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Abstract

Interactive Three-Dimensional Simulation and Visualisation of Real Time
Blood Flow in Vascular Networks

Mark Ian Holland

One of the challenges in cardiovascular disease management is the clinical

decision-making process. When a clinician is dealing with complex and uncertain

situations, the decision on whether or how to intervene is made based upon distinct

information from diverse sources. There are several variables that can affect how

the vascular system responds to treatment. These include: the extent of the damage

and scarring, the efficiency of blood flow remodelling, and any associated pathology.

Moreover, the effect of an intervention may lead to further unforeseen complications

(e.g. another stenosis may be “hidden” further along the vessel). Currently, there is

no tool for predicting or exploring such scenarios.

This thesis explores the development of a highly adaptive real-time simulation of

blood flow that considers patient specific data and clinician interaction. The simulation

should model blood realistically, accurately, and through complex vascular networks

in real-time. Developing robust flow scenarios that can be incorporated into the

decision and planning medical tool set. The focus will be on specific regions of the

anatomy, where accuracy is of the utmost importance and the flow can develop into

specific patterns, with the aim of better understanding their condition and predicting

factors of their future evolution. Results from the validation of the simulation showed

promising comparisons with the literature and demonstrated a viability for clinical

use.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular diseases (CVD) continue to be the foremost cause of deaths world-

wide [109], claiming an estimated 17.9 million lives each year [26]. In the UK, CVD

is the leading factor in a quarter (25%) of all deaths, an average of 420 each day.

It is estimated that the UK health care costs of heart and circulatory diseases is £9

billion each year, with an estimated cost to UK economy of £19 billion each year,

this includes premature death, disability and informal costs [23]. There needs to

be constant research and development into treating and preventing CVD, to reduce

the suffering of those affected, and the costs incurred. Consequently, the United

Nations have recognised CVD, and other chronic diseases as a major concern for

global health and committed themselves to reducing the effects of these diseases [121].

CVD is an umbrella term to describe all diseases of the heart and circulation, from

inherited conditions or complications from birth, to those that may develop later in

life, such as heart failure and stroke. CVD pathology is often attributed to two main

determining risk factors, medical (high systolic blood pressure, high total cholesterol,
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high fasting plasma glucose, and high body mass index) and behavioural (diet, low

physical activity, smoking and alcohol use) [199].

Coronary heart disease (CHD) is the most common type of CVD and is responsible

for over 66,000 deaths in the UK each year [23]. CHD is primarily a result of

atherosclerosis, the narrowing of blood vessels due to formation of fatty deposits

called plaques, or atheroma, in the intima of arteries supplying vital organs. This

focal atherosclerotic plaque is typically localised around bifurcations and other bends

within the arterial tree structure [177]. The narrowing of blood vessels can lead

to abnormal flow conditions where the patient’s blood circulation is interrupted or

disrupted, culminating in major acute cardiac events. When the coronary arteries

suffer from a disruption in blood flow, the heart will receive insufficient oxygen to

function i.e. myocardial infarction. Occasionally the blood flow is re-routed around

a blockage through the nearby minor vessels, this process is known as collateral

circulation. Collateral circulation around the heart may enable enough oxygenated

blood to reach the cardiac tissue and allow it to survive, these cases have similar

treatment options but within a more lenient time scale.

Treatment for atherosclerosis is varied, but most cases involve either bypass

surgery or the less invasive angioplasty. The treatment is determined and delivered

by clinical health care professionals with limited resources informing their decision-

making process. Diagnostic decisions made are frequently based on rough estimates

of outcomes, often derived from anatomic observations or extrapolation of physical

laws [152]. The decision on whether or how to intervene in each case, is based on

disparate pieces of information from different sources that need to be integrated to

procure a successful outcome for the patient. These sources of information include

but are not limited to coronary anatomy, results from physiological and imaging tests,

the patient’s history, and their current condition. Often these resources amount to low

resolution medical scan images, greyscale visualisations [136], or physical models
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fabricated to represent a patient’s circulatory system [151]. In some cases, a patient

may be eligible for coronary angiography, in which a catheter is inserted into a blood

vessel, and using X-ray images as a guide, the catheter is navigated to the region

containing the pathology. The angiogram is taken, and the contrast medium shows

any blood vessels that are narrowed or blocked.

The information a clinician can gather from these methods is highly limited, and

we believe it to be insufficient for complex cases with unknown behaviours. Due

to their limitations, current diagnostic imaging and procedures may not provide the

necessary information about the geometry or the dynamics of the vascular system. For

example, on echocardiography images and on standard Cardiac magnetic resonance

imaging (CMR), blood appears without enough contrast to study, and in some cases

effectively invisible. When there is a clinical mandate to study the blood flow, contrast

media is injected to provide a clearer image. Furthermore, blood flow patterns play a

major role in the events during the surgical procedure and the body’s response. When

the blood flow is disrupted, a clinician cannot predict the haemodynamic changes

resulting from treatment. Subsequent decisions may be prone to error, and the effect

of an intervention may lead to further unforeseen complications, for example, stenosis

or other weaknesses may be ‘hidden’ within occluded portions of the vessel. Careful

planning is required to mitigate these possibilities.

The uncertainty driven by lack of resources or experience can feasibly lead to

medical error during treatment consideration and surgery. Although it is not always

referenced on death certificates, in the United States from 1990 to 2016, there were

an estimated 123,603 deaths with adverse effects of medical treatment (AEMT) as

the underlying cause [174]. A modest improvement when accounting for age and

geographic variability. Clinicians are drawn to numerical simulations to mitigate the

potential for error, help them understand the problems they are faced with, and predict

their potential outcomes. Computational fluid dynamics (CFD) for cardiovascular
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blood flow simulation is increasingly being applied and researched to create an optimal

solution for clinicians when making surgical decisions [177, 146, 75, 114]. Modelling

the flow is often beneficial in cases where the data is difficult to obtain experimentally

e.g. in vivo measurements of blood flow can be limited by the vessel accessibility

and the cost of the procedure. The crucial components of cardiac flow simulations

are well recognised: domain or geometric mesh, boundary conditions, and numerical

methods of the solver. Simulating the flow is a multifaceted problem and research has

often been limited to purely numerical simulations. The simulations are increasingly

reliable, but research is still ongoing to resolve complex patient specific geometry and

the validation of results produced.

Moreover, simulations that produce intuitive or interactive results are scarce.

Three important aspects of numerical computing are robustness, accuracy, and speed.

These are typically not mutually satisfiable, requiring development to prioritise certain

aspects of the deliverable product [47]. Furthermore, trying to reconcile complex

computations, like fluid dynamics, to operate in an interactive application is a non-

trivial task. When computer graphics technologies are applied, it is often to render

previously calculated scenes or harness the computational power of the graphics

processing unit (GPU) to accelerate computation.

When simulation results are visualised graphically, they fall into the traditional

desktop computer conventions, sometimes, referred to as window, icon, menu, point-

ing device (WIMP). When handling complex 3D geometry and flow visualisations,

this paradigm becomes unwieldy and value is lost when mapping (or translating)

2D actions into 3D. Conversely, interactive 3D visualisation, which includes Virtual

Reality (VR), provides users with a fully 3D experience, including natural 3D interac-

tion. The experiences created by these technologies allow more natural methods of

interaction, more closely mapping to the techniques used in the real world. Recently,

extended reality (XR), an umbrella term for the numerous modalities related to VR,
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has become more available and affordable, encouraging a plethora of new possibilities

for research and development. Interactive 3D visualisation is already used in many

military, scientific, and industrial applications, ranging from training astronauts to

designing automobiles [9]. Modern devices allow for levels of interactivity, and

degrees of freedom that were previously limited to the realm of expensive bespoke

hardware solutions.

Health care changes dramatically with modern digital developments. Imison

et al. [71] conclude that delivering technology powered health care will improve

patient outcomes and make computing so ubiquitous that it becomes invisible. Their

enthusiasm is shared by the UK government as in 2018, the Secretary for Health and

Social Care promised almost half a billion pounds to transform technology in the

National Health Service [162]. Robert Pearl, former CEO of Kaiser Permanente, the

largest not-for-profit managed care providers in the U.S [172, 138], has expressed his

vision of the future of technologically enabled health care:

‘I think we’re about to come to the next era of medicine... as much as 30%

of what we do today we will do differently... how we evaluate patients,

how we follow up on patients, how we bring the expertise in between

clinicians, how we manage patients in a hospital, how we think about

even the role of the hospital [71].’

Computational power has grown year on year, doubling approximately every 1.3

years [41]. Medical software systems will continue to benefit from the improvement

in computational speed and the algorithms it drives. Clinical decision support sys-

tems (CDSS) are well known to improve the quality of clinical decision-making [55].

In recent years new operating environments have been fabricated in the form of ‘hy-

brid theatres’, allowing single stage, hybrid endovascular and open intervention for a

range of pathologies [153]. For example, in 2018, the Imperial College Healthcare
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NHS Trust was awarded funding to create a new endovascular hybrid theatre at St

Mary’s Hospital, delivering cutting edge procedures to patients with complex blood

vessel problems [72]. This is perhaps the result of a convergence of approaches to the

treatment of CVD with combined cardiology, radiology and surgical multidisciplinary

team based management [51]. These theatres are suitable for very advanced surgical

applications, being equipped with modern technology and equipment such as, fixed

C-Arms, CT scanners or MRI scanners, image fusion, 3D/4D imaging, soft tissue

visualisation, modelling, and navigation [125]. In the future we envision operating

theatres equipped with immersive 3D technology informing clinicians’ decisions and

enhancing their capabilities providing valuable insights interactively in real-time. Cur-

rently, there is a lack of tooling for the visualisation and simulation of physiological

processes, such as modelling the processes of blood flow. This is especially true

for environments such as the hybrid theatres, were integrated technology provides

comparatively quick results for the procedures they utilise, the time cost associated

with accurate and meaningful simulation enabled visualisations is inherently restric-

tive. The proposed software prototype would integrate seamlessly into our envisioned

‘cyber hospital’ of the future.

1.2 Aims and Objectives

We aim to produce the simulation engine for a modern prototype surgical planning

tool to aid in the clinical decision-making processes by implementing a 3D real-time

CFD simulation based on smoothed particle hydrodynamics that that operates within

complex patient geometry.

• Implement modern particle fluid simulation methods used in computer graphics

to create an accurate blood simulation.
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• Optimise the framework to perform effectively as a real-time application.

• Apply the framework to real patient geometry which was generated from modern

medical imaging technology.

The results of the CFD simulation will be visualised in 3D to create an immersive and

interactive experience for the user.

• The user must be able to view the simulation on a standard desktop monitor

and/or a monitor that supports stereoscopy for 3D viewing.

• The user must be able to interact with the fluid flowing through the patient

geometry, we envision allowing the user to create different scenarios with

blockages to investigate the effects of the fluid re-circulation.

• The visualisation must be configurable to provide each user with an effective

experience.

We aim to validate the results of the simulation, proving the accuracy of the CFD

model for use by clinicians.

• The simulation will be tested to ensure it will reproduce results based on typical

scenarios found in diseased and healthy vascular anatomy.

• A series of test cases will be developed to compare the simulation’s numerical

and visual output against known and verified fluid models.

• Qualitative feedback will be obtained from experienced clinicians to determine

their professional opinions for clinical use of the framework.
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1.3 Hypothesis

Following the motivation outlined above, this thesis investigates the following hypoth-

esis:

‘A real-time computer simulation and visualisation of blood flow through

vascular structures can be developed, validated and integrated with the

training and decision-making process of clinical interventions during an

acute cardiac event.’

We propose that it would be beneficial if clinicians could simulate potential patho-

logical and treatment scenarios, perform meaningful interactions with the rendered

blood flow and patient geometry, within an immersive no-risk 3D experience. Then

use and trust the results of the visualisation to evaluate the haemodynamic conse-

quences and inform their choices for a patient’s course of treatment. Our envisioned

workflow is demonstrated in Figure 1.1. However, the proposed system would func-

tion as a software library, and be fully applicable to multiple implementations. The

real-life applications are widespread, for instance, the software could provide tangible

benefits to medical training or procedure rehearsal as a component in a cardiac surgery

simulator. In addition, the visualisations produced could be delivered to patients

in waiting as a component of their pre-operation brief, to help them understand the

procedure they are to undertake.

1.4 Contributions

Several contributions to the state of the art of real-time computational blood simulation

and visualisation are made in this thesis:
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Figure 1.1 Timeline of the proposed addition of simulation into the medical decision-
making workflow for cardiovascular conditions, such as atherosclerosis.

• The implementation of a prototype interactive patient-specific blood flow simu-

lation and visualisation tool. The simulation is developed with modern particle-

based fluid simulation methods and designed to operate within real patient

geometry and produce results in real-time.

• Partially automated workflow including the importing, processing, rendering

and visualisation of patient-specific medical image data with interactive CFD

results.

• We have demonstrated through a series of validation cases that the simulation is

capable of reproducing expected fluid behaviours.

Publication

• Holland, M. I., Pop, S. R., and John, N. W. VR Cardiovascular Blood Simulation

as Decision Support for the Future Cyber Hospital. In 2017 International

Conference on Cyberworlds (CW), pages 233–236. DOI: 10.1109/CW.2017.49.
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1.5 Structure of the Thesis

Chapter 2 of this thesis presents an overview of research into medical imaging and

immersive computer visualisation technology, the state of particle based CFD simula-

tions and their application to the simulation of blood flow, the challenges researchers

have faced trying to implement these methods to produce real-time results. Current

software solutions are explored to highlight the need for a real-time patient specific

alternative. Modern rendering and computational hardware required to implement

such systems are then explored.

Chapter 3 presents the implementation details and challenges for the prototype

real-time blood flow simulation and visualisation application. The development

first includes CPU prototypes then advances into GPU accelerated solutions. The

chapter explores optimisations for parallel computation of the CFD methods, geometry

processing, and real-time rendering techniques for the visualisation.

Chapter 4 finalises the implementation of the simulation engine by cataloguing

a series of validation test cases. Each test case is modelled to resemble an aspect

of vascular geometry. Results from each test case are examined to demonstrate the

simulations efficacy against known fluid behaviours. In addition, the simulation is

applied to real-patient geometry signifying the stability in complex environments.

Chapter 5 explores the usage of the simulation engine within a prototype appli-

cation and the feedback received from an experienced clinician. Interaction with the

loaded geometry and simulated blood flow is detailed, including user interaction with

the fluid, simulation parameter modification and immersive 3D hardware integration.

Lastly, Chapter 6 concludes the ideas presented and introduces a number of

potential routes for the future development of the simulation engine and the prototype

application.



Chapter 2

A Review of Real-Time Fluid

Simulations with particular emphasis

on Blood Flow

This chapter begins with an overview of work related to the requirements and definition

of real-time simulations. Secondly, the chapter provides an exploration of the fields

involved in the simulation and visualisation of real time blood flow and the methods

to validate simulation results, in conjunction with emphasising the hardware and

software developments required to produce such a solution. Currently available

professional and research CFD software solutions are also evaluated. Finally, this

chapter concludes with an introduction to immersive 3D visualisation technologies,

including the potential application of such technologies in medical environments.

2.1 Real Time Simulations

Computer simulation is an increasingly important tool for approaching complex

practical problems in engineering, science and medicine. By offering further insights
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simulations assist in the interpretation of complex physics [97], or in cases where in

vivo empirical measurements are difficult or invasive [177]. In the context of real time

computing, the correctness of the system depends not only on the logical computations,

but on the time that the results were produced. A real time application’s functional

and timing behaviour should be as deterministic as possible, but fast computing

alone does not guarantee an appropriate level of predictability [170]. Rather, a real

time computing system would be built of time critical tasks methodically scheduled

depending on priority to meet their respective deadlines. These deadlines can be

defined from the application specific time critical tasks, deadlines that cause a marked

detriment or failure of the system [161], or the performance requirements of the

computation, being able to generate the results before or when they are needed.

Moreover, computer simulations tend to execute logical calculations successively in

fixed or variable time-steps [18]. Consequently, for a computer simulation to operate

in real-time the application’s time steps must emulate or correspond to the physical

passage of time whilst maintaining visual continuity when appropriate.

2.1.1 Visual Continuity and Frames Per Second

The goal of computer animation is to create a sequence of pictures that give the illusion

of movement, by filling an array of picture elements called pixels on a screen for every

image, known as a frame [167]. Maintaining the visual continuity of these animations

is an interesting issue with no clear consensus, what is the minimum frequency that

frames need to be rendered to provide the user with an appropriate experience. This

frame-rate is often expressed as a unit of Frames Per Second (FPS), i.e. in Hertz.

Early examples of standardised frame-rate can be found in the variety of equipment

used during the early stages of the film industry. In the 1920s, features were filmed at

16 FPS and adequately provided the requirements for visual continuity. After 1930

the film industry standardised to maintain 24 frames per second to mirror the 24 frame
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soundtracks [150]. Computer rendered imagery is often different from the imagery

found in films, even in animated films the use of many additional effects to enhance the

visual continuity of their imagery is still present, such as motion blur and interlacing.

Little information is available pertaining to the interaction of rapidly varying complex

rendered images and the human visual system [39]. Although 30 frames per second is

often viewed as an appropriate frame rate for interactive/real-time computer graphics

applications [61, 139], less may be acceptable for some applications [24], and some

suggest that a frame rate as low as 10 frames per second is the minimum to achieve a

real time animation [101].

Lower frame-rates may be satisfactory for conventional mediums but visual con-

tinuity in VR can require much faster refresh rates. According to the best practice

guidance for the zSpace stereoscopic 3D hardware, for quality and comfort, appli-

cations targeting zSpace are strongly advised to operate at no less than 45 FPS [28].

Similarly, the guidelines for the Oculus Rift, an industry leading VR head-mounted

display (HMD), state that applications on their storefront must operate at 45 FPS

on machines meeting their minimum specification and 90FPS on machines at their

recommended specification. This is especially problematic as every frame must be

typically drawn twice, once for each eye, and there may also be some overhead

required to apply distortion to the final output frame [130].

Both computational throughput and variable frame rate requirements have driven

many researchers to exploit the power of the parallel computing. First researchers tried

to maximise the potential within modern general-purpose CPUs, namely by utilising

the multi-core architecture with thread-based parallelisation. Secondly, multi-system

computer configurations can be interfaced through the message passing interface

(MPI) standard, extending the computational potential with each additional machine.

However, this delegation to independent devices can incur a computational cost from,

managing the distribution of the workload, the time dedicated to data exchange and,
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the time consumed during synchronisations [191]. Finally, the programmable GPU

has been another active area of development to optimise simulations [44, 62], but

this change in the hardware architecture does cause another different set of certain

difficulties or limitations, such as, the restriction on the topology of the deformable

model, parallelisation of branching algorithms [132]. However, the GPU provides the

possibility of achieving parallel computations in real time.

2.1.2 The Graphics Processing Unit

The GPU was developed and used as a special purpose device to render 3D images

and scenes, more specifically geometric primitives and the techniques surrounding

them, anti-aliasing, texturing, shading etc. As such, the primary application of

GPUs has been computer games and other digital art sectors, e.g. film and graphics

production. As technology progressed, the architecture of the modern GPU hardware

became highly attractive in general-purpose computing for large scale parallelisation.

Consequently, graphics rendering pipelines began to include the capability to offload

some computation from the CPU to the GPU. This process generally required the

computational problem to be formed in a way the GPU could process, using simple

graphics elements and geometric primitives. More recently, this unwieldy process

has been alleviated with the introduction of GPU programming, APIs that require

less graphics programming knowledge but allow developers to write programmes

targeting execution on the GPU.

Due to the benefits of GPU programming one-third of the world’s top high-

performance computers were GPU accelerated in 2018, an increase from previous

years [126]. The primary difference between a GPU and a CPU is the number of

processor cores. Rather than having a low quantity of highly efficient cores designed

to be used in a sequential programming model, GPUs have a massive number of

cores, while these cores may be slower for general operations, they execute far more
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operations in parallel, see Figure 2.1. The differences in architecture lead to differences

in processing patterns. CPUs employ a multiple instruction, multiple data (MIMD)

technique to achieve parallel computation, i.e. the CPU cores can employ operations

independently to efficiently handle computation. Conversely, the GPU often uses the

single instruction, multiple data (SIMD) technique to operate its substantial quantity

of cores to perform the same operation on large data sets. SIMD performance suffers

considerably when programme logic branches but outperforms MIMD during huge

amounts of parallels computations. Consequently, GPUs tremendous computational

power has vastly outgrown conventional CPUs. In 2010, Intel measured a 14.9 times

speedup for collision detection algorithms on a NVIDIA GTX 280 over the Intel Core

i7-960 [93]. As a result of the effectiveness and popularity of GPUs for computation,

Intel have recently announced a return to the discrete graphics market [74].

