |zk|+ |z| ≤ C|z| ≤ C(k3|z|4)
1

|zk|3
≤ C(k3|z|4)

1

δ30
≤ C(k3|z|4).

Thus, we obtain
|zk − z| ≤ C(k3|z|4), z ∈ Γk. (58)

Then an application of the mean-value theorem with (58) and ‖K ′1(z)‖ ≤
C|z|−2 shows

‖K1(zk)−K1(z)‖ ≤ C|z|−2k3|z|4 ≤ Ck3|z|2, z ∈ Γk. (59)

Following the same line of proof of (28), we arrive from (54), (59), and |K1(zk)| ≤
C|zk|−1 ≤ C|z|−1, z ∈ Γk at∥∥µ(ζ)K1(zk)−K1(z)

∥∥ ≤ ∥∥(µ(ζ)− 1
)
K1(zk)

∥∥+
∥∥K1(zk)−K1(z)

∥∥
≤ |zk|3C|z|−1 + Ck3|z|2 ≤ Ck3|z|2, z ∈ Γk,

which shows (56).
Finally in order to show (57), we note that K2(z) = z−1(zα + Ah)−1 and

‖K ′2(z)‖ ≤ C|z|−2−α. Then, by mean-value theorem and (58), we obtain

‖K2(zk)−K2(z)‖ = ‖K ′2(z)‖|zk − z| ≤ C|z|−2−αk3|z|4 ≤ Ck3|z|2−α, z ∈ Γk.

Following the same arguments as the proof of (29), a use of |K2(zk)| ≤
C|zk|−1−α ≤ C|z|−1−α yields∥∥µ(ζ)K2(zk)−K2(z)

∥∥ ≤ ∥∥(µ(ζ)− 1
)
K2(zk)

∥∥+
∥∥K2(zk)−K2(z)

∥∥
≤ |zk|3C|z|−1−α + Ck3|z|2−α ≤ Ck3|z|2−α, z ∈ Γk.

Hence, we prove (57).
Together with these estimates, we complete the proof of Lemma 6.
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In the following lemma, with zk defined by (52), we will show that zαk ∈ Σθ0
for some θ0 ∈ (π/2, π).

Lemma 7 Let θ > π/2 be sufficiently close to π/2. Let zk be defined by (52).
Then, there exists θ0 ∈ (π/2, π) such that

zαk ∈ Σθ0 for all z ∈ Γk, (60)

where Γk is defined by (24).

Proof By the definition of zk in (52) and the expression of w̃(ζ) in Lemma 5,
we rewrite

zαk = k−α(λ1 + λ2ζ + λ3ζ
2)(1− ζ)α, (61)

where λ1 = 24+17α+3α2

24 , λ2 = −22α−6α2

24 , λ3 = 5α+3α2

24 . It suffices to show
both λ1 + λ2ζ + λ3ζ

2 and (1 − ζ)α lie in Σθ0 for all z ∈ Γk. Recall that
z ∈ Γk satisfies =(zk) ∈ (0, π] and arg(z) = θ with θ > π

2 . Note that zαk
depends on z continuously [13, proof of Lemma 3.6], and arg(z) = π

2 with
=(zk) ∈ (0, π] implies that ζ = e−zk = e−iϕ, ϕ ∈ (0, π]. Hence, we only need
to show (λ1 + λ2ζ + λ3ζ

2) ∈ Σθ0 for ζ = e−iϕ, ϕ ∈ (0, π]. Observe that

λ1 + λ2ζ + λ3ζ
2 = λ1 + λ2e

−iϕ + λ3e
−i2ϕ

= (λ1 + λ2 cosϕ+ λ3 cos 2ϕ)− i(λ2 sinϕ+ λ3 sin 2ϕ),

and therefore, we arrive at

<(λ1 + λ2ζ + λ3ζ
2) = λ1 + λ2 cosϕ+ 2λ3 cos2 ϕ− λ3

=
5α+ 3α2

12
cos2 ϕ− 22α+ 6α2

24
cosϕ+ 1 +

α

2

=
α2

4
(cosϕ− 1

2
)2 +

5α

12
(cosϕ− 1)2 +

α

12
(1− cosϕ) + (1− α2

16
).

Then, <(λ1 + λ2ζ + λ3ζ
2) > 0 for ϕ ∈ (0, π) and 0 < α < 1.

Similarly,

=(λ1 + λ2ζ + λ3ζ
2) =

11α+ 3α2

12
sinϕ− 5α+ 3α2

12
sinϕ cosϕ

=
α2

4
sinϕ(1− cosϕ) +

5α

12
sinϕ(1− cosϕ) +

α

2
sinϕ > 0.

(62)

Thus, arg(λ1 + λ2ζ + λ3ζ
2) ∈ (0, π2 ) for ϕ ∈ (0, π) and arg(1 − ζ)α ∈ (π2 , π)

with 0 < α < 1 in Lemma 3. Then, we can infer the existence of θ0 ∈ (0, π2 )
such that zαk ∈ Σθ0 and this concludes the rest of the proof.

Lemma 8 Let zk be defined as in (52). Let b1, b2 be defined as in (51). Then,
the following estimate with ζ = e−zk, holds:∥∥∥z−2k − ( ∞∑

n=1

nζn +

2∑
j=1

bjζ
j
)
k2
∥∥∥ ≤ Ck3|z|.
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Proof Let ζ = e−zk and x = zk, then by Lemma 5, we have

z2k

( ∞∑
n=1

nζn +

2∑
j=1

bjζ
j
)
k2 − 1 =

(
w̃(e−x)

) 2
α

( ∞∑
n=1

n(e−x)n +

2∑
j=1

bj(e
−x)j

)
− 1

=
( e−x

(1− e−x)2
+

2∑
j=1

bj(e
−x)j

)(
w̃(e−x)

) 2
α − 1

=
( 1

x2
(1− 1/12x2 + 0x3 + · · · ) + b1 − b1x+ 1/2b1x

2 − 1

3!
b1x

3

+ b2 − 2b2x+ 2b2x
2 − 8

3!
b2x

3
)

(xα + d1x
α+3 + d2x

α+4 + · · · ) 2
α − 1

= (b1 + b2 − 1/12)x2 + d1x
3 + d2x

4+α + · · · ,
for some suitable positive constants d1, d2.

Combining this with (51), we obtain∥∥∥(zk)−2 −
( ∞∑
n=1

nζn +

2∑
j=1

bjζ
j
)
k2
∥∥∥ ≤ Ck3|z|.

This completes the proof of Lemma 8.

Remark 2 Observe that following the arguments as in Jin et al. [16], we can
choose suitable coefficients b1 = 1

12 , b2 = 0.

Lemma 9 Let zk be defined as in (52). Let b1, b2 be defined as in (51). Then,
there holds∥∥∥(zα +A)−1z−2 − (zαk +A)−1

( ∞∑
n=1

nζn +

2∑
j=1

bjζ
j
)
k2
∥∥∥ ≤ Ck3|z|1−α.

Proof The proof is similar to the proof of Jin et al. [16, Lemma C.1.] and
hence, we omit the proof here.

Lemma 10 Let zk be defined as in (52), then, there exists a positive constant
C independent of k such that∥∥∥(zα +A)−1z−3 − (zαk +A)−1

(
k

∞∑
n=1

t2n
2!
ζn
)∥∥∥ ≤ Ck3|z|−α.

Proof From Lemma 6, it follows that∥∥∥(zα +A)−1z−3 − (zαk +A)−1
(
k

∞∑
n=1

t2n
2!
ζn
)∥∥∥

≤ ‖(zα +A)−1z−3 − (zαk +A)−1z−3k ‖+
∥∥∥(zαk +A)−1

(
z−3k − k

∞∑
n=1

t2n
2!
ζn
)∥∥∥.

≤
(
C‖(zα +A)−2zα−4‖+ C‖(zα +A)−1z−4‖

)
|zk − z|

+ ‖(zαk +A)−1‖
∣∣∣z−3k − k ∞∑

n=1

t2n
2!
ζn
∣∣∣ ≤ Ck3|z|−α.
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This concludes the proof.