Figure 2.1 An illustration of the differences in CPU and GPU architecture. The GPU
boasts a greater quantity of arithmetic logic units (ALU), the computational building
blocks of the processor, paired with multiple smaller control units and caches. (Source:
NVIDIA Corporation [129])

GPUs are readily available, with one in almost every desktop system, and they

are benefiting greatly from Moore’s law and the continued increase in transistors in

computer hardware. The performance of GPUs has been seen to increase substantially

during their release cycle every 9 to 18 months [176]. Moreover, these benefits are

beginning to be applied within scientific computation in general but with excellent



2.1 Real Time Simulations 16

applications in fluid dynamics. Finally, where previous research implementations

connected additional computer systems, additional GPUs can easily be installed in

one computer system to massively increase performance.

Programming computer applications to be accelerated by GPUs can require more

specialised programming models. Outside of graphics engines, software-development

environments for video games, there are two main GPU parallel computing program-

ming models for general computing on GPUs, general purpose APIs for GPU pro-

gramming and compute shaders. Popular GPU programming APIs include NVIDIA’s

CUDA and the Open Computing Language (OpenCL). Compute shaders are a standard

component of graphics APIs such as OpenGL [184], Vulkan [187] or Direct3D [112].

NVIDIA’s CUDA is a proprietary platform and programming language that de-

buted in 2007, it includes both a runtime API and driver API. When developing

with CUDA, the developer can still program in their preferred high-performance

language, generally being C, C++, or Fortran, but other languages are supported, and

by incorporating CUDA keywords as extensions can accelerate their programming

code. As a proprietary platform CUDA can only compile and execute on GPUs that

are manufactured to a NVIDIA designed specification. This could be limiting to the

end-user, but NVIDIA are prolific, and their hardware is readily available commer-

cially to businesses and the consumers market, as seen in the workstation (Quadro)

and consumer (GeForce) lines of graphics hardware.

Conversely, and as the name would suggest, OpenCL is an open royalty-free

standard for cross-platform, parallel programming. OpenCL is maintained by the

KHRONOS group, a non-profit technology consortium. First released in 2008,

OpenCL was developed to be an easy to integrate parallel processing API, pro-

viding task and data-based parallelism. The current kernel language/syntax is a static

subset of the C++14 standard. Much like OpenGL, the API is platform agnostic, each

hardware vendor implements the functionality of the API in their own graphics driver
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software. Consequently, OpenCL has no device limitations and is able operate on

most graphics hardware.

Finally, a compute shader is a stage of the graphics pipeline that is used entirely

for computing arbitrary information. Modern graphics hardware uses a programmable

shader-controlled pipeline. Until recently, computer graphics shaders were only

used in the graphics pipeline to control the details of how each pixel is eventually

rendered. The shading languages are used in small discrete programs that conform

to the various stages in the graphics pipeline. With the addition of compute shaders

to both the OpenGL Shading Language (GLSL) [182] and the High-Level Shading

Language (HLSL) [156] the graphics pipeline can now be used for general purpose

tasks. Compute shaders can operate on most hardware as a component of the modern

OpenGL specification, or on DirectX compatible systems with HLSL. Furthermore,

all common shader formats can now be compiled down into the SPIR-V format, a

cross-API intermediate language that is fully defined by Khronos with native support

for shader and kernel features used by APIs such as Vulkan [186].

In comparison to compute shaders, CUDA and OpenCL are more fully featured for

general computing and have even seen the development of GPU-accelerated libraries

to further facilitate general development. As modern shaders have now been co-

opted into running computations as their singular purpose in the graphics pipeline,

they suffer from a lack of stricter precision guarantees [183, 185], complex access

to the memory details, trial and error debugging. Consequently, compute shaders

offer a close to the hardware combined approach with graphics rendering at the cost

of developer time. There is also no standard industrial/academic model, but the

technologies have matured to be sufficiently capable. As CUDA is developed by

NIVIDA and in tandem with NVIDIA hardware it is expected to occasionally deliver

results that achieve improved performance over OpenCL due to platform specific

optimisations and features [79]. However, there is also a lack of thorough modern
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performance comparisons between OpenCL and CUDA, but the consensus seems to

be that the frameworks are competitive [45, 173, 40].

2.2 Fluid Flow

Figure 2.2 Timeline of the history of fluid flow with emphasis on the development of
real-time SPH.

An important component of any modern surgical planning tool is an accurate

modelling system that realistically simulates the complex mechanical interaction and

physiological behaviour of the human body with respect to the surgeon’s actions.

Historically, CFD has focused on the Eulerian frame of reference, calculating fluid

properties within fixed regions in space [14], leading to a number of grid-based

methods. Grid or mesh based numerical methods such as the finite difference methods

(FDM), finite volume methods (FVM) and the finite element methods (FEM) have

been widely applied in CFD [97]. Mesh-free methods tend to substitute the grid

formulation for a set of arbitrarily distributed nodes and calculate the fluid properties

from the Lagrangian frame of reference [14]. As a result, these methods are expected

to be more adaptable and versatile than their grid-based counterparts [57]. In the

context of computer graphics, it is worth clarifying the distinction between a mesh

for computation and a surface mesh of a virtual object. A computational mesh
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represents the geometric Eulerian domain by breaking it down into smaller discrete

cells, effectively creating a grid, which in turn are used to compute solutions of partial

differential equations, see Figure 2.3. Conversely, a surface mesh is a form of polygon

mesh, usually triangle, where each polygon is connected by their common vertices

and used to represent and render a virtual object in computer graphics, see Figure 2.4.

Figure 2.3 Cut-through views of the finite element meshes within the pulmonary
arteries. Three levels of refinement are shown, facilitating areas with sharp corners or
edges by creating softer blend elements [154]. (Source: Arthurs et al. [8])

Research into real-time fluid simulation has a long history of interesting incre-

mental developments, see Figure 2.2. In the late 1980s, initial attempts were made

to model fluids using computer software in real-time. These early simulations were

primarily concerned with producing wave-based animations [54, 134, 190] for their

use in film and media; results were computationally inaccurate, avoiding solving fluid

differential equations in favour of wave equations, and pre-rendered for improved
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Figure 2.4 Cross section view of a surface mesh depicting a portion of the aorta. The
region inside the surface mesh contains no vertices.

graphical fidelity. In 1990, Kass and Miller [80] presented an early implementation

of a real time fluid simulation. They developed a simplified simulation model to

execute a three-dimensional wave animation at 30 frames per second. The simulation

does not take place within any particular geometry but functions under changing

boundary conditions. It was demonstrated to flow over various terrains and be suitable

for flowing rivers. The computational model was developed from earlier work that

involved numerical methods of applying the Navier-Stokes equations [115, 133, 78].

Although to achieve an adequate frame rate for real-time operation, a number of

assumptions were made to create the simplified model. Firstly, the water surface is

considered a height field, as a result it could not splash, and waves cannot break. Sec-

ondly, the vertical component of the velocity of the water particles was ignored, very

steep waves would be inaccurate. Finally, the horizontal component of the velocity

in a vertical column was said to be constant, providing inaccuracies with turbulent

flow. Consequently, these physically unrealistic assumptions produce results that are

inaccurate and only fit for animation or demonstration.

Chen and Vitoria Lobo [29] endeavoured to develop a more physically accurate

model than their 1995 predecessors with the addition of floating objects, self-propelled

objects, streaklines of fluids and blending while still operating in real time. Applying
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the Navier-Stokes equations is a requirement to create a physical foundation for

animating fluid [29, 80, 169, 4]. The model calculated the Navier-Stokes equations in

2D, because the equations in 3D would be so computationally expensive that it would

prevent the simulation from running at interactive rates. Imitating three-dimensional

motion in this way is not accurate enough for most engineering applications. Instead

the model uses the results gained in 2D and added the third dimension solely using

a pressure-based height field treating the fluid as being completely flat. The only

previous example of self-propelling objects through a fluid medium being simulated

in real time was from Goss in 1990. However, Goss’s implementation was not based

on physics, making it far less useful in application than Chen and Vitoria Lobo’s

method of introducing internal boundary conditions to objects and then applying their

physical model. A chief concern of the model was the stability of the numerical

computation. Working at a detriment to the accuracy of the simulation, the stability

can only be achieved through the manipulation of various parameters. For example,

high Reynolds numbers in the calculation could result in numerical divergence, the

variable was raised to prompt various turbulence behaviours but would then have to

reduce to prevent the divergence.

Foster and Metaxas [53] initiated the next phase in fluid simulation, by moving

into a more refined eulerian setting they created a physics based general fluid model.

This eulerian aspect means that the fluid was discretised into an arbitrary fixed

grid, velocity and pressure are defined throughout and updated by a set of finite

difference expressions. The model built upon its predecessors by more accurately

determining the motion of a liquid in 3D when solving the Navier-Stokes equations.

This approach naturally allowed for the possibility of previously simulated effects

such as, wave reflection, refraction and diffraction, eddies, vorticity, and splashing.

The approach developed the model with a firm focus on explicit time stepping, on

each time step the density and velocity of each cell is moved across the velocity field



2.2 Fluid Flow 22

to neighbouring cells. The maximum stable time-step for numerical integration was

limited to maintain a straightforward implementation. Consequently, larger time-steps

were inherently unstable, especially when formulating the velocity field. Finally, to

maintain results conducive to fluid’s incompressibility a relaxation coefficient was

implemented, introducing a further potential source of inaccuracy into the results.

Stam [166] innovated upon Foster and Metaxas’s development path by present-

ing a method that provided unconditionally stable fluid dynamics at any time-step.

The stability was achieved by the vastly improved advection scheme; Stam departs

from Foster and Metaxas’s method by implementing an implicit, and partly Lagrangian

advection scheme, based in part on a technique known as the ‘method of character-

istics’. The method is applied to determining the velocity of a point by calculating

a linear backtrace across the velocity field and interpolating the results. A second

glaring improvement from their predecessor’s was the use of Helmholtz-Hodge de-

composition. It states that the vector field can be decomposed into a scalar gradient

field and a divergence-free vector field. The technique more effectively fulfils the role

of the relaxation coefficient Foster and Metaxas used, correcting any divergence. Stam

acknowledges that the method produces results too inaccurate to be suitable for use in

most engineering applications. Namely the results suffer from what Stam describes

as “numerical dissipation”, i.e. the flow tends to dampen too rapidly as compared to

actual experiments.

2.2.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a mesh-free mathematical model which

has been applied to CFD, and its use in computer graphics is a modern and active area

of research. SPH was first introduced in 1977 with applications within the field of

astrophysics [100]. The SPH model is based upon Lagrangian formulation, in which

the continuous fluid is discretised into a finite collection of distinct ‘particles’. These
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particles act as interpolation points within the method, and they are used to calculate

the dynamic properties of the fluid (e.g. density, pressure, velocity) at each stage of

the simulation.

These particles interact within the bounds of a smoothing kernel function. These

smoothing kernels have a fixed length spatial radius, i.e. all neighbouring particles that

would fall within this radius have a weighting effect for any given property. Therefore,

the physical description of a particle is calculated by summing the properties of its

neighbours with the addition of the normalised and symmetrical kernel function. The

computation speed and accuracy of a SPH simulation is highly dependent on the

choice of smoothing kernel [119].

In 1995, Stam and Fiume introduced the use of SPH to the graphics commu-

nity when developing their animated depiction of fire and other gaseous phenom-

ena. Müller, Charypar, and Gross implemented the techniques to create an SPH based

fluid simulation running at interactive rates in 2003 [119]. Müller, Charypar, and Gross

developed bespoke smoothing kernels for the application and used an implementation

of Desbrun’s ‘spikey’ kernel [42] to solve a problem with repulsion forces, particles in

close proximity would have an erroneously low repulsion force as the kernel gradient

reaches zero at the centre. Müller, Charypar, and Gross’s implementation of the

model was integrated using the Leap frog scheme [66], an integration technique named

after its alternating time steps "leaping" over their counterpart, see Figure 2.5. Leap

frog integration achieves second order accuracy while being conceptually simple,

although the scheme does require some logically branching for the first step of the

simulation.

Surface tracking and rendering techniques replaced the height field assumption

found in previous fluid simulation attempts and improve the quality and accuracy of

the visualisation when surface reconstruction techniques when implemented. Surface

tracking and rendering is a method used to display a projection of an isosurface
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Figure 2.5 Illustration of the leap frog integration scheme. Depicting the integration
of velocity (v) and position (x) over time (t) in staggered time steps, "leaping" over
one another.

representing a 3D data set [35], see Figure 2.6. The surface of the volume is esti-

mated and reconstructed from a discrete scalar field into an isosurface, typically as

a triangle mesh. The triangle mesh is generated using algorithms such as marching

cubes [98], as the name would suggest, the domain is divided into a discrete collection

of cubes. The cubes are then examined with reference to neighbouring cubes and

the polygon faces required to represent the surface within are determined. Although,

these techniques are computationally expensive and can raise a problem when main-

taining interactive frame rates. When constrained to a maximum of 2200 particles

the simulation ran at 20 FPS, an acceptable rate to be considered real-time. However,

after applying surface rendering techniques the simulation speed dropped to 5 FPS, a

far less appropriate rate. Müller, Charypar, and Gross claimed that during the next

generation of graphics hardware, real-time performance will be possible. Although

the sentiment may potentially be true for this particular implementation, hardware

will not resolve inaccuracies found in the method, solutions to which may require

further computational power.

The method is a reformulation of the classic naiver-stokes equation. The calcu-

lation takes the form of Equation 2.1. The scalar quantity A is interpolated at the

location of particle ri by iterating over the particles as j within the radius of the

smoothing kernel. Where m j is the mass of a particle, ρ is the density. Finally, the
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Figure 2.6 Demonstration of SPH fluid surface tracking using the marching cubes
algorithm. Image (a) shows simulated fluid particles, (b) the isosurface triangulated
via marching cubes (Source: Müller, Charypar, and Gross [119]).

function W is the smoothing kernel function, in which h is the kernel smoothing

length and denote the finite support radius in the formulation.

As(ri) = ∑
j

m j
A j

ρ j
W (ri − r j,h) (2.1)

As a mesh-free method, the implementation of SPH is well suited to simulations

involving complex boundary dynamics, for example, free surface flows, large bound-

ary displacements and interactivity. However, these benefits are largely due to the

multifaceted cost of building the mesh. In fact, computing the effect of a boundary

from a mesh can be very straightforward, using the mesh edges can enforce Neumann,

where the normal derivative of the function is specified on the boundary, or Dirichlet

boundary conditions, value of the function on the boundary is specified. However,

the treatment of boundary conditions is certainly one of the most difficult technical
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points of the SPH method [159]. The complexity arises from the Lagrangian nature

of the method, and the boundary being external to the particle computations. Particles

within close proximity of a boundary edge have some portion of the kernel radius

deprived of particles.

Research into SPH as a viable model of fluid dynamics is a rapidly advancing area

and its applications in engineering are becoming more recognised [194]. Improving

the accuracy and convergence of the model are primary goals for complex simulations.

Performance is constantly improving with improvements to computer hardware,

algorithmic techniques and optimisations. However, to move SPH into a real-time

context certain factors become limiting. Primarily, the computational performance.

As the number of particles in a simulation increases, the performance decreases,

traditionally taking a number of hours, or days in extraneous cases, to perform the

computation of a few seconds. This incurs a fragile balancing function between

accuracy and performance.

The improved accuracy, stability and adaptivity of the modern SPH method has

reached an acceptable level for practical engineering applications [96]. Moreover,

SPH has been widely applied to various areas in mechanical engineering, coastal

hydrodynamics, high strain hydrodynamics with material strength and many problem

domains [97].

2.2.2 Software Solutions for SPH

Due to its many engineering applications, SPH implementations can be found in nu-

merous commercial and open-source software packages, for example, DualSPHysics [46],

COMSOL [73], and RealFlow [179] are pioneering excellent research and engineering

solutions for hydrodynamic problems. Video game development has also advanced

the use of SPH, creating visibly plausible and interesting effects with maximum
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performance, branching into their own models, e.g. Position Based Dynamics (PBD)

forsaking some accuracy for high fidelity, visually appealing graphics [102]. Exam-

ples include NVIDIA’s PhysX [34] and Flex [33], real time GPU accelerated software

library solutions for video game physics and fluid, respectively.

RealFlow is a commercial software product developed by Next Limit and bundled

with several solvers built using SPH and position based dynamics (PBD). RealFlow is

marketed for the 3D and visual effects industry and is often found within media such

as films and advertising. One major caveat for the prototype we envision is the lack of

real-time interactivity. RealFlow, for instance, requires that interactions are scripted

ahead of time, creating a trial and error workflow between simulations.

COMSOL is another commercial software product featuring finite element analy-

sis, solver and multiphysics simulation. COMSOL can be configured to obtain results

for a variety of applications, including fluid flow, heat transfer, solid mechanics,

and electrodynamics [137]. As a multiphysics solver, COMSOL excels in domains

where multiple modalities are coupled. Moreover, case studies using multiple fluid

simulation models have been developed to open avenues into the use of COMSOL for

elements of blood simulation [163].

DualSPHysics on the other hand is a free open-source software package based

upon the SPH model. Research using DualSPHysics has been primarily focused

on the wave propagation and interaction with coastal structures in 2D and 3D [57].

Initialisation of the simulation is done with configuration files and the visualisation is

handled by ParaView [10].

ParaView is frequently used within the scientific community as a method to

visualise and analyse extremely large data sets. Aside from CFD, ParaView has found

use within nuclear energy, wind energy, forest fire modelling, carbon sequestration

and cosmology [19]. The open-source software provides a graphical user interface

(GUI) for users to generate and execute a variety of visualisation tasks, including
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some SPH specific interpolation visualisations. ParaView was designed to integrate a

number of diverse requirements including the ability to handle large data, ease of use

and extensibility by developers [2].

2.2.3 Blood Simulation

Medical simulations are often more complicated by the nature of the domain they

target, the human body which varies person to person, and changes from moment to

moment, however even simple simulators can provide enormous value [155]. At every

stage of the circulatory system, whether blood is swirling in the heart or streaming

through the arterial tree, a range of mathematical models have been employed to

quantify biomechanical conditions [177]. With approximately 100,000 kilometres of

blood vessels in the adult human body [25], computationally simulating the global

blood circulatory system is a large multifaceted task [148], instead simulation is

often used to target specific smaller regions of anatomy or pathology, increasing the

accuracy of the simulation and its practical value in planning surgical procedures.

Numerical models have been developed to simulate both Non-Newtonian and

Newtonian fluids. Non-Newtonian fluids present as the inverse of Newtonian fluids

in respect to the properties of the fluid, primarily the viscosity. Newtonian fluids

present with a constant viscosity only affected by temperature or pressure. A non-

Newtonian fluid’s viscosity is variable and dependant on the various stress forces

acting on the fluid. In short viscosity is the property of a fluid to resist the growth

of shear deformation. Figure 2.7 demonstrates the relationship between shear stress

and shear rate, the gradient of the line being defined as the viscosity of the fluid.

While Newtonian fluids show a linear relationship, shear thickening liquids viscosity

increases as stress increases and shear thinning liquids exhibit the opposite behaviour.
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Figure 2.7 Rheology of different kinds of Non-Newtonian fluids, demonstrating the
relationships between shear stress and shear rate. (Source: derived from Pinto and
Meo [141].

Blood itself is complex entity, it consists of a water-like carrier (plasma) which

largely contains fluid-filled vesicles. It is well known that blood behaves as a non-

Newtonian fluid, particularly at low shear rates (less than 100s−1) [77]. The viscosity

of blood is dependent on the viscosity of the plasma, its protein content, the ratio of

red blood cells to the total blood volume (hematocrit), the temperature, the shear rate,

and the narrowness of the vessel (Fahraeus-Lindqvist effect) [11]. However, blood

is commonly approximated as a Newtonian fluid in larger arteries as shear rates are

expected to be on order of 100 reciprocal seconds (s−1) [171]. Newtonian models

are often used to simplify the simulation of non-Newtonian fluids, preventing some

computational complexity, as there is sufficient agreement between the computational

modelling and experimental data [118].

The complexity of the vascular system guarantees a great deal of variation within

the blood flow characteristics. From the medium for the blood, i.e. the vessel, tissue,

or organ the blood is flowing through, to the patient-specific conditions like blood

pressure, cardiac output or any acute pathology that may have occurred within the

system. The vascular system homes a collection of vessels spanning from meters to
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microns; flow within differs markedly from microcirculation to the large coronary

arteries [196]. Even within small regions there can be deviation in the blood flow

between different patients [31]. In general, blood flow in healthy arteries is mostly

laminar, non-turbulent flow which contains a great many parallel layers of fluid with

no internal disturbance amongst them [14]. The simplest method to model blood

flow is to assume laminar, incompressible flow of a Newtonian fluid through straight

cylindrical channels of constant diameter. This type of flow is called Poiseuille flow

or Hagen-Poiseuille flow, and the flow of fluid can be defined by Poiseuille’s law,

Equation 2.2.

Q =
πPr4

8η l
(2.2)

The flow rate Q is based upon the pressure P, the radius r of the tube against the

fluid viscosity η and the length of the tube between inlet and outlet l, and proposes

that the volume flow is proportional to the fourth power of radius or diameter [195].

Fully developed flow in the aforementioned straight channel tube has a parabolic

velocity profile, which can be seen in Figure 2.8.

Blood as an incompressible fluid has been accurately modelled with a Newtonian

model and has been traditionally simulated numerically using the incompressible

Navier-Stokes equations, these methods were also largely applied from a fixed Eu-

lerian perspective. However, the specific models that have been implemented vary

largely, ranging from one-dimensional wave propagation to three-dimensional numer-

ical methods, and can all be used to describe cardiovascular mechanics to great effect.

That said, there are still significant challenges in image-based modelling of blood flow,

these include algorithmic improvements to geometric modelling, boundary conditions,

fluid–structure interactions between the blood stream and vessel wall, hemodynamic

parameters, and verification and validation to name a few [178].
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Figure 2.8 Idealised parabolic velocity profile found in laminar flow. The arrows
across the velocity profile indicate the magnitude of the velocity in the laminar sheets,
shorter arrows having a lower velocity.

Blood flow was quickly considered as potential candidate for SPH simulation

in computer graphics. In 2004, Müller, Schirm, and Teschner repeated their earlier

success with interactive SPH applications by applying the model to blood flow. The ge-

ometry demonstrated was artificial, but the simulation results did produce a boundary

reactive to the blood itself. The vessel was perforated to demonstrate the interactivity

of the simulation. The bleeding effect produced results similar to cutting surface skin

or into the vessel, but no conditions were specified for medium in the regions outside

the vessel, air or otherwise. The simulation developed by Nobrega, Carvalho, and

Wangenheim was an early example of the integrate realistic triangle-mesh geometry

as the medium for a SPH simulation model, and the application did generate and make

effective use of a centreline. The boundary condition implemented was an inaccurate

reflection condition, simply reflecting particles along the intersected triangle’s normal

vector. Additionally, the flow was largely guided by a computationally costly force

dictated by the tube’s centreline, rather than the pressure generated from the particles

themselves and the boundary.
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Pang et al.’s SPH bleeding simulation was an interesting attempt to accelerate

the simulation with a Physical Processing Unit (PPU), a specialised co-processor

for physical computations, one implementation was the PhysX chip [103] which

was a precursor to the implementation of the same functionality in NVIDIA PhysX

and GPUs. The acceleration effects of the PPU were impressive at lower particle

counts (below 6000), but the implementation suffered from diminishing returns

as the particle count increased, effectively giving no improvement over the CPU

implementation when the simulation reached around 6000 particles, see Figure 2.9.

This drop in performance of the PPU acceleration may have been due to a data transfer

bottleneck, which can still be a limitation found in modern GPUs. The simulation was

shown to use some realistic geometry; however, the geometry was not the medium

of the flow itself. Kulp et al. produced a GPU optimised variant of patient-specific

ventricular blood flow simulation using SPH. Although the simulation did not operate

interactively, the performance was greatly improved from previous blood simulation

attempts.

Importantly, despite the performance gains from GPU acceleration, validation

of blood flow simulations continues to be very difficult. Kulp et al. suggested that

the CT and MRI images of a patient’s heart could be used with the MRI flow data

to compare and validate the simulation. Critically, real-time SPH blood simulation

attempts have had insufficient accuracy and been impractical to validate [120, 147],

largely due to low particle numbers. More accurate simulation implementations can

also take extended periods of time to execute, and in time critical interventions this

can massively diminish the usefulness of the results.
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Figure 2.9 Time performance for a SPH bleeding simulation using a PPU and CPU
(Source: Pang et al. [132]).

2.3 Patient Specific Care

The development of efficient numerical methods and new computer generations allows

the calculation of local flow behaviour under physiologic and anatomically realistic

conditions. Although the first applications of the computational simulations were

applied to compute velocity fields in generic or idealised vascular anatomy, see Fig-

ure 2.10, modern medical imaging has enabled the use of patient-specific anatomic

and physiological models within the simulation environment. This patient specific

approach has enabled the application of cardiovascular mechanics to the prediction

of changes in blood flow during and after clinical treatment procedures [177]. In

the late 1990s patient-specific computational haemodynamics began to gather some

momentum with researchers bridging image processing and CFD [122]. The further

development of efficient methods with improving computer hardware allows the calcu-
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lation of flow behaviour under physiologic and anatomically realistic conditions [20].

This has enabled the quantification of cardiovascular mechanics in patient-specific

anatomic and physiologic models as a tool for understanding and predicting CVD [20,

144]. Despite the increased research activity in the field, there is a limited number of

studies on patient-specific haemodynamic simulations effect on large patient popula-

tions. This lack of studies on patient populations is likely based upon the process from

image generation to simulation results, having disparate operator-dependant steps

including image-segmentation, model preparation, mesh generation and simulation,

with no standard integrated workflow [6].

Figure 2.10 Views of the two in vivo carotid bifurcation models reconstructed from
black blood MRI and an idealised model. Differences can be seen in the natural resting
position, the large natural deviations of radius and angle throughout. (Source: Milner
et al. [113]).

As the field uses medical imaging techniques, e.g. MRI and CT, and image

processing (acquisition, segmentation and registration) to generate the meshes to

either perform the computation or define the patient specific geometry [122], the

accuracy of geometric models constructed using these methods is important. Since

a 3D model is constructed using only local 2D information from the inherently 3D

volumetric data, there is an inherent risk that the mesh will subject to some geometric

inaccuracy [177]. There is the potential for variation in the end product after the
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conversion from Digital Imaging and Communications in Medicine (DICOM) data sets

to Computer-aided Design (CAD) surface mesh formats, depending on the software

and the technical parameters used [69].

Software solutions have been developed to create easy access to segmentation and

volumetric data visualisation. Most notably, the Insight Toolkit (ITK) [87] and Visu-

alization Toolkit (VTK) [88] from Kitware, Inc [86] are open-source cross platform

tool sets for medical image data. ITK provides medical imaging researchers with

an extensive suite of leading edge algorithms for registering, segmenting, analysing,

and quantifying medical data [157]. VTK, on the other hand, provides a software

system for computer graphics, visualisation, and image processing [85]. Subsequently,

developers have built upon VTK and ITK to create fully-fledged applications and

further software libraries. For instance, the Vascular Modelling Toolkit (VMTK) is a

library for 3D reconstruction, geometric analysis, mesh generation and surface data

analysis for image-based modelling of blood vessels [105, 140, 38].

SPH as a meshless method immediately reduces the need for the meshing and

modelling steps. However, SPH has largely been used to model free surface flows

[116, 160, 17], there is a limited amount of cases where SPH was used in combination

with complex tube geometry in three-dimensions, especially vascular data. This

becomes increasingly true when exploring real-time simulations. Past adoption of

physically based models has been limited by the challenging nature of modelling

blood flow and the performance generated by computational hardware [147], and the

ability to model realistic fluid while attaining suitably accurate results with acceptable

efficiency for computer graphics [53].
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2.3.1 Validation

Clinicians will need to trust the validity and accuracy of the results, especially regard-

ing the haemodynamic consequences, for any simulation to be useful. Determining the

accuracy of CFD simulations requires some form of validation, this is especially true

for methods to be considered for clinical practice. Verification for a numerical model

can be defined as an assessment of the numerical accuracy of the results it produces,

but validating computational models is more complicated as it requires a comparison

between the results with those observed empirically in real environments [177]. There-

fore, before these simulations can be used practically, the code should be validated

by verifying that it can be used to reproduce sets of experimental data, theoretical

solutions, or results from other established methods for benchmark problems or actual

engineering problems [96]. Numerical fluid simulations are habitually validated by

comparison to other data sets and other forms of benchmarking, for example, [68]

draw upon multiple data sets to validate different aspects of the simulation in a series

of benchmark test problems. The results of a simulation can be collated and compared

against expected behaviours we would find in empirical observations, e.g. simple

straight channel flows such as Couette and Poiseuille flow or more complex separated

flow [1]. In contrast, research into graphical simulations, especially studies with

real-time criteria, prioritise computational performance in favour of accuracy. In some

cases, it is believed the constraints of acceptable performance prevent suitable valida-

tion; Müller, Schirm, and Teschner’s 2004 real-time simulation found the number of

particles was significantly too low to compare to measured data.

2.4 Clinical Decision Support

When a patient is admitted to the care of a clinician several sources are considered

before deciding on a treatment plan, especially in cases involving invasive surgery.
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Amongst other resources, healthcare professionals will bolster their own experience

and training with patient records and medical recommendations. These recommen-

dations are often curated by a society of experts consulting with the literature and

statistics for a given discipline or pathology. Medical recommendations can be deliv-

ered with additional information such as a level of recommendation (Strong, Weak)

and quality of evidence (Low, High) [27]. These qualities often align to produce a

strong recommendation with a high quality of the supporting evidence, but the oppo-

site can also be true, recommendations based on limited evidence [108]. Moreover,

recommendations may be based on simple measurements unrelated to a patient’s

individual characteristics, e.g. the diameter of an aortic aneurysm [52].

Furthermore, while these recommendations may benefit some patients, they rely

on the diligence of medical professionals with highly limited time and resources.

Many errors may be alleviated by human knowledge and inspection, but it has been

proposed that up to half of all medication errors are intimately linked with insufficient

information about the patient and drug [92]. This type of error has prompted the

development of real-time information systems to detect problems and alert responsible

parties when issues are detected [15].

2.4.1 Clinical Decision Support Systems

Clinical decision support systems (CDSSs) are a type of software suite promoted as a

method to reduce medical errors and increase health care quality and efficiency [180].

CDSSs support clinical decision-making by delivering evidence from scientific re-

search and electronic health records to health care professionals, sometimes tailored

to generate patient-specific guidance [95]. Historically, there have been few ex-

amples of CDSSs used in practice, potentially due to organisational and daunting

technical challenges yet their use to facilitate evidence-based medicine promises to

substantially improve health care quality [165]. Although findings are mixed, there
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is sufficient evidence that CDSSs are effective in improving screening for CVD risk

factors and clinician practices for CVD-related preventive care services, clinical tests,

and treatments [123]

CDSS algorithms were developed to leverage more modern techniques like ma-

chine learning to aid in pre-operative decisions [94]. Researchers have developed

these principles further by curating elements of computer simulation into CDSSs.

For example, the finite element method has been used to provide thoracic surgeons

a fast, accurate and simple tool for predicting the stress state of the trachea and the

reduction in the ability to swallow after implantation thus helping in taking decisions

during pre-operative planning of tracheal interventions [165]. However, there are

limited examples of CDSSs integrating computer simulation and visualisation to

benefit pre-operative decision making for cardiovascular surgery.

2.5 Hardware For Interactive 3D Visualisation

2.5.1 Virtual Reality and the zSpace Stereoscopic Monitor

3D visualisation is a major component of medical information, for example, when

performing therapeutic procedures clinicians are viewing electronic representations

of the patient’s pathology, and this allows the disease processes and anatomy to be

better understood. Volumetric medical image rendering is a method of extracting

meaningful information from the data created by computerised imaging modalities

such as CT and MRI [202]. The scanners required for advanced medical imaging

are now so ubiquitous that they now appear in some operating theatres, these ‘hybrid’

theatres have equipment available during endovascular operations such as aneurysm

repairs, peripheral arterial and venous re-vascularisation and gastrointestinal bleeding

management [188], see Figure 2.11.
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Figure 2.11 A hybrid operating theatre, combined operating theatre and interventional
radiology suite (Source: BBC News and Coleman [16].)

In the 1990s new 3D immersive experiences were proposed to bring new visualisa-

tion and interaction solutions into the medical field, for example, optical see-through

augmentation of ultrasound slices through a HMD [164]. Since the advent of medical

imaging technology, the images produced have evolved from 2D projection to fully

isotropic 3D images, and this evolution has made the traditional means of viewing such

images inappropriate, especially when surgeons need an accurate 3D representation of

the pathology to plan a treatment [202]. The increased availability of high-resolution

volumetric imaging impacted healthcare and generated new opportunities to visualise

and measure pathological structures, especially within the clinical areas where these

imaging techniques are widely used for diagnosis and treatment planning [192]. It is

proposed that we can improve visualisation and simulation by using VR to interact

with objects as we would in real world, or embed a user into a computer-generated

world, using devices such as head-mounted display goggles and data gloves [197].

Today these techniques are actively being researched and successfully applied to

medical education, diagnosis, and therapy [76, 155, 158, 193].
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(a) The Oculus Rift virtual reality head mounted display with Oculus Touch
controllers (Source: Facebook Technologies, LLC. [49]).

(b) The HTC Vive virtual reality head mounted display with accompanying con-
trollers and base stations for tracking (Source: HTC Corporation [67]).

Figure 2.12 Desktop VR HMD configurations.

The application of VR technology in medicine was once viewed as a gimmick

and even potentially dangerous [107], but despite the criticisms, VR technology and

research has continually flourished and produced a multitude of deliverable solutions

within medicine, and related fields. We believe that giving the clinician the options to

use immersive devices will only improve their experience, and potentially allow them

to view their decisions through new perspectives. HMD VR configurations are cur-

rently popular in other domains. Modern examples of HMD’s include the Oculus Rift

and HTC Vive, see Figure 2.12. The use of HMDs by clinicians is not ideal, however,

as they do not currently provide a collaborative experience. This would be certainly

be unsuitable for many clinical working spaces and especially unsuited to operating

theatres. Instead, transitional virtual reality devices will provide a more suitable

environment for clinical use. One alternative with potential in a hospital setting, is the
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zSpace stereoscopic monitor [203], comprising of a fully featured passive stereoscopic

monitor, glasses based head tracking, and equipped with an integrated 6 degrees of

freedom stylus interface, see Figure 2.13. The passive stereoscopy featured in the

zSpace monitor is created when two images are superimposed onto the same screen

and viewed through the polarised glasses. The platform has proven to be practical in

medical applications, it has previously been used to develop medical software, both

by zSpace, Inc themselves and medical researchers [76].

Figure 2.13 The immersive zSpace 200 display, featuring 6 degrees of freedom stylus,
passive stereoscopic glasses, tracking cameras and 3D monitor (Source: zSpace,
Inc [203]).

Using an interactive platform will be an easier transition for clinicians, as little is

known about the computer literacy of the medical profession, but computer anxiety and

alienation are real problems [107]. It is also more practical for surgical applications to

target monitors with similar dimensions to those already used within operating theatres.

Moreover, the immersive aspect can be shared to other viewers with the use of the

zSpace zView system [205], in which the rendered image can be projected or mirrored



2.5 Hardware For Interactive 3D Visualisation 42

to a secondary monitor. The zView configuration also supports an ‘augmented reality

view’ of the users screen, where the virtual objects are rendered as they appear to

the zSpace user, see Figure 2.14. There are other technologies that offer a similar

‘augmented’ view of virtual objects such as the Microsoft Hololens [111] and Magic

Leap [48], HMDs that project holograms into the user’s vision, see Figure 2.15 .

Figure 2.14 The zSpace zView collaborative view mode, achievable with a video
camera and secondary screen. The secondary monitor renders the virtual objects as
they would appear to the primary zSpace user while wearing the stereoscopic glasses
(Source: zSpace, Inc [206]).

Previous software systems operate using a conventional user interface (UI) as the

medium of control given to a user when operating the system. The UI processes user

actions and delivers it to the required computation and facilitates the delivery of the

output. Most desktop user interfaces have used the same basic principles for the past

decade or more, but with the advent of VR and ubiquitous mobile computing, 3D

interfaces are becoming a more important area of research [90]. Developing upon

this convention, a 3DUI delivers the control to users performing tasks directly in a

3D spatial context. Working within a 3D environment does not necessarily mean that

a user is interacting in 3D, and conversely 3D interaction does not require 3D input
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(a) The Microsoft Hololens mixed reality de-
vice (Source: Microsoft [111]).

(b) The Magic Leap mixed reality device
(Source: [48]).

Figure 2.15 Mixed reality head mounted displays.

devices, e.g. by using a 2D non-stereoscopic display with multi-touch capability, the

user performs a 2D gesture to move along the Z axis [13]. 3DUI’s are increasingly

important with the advances in 3D immersive hardware, but the fundamental issues

remain unaltered; real-world tasks are performed in 3D, 3D interaction is difficult to

solve and still requires better usability [21].

2.6 Summary

There is no clear consensus on real-time software but there is a trend to recommend

frame rates near to 30 FPS. Although it has been difficult to create real-time CFD

simulations in the past, modern graphical hardware programming has created new

opportunities for high performance programming. However, there is still a precarious

balance when optimising performance against the accuracy of the simulation, as it is

difficult to validate on small numbers of particles.

Blood has been an active area of research for simulation but there are few exam-

ples of interactive real-time patient-specific applications. Blood behaviour is often

simplified by assuming laminar flow, slip conditions, and with the application of New-

tonian models. These assumptions have been generally found to have good parity with
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experimental data. The SPH method should be an effective approach to simulate under

these conditions, as it has seen constant improvement and effective boundary methods

are being developed. Validation has also been a problem within blood simulation. It is

difficult, and sometimes invasive, to gain the required in vivo data from patients. There

is a clear need for a real-time 3D blood simulation to be developed with interactive

behaviour and for the output to be subject to novel validation until in vivo data can be

applied. The validation needs to prove that the results are representative of reality.

There is great potential for real-time blood simulation to be used as a pre-operative

decision making tool to improve efficiency and patient outcomes. As a CDSS, the

software will be required to integrate into existing practice, which provides clinicians

with new perspectives on historically difficult problems. With patient specific results

in a time frame suitable to affect the decision-making process, the potential for costs

saved and patient care could be massive. The exploration also would provide a

necessary investigation into the application of real-time SPH into the medical domain,

if its accuracy and visual continuity is suitable for professional and commercial use,

and if it can be developed to become superior to competing methods.



Chapter 3

Implementation of a GPU accelerated

Blood Flow Simulation

3.1 Simulation and Objectives

A prototype blood flow simulation application was developed to simulate blood flow

through real patient geometry in real-time, with integrated user interaction to form

certain diagnostic scenarios i.e. blocking the flow and evaluating the effects of re-

circulation, including collateral circulation. The requirements and specifications for

the application were developed in part from past and current collaborations [142]

with subject specialists, interventional cardiologists (Prof Michael Rees, Ysbyty Glan

Clwyd), interventional radiologists (Prof Derek Gould, Royal Liverpool Hospital) and

clinical engineers (Dr Thien Howe, Royal Liverpool Hospital). We aim to reduce the

effect of having disparate operator-dependant steps including image-segmentation,

model preparation, mesh generation and simulation, by creating a more standard inte-

grated workflow. The application is also developed to integrate well with interactive

3D technologies, primarily the zSpace stereoscopic monitor, as an added benefit to

those who have access to such technologies. If successful, the simulation could be



3.2 Patient-specific Geometry 46

integrated alongside pre-existing clinical decision-making strategies, granting a higher

depth of understanding and patient specific care, by running through any number of

potential outcomes to treatment. Secondly, there is an opportunity to increase the

utilisation of interactive 3D displays in the medical domain and the operating theatre.

By providing the option for a clinician to access the simulation within an immersive

environment, we only envision an increase in uptake and positive experiences when

interacting with the simulation.

The key problems identified to be addressed are: performance and achieving

simulation results at interactive rates, the compatibility of real-time interaction with

the simulation results, the application of real three-dimensional patient geometry,

with respects to the boundary and the inlet/outlet conditions, and the validation of

simulation results. To simplify the incredibly complex circumstances of blood flow,

a steady laminar flow with a solid boundary is assumed. Although some natural

behaviours are lost, e.g. an elastic muscular boundary in vessels and the pulsatile

flow created by the rhythmic beating of the heart, the approximation is capable

of providing suitable credibility despite these limitations on the accuracy. These

assumptions are common across the literature surveyed in Section 2.2. Furthermore,

elastic and reactive behaviours are an active area of simulation research [3, 81, 135]

and including these features into this development is outside the scope of this research.