We are now ready to prove the main theorem of this section.

Proof (Proof of Theorem 2) We now calculate the approximate solution V n

defined in (47)-(49). Taking the discrete Laplace transform in (47)-(49), we
arrive at

∞∑
n=1

(
k−α

n∑
j=1

w
(α)
n−jV

j
)
ζn +

∞∑
n=1

(AhV
n)ζn

= (fh(0)−Ahu0h)
(
a1ζ + a2ζ

2 +
ζ

1− ζ

)
+

∞∑
n=1

tnf
′
h(0)ζn + b1kζf

′
h(0) + b2kζ

2f ′h(0) +

∞∑
n=1

Rh(tn)ζn.

Note that

∞∑
n=1

( n∑
j=1

w
(α)
n−jV

j
)
ζn =

( ∞∑
j=0

w
(α)
j ζj

)
(V 1ζ + V 2ζ2 + · · · ) = w̃(ζ)Ṽ (ζ),

and hence

Ṽ (ζ) =(k−αw̃(ζ) +Ah)−1
((
fh(0)−Ahu0h

)(
a1ζ + a2ζ

2 +
ζ

1− ζ
)

+
( ∞∑
n=1

nζn + b1ζ + b2ζ
2
)
kf ′h(0) +

∞∑
n=1

Rh(tn)ζn
)
.

A use of the inverse discrete Laplace transform yields, with µ(ζ) defined
by (53), and Γk as in (24).

V n =
1

2πi

∫
|ζ|=ρ

ζ−n−1Ṽ (ζ)dζ =
1

2πi

∫
Γk

eztnezkṼ (e−zk)e−zkkdz

=
1

2πi

∫
Γk

eztn(zαk +Ah)−1z−1k µ(ζ)
(
fh(0)−Ahu0h

)
dz

+
1

2πi

∫
Γk

eztn(zαk +Ah)−1
( ∞∑
n=1

nζn + b1ζ + b2ζ
2
)
k2f ′h(0) dz

+
1

2πi

∫
Γk

eztn(zαk +Ah)−1k
( ∞∑
n=1

Rh(tn)ζn
)
dz. (63)

Now, subtracting (46) from (63), we arrive at

Vh(tn)− V n = I1 + I2 + I3,
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where, with K2(z) defined by (25),

I1 =
1

2πi

∫
Γ/Γk

eztn(zα +Ah)−1z−1(fh(0)−Ahu0h) dz

+
1

2πi

∫
Γk

eztn
(
K2(z)− µ(e−zk)K2(zk)

)
(fh(0)−Ahu0h) dz = I11 + I12,

and

I2 =
1

2πi

∫
Γ/Γk

eztn(zα +Ah)−1z−2f ′h(0) dz

+
1

2πi

∫
Γk

eztn
{

(zα +Ah)−1z−2f ′h(0)

− (zαk +Ah)−1
( ∞∑
n=1

nζn +

2∑
j=1

bjζ
j
)
k2f ′h(0)

}
dz = I21 + I22,

and

I3 =
1

2πi

∫
Γ

eztn(zα +Ah)−1R̂h(z) dz

− 1

2πi

∫
Γk

eztn(zαk +Ah)−1
(
k

∞∑
n=1

Rh(tn)ζn
)
dz = I31 + I32.

For I1, apply the bound ‖(zα +Ah)−1Ah‖ ≤ C, (3), (56) and (57) to obtain

‖I1‖ ≤ Ck3t−3n ‖u0h‖+ Ck3tα−3n ‖fh(0)‖.

For I21, by (3), it follows that

‖I21‖ ≤ C‖
∫
Γ/Γk

eztn(zα +Ah)−1z−2f ′h(0) dz‖ ≤ Ck3tα−2n ‖f ′h(0)‖.