3.2 Patient-specific Geometry

Patient specific care goals are an increasing priority in the medical profession, espe-

cially for conditions such as CHD, which will naturally involve case by case treatment

strategies. As the logical progression from viewing 3D medical images with the use

of computer graphics, the application of real patient geometry is a great opportunity to
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increase the value of any simulation results. By targeting the patient specific pathology,

simulation results will grant a greater insight than any generic test cases. The results

can be used to design the optimal treatment strategies for the patient, divining valuable

information on physical consequences that cannot otherwise be measured. Addition-

ally, results based upon true to life geometry improves the likelihood of generating

clinical trust in the results. The use of the patient geometry would decrease the time

required for the simulation pipeline. As medical imaging would likely have already

been taken, or generated when required in a hybrid theatre, there is no requirement to

fabricate life-like geometry for various scenarios. Generation of intricate geometry

would incur significant additional costs for each case, and the deliverable product

would be created to enable a meshed simulation method, such as the Finite Element

Method (FEM). Meshing and modelling steps are instead immediately diminished

with the introduction of the meshless SPH method, rather than discretise the whole

domain, the application can use the results of automated image segmentation to define

a boundary for the particles.

3.2.1 Geometry Processing

Real patient geometry is the largely the result of magnetic resonance imaging (MRI)

and computerised tomography (CT) imagery. There is deviation in the outputs

from medical image processing, but previously established routes of geometry trans-

formation have reached maturity, software solutions, such as ITK-SNAP [201] or

VMTK [105], were developed to automate processes in the extraction of volumetric

data. These applications effectively model the anatomical structures into readily

usable data formats, 3D meshes can be generated from 2D images or a collection of

2D slices. The conversion is very successful but there is a potential for inaccuracy

in the output and can require some manual editing to correct any misinterpreted

regions or to cater the output to an information system’s requirements [104]. The
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processing of these computer aided design (CAD) deliverables and medical scans is

not standardised throughout every implementation and as a result there are many file

types to accommodate, we chose to largely focus on the STL (stereolithography) and

OBJ file type.

Utilising such complicated geometry from disparate sources begets new challenges.

The process of importing mesh geometry is complicated by the number of file formats

and the potential for deviation within the format itself, i.e. application or vendor

specific file formatting. This is exemplified in the STL format, as files can be encoded

in ASCII (American Standard Code for Information Interchange), a standard format

for character encoding, or in a binary format. C++ has a mature ecosystem of

open-source libraries, including those to facilitate loading CAD file data. Using an

external library can potentially accelerate development, but as is the case with the

files themselves, libraries can introduce their own potential for deviation.

Deviations when loading geometry often present themselves as holes in the mesh,

see Figure 3.1a. This can be caused by several corruptions such as, invalid indices,

missing vertices and an unexpected winding order (the order the vertices of a triangle

are defined). Most of these problems can be solved by re-meshing, the process

of finding a new, hopefully improved, discrete triangle mesh representation of the

geometry. To automate this process for clinicians without the relevant experience to

manually remesh the geometry, we attempt to clean the mesh during the preprocessing

phase. In this time, we triangulate the mesh, i.e. remove any non-triangle primitives,

ensure the winding order is anticlockwise, the default for OpenGL, and merge any

duplication. Ideally these techniques will remove the need for most manually mesh

manipulation, and meshes will render correctly despite errors, see Figure 3.1b.

During simulation, we make certain assumptions about the input geometry. We

assume that the geometry supplied to the application by the user is a 3D triangle mesh

with open inlets and outlets, we define this as geometry that contains no triangle faces
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(a) Rendering realistic patient geometry with severe mesh errors.

(b) Rendering realistic patient geometry after the mesh errors have been corrected.

Figure 3.1 Medical image data triangle mesh processing.

covering these areas, see Figure 3.2. In the scenarios we developed, VMTK’s external

command line application was used to crop closed outlet triangle faces from some

meshes. However, these external preprocessing steps are time-consuming and can

increase administrative effort substantially, this additional responsibility would fall

to clinicians and their support staff. It is favourable to instead deal with as many

edge cases and precomputations within the applications internal preprocessing phase,

i.e. before the simulation has begun, but after the geometry has been selected. We

decided to leave the clipping of the mesh inlet and outlet to the user, as this sort of 3D

manipulation can be quite difficult and may be best left to an experienced medical

imaging professional with their preferred 3D mesh editing software. Although we

were able to automate the clipping of the mesh extremities, given a defined length, we

felt it could potentially remove elements of the patient geometry that were important
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Figure 3.2 One example of patient geometry that was used in our simulation. The
geometry is rendered with each triangle face coloured based upon its corresponding
mesh normal facing outward. Consequently, black triangles are inside the geometry.

to any given scenario, and could take some level of control away from the heath care

professionals.

3.2.2 The Centre line

The centreline, or curve-skeleton when applied to irregular geometry, is a line-like

representation of a 3D object, consisting only of curves [32]. Centrelines are natural

synthetic descriptors of interconnecting geometries such as bifurcating vessels [5].

The characteristic tubular shape of blood vessels structures has inspired methods of

extracting centrelines from medical images. Centrelines are useful in image process-

ing operations such as edge detection and segmentation. Moreover, conventional

medical uses of the centreline include detection of stenosis, aneurysms or vessel wall

calcifications [32].

The centreline calculated from the patient geometry is a pivotal resource for the

simulation, as powerful descriptors of the vessel shapes, the centreline is drawn upon
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extensively throughout the execution of the simulation and during preprocessing.

The centreline is used to define and control the inlet when seeding particles into the

geometry. The centreline also defines where blockages can lie during user interaction,

and we can also use it to apply an external force to simulate the flow effects of systole,

the beating of the heart, or simply to direct flow through complex geometry.

Generating the vertices of a centre line for simple straight channel tubes is not

a difficult problem, however, with real patient geometry there is no clear centre of

mass apparent, especially in cases where the vessel also has the potential to include

irregularly shaped regions due to pathology, and so it can be difficult to isolate. We

generate the centre lines during the preprocessing phase.

Using the VMTK [105] software library, a tool designed with patient geometry

in mind, we define the inlet and outlet of the mesh and generate centre lines in a

reasonable time for any patient geometry. The implementation in VMTK deals with

the computation of centre lines starting from surface models and has the advantage

that it is well characterised mathematically and quite stable to perturbations on the

surface [106].

The centreline we produce is composed of a collection of vectors that crucially

form the component lines, which can be seen rendered in Figure 3.3. By inspecting

the first of these lines, we can see where the vessel roughly begins, the vessel inlet,

and using the direction of the vector created by the first line segment we determine

the direction the flow will be following. This directional hint could also be used for

complex geometrical scenarios where the flow cannot be influenced along one axis

by a gravity like force. This hint emulates the pressure differential that would be

found in a full system, rather than the segment that the simulation operates on. This

information was useful during the initial seeding of the particles, i.e. generating the

particles, subsequently positioning them within the inlet region, applying some base

default conditions and properties. In addition, the particles which then leave the vessel
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Figure 3.3 Imported patient geometry rendered with front face culling, see Section 3.6
and the calculated centre line, seen in white running along the full length of the vessel
segment.

through the outlet have reached the end of their lifetime and can be reintroduced

into the vessel according to a similar sequence, which we refer to as re-seeding, the

primary difference being the quantity of particles generated. The default conditions

for particles generated into the inlet include:

1. An identifier for later comparisons.

2. A positive quantity for the particle density.

3. Acceleration vector in the direction of the general flow, calculated from a user

submitted magnitude and the direction from the centreline unit vector.
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3.3 Smoothed Particle Hydrodynamics

Calculating and integrating the dynamic properties of the particles follows the general

algorithm shown in Algorithm 1. The algorithm is conceptually simple, with the

eventual goal of integrating the particles into their new positions. Each computation

generally requires the results of the previous stage, preventing greater concurrency.

The implementation of the stages in the SPH algorithm are described in the following

sections.

Algorithm 1: SPH algorithm to simulate fluid behaviour in discrete time

steps.

1 Define initial particle positioning;

2 while the simulation is running do

3 Map each particle to a grid cell;

4 Sort the particle array by grid location;

5 foreach particle do

6 Calculate particle density;

7 Calculate particle pressure;

8 end

9 foreach particle do

10 Compute the forces acting on each particle;

11 Integrate the particle position over time;

12 Push the particle data to the frame buffer;

13 end

14 end
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3.3.1 Initial Simulation Conditions

When establishing the position of all the individual particles within the inlet, the

particle configuration should be as close as possible to the configuration that will

appear after the simulation starts [43]. The generation of initial positions, or seeding,

is underrepresented in fluid based SPH as the method is often used for free surface

flows, where the initial position is not the focus of investigation, or will be manually

specified for each domain. The simplest method of arranging particles is within

a lattice, the interpolation properties are well-known, and it is programmatically

simple to generate. We opted to implement a method of hexagonal close packing

(HCP). HCP is an effective packing scheme for uniform spheres, with an optimal

density of 74% [43]. The structure is generated with alternating layers of hexagonal

lattice planes, every second layer is identical, resulting in an ABAB pattern, seen in

Figure 3.4. This seeding pattern greatly reduced the impact of preferred axis issues

encountered by previous cubic lattice seeding, without causing any clumping effects

seen when randomising a cubic lattice. The initial cubic lattice seeding displayed a

directional bias along each axis, and occasionally break into disparate ‘sheets’ which

would begin to clump. Before implementing HCP, we added an element of randomness

into the positioning of the cubic lattice, by offsetting each particle randomly within a

fixed range. The previous issues were unresolved and the equilibrium became unstable

on iterations where the randomness created areas of low density, especially towards

the edges of the seeding pool.

3.3.2 Density

Particle density is a prerequisite in the computation of particle pressure. Each particle’s

density must be found before the pressure calculation can be made, a small bottleneck

in the general SPH algorithm. As the fluid volume is represented by a collection of
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Figure 3.4 Particle lattice generated with hexagonal close packing, an optimal uniform
sphere packing scheme.

discrete particles, each particle (i) must represent a volume. This volume is based

upon their mass (m) and density (ρ), see Equation 3.1.

Vi = mi/ρi (3.1)

In our simulation the mass is the same for every particle and set by the user or a

preprocessing calculation. Finding the density of an individual particle, effectively

one point in the fluid, is done by summing the contributions of all the particles in

their neighbourhood (smoothing kernel radius). This is seen in Equation 2.1 with the

prominence of density and mass. Furthermore, through substitution into Equation 2.1,

we calculate the density for particle i with Equation 3.2.

ρi =∑
j

m jW (ri − r j,h) (3.2)



3.3 Smoothed Particle Hydrodynamics 56

3.3.3 Pressure

Once the density of every particle is known, the pressure of each particle is calculated

with a state equation. In our case we used a modified form of the ideal gas state

equation [189], a common and stable approximation exhibiting repulsive forces in

fluids at high time-steps [42, 119]. The pressure for a particle is the product of the

particle density ρ , and a given user configurable stiffness constant k, see Equation 3.3.

p = kρ (3.3)

Instead of the purely repulsive pressure p between particles generated by the original

equation, the modification creates attraction-repulsion forces with the divergence of

rest density ρ0, an expected value for the fluid studied, against calculation particle

density, see Equation 3.4. When applied, a greater stiffness constant reduces the

compressibility of the fluid, at the cost of smaller time steps [70].

p = k(ρ −ρ
0) (3.4)

3.3.4 Forces

Once the density and pressure of the particle collection is available, forces acting on

the fluid are computed. These forces are then used as the components to interpolate

the particle acceleration. For example, the internal pressure force can be calculated

by applying the general SPH formulation as in Equation 2.1, see Equation 3.5. Then

the particle acceleration can be found as f pressure
i + f gravity

i + f viscosity
i + f external

i . The

f external
i term indicating any other domain specific forces acting upon the fluid.

f pressure
i =−∑

j

m j
pi + p j

2p j
∆W (ri − r j,h) (3.5)
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3.3.5 External Forces

Blood flows to the lower regions of the body with the assistance of gravity [64], and

Gravitational and hydrostatic effects are very important for most orientations [11].

SPH simulations generally contain an external force to mimic the effects of gravity.

The same effect is often used to initiate a general direction to flow through an external

force. As we cannot assume the orientation of the 3D vessel, or the magnitude of the

force itself, we allow the user to specify the 3D vector which will be applied as gravity

during each time step. Following that, the centreline directional force can be applied

to the initial seeding area or more widely through the domain. A constant gravity like

force does not emulate the pressure differential found in full closed systems, resulting

in some branches encountering irregular flow in very complex geometry. This is

certainly true in the case of a vessel segment that has multiple inlets that all merge into

the same channel. With one constant gravitational force it would be possible for the

flow to be pushed backwards into the regions along the same axis as the gravitational

force.

3.3.6 Integration

We have implemented the Leap-frog integration scheme, see Equation 3.6 and Equa-

tion 3.7. The leap-frog scheme is a popular explicit method and achieves second order

compared to first order Euler integration. The method earns its name as the position

and velocity of particles are updated at interleaved steps, t, i.e. velocity, v, is updated

at half steps and positions, x, at integer steps.

v
n+ 1

2
i = v

+n 1
2

i +ai∆t (3.6)

xn+1
i = xi + v

n+ 1
2

i ∆t (3.7)
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3.4 Neighbourhood Search

3.4.1 Uniform Grid

Figure 3.5 Illustration of how particles in the SPH method may fall within a uniform
grid and its relation to the smoothing kernel radius, drawn as a circle around the
particle in purple.

To fulfil the kernel weighting component of the SPH method, during each step

of the simulation each particle has to collect and interact with a list of applicable

neighbours, those particles that are within the smoothing radius. Gathering this list

of particles by brute force would be far too slow for any type of SPH simulation, the

problem is akin to the K nearest neighbours problem’s complexity, naive solutions can

reach O(n2) complexity. Instead, the simulation spatial environment is sub-divided

into a uniform grid, the size of each cell is equal to the kernel length so that we can

safely cover the kernel radius by considering a fixed number of cells, see Figure 3.5.

During each step of the simulation, every particle is mapped into the grid, using a

simple hashing function, which effectively flattens the grid structure from a 3D array

into a 1D array, allowing for optimised access patterns on the GPU. This flattening
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process is visualised in Figure 3.6. This grid reference is then used to identify which

particles are within the same, or adjacent cells. The grid is quickly constructed

and resolves the complexity of accessing particles to O(1), while hierarchical data

structures are typically accessed in O(log n).

Figure 3.6 Discretising a 2D dimensional spatial grid into a 1D indexed array in
memory. Cartesian coordinates are visible on the 2D grid, which are then translated
into array indices shown on the 1D array (Source: derived from [167])

Figure 3.7 demonstrates the grid in action, by colouring each particle according

to their grid cell reference. The simulation area is predefined by the scale of the

patient geometry, with some padding added around the geometry to account for the

boundary particles. As the size will always be defined we did not need to enforce a

more compact or memory conserving hashing function. Uniform grids often suffer

from inefficient memory utilisation, as depending on the domain characteristics the

fluid will generally trend into one area, which may only be a small region of the full

domain. This inefficient memory pattern can also impact performance to due higher

memory transfers [62]. In an attempt to mitigate this, we avoided allocating memory

for every grid cell, the grid is instead implemented conceptually. Particles are mapped

to their grid cell corresponding with their position in the domain, subsequently the

particles are sorted to imitate the grid layout.
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Figure 3.7 SPH particles coloured by their grid cell reference.

3.4.2 Discretisation

The particles are sorted by a conventional radix sort, using their flattened 1D grid

reference as the key. Multidimensional access methods are costly compared to one-

dimensional cases because there is no ordering that preserves spatial locality. The

idea is to develop a single numeric index on a one-dimensional space for each point in

multidimensional space [117]. By computing the prefix sum of the particle array, we

map the grid into memory as a series of indices to particles, each cell as a reference to

the first and last particle within the cell. This develops a single index in a 1D space

for each cell in the 3D simulation domain.

Because the implementation uses a 1D index for a 3D domain, if a line was

drawn between each cell in index order it would draw a uninterrupted line or curve

through the 3D domain. Due to this indexing system, iteration over these cells is
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very straightforward and in some cases we are able to iterate over multiple cells in

one iteration by taking advantage of the compact 1D array indexing. For example,

in Source Code 3.1, the look up array contains three vectors in each index, in the

simulation our 1D indexing method allows us to iterate over the particles three grid

cells that are adjacent in memory.

As a small optimisation, we help to unroll the loop over the grid cells by creating

a look up table. We know that we will be observing 27 cells for each particle, so we

were able to predefine the previous three loops into one, while also defining which

cells can be accessed together. The processes also makes the simulation easier to

maintain, the difference can be seen when comparing Source Code 3.1 to Source

Code 3.2.

Source Code 3.1 3D iteration of the uniform grid. Three nested loops, one for each
dimension of the grid.

1 for(int x = -1; x < 2; x++)
2 for(int y = -1; y < 2; y++)
3 for(int z = -1; z < 2; z++)
4 //Access neighbouring cell

The simulation can also run the neighbourhood search in a limited capacity. By

limiting the maximum neighbours in each cell to use in the computation, we can

increase the performance relative to the number of total particles. There is a potential

loss of accuracy as the particles in each cell will be considered in an arbitrary order,

and by disregarding a significant number of particles results will be affected somewhat.

The increase in performance allows for a larger total number of particles. However, it

is difficult to gauge the difference when the total particles are always relatively low in

a real-time simulation, and SPH simulations are inherently non-deterministic, there

will always be some small fluctuations within the results.
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Source Code 3.2 1D iteration of the uniform grid. Iteration is facilitated by a look up
table (LUT). The items in the LUT transform the current particle 3D grid reference,
which after then flattening to a 1D index can access a grid cell.

1 __device__ const int3_triplet loop_lut[] = {
2 {{-1,-1,-1},{ 0,-1,-1 },{1,-1,-1}},
3 {{-1,0,-1},{ 0,0,-1 },{1,0,-1}},
4 {{-1,1,-1},{ 0,1,-1 },{1,1,-1}},
5 {{-1,-1,0},{ 0,-1,0 },{1,-1,0}},
6 {{-1,0,0},{ 0,0,0 },{1,0,0}},
7 {{-1,1,0},{ 0,1,0 },{1,1,0}},
8 {{-1,-1,1},{ 0,-1,1 },{1,-1,1}},
9 {{-1,0,1},{ 0,0,1 },{1,0,1}},

10 {{-1,1,1},{ 0,1,1 },{1,1,1}},
11 };
12

13 const uint3 cc = calc_grid_cell(particle_position);
14 for (const auto i : loop_lut) {
15 const uint adj_cell = calc_grid_hash({ cc + i.x });
16 const uint adj_end = calc_grid_hash({ cc + i.z });
17 const int cell_end = cell_begin_end[adj_end].y;
18 int cell_iterator = cell_begin_end[adj_cell].x;
19 while (cell_iterator != cell_end)
20 //Access neighbouring cells
21 }
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After the particles were sorted in-place by their grid cell reference, they needed to

be indexed so that their access was straight-forward during particle iteration. First, a

histogram is calculated, which creates an array of values that contains the quantity of

particles in each grid cell. Secondly, we take the prefix sum from the histogram, which

creates the memory index for the beginning of each cell. Finally, we take the prefix

sum and generate an array of pairs containing the position of first and last particle in

each cell, see Figure 3.8. This allows us to quickly query the particle array on each

step without having to do any location calculations within the loop.

Figure 3.8 Example of the process to index the particle array. In this example the
particle array consists only of the grid reference property, a discrete form of a particles
position in the domain.

3.4.3 Smoothing Kernels

The 6th Polynomial Kernel

We use the 6th Polynomial (Poly6) kernel [119], which can be seen in Equation 3.8,

for the calculation of the dynamic density of the fluid at each time step. A large portion

of the kernel function W can be precalculated during the simulation preprocessing

phase. The decision structure within the kernel describes the relationship defined

by the kernel radius and its weight. No contribution is given by the particle itself,

when r the distance between two particles is equal to zero, or by particles outside of

the smoothing kernel radius, h. With the exception of ignoring any contribution to
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particles outside of the kernel radius with the comparison of r and h, the Poly6 kernel

does not have any branching logic, avoiding the potential of divergent CUDA threads,

which limit the efficient use of computational resources. Secondly, the kernel was

designed to be calculated using r2, this eliminates a costly square root calculation

during one of the most frequently occurring CUDA kernels.

W poly6(r,h) =
315

64πh9


(h2 −||r||2)3 0 6 ||r||6 h

0 otherwise
(3.8)

Desbrun’s ‘Spikey’ Kernel

However, the Poly6 kernel is not appropriate for all of the fluid’s dynamic properties.

The biggest limiting factor with its use is the occurrence of clumping when calculating

the pressure when the distance between particles positions r is closing, the repulsive

factor diminishes because the gradient of the kernel approaches zero at the centre, see

Figure 3.9a. Instead we implemented Desbrun’s spikey kernel [42] function Wspikey

to provide the required repulsive forces and a resolution to the particles clumping be-

haviour within the kernel radius h. The kernel provides a more accurate representation

of pressure with a non vanishing gradient near the centre, see Figure 3.9b.

Wspikey(r,h) =− 45
πh6


r

||r||(h−||r||)2 0 6 ||r||6 h

0
(3.9)

Müllers Viscosity Kernel

Similarly, when computing the inner tension of the fluid, viscosity, the poly6 kernel

can produce negative velocities, which would cause an increase in their relative

velocities. As the viscosity would normally decrease the fluids kinetic energy by

transferring it into heat, the viscosity should only produce a smoothing effect on
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the fluid velocity, irrespective of the distance between the particles r. The effect is

amplified on simulations with a smaller quantity of particles, hence the problem in

real-time simulations. Instead we employ Muller’s viscosity kernel [119], Wviscosity,

to avoid these negative velocities, as it contributes only positive results in any given

circumstance within the kernel radius h, see Figure 3.9c.

Wviscosity(r,h) =
15

2πh3


− r3

2h3 +
r2

h2 +
h
2r −1 0 6 ||r||6 h

0
(3.10)

3.5 The Boundary Condition

The boundary condition is an important and difficult aspect of modelling fluid flow,

especially within the SPH model, in fact, it may be the most difficult aspect of

the simulation. The first objective of the boundary is how to avoid fluid particles

from penetrating solid boundaries, the potential implementation of a fluid-to-solid

interaction solver. Secondly, the boundary needs to aid in the construction of certain

fluid behaviours and characteristics, notably the slip/no-slip conditions of the fluid

interaction. Slip and no-slip conditions are the two main conditions for the flow

velocity of a viscous fluid. The no-slip condition stipulates that fluid in direct contact

with solid will have identical velocity of the boundary. Particles in this condition

(a) 6th Polynomial (Poly6)
Kernel [119].

(b) Debrun’s Spikey Ker-
nel [42].

(c) Müller’s Viscosity ker-
nel [119].

Figure 3.9 SPH Smoothing Kernels (Source: PukiWiki [145]).
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would be seen to stick along the edge of the boundary. The slip condition assumes the

opposite, a relative movement between the fluid and the boundary [149]. The formal

definition of SPH contains no definition of a boundary. Naive or toy implementations

of SPH designate a solid boundary, based upon a distance from the origin on each

axis. When the particles collide or stray outside this box, the particles are moved

back into the simulation area and the particle velocity component perpendicular to

the surface is reversed. However, there has recently been a number of more accurate

boundary paradigms in research and engineering applications, namely force-based,

fixed particle and mirror boundaries.

Figure 3.10 Kernel occupancy near a rigid body without kernel correction.

Force based boundary

Initiated by Monaghan [116], the boundary is defined in the simulation as a collection

of particles, or sometimes as a triangle mesh [119], they exert central repulsive forces

onto the particles they contact, the implementation of which is guided by the known

interaction of molecules. As such, the force based method is one of the easiest

methods to implement. The force generated is similar to the Lennard-Jones potential

force between atoms, i.e. both a repulsive and attractive force is created within a
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fixed length, and the magnitude of that force is determined by the distance from the

boundary. Those particles that approach the boundary are forced to have an empty

region within the kernel radius, leading to problems with instability in those regions

and non-physical results, e.g. ‘clumping’, particles unnaturally receding into one

another, was experienced in particles as they encounter negative pressures near the

boundary. The problem can be seen in Figure 3.10, the cross hatched region has no

contribution to the dynamic property calculation within the SPH model.

Dynamic Particles

Figure 3.11 Kernel occupancy near a rigid body with dynamic particles.

Sometimes referred to as fixed boundary particles, this boundary technique would

have the simulation include particles with a fixed position upon and outside of the

boundary, which is generally predefined. Crucially, these fixed particles have the

same dynamic properties as the fluid. Consequently, these particles engage in the

same equations of continuity and state as the fluid particles but without altering

their positions within the SPH method [36]. The positions of the particles can

be moved outside of the SPH formulation to implement moving boundaries and

similar behaviour. This is very useful within SPH as this boundary technique does
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not create any additional algorithmic steps, and instead can be nested into the pre-

existing structures of particle iteration. Increasing the particle count in this way

does hinder the performance of the system, but accurately portraying the boundary

would be best served by generating the maximum quantity of particles. This requires

careful management to alter the simulation parameters for larger or more complicated

geometric structures.

Mirror Particles

Figure 3.12 Kernel occupancy near a rigid body with mirror particles.

Sometimes referred to as ghost particles, these particles are similar to dynamic

particles that have a fixed position. However, rather than having a predefined position

they are generated based upon the neighbourhood of the particle in contact [37].

When the real particle is close to the boundary, a particle is mirrored outside, with the

same density and pressure but an opposite velocity [36]. Unlike dynamic particles,

the implementation can be more involved as the number and position of boundary

particles will change on each iteration. This type of boundary could be more suitable

for a moving boundary, or one which reacts to the flow itself, as the boundary will

consistently regenerate on each frame.
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Biological structures are noted to have physical features that are not typically

found standard mechanical devices and fabrications e.g. elastic behaviour on outer

membranes and internal reservoirs of liquid. Contractile matter can also occur within

vessels, either as the muscle producing the pulsatile flow or as a result of the pressures

generated by the blood flow. In other words, the vessel walls can be dynamic and

alter the flow in some circumstances. Due to the constraints imposed by creating an

interactive simulation we decided to avoid the elastic and deformation behaviour for

the first implementation of our simulation.

3.5.1 Enforcing The Boundary

Initially we tested a force based boundary, and the system was fairly successful,

resulting in good overall stability. This was expected as Müller [119] used this

technique to demonstrate an excellent solid boundary at interactive rates, using the

triangle faces of the mesh rather than arbitrary boundary points. This force based

boundary provided a computationally cheap boundary, but at the cost of accuracy

within the particles near the boundary. In fact, we began to lose the performance

benefits of the force based boundary as we needed to include the boundary particles

within the viscosity calculation to create a more accurate representation of any given

slip condition. In our initial prototype we also encountered an unsatisfactory amount

of particles escaping through the boundary. We attributed this loss mostly to problems

with the source mesh having uneven and inconsistent triangle faces. We added

additional SPH sub-steps to try to avoid the particles ‘missing’ the boundary i.e.

by performing all of the SPH calculations multiple times in the same frame with

a fraction of the total time step each. However, the performance of the simulation

quickly diminished as frame time grew linearly. We also began to experiment with

better boundary construction, see Section 3.5.2. Rather than invest more development



3.5 The Boundary Condition 70

resources into the implementation of the force boundary, we considered the inaccuracy

reason enough to transition the implementation into another method.

In an effort to increase the accuracy around the boundary, we implemented dy-

namic, or fixed, particles on the boundary. These particles along the edge of the

boundary contributed to the particles dynamic property computations, mitigating the

kernel occupancy issues with the force based boundary. The disadvantage of this

technique is that it does effectively increase the particle count, although the particles

are not included in the advection stage, they have to be added to the collection which

will be iterated over each frame. Mirror particles were deemed to be less useful in our

implementation as we favoured the performance benefits of generating our boundary’s

fixed particles in a preprocessing stage. Secondly, we aimed to generate blockages

in the simulation area as a result of user input, the dynamic particle paradigm was

the logical choice as any new blockages could be discretised into a collection of

particles and added to the boundary particle collection, similarly preventing any new

algorithmic steps to the SPH simulation.

3.5.2 Generating The Boundary

While generating the boundary particles, we initially attempted to use the raw vertices

of the mesh, using these points seemed to be a convenient and inexpensive way of

positioning the boundary particles. As these meshes are generated from medical

imagery, the resulting mesh does not always have small, simple faces or uniform

faces. Therefore, we naively subdivided the mesh, recursively measuring the edges of

each triangle, and if they were greater than a predefined length we split the triangle

into three smaller triangles. Unfortunately, this only served to increase the extent

that the idiosyncrasies in the mesh would effect the boundary, particles could still be

great distances apart when measured through one particular dimension, rather than

the aggregate distance. We resolved to re-sample the surface as a preprocessing step,
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using the Poisson Disk sampling method [198, 22]. Poisson Disk sampling is a dart

throwing algorithm that is able to place points randomly, but to produce a uniform

distribution upon a plane. The result was a more evenly distributed boundary on all

examples tested.

Figure 3.13 Patient geometry showing the differences in sampling between 1, a naive
triangle sub sampling method and 2, a Poisson Disk picking algorithm. The output of
each sampling method is represented as white particles on the surface of the mesh.

To then create additional layers of particles to fulfil the full kernel radius, we

proceeded along the normal of each sampling point and creating additional points.

The user can specify the number of boundary layers to be created. These layers will

be positioned within one kernel length from the outside of the mesh. The downside of

this method was the sheer amount of particles created. After sampling over the mesh, a

significant number of particles are generated, by multiplying this quantity by an order

of three or more, the quantities can become unmanageable in terms of performance.

For example, when sampling a simple straight channel mesh with a configured value

radius of 0.02 (the allowable distance between samples in the Poisson Disk algorithm)

and generating three layers of boundary particles, 216,441 particles are generated

by the algorithm and can be seen in Figure 3.14. Some user configuration of the

Poisson Disk radius and quantity of boundary layers may be required on complex

or large geometry which generates excessive amounts of boundary particles. As can



3.6 Real-Time Rendering 72

be seen in Table 3.2, there is some degradation in performance as the particle count

increases, this includes the increase in boundary particles and may limit the simulation

performance on large geometry. The limitation does not encumber the prototype

greatly at this stage as we expect the simulation to occupy selected smaller regions of

geometry, e.g. the abdominal aortic bifurcation, or the carotid bifurcation.

Figure 3.14 Artificial geometry highlighting the quantity of boundary particles (white)
that can be generated on a straight channel tube. This example generated 216,441
boundary particles with a Poisson Disk radius of 0.02 and three layers of boundary
particles. The particles are coloured by velocity, from the fastest moving in red,
transitioning to slower speeds as yellow, green, and the slowest in blue.

3.6 Real-Time Rendering

Compared to modern high fidelity graphics applications, like video games and so-

phisticated CAD software, we needed to render a comparatively small amount of

content. We needed to render some interface elements, menus, stylus pointer etc, but

the crucial elements for visualisation were the particles and a triangle mesh (patient
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Source Code 3.3 Loading the vessel boundary into the SPH simulation.

1 void load_boundary(float* boundary, const size_t boundary_size, float*
boundary_normals, const size_t normal_size, const float radius)↪→

2 {
3 const float layer_count = h_params_.boundary_layers;
4 const float spacing = radius / layer_count;
5 size_t size = boundary_size * static_cast<size_t>(layer_count);
6 std::vector<float3> temp_pos, temp_norm;
7 std::vector<int> grid_ref;
8 temp_pos.reserve(size);
9 grid_ref.reserve(size);

10 assert(boundary_size == normal_size);
11 for (size_t i = 0; i < boundary_size; i++) {
12 const size_t index = i * 3;
13 const auto bound = make_float3(boundary[index], boundary[index+1],

boundary[index+2]);↪→

14 const auto norm = normalize(make_float3(boundary_normals[index],
boundary_normals[index + 1], boundary_normals[index + 2]));↪→

15 for (size_t j = 0; j < layer_count; j++)
16 { //advance along normal and create particle
17 const auto val = bound + norm * static_cast<float>(spacing * j);
18 temp_pos.push_back(val);
19 temp_norm.push_back(norm);
20 grid_ref.push_back(calc_grid_hash(calc_grid_cell(val,

h_params_.grid_min, h_params_.cell_size), h_params_.grid_size));↪→

21 }
22 };// It is faster to build a host array then copy to GPU
23 boundary_.pos = temp_pos;
24 boundary_.grid_reference = grid_ref;
25 size = boundary_.pos.size();
26 // All boundary related arrays are resized here.
27 sort_key_value_boundary();
28 compute_histogram_boundary();
29

30 const auto num_cells{ h_params_.num_cells + 1 };
31 boundary_.cell_begin_end.resize(num_cells);
32 raw_boundary_t raw_b = to_raw_boundary(boundary_);
33 gpuErrchk(cudaMemcpy(d_ptr_boundary_, &raw_b, sizeof(raw_boundary_t),

cudaMemcpyHostToDevice));↪→

34 fill_cell_begin_end_boundary();
35 }
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geometry). Graphics engines and frameworks could have introduced too much over-

head, although some may offer excellent accessibility to optimisation, we chose to

implement the rendering system using bare bones graphics APIs. OpenGL is a mature

and ubiquitous graphics API standard maintained by Khronos and implemented by

all major graphics hardware providers. OpenGL has been subject to an extensive

period of modernisation, moving from the antiquated fixed pipeline into a modern

approach with a dynamic pipeline and direct access to shaders and therefore, the

GPU itself. However, Khronos has begun the long process of super-seeding OpenGL

with their successor, VULKAN. When we began the prototype, VULKAN had been

announced with promises of improved performance and an API that performed with

less hardware abstraction than its predecessor. However, during the design phase for

the blood simulation application, VULKAN development had not yet reached a stable

version 1.0 candidate [181], therefore we decided that its implementation could prove

to be too ‘bleeding edge’ for no proven performance gain .i.e development may have

been hindered by the lack of documentation, breaking changes from updates, bugs

in the implementation, or the lack of community support. Secondly, the simulation

could be refactored to use multiple rendering back-ends after a working prototype

was produced. Microsoft’s DirectX on the other hand, is only compatible with PC’s

running windows operating system so its application would limit the end product to

only one commercially available operating system.

The visualisation is crucial to the simulations effectiveness, the results must be

presented to the user with enough clarity for them to understand the complexities of

any haemodynamic consequences. As the particles will reside within the geometry,

they will be obscured by the faces of the triangle mesh. Initially we chose to render

the geometry as a wire-frame, and although the particles became clearly visible, the

detail of the geometry was lost and it became difficult to deduce where particles were

approaching some areas of the boundary. A user-defined level of transparency proved
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to be more effective, but the user lost all the important details of the mesh when

requiring maximum clarity, eventually becoming completely invisible. It was clear

that we needed to render the regions that were ‘behind’ the particles and clear all

triangles faces occluding the particle representation. Therefore, we implemented the

capability for our user to enable front face culling of the vessel. Face culling is a

technique used in graphics rendering to improve drawing performance by reducing

the quantity of triangle faces the GPU renders. Typically, the back face of a scene

is discarded in the face culling process. This back-face culling determines which

elements of the next frame will be occluded and discards them completely. We

reversed this process so that that even when the mesh is moved or rotated the ‘closer’

faces are discarded, see Figure 3.15, and particles are clearly visible to the user.

Figure 3.15 Comparison between rendering techniques used to reduce particle occlu-
sion by the vessel geometry. 1. No special rendering technique, particles are fully
occluded. 2. Transparent vessel effect created when the user configures the alpha
channel to 0.5 (50%). 3. Only the ‘back’ faces of the vessel are drawn after the user
enables front face culling.

Particle rendering was especially important within our simulation as we chose to

avoid surface generation techniques for SPH. We required clear and distinct particles

under any given rotation or translation. Particle rendering initially functioned by

representing particles as custom instanced billboards that discarded any pixel outside
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of the conventional circular shape. In computer graphics, billboards function as a flat

texture that is always facing the virtual camera. We used this billboarding method

until we implemented the functionality to rotate the vessel after user input, then the

transformations created strange behaviours. Particles would scale hugely or become

almost flat when rotated against a certain axis, behaviours that were missing when

rotating the scene itself. Rather than trying to re-engineer the billboards to rotate

against the rotation of the vessel, we opted to leverage the OpenGL point sprite API,

which functions as a built-in billboard that will face the virtual camera regardless of

any transformation. The sprite size of a point is usually defined by pixels so that the

point is always the same relative size, this did mean that the particles would ‘grow’

as the user zoomed out. We facilitated this feature by passing the screen size and

resolution to the vertex shader so it could make the point a constant size, regardless of

the user position in the scene.

Within our visualisation we use the colour of the particle to reference physical

quantities and properties of the simulation e.g. particle density, velocity and grid

cell reference. We tend to refer to physical properties with a colour scale between

red and blue, red being the highest and blue as the lowest, see Figure 3.16. During

the simulation this colour based rendering allows the user to quickly determine the

physical conditions and some behaviours of the flow without having to resort to

printing values to console or external files, which can slow execution. Initially all

colours were determined by querying the particle collection to learn the range of

values for each property. Using the minimum and maximum values for a property we

could scale the colour weighting relatively; we would query for these values after a

set number of frames passed (100 frames in our CPU tests). The iterations with this

additional computation did not suffer largely in performance as these properties could

be read within the normal advection methods. However, the process was deemed

somewhat ineffective as the colours could flicker quickly if extraneous values were
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read. Instead we define domain specific values that coincide with our colours, this can

require some user input, but it does allow us a better understanding of the numbers

present while the simulation is running.

Figure 3.16 Bowl shaped geometry holding particles coloured by physical quantities
and properties of the simulation. Red particles have the highest velocity, blue particles
with the lowest velocity, and colours mixed between the two for the intermediate
velocities.

The grid reference colour scheme seen in Figure 3.7, had to operate on a variable

number of grid cells and still produce a valid output and visually discernible colours.

The effect was created by using the 1D discretised grid reference from Section 3.4.1

and computing a blue, green and red colour component by unpacking the grid reference

with the modulus operator and variable divisions, see Source Code 3.4.

Source Code 3.4 RGB Colour value from a particle grid reference.

1 const int blue = grid_reference % 256;
2 const int green = grid_reference / 256 % 256;
3 const int red = grid_reference / 256 / 256 % 256;
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3.7 Performance

The first prototype of the simulation had the capability to render the geometry and

perform the SPH calculations with the force based boundary, see Figure 3.17. The

simulation could render the pre-selected vessel geometry and its centreline, with user

selected variable transparency, labelled as ‘Vessel Alpha’. Some dynamic properties

could be changed by the user during execution with a simple GUI interface, these

including domain specific boundary force properties, density, the viscosity constant

and stiffness. Allowing the user to change these particles helped us to see how

the geometry could affect the results of the simulation and how we may need to

tweak the parameters of the simulation to produce accurate results. The working

prototype was developed to run entirely on the CPU. A basic form of parallelisation

was implemented using OpenMP [131], rather than any GPU utilisation. As expected,

the initial implementation outperformed earlier interactive SPH examples despite the

lack of regimented optimisation. This was largely due to the improvements in the

hardware over the past decade.

3.7.1 Utilising the Graphics Processing Unit

For our SPH simulation we chose to implement our GPU acceleration using NVIDIA’s

CUDA, as we had existing NVIDIA based hardware resources and no requirements for

any particular platform. We chose to accept the limitations that come with proprietary

systems, moreover if the simulation was integrated into a market-ready product, having

NVIDIA support could even be beneficial. In the early stages of our prototyping

we did experiment with GLSL shaders, and the feature set of transform-feedback.

We found that although the performance was competitive, adding the additional

developmental complexity of low-level coding could incur excessive time costs during

implementation. CUDA has a rich feature set including primitives and C++ like syntax,
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Figure 3.17 Initial CPU based SPH blood flow prototype operating within real patient
geometry. Particles coloured by velocity, particles range from blue, having lower
velocity, and red for the particles with the highest velocity.

a great deal of community and professional support, and a large suite of community

driven and production tested libraries, e.g. Thrust [65] and CUB [110]. Additionally,

debugging graphics applications is already fraught with difficultly without neglecting

the benefits that come when using NVIDIA’s Nsight [127] debugging suite.

A CUDA application’s source code consists of two disparate sections, traditional

host code (CPU) and CUDA device code. When compiled, the NVIDIA CUDA

Compiler (NVCC) embeds the GPU functions in binary images and forwards the host

code to the C++ compiler. These GPU device functions are conventionally referred

to as kernels, not to be confused with the previously mentioned SPH smoothing

kernels, see Section 3.4.3. As indicated by the compilation process, the host and

device memory models exist in completely different spaces and hardware. Therefore,

any data that is used within both models has to be explicitly transferred, before a
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kernel launch as parameters, or after execution as the resultant data. Transferring

GPU derived data into CPU accessible data has been a common problem for GPU

implementations [62]. Data transfer time can be as significant as kernel runtime [60].

This poses a difficult challenge for SPH implementations. After the particle data is

updated in GPU memory, if the application requires the data to be within reach of CPU

code, the data must be transferred. To avoid moving large particle data sets between

GPU and CPU during rendering, we take full advantage of OpenGL Interoperability.