For I22, a use of the Lemma 9 shows

‖I22‖ ≤C
∥∥∥ ∫

Γk

eztn(zα +Ah)−1z−2f ′h(0) dz

−
∫
Γk

eztn(zαk +Ah)−1
[( ∞∑
n=1

nζn +

2∑
j=1

bjζ
j
)
k2f ′h(0)

]
dz
∥∥∥

≤Ck3
∫
Γk

e−ctn|z||z|1−α |dz|‖f ′h(0)‖ ≤ Ck3tα−2n ‖f ′h(0)‖.

Thus, we obtain

‖I2‖ ≤ Ck3tα−2n ‖f ′h(0)‖.
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For I3, we observe that

I31 =
1

2πi

∫
Γ

eztn(zα +Ah)−1R̂1
h(z) dz

− 1

2πi

∫
Γk

eztn(zαk +Ah)−1
(
k

∞∑
n=1

R1
h(tn)ζn

)
dz,

and

I32 =
1

2πi

∫
Γ

eztn(zα +Ah)−1R̂2
h(z) dz

− 1

2πi

∫
Γk

eztn(zαk +Ah)−1
(
k

∞∑
n=1

R2
h(tn)ζn

)
dz,

where

Rh(t) =
t2

2!
f ′′h (0) +

( t2
2!
∗ f ′′′h

)
(t) =: R1

h(t) +R2
h(t).

For I31, we easily bound it as

‖I31‖ =
∥∥∥ 1

2πi

∫
Γ

eztn(zα +Ah)−1z−3 dzf ′′h (0)

− 1

2πi

∫
Γk

eztn(zαk +Ah)−1
(
k

∞∑
n=1

R1
h(tn)ζn

)
dz
∥∥∥

=
∥∥∥ 1

2πi

∫
Γ/Γk

eztn(zα +Ah)−1z−3 dzf ′′h (0)

− 1

2πi

∫
Γk

eztn
(

(zα +Ah)−1z−3 − (zαk +Ah)−1
(
k

∞∑
n=1

t2n
2!
ζn
))

dzf ′′h (0)
∥∥∥.

An application of Lemma 10 yields

‖I31‖ ≤ Ck3tα−1n ‖f ′′h (0)‖. (64)

For I32, following the arguments as in Jin et al.[13][15], we now arrive at

‖I32‖ ≤ Ck3
∫ tn

0

(tn − s)α−1‖f ′′′h (s)‖ ds.

Together these estimates complete the proof of Theorem 2.

In order to prove the error analysis in the completely discrete schemes, we
now recall the error estimates of the semidiscrete scheme as is developed in
[12] for the problem with f = 0,

‖u(tn)− uh(tn)‖ ≤ C t−α h2‖u0‖. (65)
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Denote Un = V n+Phu0 with V n defined by (19) or (47)-(49), respectively.
Using (65), we then have the following fully discrete error estimate

‖u(tn)− Un‖ ≤ C
(
t−αn h2 + t−mn km

)
‖u0‖,

where m = 2 or 3, respectively, for second order and third order time stepping
schemes.

Since our main objective in this article is to derive higher order time step-
ping schemes, therefore, we may generalize our present results to include mass
lumping scheme as discussed in [12].

4 Some generalizations

This section is devoted to some generalization of the present methods to vari-
ous other problems, which includes evolution equations with positive memory.

For instance, our generalizations include the following type of problems:

1. Evolution equations with positive memory called time diffusion-wave equa-
tion, as in [22],

u′(x, t) + R
0 D
−α
t Au(x, t) = 0, α ∈ (0, 1), (66)

where R
0 D
−α
t denotes the Riemann-Liouville fractional integral operator.

2. The parabolic integro-differential equation with singular kernel, see, [25]

u′(x, t) +
(
I + R

0 D
−α
t

)
Au(x, t) = 0, α ∈ (0, 1). (67)

3. The Rayleigh-Stokes problem described by the time-fractional differential
equation as in [4]

u′(x, t) +
(
I + γ R0 D

−α
t

)
Au(x, t) = 0, α ∈ (0, 1), (68)

where γ is a positive constant. In order to unify problems (66)-(68), we
define J α denoting a time integral/differential operator and consider the
unified problem by

u′(x, t) + J αAu(x, t) = 0. (69)

Now, a use of Laplace transforms in (69) yields

zû+ h(z)Aû = v,

with some function h(z) depending on α. Hence, with β(z) = h(z)−1 we for-
mally write the representation of solution as û = β(z)(zβ(z)I + A)−1v =:
Êh(z)v. Here, for the problem (66), note that β(z) = zα, for the problem (67),
β(z) = zα/(1 + zα), and for (68), β(z) = 1/(1 + γzα).

Assume that one can properly choose θ in (π/2, θ0) with θ0 ∈ (π/2, π) such
that zkβ(zk) ∈ Σθ0 , where zk is an approximation of z ∈ Σθ. This is indeed
possible in all given examples. With this, the resolvent estimate yields

‖(zβ(z)I +A)−1‖ ≤ Mθ0

|zβ(z)|
∀z ∈ Σθ, (70)
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where Mθ0 = 1/ sin(π − θ0).
With corresponding Ah as semidiscrete approximation of A ( as in Section

2), the semidiscrete method becomes: find ūh(t) ∈ Vh such that

ū′h + J αAhūh = 0 t ∈ (0, T ], ūh(0) = vh. (71)

Following the arguments of [22], [23], one easily deduces property (70),
when A is replaced by Ah. Therefore, our two time stepping methods can be
appropriately applied and the desired estimates can be easily derived.

Other generalizations also include the fractional cable equations with mass
lumping by Al-Maskari and Karaa [3] and references therein. Further, it may
include Fokker-Plank spatial discretization as our analysis does not depend on
selfadjointness of the operator A and for complete discrete scheme, we may
use the proposed time stepping schemes.

Finally, the present schemes can be applied to the equation (1), when A is
a fractional Laplacian like A = (−∆)s, s ∈ (0, 1), that is, with 0 < α, β < 1
and some positive constant δ > 0,

u′ + R
0 D

α
t

(
−∆

)s
u+ δ R0 D

β
t u = f in Ω × (0, T ], (72)

u = 0 in Ωc × (0, T ], (73)

u(0) = u0 in Ω. (74)

An appropriate modification of the arguments in [1], we obtain the semidiscrete
error estimate as:

‖u(t)− uh(t)‖ ≤ Ct−α hs+min{s,1/2−ε} ‖u0‖,

with ε > 0 small. Therefore, when it is combined with our proposed time
stepping schemes, the final error estimate reads as: with Un ≈ uh(tn),

‖u(tn)− Un‖ ≤ C
(
t−αn hs+min{s,1/2−ε} + t−mn km

)
‖u0‖, m = 2, 3.

5 Numerical simulations

In this section, we present five numerical examples to show that the numerical
results are consistent with the theoretical results obtained in this paper. The
first three examples are solved by using the numerical method (19) for both
homogeneous and inhomogeneous problems in one- and two-dimensional cases.
The last two examples are computed by using the numerical method (47)-(49)
for both homogeneous and inhomogeneous problems in one-dimensional case.

Example 1 Consider, with 0 < α < 1,

C
0 D

α
t u(x, t)− ∂2u(x, t)

∂x2
= 0, 0 < x < 1, 0 < t ≤ T,

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x),
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where (a) u0(x) = x(1−x) (smooth data) and (b) u0(x) = χ[0,1/2] (nonsmooth
data).

Let Nh be a positive integer. Let 0 = x0 < x1 < x2 < · · · < xNh = 1 be
the space partition and h the space step size. We shall use the piecewise linear
finite element method to consider the space discretization.

Let 0 < t0 < t1 < · · · < tN = T be the time partition and k the time
step size. To observe the convergence order of the numerical method, we first
need to calculate the reference solution uref (t) at some fixed time T with very
small step sizes href = 2−6 and kref = 2−10.