In the past some implementations would be required to transfer the particle data to the

CPU in order to format it for OpenGL before transferring it back to the GPU. Instead

we initialise a shared object in GPU memory, i.e. an OpenGL frame-buffer, map it

into CUDA’s memory space and format the data within a CUDA kernel, avoiding any

costly host-device transfers, see Source Code 3.5.

Program optimisation is an iterative process, each change that is made to improve

performance must be compared in some measure to previous builds. We largely

based our optimisation decisions on frame timing, as the frame rate increased, we

could take more efforts to make the SPH model accurate. One crucial element in

common optimisation strategies is cache optimisation, great performance gains can be

made when adhering to locality of memory. For optimum performance the memory

access needs to be coherent, especially when handling multiple threads on a discrete

device/GPU. Memory access can be implemented in various patterns to preserve

coalescence and perform multiple of reads or writes of data collections with one

operation. Moreover, the greatest benefit is achieved when memory is controlled to

access the L1 cache, or texture caches in CUDA [128]. Kernel efficiency and overall

performance can be impacted by the programs logical flow control i.e. decision

based conditional code execution, e.g. if statements. Flow control decisions can

result in uniform or divergent branching. Branch efficiency is defined by the ratio of

executed uniform flow control decisions over all executed conditionals [127]. When
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the flow control decisions produce a lot of divergent branches, performance becomes

sub-optimal. If the control flow forces the threads of a warp, groups of CUDA threads

operating in lockstep, to execute different execution paths, the instruction is considered

to be divergent. Consequently, the serialised execution paths execute an increased

number of instructions for the warp. When these instructions increase, especially the

expensive global read operations, the cost of the code segments increases greatly and

has a proportional effect on performance.

One example of when the CUDA kernels were refactored to reduce performance

degradation caused by branching was bounds checking. When accessing primitive

arrays and calculating indices to access programmatically there is a chance to attempt

to access memory that is out of bounds i.e. outside of the array declaration and

potentially uninitialised memory. In an early iteration of the CUDA programme,

bounds checking was done numerous times within each neighbourhood search, see

Source Code 3.6. This checking mitigated the chance to access invalid data caused by

particles exiting the computational domain, creating a grid reference that was beyond

the initialised grid memory. If the bounds were found to be invalid, the particle

would be removed from computation, queued for reseeding, and handled early in the

next frame. Instead, during the CUDA kernel developed to map particles into the

grid, any particles that were outside the domain were immediately handled removing

any chance of invalid grid references. Removing the branch had an immediate and

noticeable improvement of performance, see Table 3.1 As the bounds checking was

present in almost all computational kernels, the performance impact was severe, and

the changes prompted an FPS increase of almost 25 per cent.
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Source Code 3.5 CUDA Graphics Interoperability.

1 void push_to_buffer(){
2 float *vbo_ptr;
3 size_t num_bytes;
4 gpuErrchk(cudaGraphicsMapResources(1, &cuda_vbo_resource_,

nullptr));↪→

5 gpuErrchk(cudaGraphicsResourceGetMappedPointer((void**)
&vbo_ptr, &num_bytes, cuda_vbo_resource_));↪→

6

7 static occupancy_helper_sizes occupancy;
8 cuda_occupany_helper(occupancy, advect_particles_k);
9 const int grid_size = (particles_.grid_reference.size() +

occupancy.block - 1) / occupancy.block;↪→

10 advect_particles_k<<<grid_size, occupancy.block, 0,
d_stream1 >>>(vbo_ptr, d_ptr_particles_);↪→

11 gpuErrchk(cudaGetLastError());
12 gpuErrchk(cudaGraphicsUnmapResources(1,

&cuda_vbo_resource_, nullptr));↪→

13 gpuErrchk(cudaGetLastError());
14 }
15

16 __global__ // CUDA Kernel macro
17 void advect_particles_k(float* p, raw_particles * particles)
18 {
19 const int index = threadIdx.x + blockIdx.x * blockDim.x;
20 if (index < particles->size) {
21 const auto particle_index = index * 4;
22 const float3 particle_pos = particles->pos[index];
23 p[particle_index] = particle_pos.x;
24 p[particle_index + 1] = particle_pos.y;
25 p[particle_index + 2] = particle_pos.z;
26 p[particle_index + 3] = 0.f;
27 }
28 }
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Source Code 3.6 Grid reference to index bounds checking.

1 auto cell_iterator = boundary->cell_begin_end[adj_cell].x;
2 const uint cell_end = boundary->cell_begin_end[adj_end].y;
3 while (cell_iterator != cell_end) {
4 if (cell_iterator != UNDEFINED_CELL) {
5 // Potential Branch
6 }
7 }

Table 3.1 Framerate comparison before (A) and after (B) the removal of bounds
checking before array access. Both tests were executed on a NVIDIA 970 GTX paired
with an Intel i5 3570K. Both tests operated with the same input parameters and the
backward facing step geometry, see Section 4.2.5.

Software Iteration Average FPS (SD)

A 36.35 (4.50)

B 45.41 (6.79)

3.7.2 Data Structure Parallelisation

When the GPU prototype was developed the neighbourhood search component had to

be optimised for the differences in GPU and CPU architecture. The CPU prototype

would store the list of neighbours on each time step, whereas the GPU relied on

an optimised data structure and high parallelism to allow easy iteration over the

neighbours without storing them. Storing the neighbourhood list incurs a large

memory footprint and has the potential to reduce the accuracy of the sim. Due to the

dynamic memory patterns of the GPU, creating multidimensional dynamic memory

is sub-optimal. Furthermore, using a 1D array in place of the multidimensional array
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would require a constant maximum number of neighbours which has the potential for

a negative effect on the accuracy of the simulation.

The main data structure within the simulation is the collection of particles, read

and written to many thousands of times per rendered frame, it was pivotal that this data

structure would take utmost advantage of the cache structure of the GPU. The initial

CPU implementation defined the particle data as an array of structures (AoS), i.e. the

data was ordered into a collection of ‘C’ style structs, with member properties relating

to the particles dynamic data see Source Code 3.7. However, the performance centric

GPU implementation defined the particles as a structure of arrays (SoA), essentially

the reverse of the previous implementation, the data is laid flat in a series of arrays

contained within one struct, see Source Code 3.8. Accessing and maintaining AoS

data requires much less administrative effort, the data is accessed using one index

operator (operator[]). Although AoS are much easier to manage and use, they are

only competitively performant when all member fields are read [50], whereas the

cache locality of SoA and more sporadic access of fields found in the SPH calculations

are the clear choice.

Source Code 3.7 Particle data demonstrating an array of structures (AoS).

1 struct particle{
2 float3 position;
3 float3 density;
4 float3 velocity;
5 }
6 particle particles[100] = particle_array;
7 //access particle at index 5
8 particle my_particle = particles[5];

The GPU prototype yielded favourable conditions for interaction by a large margin.

Table 3.2 illustrates the massive improvement in frame-rate when the simulation is
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Source Code 3.8 Particle data demonstrating a structure of arrays (SoA).

1 struct{
2 float3* position;
3 float3* density;
4 float3* velocity;
5 // Dynamic arrays to be allocated later
6 } particles;
7 //access the properties of the particle at index 5
8 float3 position = particles.position[5];
9 float3 density = particles.density[5];

10 float3 velocity = particles.velocity[5];

accelerated by the GPU. All tests below 50,000 particles show the FPS to deviate

between 95 and 100 FPS, which is likely due to operating conditions on the computer

during the test rather than the particle count. Moreover, GPU performance at lower

particle quantities performs closer to expectations when the computation time is

measured independently, see Figure 3.18. The GPU prototype FPS begins to suffer

after 50,000 particles are initialised in the simulation. However, in the same test case

the CPU prototype would be considered far below the operating rate for interactive

applications and visual continuity. Furthermore, the GPU accelerated prototype was

also beholden to the additional 38,409 invisible boundary particles of the patient-

specific geometry. Moreover, the visualisation itself may be having a detrimental

effect on performance. Figure 3.18 demonstrates the time required to compute the

SPH method independently from the visualisation, the performance deterioration

remains linear after 50,000 particles. When simulation operates with 100,000 particles

the SPH method is performed after an average of 12.9ms, a potential maximum of 83

FPS. A stark difference from the actualised 48FPS seen in Table 3.2. This stark change

indicates that there may be a limitation or performance bottleneck when rendering the



3.8 Summary 86

particles and interface that may be subject to improvement with further performance

optimisation.

Table 3.2 Framerate comparison between prototype implementations. Both Tests were
executed on a NVIDIA 970 GTX GPU paired with a Intel i5 3570K CPU and a 144Hz
monitor. Both tests operated with the same input parameters and the Aorta Section A
geometry, see Section 4.3.1.

Particle Count Avg FPS CPU Prototype (SD) Avg FPS GPU Prototype (SD)

10,000 34 (4.1) 96 (8.7)

20,000 17 (2.4) 101 (7.9)

30,000 10 (1.2) 100 (5.8)

50,000 5 (1.1) 81 (3.7)

100,000 1 (0.3) 48 (1.6)

3.8 Summary

Two blood flow prototypes were developed, one native CPU application and one

GPU acceleration solution. CUDA was chosen as the GPU acceleration framework

of choice, due to the rich documentation, availability of libraries and support from

NVIDIA. After the benefits of the GPU acceleration were measured the GPU prototype

became the primary area of development. The deliverable prototype is able to import,

render and process medical image data before executing the simulation. The SPH

based simulation operates at interactive rates, providing 3D immersive results in

real-time. Aside from algorithmic optimisations, real-time rendering techniques were

implemented to drive performance and user experience.
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Figure 3.18 GPU SPH computation timings, measured separately from the visuali-
sation. All CUDA kernels required to map the particles into the grid, compute the
dynamic properties, and update position were measured. Tests were executed on a
NVIDIA 970 GTX GPU paired with a Intel i5 3570K CPU. Measurements were taken
on the Aorta Section A geometry, see Section 4.3.1.



Chapter 4

Validating Common Blood Flow

Behaviours

The SPH simulation results were validated by collecting the particle data, then com-

paring the dynamic properties with known and expected flow behaviours. This has not

been achieved in the past due to the performance complications of achieving a real-

time circulation with any degree of accuracy, especially with the SPH model, there has

been a dearth of workable solutions that provide an appropriate quantity of particles

and an adequate environment for validation. In addition, validating computational

models against real world behaviour can be a complicated endeavour, this problem is

confounded by our targeted domain of blood flow, an area where empirical measure-

ments of the in vivo target behaviour is difficult and sometimes invasive. Nonetheless,

investigating a series of test cases signifies that the simulation can match expected

behaviour in artificial benchmark scenarios. Consequently, we developed a series

of artificial test cases that correspond to behaviours that replicate the circumstances

found in patient geometry.

As our research is focused on the transient behaviour of the blood flow and recir-

culation, Poiseuille velocity distribution is an appropriate benchmark.With Poiseuille
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flow, see Equation 2.2, as an analytic benchmark we defined what we expect from our

artificial geometry. Consequently, we examined anatomic readings from the literature

to replicate the same behaviours when creating our test cases. For example, when con-

sidering the transition of diameter from larger vessels to narrow vessels, we could look

to the umbilical vein. Blood flow in the umbilical vein has a steady assumed parabolic

velocity profile, while the umbilical driving pressure and the narrow entrance force

a sudden and considerable increase in the velocity of the blood entering the ductus

venosus [83, 84]. The test cases have been developed with particular emphasis on the

cardiovascular system, but the simulation engine could be deployed onto geometry

derived from any segment of the circulatory system.

Figure 4.1 The liver and the veins in connection with it, of a human embryo, twenty-
four or twenty-five days old, as seen from the ventral surface (Source: Gray [59]).

All the following test cases will have a graphical depiction, a screen capture

directly from the real-time simulation, alongside a quantitative representation, and

a graph of the fluid particles velocity magnitude as they pass through a designated

clipping plane.
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4.1 Data Collection

Particle data is not automatically collected and saved to file by the prototype appli-

cation. Transferring thousands of particle properties to file takes too much time and

creates a large performance bottleneck between frames. As seen in Figure 4.2, we

sliced through the domain and collected only the particle information which lay on the

selected plane and the origin of a user selected 3D axis. The output forms a straight

line through the domain which we used to create a velocity curve, free from the

influence of adjacent layers of fluid. In this form it is unlikely a significant quantity

of particles will lie exactly on any given plane, consequently, a variable value δwas

introduced to determine the depth of the plane. This process allowed us to interactively

sample the simulation in each test case to quickly examine the contentious regions.

The data could also be collected over multiple frames to generate a representation of

the dynamic properties over time, represented by the simulation time-step.

Secondly, to generate a more complete view of the simulation results we exported

the entire simulation domain to a file that could be processed by ParaView [10], a

multi-platform scientific data analysis and visualisation application well suited to

large data sets. ParaView provided point analysis tools that allowed us to graph the

various capabilities of the simulation without having to rebuild this same functionality

into the blood flow prototype. The data could be subject to point analysis, such as

a point-line interpolation, where the data is interpolated on a line section across the

point data. As ParaView is largely utilising the features of VTK internally, the blood

flow prototype could potentially emulate these features in the future if they proved to

be useful for clinicians.
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Figure 4.2 Visualisation of the first data collection technique. A plane is visualised
that is the criteria for collecting particle data, any particles that lie on the plane or
nearby will be collected and mapped as a velocity profile graph.

4.2 Test Cases

To develop a robust validation for clinical use we developed the following series of

test cases. The test cases were designed to replicate common validation experiments

and vascular structures without the additional complexities of patient geometry. By

simplifying the behaviour in this way, we can firmly predict how the fluid should

behave prior to the simulation experiments and compare our results with the out-

comes from empirical and numerical experiments in the literature. Moreover, after

validating the flow within the simplified test cases we could expand our validation
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into real-patient geometry to ensure that the application could facilitate the additional

complexity, and that congruent behaviours are demonstrated.

4.2.1 Straight Channel

Expected Behaviours

Figure 4.3 Simple triangle mesh geometry developed to test straight channel flows
with a uniform diameter.

The first and simplest case presented is a straight cylindrical channel of constant

diameter. This case is intended to model laminar fluid flow from inlet to outlet. The

velocity profile is expected to match the unchanging parabolic profile of Poiseuille

flow in Newtonian models, see Figure 2.2. This flow pattern firstly displays the greater

velocity magnitude of fluid trending towards the centre of the geometry. Secondly, the

fluid particles demonstrate the slip condition of the boundary and either slow down

greatly to a near-stop when in contact with the boundary (slip) or come to a complete

stop (no-slip), depending on the viscous forces defined in the simulation parameters.
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Simulation Results

Figure 4.4 Visualisation of particles at the time of data collection, visually in agree-
ment with the velocity profile expected. The grey plane indicates the region of discrete
particle data collection. Flow modelled from left to right.

Steady flow is achieved through the vessel in the prototype simulation. Figure 4.4

shows the live real-time interactive rendering of the simulation. The simulation is

visually in agreement with the expected flow behaviour, laminar flow demonstrating

Poiseuille flow, greater velocity (red coloured particles) within the central channel of

the tube which becomes slower towards the boundary. Figure 4.5 demonstrates how

the same data is rendered within the ParaView software and provides a clearer image

of the slow moving region around the boundary layer.

Figure 4.5 ParaView rendering of the particle flow through the geometry (transparent).
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When the data is graphed directly from a plane of the simulation, see Figure 4.6,

we can see the parabolic form of the velocity profile outlined by the particle positions

in the vessel. As the positions of particles are collected during a limited time frame

through a narrow plane, the data is discrete but still clearly demonstrates the velocity

profile expected. When the point data is interpolated along a line in ParaView,

we take influence from all the particles near the line. Figure 4.7 demonstrates the

velocity profile found from the interpolated line. The interpolated data yields a

greater indication of the general flow velocity than the discrete data. There are no

discrepancies found in the interpolated data at a cost of reduced specificity. Alongside

the visualisation, this demonstrates that the flow will match this pattern throughout

the tube. This profile aligns closely with those taken from in vivo measurements in

the literature [82].
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Figure 4.6 Parabolic velocity profile for fluid flow simulated in a straight channel tube.
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Figure 4.7 Parabolic velocity profile for fluid flow simulated in a straight channel tube.
Position is the normalisation distance across the line sampling the particles.

When the discrete data is plotted against the analytical solution, we get a close

match, see Figure 4.8. The analytical solution is the idealised result of the Poisuelle

flow equations for the geometry used. Judging from the similarity of velocity profiles

of a straight channel tube, we were able to investigate how the flow develops in more

complicated scenarios.
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Figure 4.8 Comparison of straight channel velocity profile within a straight channel
tube to an analytical solution (Poiseuille Flow).

4.2.2 Cone

Figure 4.9 Cone geometry developed to test straight channel flows when the vessel
has a variable diameter.

Expected Behaviours

The next basic case presented is a straight conical channel of constantly changing

diameter, scaling from a large inlet to a narrow outlet. Although the previous case

proved the simulation could replicate simple behaviour through geometry with a
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uniform radius, it could not prove that the flow is dynamic and reactive to the geometry.

This case is intended to model laminar fluid flow from inlet to outlet through a tapered

geometry similar to that found in vessel narrowing pathology, such as the vessel

narrowing found when plaque builds up during atherosclerosis. The velocity profile is

expected to resemble the parabolic profile of Poiseuille flow in Newtonian models,

with differing velocity magnitudes throughout the tube. When compared, the areas

of the tube with a greater radius should show a less dramatic parabola with a typical

laminar velocity profile, more closely resembling the straight channel flow. Whereas

we expect areas of the tube with a lower radius to display a velocity profile with a

higher mean and maximum velocity magnitude, as the same net flow will be forced

through a narrower region by the pressure of the flow. If the driving pressure was

constant the flow rate would instead decrease.

Simulation Results

Figure 4.10 Visualisation of particles at the time of data collection, visually in agree-
ment with the velocity profile expected. Particles flowed from the wider region to the
narrow region. The seeding point for the particles can be seen as the high velocity
(red) area within the wide region. Flow modelled from left to right.
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As expected, the visualisation in the blood flow prototype shows the highest velocity

(red particles) at the narrowest region of the vessel (the outlet), see Figure 4.10. The

ParaView rendering, see Figure 4.11, clearly shows the general increase in speed with

the reduction in vessel radius. The slow, deep blue, particles trend towards the inlet,

whilst getting marginally faster as they approach the outlet.

Figure 4.11 Demonstration of the line interpolation taken for the cone geometry.
This ParaView render displays two lines representing the regions used to capture and
interpolate the data for the narrow and wider regions.

More importantly the particles deeper within the cone were sampled in two

different locations, one narrow region close to the outlet, and one within a wider

region in a central part of the vessel, see Figure 4.11. Figure 4.12 demonstrates the

velocity of the particles within the cone at these two different locations. The velocity

profile of the wider region very closely resembles the straight channel profile when

compared with the sharp profile of the narrow region. There is a distinct increase in

flow velocity and the maximum velocity, even between the short distance sampled.

This case is important to prove the flow is dynamic. The flow is affected by the

geometry and also the forces that develop in other regions of the fluid, primarily

pressure of the fluid developing as the radius closes.
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Figure 4.12 Parabolic velocity profile for fluid flow simulated in a cone shaped tube.
Position axis is measured as the resolution across the line that passes through the data.

4.2.3 Hose

Figure 4.13 Artificial hose geometry developed to test straight channel flows with
irregularities along the vessel.

Expected Behaviours

To expand upon the previous two test cases, we developed this artificial ‘hose’ struc-

ture, see Figure 4.13. The hose is a complex tube with an inconsistent radius, the
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geometry presents with narrow and wide regions to resemble vessels with bulbous

pathology, e.g. the widening observed when aneurysms balloon out the vessel walls.

This test case will indicate that the flow behaviour can relax and normalise while

recirculating within irregularities. As per Pousille’s Law, and similarly to the previous

cone test case, the narrow regions should have a flat velocity profile, trending towards

higher mean velocity. There is the potential for small slow moving divergent flow

patterns within the wider regions where fluid becomes trapped between the viscous

forces of the boundary and the high velocity of the central fluid.

Simulation Results

Figure 4.14 Real-time rendering with the hose geometry from the blood flow prototype.
Rotated 90°. Flow pictured from left to right.

The real-time prototype provides an excellent visualisation for this case, see Fig-

ure 4.14. The colouring of the particles demonstrates the increased velocity of the

flow within the narrow regions of the hose. Fluid found within bulbous extremities

becomes ‘trapped’ between the fast, inner channel of fluid and the boundary. Despite

these regions of changing geometric properties, the fluid flow remains stable and

symmetrical. Furthermore, the yellow regions of fluid between the extremities of the

geometry demonstrate the fluid’s redistribution. In Figure 4.14 we can observe that

these regions are equally sized, uniformly redistributing some of the fluid from these

bulbous regions around the high-speed central channel.
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Figure 4.15 ParaView rendering of the particles within the hose geometry, including
the two lines used for line interpolation in Figure 4.18.