By Theorem 1, we see that the numerical method (19) has the second order
convergence. To see this convergence order, we shall calculate the approximate
solution of u(T ) at T = 1 with the space step size h = 2−6 and the different
time step sizes k = κ ∗ kref with κ = [22, 23, 24, 25, 26]. In Table 2, we observe
the convergence orders O(k2) of the corrected scheme (19), where the rows
with (a) denote the errors and the experimentally determined convergence
orders in the smooth data case and the rows with (b) denote the errors and
the orders in the nonsmooth data case. For each α, we choose the average
convergence order of the computed orders obtained by using the different time
step sizes.

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)
0.2 (a) 8.37e-8 3.55e-7 1.46e-6 6.21e-6 2.66e-5 2.07

(b) 2.15e-7 9.13e-7 3.77e-6 1.57e-5 6.84e-5 2.07
0.4 (a) 1.85e-7 7.86e-7 3.25e-6 1.36e-5 5.92e-5 2.08

(b) 4.74e-7 2.01e-6 8.33e-6 3.49e-5 1.51e-4 2.08
0.6 (a) 2.96e-7 1.26e-6 5.23e-6 2.20e-5 9.54e-5 2.08

(b) 7.53e-7 3.20e-6 1.32e-5 5.58e-5 2.42e-4 2.08
0.8 (a) 3.79e-7 1.61e-6 6.74e-6 2.85e-5 1.14e-4 2.06

(b) 9.49e-7 4.04e-6 1.68e-5 7.14e-5 2.87e-4 2.06

Table 2 Time convergence orders for the corrected scheme (19) in Example 1 at T = 1

For the numerical method (19) with c0 = 0, that is, for the uncorrected
scheme, we observe that, in Table 3, the experimentally determined conver-
gence order is only O(k) with both smooth and nonsmooth data.

The second example is an inhomogeneous problem with zero initial value
and the source term f which is smooth in time.

Example 2 Consider, with 0 < α < 1,

C
0 D

α
t u(x, t)− ∂2u(x, t)

∂x2
= f(x, t), 0 < x < 1, 0 < t ≤ T,

u(0, t) = u(1, t) = 0,

u(x, 0) = 0,
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α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)
0.2 (a) 7.97e-6 1.86e-5 3.99e-5 8.28e-5 1.68e-4 1.10

(b) 2.04e-5 4.77e-5 1.02e-4 2.12e-4 4.33e-4 1.10
0.4 (a) 1.34e-5 3.14e-5 6.73e-5 1.38e-4 2.79e-4 1.09

(b) 3.44e-5 8.04e-5 1.72e-4 3.54e-4 7.12e-4 1.09
0.6 (a) 1.55e-5 3.60e-5 7.68e-5 1.56e-4 3.02e-4 1.07

(b) 3.93e-5 9.16e-5 1.95e-4 3.97e-4 7.68e-4 1.07
0.8 (a) 1.22e-5 2.82e-5 5.93e-5 1.15e-4 1.92e-4 0.99

(b) 3.08e-5 7.12e-5 1.49e-4 2.92e-4 4.86e-4 0.99

Table 3 Time convergence orders for the uncorrected scheme (19) with c0 = 0 in Example
1 at T = 1

where f(x, t) = (cos(t) + sin(t))(1 + χ(0,1/2)(x)).

We use the same parameters as in the numerical simulations in Example 1.
In Table 4, we observe that the experimentally determined convergence order
of the corrected scheme (19) indeed is O(k2) for all 0 < α < 1.

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)
0.2 1.84e-7 7.78e-7 3.17e-6 1.29e-5 5.31e-5 2.04
0.4 3.80e-7 1.60e-6 6.57e-6 2.68e-5 1.12e-4 2.05
0.6 5.40e-7 2.28e-6 9.40e-6 3.89e-5 1.65e-4 2.06
0.8 5.54e-7 2.36e-6 9.82e-6 4.15e-5 1.80e-4 2.08

Table 4 Time convergence orders for the corrected scheme (19) in Example 2 at T = 1

α k = 2−7 k = 2−6 k = 2−5 k = 2−4 k = 2−3 Order (average)
0.2 5.39e-6 1.25e-5 2.65e-5 5.38e-5 1.08e-4 1.08
0.4 8.64e-6 1.99e-5 4.20e-5 8.45e-5 1.70e-4 1.07
0.6 9.05e-6 2.07e-5 4.33e-5 8.59e-5 1.79e-4 1.07
0.8 6.16e-6 1.39e-5 2.85e-5 5.64e-5 1.46e-4 1.14

Table 5 Time convergence orders for the uncorrected scheme (19) with c0 = 0 in Example
2 at T = 1

The third example is a two-dimensional example and we shall consider an
inhomogeneous problem with nonsmooth initial data and the source term f
which is smooth in time.
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Example 3 Consider

C
0 D

α
t u(x, y, t)−∆u(x, y, t) = f(x, y, t), t ∈ (0, T ], (x, y) ∈ Ω, (75)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (76)

u(x, y, t) = 0, t ∈ (0, T ], (x, y) ∈ ∂Ω, (77)

where Ω = (0, 1) × (0, 1), u0(x, y) = χ[0,1/2](x)χ[0,1/2](y) and f(x, y, t) =
(cos(t) + sin(t))(1 + χ(0,1/2)(x))(1 + χ(0,1/2)(y)). Note that f is smooth with
respect to the time variable t.

Let Nh be a positive integer. Let 0 = x0 < x1 < x2 < · · · < xNh = 1 and
0 = y0 < y1 < y2 < · · · < yNh = 1 be the partition of Ω. We divide Ω into
some triangles with the same sizes and let h be the maximal length of the
sides of the triangle. We shall use the piecewise linear finite element method
to consider the space discretization on the triangulation of Ω.

Let 0 < t0 < t1 < · · · < tN = T be the time partition and k the time step
size. We shall use the very small space step size href = 2−6 and the time step
size kref = 2−10 to calculate the reference solution at time T .

We shall choose T = 1 in our simulation. We calculate the approximate
solutions with the space step size h = 2−6 and the time step sizes k = κ ∗
kref with κ = [22, 23, 24, 25, 26]. In Table 6, the experimentally determined
convergence orders O(k2) are observed as we expected.

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)
0.2 1.01e-7 4.25e-7 1.74e-6 7.16e-6 3.02e-5 2.05
0.4 2.46e-7 1.04e-6 4.28e-6 1.76e-5 7.47e-5 2.06
0.6 4.35e-7 1.84e-6 7.57e-6 3.13e-5 1.33e-4 2.06
0.8 6.74e-7 2.86e-6 1.18e-5 4.95e-5 2.16e-4 2.08

Table 6 Time convergence orders for the corrected scheme (19) in Example 3 at T = 1

In Table 7, we observe the experimentally determined convergence orders
O(k) for the uncorrected scheme (19) with c0 = 0 as we expected.

In the next two examples, we shall consider the experimentally determined
convergence orders of the numerical method (47)-(49).

Example 4 In this example, we shall use the numerical method (47)-(49) to
solve Example 1. We use the same parameters as in the numerical simulation in
Example 1. In Table 8, we observe that the corrected scheme (47)-(49) has the
convergence orders O(k3) with both smooth and nonsmooth data as expected.

For the uncorrected scheme (47)-(49), that is, a1 = a2 = b1 = b2 = 0 in
(47)-(49), we observe that, in Table 9, the experimentally determined conver-
gence order is only O(k) with both smooth and nonsmooth data.
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α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)
0.2 6.19e-6 1.44e-5 3.08e-5 6.32e-5 1.26e-4 1.08
0.4 1.14e-5 2.65e-5 5.64e-5 1.14e-4 2.25e-4 1.07
0.6 1.40e-5 3.24e-5 6.83e-5 1.36e-4 2.56e-4 1.04
0.8 1.17e-5 2.68e-5 5.50e-5 1.04e-4 1.88e-4 1.00

Table 7 Time convergence orders for the uncorrected scheme (19) with c0 = 0 in Example
3 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)
0.2 (a) 1.32e-9 1.10e-8 9.33e-8 8.36e-7 8.62e-6 3.16