When the data is sampled and interpolated, we can see that the flow reaches a

greater maximum velocity, see Figure 4.18. Secondly, the velocity within the narrow

regions is generally higher at all points within the vessel. However, the interpolation

cannot detail how flat the velocity becomes as it takes influence from surrounding

regions of fluid. Conversely, when comparing the discrete data, in Figure 4.17

and 4.16, the discrete sampling shows the difference when particle velocities are

considered through a flat sampling plane. These planes demonstrate how different the

velocity profiles are when considered in isolation, the narrow region is almost level

compared to the evenly distributed parabolic profile from the wider region. Finally,

we observed that the extremities of the wide region shown in Figure 4.16, contain

some discrepancies in the velocity profile. These particles, which we observed to have

fluctuations in velocity and direction, demonstrate some small additional circulation

behaviour becoming apparent within the trapped fluid.
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Figure 4.18 Parabolic velocity profile for fluid flow simulated in a hose shaped tube.

4.2.4 Bifurcation

Figure 4.19 Artificial bifurcation geometry developed to test straight channel flows
after the division of flow into two branches.

Expected Behaviours

Our penultimate test case was the simple bifurcation, with branching child vessels of

different sizes, the child vessel extruding from the origin vessel has a lower diameter

than its sibling. This structure is exemplified within human anatomy as the inferior



4.2 Test Cases 104

mesenteric artery (IMA), the third major branch of the abdominal aorta. The difference

in vessel radius was developed to display that the divergent flow will have different

properties whilst continuing stable flow within the child vessels. Our focus in these

vessels is the fluid flow speed after the bifurcation, the flow within the narrower of

the two child vessels should show a lower velocity magnitude with velocity profile.

Whereas the larger vessel should remain largely unchanged. This is our first case

to demonstrate that a narrow radius can lead to a slower velocity in the correct

circumstances. This will be due to the topology of the artificial vessel, i.e. the child

vessel will not be subject to the vast majority of the pressure forces within the parent

vessel. As the resistance of the flow is inversely proportional, see Equation 2.2, to the

radius we should see a noticeable decrease in the flow through the child tube.

Simulation Results

Figure 4.20 Blood flow prototype operating within the artificial bifurcation geometry.
Flow Modelled from left to right.

As expected, the general flow speed within the narrow child vessel is lower than

the velocity found within the main channel. There does appear to be an increase

in velocity toward the outlet of the child vessel which may be due to the reduced

boundary influence when nearing the open outlet, as the effect is also present within
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Figure 4.21 ParaView rendering of the artificial bifurcation geometry and the sampling
lines used to plot the resulting velocity profiles.

the main channel, in combination with possible density errors when approaching areas

with no particles whatsoever.

4.2.5 Backward Facing Step

Geometry

Figure 4.23 Artificial backward facing step test case geometry. The geometry features
a sharp expansion to the channel, effectively doubling the diameter of the vessel.
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Figure 4.22 Velocity magnitude through two lines interpolated from the blood flow
prototype functioning within an artificial bifurcation geometry. Line A bisects the
child vessel, Line B is positioned across the main vessel, after the bifurcation.

The backward facing step a very popular benchmarking and validation test problem

for CFD simulations owing to its simple geometry and the availability of quality

experimental data [7, 91, 200]. The geometry features flow in a straight channel

with a sudden expansion which causes a level of distinct flow separation. This flow

behaviour is important for recirculation as a candidate to replicate vessels with the

potential for back eddies, the swirling reverse currents found in turbulent systems, e.g.

geometry found in cases with pathologies like aortic aneurysms, which presents with

a dilation (expansion) of the aorta.
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Simulation Results

Figure 4.24 Simulated fluid flow in the artificial backward facing step geometry.

As demonstrated in previous numerical simulations, after reattachment of the upper

wall eddy, the flow slowly recovers towards a fully developed Poiseuille flow [56].

From Figure 4.25 we can observe how the stream of high velocity fluid sinks initially

after the vessel expansion, isolating a region of fluid within the expansion. Further-

more, the velocity profiles taken at multiple cross-sections in Figure 4.26 highlight

how closely in agreement the backward facing step result is with results found in the

literature [7, 200], see Figure 4.27.

Figure 4.25 ParaView rendering of the backward facing step results. The dark red
region on the left of the geometry is the seeding point for the particles.
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Figure 4.26 Velocity profiles within the backwards facing step geometry.

Figure 4.27 Velocity profiles for flow within the backwards facing step geometry at
different cross section (x/S) positions from the literature [200].

4.3 Realistic and Real patient Geometry

Following the results of the series of test cases, we also endeavoured to prove that

our blood flow prototype could operate interactively within complex, high resolution,

realistic and real patient geometrical domains. The following test cases are all sourced

from real patient geometry.

4.3.1 Aorta Section

Resulting from previous collaborations with the Glan Clwyd Cardiac centre we have

access to two aorta sections from two different patients, which we will refer to as
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section A, Figure 4.28 and B, Figure 4.30. The Aorta is the first arterial segment of

the systemic blood circulation, directly connected with the heart. The aorta has two

distinct regions, the thoracic and abdominal aorta.

Section A

Figure 4.28 First aorta segment geometry, labelled section A. The inlet and outlet
have been cropped to open the vessel.

Despite many irregularities within the geometry, the same velocity profile we observed

in the straight channel geometry begins to emerge. We can observe slow moving

particles around the boundary surrounding the high-speed red particles within, this is

particularly apparent within the enlarged region towards the right of Figure 4.29. This

case provides good evidence for the robustness of the simulation as the fluid does not

only flow along one axis unlike the straight channel test case.
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Figure 4.29 Blood flow simulation results for aorta section A. Flow modelled from
left to right.

Section B

Figure 4.30 Second aorta segment geometry, labelled section B. The inlet and outlet
have been cropped to open the vessel.
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Figure 4.31 Blood flow simulation results for aorta section B. Flow modelled from
left to right.

4.3.2 Bifurcation

The bifurcation is a crucial test case as is known to be susceptible to the formation of

atherosclerotic lesions, and also as we are primarily concerned with the recirculation

of blood flow.

Abdominal Aortic Bifurcation

Our first patient specific bifurcation is also from the Aorta. The abdominal aortic

bifurcation, shown in Figure 4.32, bifurcates into the two common iliac arteries. In

healthy examples, the flow from the bifurcation will split into two high velocity

streams.
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Figure 4.32 Aorta segment geometry including the abdominal aortic bifurcation to the
left and right common iliac arteries.

From Figure 4.33, after the bifurcation we can observe the flow increase in relative

velocity within the narrow child vessels. The same quantity of fluid is forced through

channels with a combined diameter lower than the initial segment of the vessel.

Figure 4.33 Geometry representing the abdominal aortic bifurcation. The inlet of the
geometry is highlighted in white. Flow modelled from left to right.

Carotid bifurcation

Our second patient specific bifurcation is that of a carotid bifurcation, see Figure 4.34.

The geometry consists of three primary areas, common carotid, internal carotid, and

external carotid. The geometry provides a contrasting environment from that found in
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the previous aortic bifurcation, which is relatively uniform in child vessel radius. The

child vessels radius differs greatly, the external carotid is narrower than the internal

carotid, and regions of bulging geometry are present. The carotid bifurcation is an

important and well-represented test case for fluid simulations in the literature.

Figure 4.34 Real geometry representing the carotid bifurcation.

From Figure 4.35 we can observe the simulated flow within the carotid bifurcation.

The results highlight a few key areas exhibiting interesting behaviour. Firstly, within

the bulging region of the internal carotid shows a reduction in high velocity red

particles, until the vessel narrows once again. This is due to having the same driving

force acting on flow within a greater radius.

Figure 4.35 Blood flow simulation prototype operating within real geometry repre-
senting the carotid bifurcation. Flow modelled from left to right.
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4.3.3 Patient Specific Vascular Geometry

The patient specific geometry previously used in [175] was obtained for use in our

study. It had been produced from rotational X-ray images of a real patient. As an

anatomically accurate model of a large component of the human vascular system, this

tortuous vessel structure is an excellent test of the systems capabilities. As the largest

and most complex piece of geometry used to validate the software its usage provides

important insight into how capable the simulation is when operating within complex

geometry.

Figure 4.36 Surface mesh of a larger example of patient specific vascular geometry
produced from rotational X-ray geometry.

Despite the increased size and complexity, the simulation performed as intended

within this complex geometry. The simulation produced some interesting behaviours,

the majority of the vessel exhibits typical straight channel flow behaviour, with

some areas of increased velocity due to increasing driving pressure after flowing

through very narrow regions. An area of particular interest is within the three-pronged

bifurcation structure in Figure 4.37. We can observe the great deviations in particle

velocity, the narrowest of the regions producing generally higher velocity. As the

natural continuation of the original channel, the uppermost branch receives the bulk of

the fluid and exhibits a relatively higher velocity. The flow then branches again. The
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middle branch shows a mix of generally slower moving particles as it only receives

one third of the original flow and has relatively low pressure driving it. The driving

pressure will be lower as the three child channels are of a similar size to the feeding

vessel. Finally, the lower of the branches indicates an increased velocity through the

narrowest region, before stabilising when the vessel expands.

Figure 4.37 Blood simulation running through the rotational X-ray geometry. Flow
modelled from left to right.

4.4 Summary

Through a series of test cases we have demonstrated the viability of the simulation

to handle a broad spectrum of vascular structures and CVD pathology. The test

cases were designed to illustrate the behaviours we need to simulation within human

anatomy. Through comparison to measurements found in the literature we can

demonstrate that the results from the blood simulation have a good basis in reality and

the application has viability for clinical use. In addition, we have demonstrated that

the simulation will operate effectively in both restricted vessel segments and larger

complex vascular networks.



Chapter 5

Using the Simulation Prototype

This chapter describes a demonstrator application that builds on the blood flow simu-

lation engine described in the previous chapters, to show the beginnings of a clinical

decision support tool. The blood flow prototype was designed to be the engine for a

decision-making tool for clinicians. Visualising and manipulating blood flow through

any given medical geometry. Early consultation with clinicians formed the initial

requirements of the prototype application. Alongside the geometry visualisation, clin-

icians required methods of interaction with the flow, specifically to create and remove

blockages. Subsequent meetings yielded positive feedback and future meetings will

shape the development of new interactions. A clinical trial of the software will be

future work, but comments received from an interventional radiologist augurs well

for its future use. Feedback was gathered following a demonstration of the prototype

application, see Appendix A, and a subsequent interview, see Appendix B. The ap-

plication demonstration showcased the prototype implementation of the simulation

framework, operating in the geometry explored in Chapter 4 and the interactivity

outlined later in this Chapter. In particular, in communications following an interactive

demonstration of the prototype in February 11, 2019 with Professor Derek Gould, an

interventional radiologist with 35 years of experience, he noted ‘...a nice simulation of
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laminar flow through a vessel and an aneurysm.’ In response to the initial meetings at

the beginning of the project, he also noted, ‘I was clear about the need to simulate the

real world non-laminar impacts of the changed configuration of the aneurysm.’ During

an interview conducted on February 21, 2020, Professor Derek Gould and Dr Thien

Howe, provided feedback that predicted the simulation to have a number of potential

uses in decision support, in particular it was noted that it could be used to simulate an

interventional task, aid in the application of contrast agent and benefit cases with an

aortic aneurysm by determining local pressures and consequently predict the areas

with a risk of a rupture, see Appendix B.

Interaction with the vessel begins with the customisation of the rendered scene,

i.e. the ability to move, rotate and scale the vessel. By enabling this interaction, we

immediately begin to benefit from an immersive 3D environment. New perspectives

can be achieved that may have been lost when viewing volumetric data. Secondly,

the vessel must effectively visualise the blood flow. Particles must not be occluded

by the vessel geometry if specified by the user. Finally, the simulation needed novel

interactions to generate hypothetical scenarios which could then be used to evaluate

the haemodynamic consequences.

The prototype tool is primarily designed to operate on the conventional desktop

computer, specifically the keyboard and mouse interface. However, the application

has also been updated for use on the 3D immersive zSpace display, paving the way

for future generic implementations on other immersive technologies.

5.1 User Interface and Simulation Parameters

Users load surface geometry derived from medical image data and initiate the simula-

tion. The mesh is then processed, we clean the mesh as described in Section 3.2.1,

compute the centreline and generate the boundary particles. Once processed, the
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Figure 5.1 Blood Simulation Prototype example scene show casing the GUI. Real
patient geometry has been loaded into the application. The interface panels are
highlighted with coloured borders: red for the menu panel, blue for the clots panel,
green for the system panel, and yellow for the print to console panel.
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mesh can be rendered and several options become available to the user, e.g. highlight

the inlet, render the centreline, the colour and transparency of the rendered vessel.

Secondly, various simulation parameters can be modified, either interactively at run

time using the GUI or before the application has started through the modification of

a simple human-readable configuration file, see Appendix C for an example. The

JavaScript Object Notation (JSON) file type was chosen as a lightweight format that

is both easy for humans to read and write, and easy for machines to parse. The only

disadvantage of JSON being the lack of standardised comments, text ignored when

the file is parsed. This may lead to a different format being considered in future, as

some of the parameters may require some elaboration and exemplar values directly in

the configuration file text.

5.1.1 Running the Simulation Prototype

The prototype application has been developed primarily as a demonstrator and pro-

vides access to low level details of the simulation that might not be needed in a clinical

version. Currently there are four panels that can be selected: ‘Menu’, ‘System’,

‘Clots’, and ‘Print to Console’. Each panel can be moved, resized or collapsed down.

The first and most important panel to the user is the ‘Menu’ panel. Crucially, this

panel exposes the dynamic simulation parameters to the user. Parameters such as

rest density, viscosity coefficient, time step, gravity and boundary contribution can be

modified in real-time. The read-only constant variables of the simulation can be also

be viewed on this panel. However, these constants must be modified before launch in

the configuration file. Furthermore, the simulation can be paused from this panel to

make multiple changes without causing instability.

Alongside the flow simulation parameter section of the application, the ‘Menu’

panel hosts some rendering options. These options enable the user to customise their

view of the simulation and geometry. Normally unseen elements such as the centreline
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and boundary particles can be revealed for greater insight into the simulation. Further

insight and perspective can potentially be gained from scaling the vessel to examine

areas of interest more closely. The vessel and background colour can be defined

by the user to provide better contrast with the particles and the scene background.

Additionally, the particles can be coloured by a selection of different properties from

the SPH computations; location defined by the particle grid cell, particle velocity,

density, or pressure. Through these colours a user can closely examine the behaviour

of the fluid in regions of interest.

The ‘System’ panel also enables some rendering customisation. The background

colour (or clear colour) of the scene can be customised to offer maximum visibility

for any user. Front face culling can be configured, see Section 3.6. Secondly, the

panel reveals technical details and live benchmarking metrics from the simulation.

Notably the simulation frame rate and frame timings are available, a crucial detail

for real-time applications. If the frame rate is unsatisfactory for interactive use, the

user may have loaded excessively large geometry files, specified too many boundary

layers, see Section 3.5.2, or find themselves suffering with incapable hardware.

The ‘Print to Console’ panel contains several logging facilities for exporting the

particle data to the application console and to disk in tabular format (CSV). This

panel is largely for researcher and developer use, providing data insight into the inner

workings of the simulation. Finally, the ‘clots’ panel allows control over blockages

added to the vessel, providing the user with details of how many blockages there are,

how many particles they are comprised of, and a button to remove the blockage. The

details of the blockages are discussed in Section 5.3.
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5.1.2 Scene Interaction

Interaction with the 3D scene should emulate the behaviour of interacting with vascular

anatomy. Mapping 2D actions into 3D spatial behaviour is a constant challenge for

application designers. This is especially true when trying to uphold the general

principle for human-computer interaction which emphasises the importance of a

predictable and reproducible behaviour [12]. Managing 3D interactions incorporates

6 DOF, 3 axes for positioning and 3 for rotation. To maintain a level of consistency

and simplicity, all traditional desktop interactions were developed around the standard

3-button mouse. The left mouse button is used to move objects when clicked and

dragged into a new location. Holding and dragging with the right mouse button rotates

the objects until the button is released.

The movement, or translation, of the vessel is based around the ray-casting tech-

nique. When a user clicks within the application a virtual line is generated from the

position of the cursor into the scene. If this ray collides with the vessel, we consider

it selected and collect the plane on which it was selected. If the user then holds and

drags the mouse button, the next position is calculated from the new ray’s position

on the previously selected plane. As this process is captured within the main loop

of the application, it appears seamless. Calculating the collision of the ray with the

vessel mesh would be inefficient if the application was to naively query every triangle

in the scene for a collision within a mesh. To prevent any performance impact, we

quantify the vessel into an axis-aligned bounding box (AABB), a closed volume that

completely encompasses the triangle mesh. Consequently, the application queries

against the AABB of the vessel, a much simpler and faster bounds calculation.

The rotation is modelled as a virtual trackball, a common and convenient method

for handling 3D rotations. Virtual trackballs simulate a physical trackball, commonly

not displayed on screen, but conceptualised at the centre of the object and having a
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size proportional to the object’s size [63]. Finally, the middle mouse button indicates

the position to add a blockage to the vessel. In addition, five keyboard shortcuts have

been mapped to allow quick access to common viewing angles, including: the vessel’s

initial position, 90-degree rotations for each axis and one 90-degree rotation on every

axis. Similarly, the arrow keys can be used to rotate the vessel precisely.

5.2 Using the zSpace Display

Figure 5.2 Real patient geometry rendering on the immersive zSpace 200 display
(artistic impression used in figure to depict 3D effect, derived from (Source: zSpace,
Inc [204]))

To further the opportunities for clinicians with access to immersive technologies,

the prototype was developed with the capability to operate on the zSpace hardware.

The zSpace system allows the user of the simulation to immersive themselves within a

virtual environment and interact with the vessels as if they were a real physical entity.

The stereoscopic display and glasses give the vessel the appearance of protruding



5.2 Using the zSpace Display 123

beyond the monitor, and react to the user’s head movements, rotating the rendering

of the scene to mimic natural human sight, see Figure 5.2. Moreover, through the

use of a 6 degrees of freedom stylus the imported geometry can be manipulated and

inspected in a natural and intuitive way.

Figure 5.3 2D quad buffering configuration with two frustums simulating what hap-
pens in the human visual system (Source: zSpace, Inc [204]).

The zSpace stereo uses a quad buffer, time sequential stereo style of left/right

image generation. The format is natively supported by OpenGL but requires specific

hardware support from the graphics device vendor, usually found within the work-

station graphics range, e.g. NVIDIA Quadro and AMD FirePro. In non-stereoscopic

3D graphics applications, the rendering system uses a monoscopic frustum, i.e. a

single pyramid of vision into the modelled world. This frustum defines the edges

of vision and the near and far clipping planes. However, humans have two eyes and

are therefore using two frustums, generating two images which are processed by the

brain to create a sense of depth. For stereoscopic 3D applications to create the same

sense of depth we also must use two frustums, see Figure 5.3. To render the stereo

images, the scene is rendered in two frames, once for each eye, only visible through

the complimenting lens of the polarised stereoscopic glasses. The matrices used to

format the scene have different values for each eye, due to the viewing angles and

space between the eyes, this mandates that they are recalculated for each frame, see

Source Code 5.1.
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To successfully operate the stylus we needed to implement a 3D cursor that

followed the tip of the stylus and allowed the user access into the depth of the

visualisation. There are at least three techniques for pointer length: fixed, variable,

and hybrid [28]. We chose to employ a variable pointer to enable to user maximum

range of movement when manipulating the scene. Due to earlier design choices, the

stylus quickly integrated into the ray casting objecting picking scheme. The ray could

instead be generated from the position and direction of the stylus. With the addition

of the stylus direction, the necessity for the selected plane with mouse picking is

removed and the vessel can be dragged freely around the scene, including towards

and away from the user. Similarly, rotation of the vessel is also more natural as the

stylus can be turned and rotated itself. The rotation of the stylus can be queried from

the zSpace hardware and used to manipulate the vessel precisely.

5.3 Simulation Interaction

For the clinicians to generate bespoke flow scenarios we endeavoured to create mean-

ingful interaction with the blood flow. As our investigation was primarily concerned

with the re-circulation behaviour, we aimed to manufacture flow re-circulation by

allowing the user to create blockages. As a result of the simulation optimisation,

this blockage-based interaction could be applied and removed from the geometry in

real-time while the simulation was running. In practice, a user was able to render

the centreline, and using their mouse or the zSpace stylus, point to a region of the

geometry to create a blockage. Multiple blockages can be generated within one

scenario, only limited by the size of the vessel loaded.