(b) 3.40e-9 2.83e-8 2.40e-7 2.15e-6 2.22e-5 3.16
0.4 (a) 3.10e-09 2.59e-8 2.19e-7 1.98e-6 2.16e-5 3.19

(b) 7.96e-9 6.64e-8 5.64e-7 5.09e-6 5.54e-5 3.19
0.6 (a) 6.43e-9 4.54e-8 3.87e-7 3.54e-6 6.23e-5 3.37

(b) 1.37e-8 1.15e-7 9.84e-7 8.99e-6 1.55e-4 2.36
0.8 (a) 8.30e-9 6.98e-8 6.04e-7 5.78e-6 6.12e-5 3.21

(b) 2.07e-8 1.74e-7 1.51e-6 1.44e-5 1.62e-4 3.23

Table 8 Time convergence orders for the corrected scheme (47)-(49) in Example 4 at T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)
0.2 (a) 7.98e-6 1.86e-5 4.01e-5 8.34e-5 1.72e-4 1.10

(b) 2.04e-5 4.78e-5 1.02e-4 2.14e-4 4.41e-4 1.10
0.4 (a) 1.35e-5 3.16e-5 6.80e-5 1.41e-4 2.94e-4 1.11

(b) 3.45e-5 8.07e-5 1.73e-4 3.62e-4 7.53e-4 1.11
0.6 (a) 1.55e-5 3.64e-5 7.85e-5 1.64e-4 3.44e-4 1.11

(b) 3.96e-5 9.26e-5 1.99e-4 4.17e-4 8.75e-4 1.11
0.8 (a) 1.24e-5 2.90e-5 6.28e-5 1.33e-4 2.61e-4 1.09

(b) 3.12e-5 7.32e-5 1.58e-4 3.35e-4 6.64e-4 1.10

Table 9 Time convergence orders for the uncorrected scheme (47)-(49) with a1 = a2 =
b1 = b2 = 0 in Example 4 at T = 1

Example 5 In this example, we shall use the numerical method (47)-(49) to
solve Example 2. We use the same parameters as in the numerical simulation
in Example 1. In Table 10, we also observe the convergence orders O(k3) of
the corrected scheme (47)-(49) in the inhomogeneous case.

In Table 11, the experimentally determined convergence order of the un-
corrected scheme (47)-(49) with a1 = a2 = b1 = b2 = 0 has only convergence
order O(k).
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α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)
0.2 2.30e-9 1.93e-8 1.66e-7 1.53e-6 1.65e-5 3.20
0.4 3.07e-9 4.15e-8 3.59e-7 3.37e-6 3.97e-5 3.24
0.6 7.80e-9 6.61e-8 5.79e-7 5.57e-6 1.19e-4 3.47
0.8 1.09e-8 9.35e-8 8.39e-7 8.64e-6 1.02e-4 3.29

Table 10 Time convergence orders for the corrected scheme (47)-(49) in Example 5 at
T = 1

α k = 2−6 k = 2−5 k = 2−4 k = 2−3 k = 2−2 Order (average)
0.2 1.79e-5 4.21e-5 9.07e-5 1.89e-4 3.93e-4 1.11
0.4 3.04e-5 7.13e-5 1.53e-4 3.21e-4 6.70e-4 1.11
0.6 3.51e-5 8.23e-5 1.77e-4 3.72e-4 7.73e-4 1.11
0.8 2.79e-5 6.55e-5 1.41e-4 2.99e-4 5.72e-4 1.08

Table 11 Time convergence orders for the uncorrected scheme (47)-(49) with a1 = a2 =
b1 = b2 = 0 in Example 5 at T = 1

Remark 3 In Tables 8 and 10, we observe that the experimentally determined
convergence orders are slightly better than the theoretical orders. The possible
reason may be that the proposed numerical methods involve both fractional
orders and the shifted numbers. These combinations which are more related
to the equation may be instrumental in helping us to provide possibly more
accurate computational results. But, we do not have a theory yet to estab-
lish it. Therefore, in future, we shall continue to investigate this interesting
observation.
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