Initially we allowed the user to ‘draw’ a simple sphere along the centreline. These

spheres were difficult to create, and they also generated distinctly artificial geometry.

The structures generated were unnatural and unlike what is found in a patient with
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Source Code 5.1 zSpace camera variants to retrieve the alternating view and perspec-
tive matrices. The zSpace camera inherits the normal mono view methods from the
camera used for conventional screens.

1 glm::mat4 GLZSpaceCamera::view() const
2 {
3 // Get the view matrix from the zSpace StereoFrustum for the

specified eye.↪→

4 ZSMatrix4 view_matrix;
5 const auto error =

zcGetFrustumViewMatrix(zc_context.frustum_handle,
zc_context.eye, &view_matrix);

↪→

↪→

6 const auto zs_view_matrix{ glm::make_mat4(view_matrix.f) };
7 const auto mono_view{ super::view() };
8 return zs_view_matrix * mono_view;
9 }

10

11 glm::mat4 GLZSpaceCamera::projection() const
12 {
13 // Get the projection matrix from the zSpace StereoFrustum

for a specified eye.↪→

14 ZSMatrix4 projection_matrix;
15 ZCError error = zcGetFrustumProjectionMatrix(

zc_context.frustum_handle, zc_context.eye,
&projection_matrix);

↪→

↪→

16 auto zs_proj = glm::make_mat4(projection_matrix.f);
17 return zs_proj;
18 }
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(a) Clot structure, rendered as white particles, within real patient geometry that features a
bifurcation. Flow modelled from top to bottom.

(b) Flow developing moments after the clot
structure is removed.

(c) Stable flow returning after the clot structure
has been removed.

Figure 5.4 Evaluating the consequences of removing blockages in bifurcation geome-
try.
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atherosis or thrombosis. Instead we developed a system to use the existing boundary

particles. The blockage is created by transforming the boundary particles near the

user’s selection. Particles are selected from within a fixed radius of the user selection

and those particles are copied. The position of the newly copied particle is altered

to move along their previous normal vector, effectively closing the distance to the

centreline. All the particles selected are moved closer to the centreline, but the

magnitude of their displacement is dependent on their distance from the original

user selection. This creates a natural gradient, which would more accurately model

biological effects such as atheroma. The new particles are labelled and added into

the boundary particle collection, meaning that the addition seamlessly enters into the

general SPH algorithm, resulting in negligible effects on performance.

The ‘clot’ created then appears within the demonstrator applications ‘clots’ panel

and can be removed at will, see Figure 5.4a. The simulated flow in Figure 5.4a has

become trapped behind the clot and has been forced down through the second child

vessel. Small areas of circulation behind the obstruction are also observable in and

around the blocked regions of flow. When the clot is removed, there is an immediate

shift in the flow, the previously blocked, blue particles, become red to highlight their

increase in velocity, see Figure 5.4b. Subsequently, the flow within the second child

vessel slows as the pressure is relieved, becoming blue and green in colour. Finally,

the flow becomes completely stable, as shown in Figure 5.4c.

Following the blockage interaction, the second interaction desired by clinicians

was narrowing the vessel geometry. This interaction was designed to imitate the

build-up and potential release of atherosclerotic plaque. Users hovering their mouse or

pointing their stylus over a region of the vessel may then scroll with their mouse-wheel

or drag with their stylus. Subsequently, the vessel boundary particles in proximity to

the user selection will begin to narrow or bulge around the desired region, depending

on the direction of the scroll, see Source Code 5.2. The boundary particles affected are
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then remapped into the correct grid cells and sorted, a process required by the normal

fluid particles on each time-step and causing only minor performance degradation

during the affected frame cycle. The interaction can be visualised by enabling the

rendering of boundary particles, see Figure 5.5.

(a) White boundary particles rendered before
any user interaction.

(b) White boundary particles rendered around
expanded region of patient geometry.

Figure 5.5 Transformation of boundary particles after user narrowing/expanding
interaction.

Figure 5.2 demonstrates the capabilities and resulting fluid behaviours of the

prototype narrowing interaction operating in real-time. As previously explored in the

cone test case, 4.2.2, the cross section shown in Figure 5.6b highlights the increase in

relative velocity caused by the greatly reduced vessel radius. Additionally, we also

observe that the region causes a bottleneck, resulting in a slow-moving region behind

the partial blockage. Conversely, when a region of the vessel is manually expanded

into a bulging state, the relative velocity is greatly reduced through the affected region,

confining a portion of fluid within the extremities of the vessel, see Figure 5.6d.

5.4 Summary

The usage and interaction with the prototype application implementing the new sim-

ulation engine has been described. These user controls and novel interactions were

developed to enable clinicians to interactively create numerous scenarios and eval-

uate the haemodynamic consequences. In addition, the application of immersive



5.4 Summary 129

Source Code 5.2 CUDA functor to manipulate the boundary particles within a radius
of a selected point.

1 struct shrink_on_scroll_functor {
2 float amount_to_move, float radius_of_effect;
3 float3 point_of_interest;
4 sph_parameters params_;
5 explicit shrink_on_scroll_functor(const float3 point, const

float radius, const float amount, sph_parameters params)
: point_of_interest(point), amount_to_move(amount),
radius_of_effect(radius), params_(params) {}

↪→

↪→

↪→

6

7 template <typename Tuple>
8 __device__ void operator()(Tuple t) {
9 const float3 pos{ thrust::get<0>(t) }; // boundary position

10 const float dist = sqrt(distance_squared(pos,
point_of_interest));↪→

11 if (dist < radius_of_effect) {
12 const auto direction = normalize(pos -

point_of_interest);↪→

13 const auto percentage_between = dist / radius_of_effect;
14 const auto new_pos = pos + (direction *

(percentage_between * amount_to_move));↪→

15 thrust::get<0>(t) = new_pos;
16

17 const auto ref = uniform_grid::calc_grid_hash(
18 uniform_grid::calc_grid_cell(new_pos,

params_.world_origin, params_.cell_size),↪→

19 params_.grid_size
20 );
21 ref > params_.num_cells ? thrust::get<1>(t) =

UNDEFINED_CELL : thrust::get<1>(t) = ref;↪→

22 }
23 }
24 };
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(a) Real patient geometry featuring the aortic
bifurcation before applying narrowing interac-
tion.

(b) Cross section of the narrowed region,
demonstrating an increased relative velocity
within the artificially narrowed region.

(c) Resulting expansion of the geometry while
the user gradually releases the narrowed region
of geometry.

(d) Real patient bifurcation expanded by user
interaction. Example of boundary representa-
tion seen in Figure 5.5.

Figure 5.6 Evaluating the consequences of interactively narrowing and expanding a
region of the bifurcation geometry.

technology, specially the zSpace hardware, was used to supplement the interactive

capabilities of the application. The tool will be further updated for more intuitive

clinical use, including hiding the advanced technical details from the user. The appli-

cation was also demonstrated to an interventional radiologist. The feedback received

from the demonstration was positive and a number of comments and suggestions were

taken. In particular, similarities were drawn to the results seen from experience in

the application of contrast medium during Angiography. The initial propagation of

particles was noted to closely resemble the progression of contrast medium in X-ray

imagery. A full clinical trial of the decision support tool is a suitable avenue for future

work.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The decision-making process of cardiovascular clinicians approaching a patient with

uncertain prospects is fraught with uncertainty and insufficient tooling. Potentially

life-altering decisions are made on the basis of grainy medical image data and previ-

ous experience. There are no tools at the disposal of clinicians to rapidly prototype

various treatment scenarios to aid their understanding of a specific problem domain.

As computer hardware has evolved, we have seen the rapid acceleration of affordable

computational power. This new-found computational potential can potentially provide

benefits to the medical domain. Firstly, we can apply the new hardware to compu-

tational methods of simulating fluid dynamics, aiming to generate patient-specific

results accurately in real-time. Secondly, we are seeing more availability and capa-

bility to render immersive environments, supporting new levels of interaction and

visualisation. Previous implementations of accurate fluid simulations have required

extended periods of processing time to generate results. In contrast, simulations that

produce results in real-time have been designed principally for visually credible, high

fidelity visualisations, unsuitable for validation.
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The aim of this investigation was to explore this new potential, to develop and val-

idate a bespoke patient-specific blood flow simulation and visualisation prototype that

produces results in real-time. A prototype real-time blood simulation and visualisation

tool was developed to test the thesis hypothesis:

‘A real-time computer simulation and visualisation of blood flow through

vascular structures can be developed, validated and integrated with the

training and decision-making process of clinical interventions during an

acute cardiac event.’

Furthermore, in Chapter 1 we outlined three research objectives that when met

would address this hypothesis. Firstly, we aimed to produce the simulation engine

for a modern prototype surgical planning tool to aid in the clinicians decision making

processes by implementing a 3D real-time CFD simulation that operates within

complex patient geometry. Following that objective, in Chapter 3 we have catalogued

the development of a functional GPU accelerated real-time blood flow prototype. The

CFD simulation operates using the SPH method, and by implementing an effective

boundary condition, particle seeding configuration, and mesh preprocessing, the

simulation will perform interactively inside real patient-geometry.

Secondly, we aimed to validate the results of the simulation, proving the accuracy

of the CFD model for use by clinicians. Consequently, Chapter 4 demonstrated the

results of the simulation from a variety of test cases were validated against analytical

results and measurements from the literature. In addition, the simulation was tested

within regions of real-patient geometry from the cardiovascular system. Interactive

SPH applications are typically unsuitable for such measurements of accuracy, the

quantity of particles is often too low, or the accuracy has been lost as a consequence

of visual fidelity. We have engineered a balance between performance and accuracy

sufficient for validation. The validation of the simulation was particularly important
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for this research as clinicians must trust that the results of the simulation are indicative

of reality to inform their treatment plans.

Our final objective was to visualise the simulation results in 3D to create an

immersive and interactive experience for the user. Allowing the user to interact

with the fluid flowing through the patient geometry and configure the aspects of

the visualisation. By implementing the SPH fluid simulation method with GPU

accelerated techniques we were able to perform the simulation and visualise the

results in real-time. The application performs at interactive rates, the frame-rate

allowing suitable visual continuity for an immersive experience. The prototype could

potentially be used by clinicians to evaluate the haemodynamic consequences of

scenarios generated in a non-invasive and immersive 3D environment, including the

use of immersive 3D hardware if available to the user. Novel interactions designed for

clinical use can be performed upon the simulated flow and geometry, allowing users

to generate and remove blockages, dictating the pathways available for the blood flow.

These scenarios can be based within real patient geometry, as surface meshes derived

from the segmentation of medical imagery can be loaded into the application with no

additional manual processing. Moreover, the workflow of the prototype application

is semi-automated, automatically subjecting the loaded geometry to preprocessing,

generating the vessel centreline, boundary particles, and particle seeding locations.

As a result, we can conclude that with modern hardware acceleration and op-

timisations for the SPH algorithm the development of an accurate real-time blood

flow simulation and visualisation tool suitable for clinical and educational use is

plausible. We have verified that the application is robust and can handle a selection

of vastly different geometric structures, while previous simulations focus on one

specific area of anatomy. Consequently, this development supports our hypothesis that

real-time simulation and visualisation of blood flow has the potential to be applied to

the decision-making process of clinical interventions.
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6.2 Future Work

Although the potential to be an effective addition to the clinical decision-making

process has been demonstrated, the software developed is a prototype for a subsequent

full application, and this multidisciplinary investigation creates multiple avenues

for future work. Firstly, the prototype application must be subject to further testing

and development in a hospital setting. A clinical user study would provide greater

insights into the applications clinical and educational effectiveness. A larger sample

of clinicians expectations, behaviours, and investigative requirements would shape

the prototype for clinical use. Furthermore, feedback from a user study may highlight

desirable interactions that could be implemented, enabling a greater depth to scenario

development.

Secondly, the simulation engine could be developed further to target a greater

quantity of flow behaviours and improve those already developed. For example,

collateral circulation is particularly important during some acute cardiac events and

has yet to be investigated within the prototype application. A geometric model

featuring a large quantity of potentially alternative blood flow routes to a common

outlet could be developed and fabricated to replicate the behaviour, using patient

specific geometry similar to that used in Section 4.3.3.

The boundary condition has been implemented and produces the required be-

haviours. However, the prototype application treats the boundary as a profoundly

static entity. In real examples the vessel is highly reactive with regards to the blood

flow. The simulation engine would benefit from the development of a type of elastic

boundary that reacts to the flow in much the same way. To produce accurate results

in real-time with such a boundary would be a large undertaking and is outside of

the scope of this research endeavour. In addition, some geometric structure’s inlet
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produces an area of abnormally high density around the seeding area before stabilising,

which could be improved upon with a more consistent seeding pattern along the inlet.

The nature of the cardiovascular system produces a pulsatile flow, the beating

heart pumps blood into arteries which then propagates throughout the whole system.

The behaviour of the blood flow during diastole and systole, the two phases of the

cardiac cycle, are markedly different in some cardiovascular structures. However, the

simulation generally models steady continuous flow through the patient geometry.

Although the particle lifetime, seeding and re-seeding, does produce a pulsatile flow

effect within the visualisation, users have limited control over the behaviour with

current simulation parameters.

Similarly, the simulation parameters themselves would benefit from a form of cali-

bration with empirical physiologic flow parameters. Some of the test cases developed

are completely artificial and are therefore only subject to speculative parameters, or

generally accepted density values for blood. As the patient-specific geometry is for

research purposes we have no measurements for physiologic parameters such as inlet

velocity and density. In a further clinical test, there may be opportunity to measure

such parameters and to pair them with the associated geometry, creating a valuable

simulation validation environment.

In conversation with clinicians the addition of contrast mediums was proposed to

imitate the current physical processes of diagnosis. This is thought to enable a further

aid for education and potentially validation. Contrast fluids could be implemented

with a variety of methods. Firstly, a colour property could be added to the fluid,

and would be subject to its own smoothing kernel, spreading the colour throughout

the fluid. Secondly, SPH has seen some implementations with multiple fluid types,

commonly using different mass for each type of fluid. Furthermore, there is some

research into two-way coupled implementations of SPH, simulating diffuse regions

such as sprays [99].
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Alterations and additions to the prototype clinical tool could also be pursued.

A key feature we imagine in future iterations would be the capability to move the

simulation backwards in time, a difficult process for GPU accelerated algorithms. To

remember the positions and properties of particles in previous time-steps could be an

interesting challenge. Storing data to disk is generally a bottleneck for performant

applications, especially as the data would need to stream from the GPU. Memory

management on the GPU limits the amount of data that could be stored without

affecting performance.

Software optimisation is an iterative process and all applications can be subject

to further steps to increase performance. However, there are new unconventional

routes to GPU usage to be explore. For instance, CUDA kernels, and other graphics

programming frameworks, have recently been made available to run in cloud configu-

rations, such as Google Cloud Compute [30] and Amazon EC2 P2 [143]. Potentially

offloading the computational cost from the rendering machine and away from envi-

ronments that would have a huge upfront cost, i.e. multiple GPU configurations. In

particular, stereo rendering requires specific workstation GPUs which generally have

a much higher cost than their consumer counterpart. The potential challenge to using

the cloud in this application would be mitigating the latency created when transferring

the results downstream to be rendered and modifications from user interactions back

to the cloud.

In conclusion, we have developed and validated a modern, real-time, interactive,

blood flow simulation and visualisation which can be applied to geometry from

the cardiovascular domain. Feedback from clinicians supports the potential for

further development into 3D clinical decision support applications for interventional

cardiologists. The consistent improvements in computational hardware and immersive

technologies will accelerate the integration of such tools into the medical arsenal,

facilitating improved patient-specific care and clinical support.
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Appendix A

Demonstration Feedback from

Clinician

Clinician Professor Derek Gould

Speciality Interventional radiology

Years of Experience 35

‘I did see the simulation and my recollection is of a nice simulation of laminar

flow through a vessel and an aneurysm.’

‘I was clear about the need to simulate the real world non-laminar impacts of the

changed configuration of the aneurysm. If it is partially filled with clot then laminar

flow might still be possible as it could still maintain a tubular configuration through

the solidified thrombus.’

‘However the natural dilated configuration of an aneurysm may contain less throm-

bus than this, perhaps none; this then creates a non-laminar flow pattern with back

eddies and it would seem appropriate and necessary to reflect this in the simulation.’

‘We did also review some recorded data performed in the Liverpool Department

of Clinical Engineering’s laboratory with Dr Then How using a vascular flow model
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(rapid prototyped) that I think did show back eddies highlighted by thin beam illumi-

nation of suspended particles.’



Appendix B

Clinician Interview Notes

Clinician Professor Derek Gould and Dr Thien Howe

Speciality Interventional radiology

Years of Experience 35

B.1 Prepared Questions

B.1.1 Where could a fluid flow framework fit in the decision mak-

ing process of interventions?

Simulating an interventional task. Mapping the flow of contrast agent, how much

contrast agent to use and at what speed to inject the agent? Looking to see a faithful

representation of blood flow after you alter the anatomy. To identify when risk of

intervention is less than the risk of doing nothing, cerebral aneurysm analysis would

also be a good example. Deploying the stent to see it restore normal laminar flow.
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B.1.2 How would the decision-making process be helped by an

implementation of the framework?

Mapping from CT to vascular tree and predict what a contrast injection would look

like. This can be helpful with deployment of interventional methods in the vessel. The

closer you can get to seeing how the anatomy looks the better for simulation purposes.

This could be also be used to determine local pressures. This would benefit cases

with an aortic aneurysm to work out pressure distribution and predict the risk of a

rupture. High pressure areas in complex geometry (irregular bulging) and categorise

the high risk aneurysm.

Simulate flow in small aneurysms, repeat over time to see how the system evolves.

Where is pressure dangerously high? Today’s decision guidelines are purely on the

size of the aneurysm, a threshold primarily based on statistics.

B.1.3 What is an example of the sequence of events in diagnosis?

Pre-operative planning. Risk assessment

Inter operative decision making provided data from patient can be acquired and

then fed into the real time simulation. E.g. Duplex can give info on properties of

plaque. Also inlet velocity. Reduced velocity from embolic. Other complications.

B.1.4 What kind of interactions with flow would be helpful in

decision making?

Changing the pressure. Specifying flow rates. In and out flow. Using additional data

from other sources, ultrasound for example. Monitoring peripheral emboli - side

effects resulting from the procedure that you are carrying out.
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B.2 Additional Feedback

Ability to calculate shear forces then relate shear stress maps with known areas

where atherosclerosis develops. Calculate where the area of low shear and at risk of

developing stenosis. Then using this information to develop preemptive treatment.

Flow velocity is generally low - how do you define this in simulator? Liverpool do

have data from previous experiments which were used in finite element simulations.

We see the velocity increase in the other side of the bifurcation when a blockage

is added, because of the complex vascular network with all of the other branches

possible, it might be the case that the flow does not change that much. It would also

be useful to be able to slow down the particle flow and specify the inlet conditions for

investigating some clinical scenarios.



Appendix C

Example Application Configuration

JSON File

1 {
2 "boundary layers": 3,
3 "cell size": 1,
4 "gravity": {
5 "x": 0.0,
6 "y": -1.0,
7 "z": 0.0
8 },
9 "initial spacing": 0.08,

10 "kernel radius": 1,
11 "maximum particle neighbours": 100,
12 "maximum particles": 60000,
13 "rest density": 1000,
14 "sim scale": 1,
15 "stiffness": 250,
16 "time step": 0.005,
17 "viscosity": 18
18 }
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• Boundary layers: the number of particle layers generated when preprocessing

the loaded geometry.

• Cell size: The size of each cell in the spatial uniform grid. The grid cells are

equal in each dimension.

• Gravity: gravity force / external directing force to be universally applied to the

fluid.

• Initial spacing: the distance between the particles when they are seeded into the

geometry.

• Kernel radius: the SPH smoothing kernel radius length.

• Maximum particle neighbours: Maximum number of boundary particles to take

into consideration on each time. Only available if the simulation is compiled

with the maximum particle neighbours macro.

• Maximum particles: The maximum amount of particles to be seeded into the

simulation

• Rest density: the resting density of the fluid used in the pressure state equation

• Sim scale: the simulation takes place in some arbitrary geometric structures,

this property scales all interactions within the simulation accordingly.

• Stiffness: the stiffness coefficient used in the pressure state equation

• Time step: the amount of simulation time to integrate on each step.

• Viscosity: the viscosity coefficient used in the force calculation step.
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