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Abstract  Keywords 
The process industry has always been faced with the challenging tasks of 
determining the overall unavailability of safety instrumented systems (SISs). The 
unavailability of the safety instrumented system is quantified by considering the 
average probability of failure on demand. To mitigate these challenges, the IEC 
61508 has established analytical formulas for estimating the average probability of 
failure on demand for K-out-of-N (KooN) architectures. However, these formulas 
are limited to the system with identical components and this limitation has not 
been addressed in many researches. Hence, this paper proposes an unavailability 
model based on Markov Model for different redundant system architectures with 
non-identical components and generalised formulas are established for non-
identical k-out-of-n and n-out-of-n configurations. Furthermore, the proposed 
model incorporates undetected failure rate and evaluates its impact on the 
unavailability quantification of SIS. The accuracy of the proposed model is verified 
with the existing unavailability methods and it is shown that the proposed approach 
provides a sufficiently robust result for all system architectures.  
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1. Introduction 

The ever-increasing complexity in processing of hydrocarbon in refineries and petrochemical industries had 
imposed substantial industrial hazards. Despite the process automation and intervention of skilled operators 
in ensuring process safety, the industrial disaster is still alarming and inevitable. Functional safety, safety 
system that is independent of the process control system has received a considerable attention over a couple 
of decades in process industry because of the tremendous industrial disasters witnessed over few decades. 
These remind us of an explosion in BASF plant in Oppau, Germany, 1921 in which inappropriate mixture 
of an ammonium sulphate and ammonium nitrate fertilizer claimed the lives of about 4300 people. In 1932-
1968, the Minamata disaster in Bay, Japan led to the severe degree of deformities and death of Bay’s 
inhabitants.  

Recently, explosion in Tianjin, China, 2015 claimed over one hundred lives and left hundreds of people 
in disability position and these incidents necessitate safety instrumented system (SIS) to provide safe 
isolation of flammable or potentially toxic material in the event of disaster. In response to this hazardous 
incident in process industries, government continue to enact legislation and impose fines focused on 
reducing the likelihood of the future event. To ensure a balance between availability and safety, the 
international standard IEC61508 provides a quantitative approach based on the estimation of the average 
probability of failure on demand (PFDavg) safety related systems that associate a Safety Integrity Level (SIL) 
to a Safety Instrumented System (SIS). In quantifying the SIL of a safety related system, IEC61508 defines 
two modes of SIS, the low demand mode, which is widely used in the process industry and the high demand 
mode.  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Advances in Science and Engineering

https://core.ac.uk/display/323962478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Okubanjo et al. /Journal of Advances in Science and Engineering. Volume 2 Number 1 (2019): 25-35 
 

 

26 | P a g e                   I S S N :  2 6 3 6 - 6 0 7 X                   
 

Nomenclatures 

τ Proof test interval 
akj Transition rate from state k to j 
Pij Probability from state i to j 
Pj State probabilities 

U(t) Safety Unavailability of SIF 
PFDavg Average probability of failure on demand 

PFDKooN Total probability of failure on demand for a KooN system 

iDU ,
 

Dangerous undetected failure rate for i components 

Abbreviations 

KooN K-out-of-N system 
SIL Safety Integrity Level 
SIS Safety Instrumented System 
SIF Safety Instrumented Function 
MA Markov Model 
IEC International Electrotechnical Commission 

 
For low demand mode, the failure rate measured is related to both the hardware fault tolerance (HFT) 

and the PFDavg, while high demand mode is quantify based on the probability of failure per hour (PFH) 
(Torres-Echeverría et al, 2011). On the other hand, PFDavg represents the safety unavailability of an SIS, 
and is more difficult to determine. It is a norm in practice to vote each part of the SIS in redundancy, which 
is generally built in K-out-of-N (KooN) system to enhance safety availability and reliability (Wang et al., 
2012; Wang & Rausand, 2014). A  KooN is a redundant system where at least K-out-of-N components (or 
channels) must be functional for the redundant system to be successful (Tang et al., 2014b).   

In related research (Seop et al., 2016), Markov model simplification has been studied to obtain the 
average probability of failure on demand for quantitative safety assessment and to determine the safety 
integrity level of safety instrumented functions (SIF). The reliability block diagram (RBD) has been 
proposed by Biyanto et al. (2015), Catelani et al. (2013) and Seop et al. (2016), the fault tree analysis (FTA) 
by Long et al. (2002) and Markov analysis by El-damcese et al. (2016), Hyungju et al. (2014), Khatab et al. 
(2009) and Shu & Zhao (2014). In a similar way, Liu et al. (2012) proposed a hybrid method combining the 
Markov and petri method. Mechri et al. (2015) and Redutskiy (2017) suggested a simplified formula based 
on an approximation to obtain PFDavg of SIF and this method was extended to generalised KooN 
configurations (Chebila & Innal, 2015; Tang et al, 2014a). This generalised formula has not only gained 
acceptance in the process industry but also frequently used because of the conservative result in calculating 
the probability of failure on demand of identical and independent components of KooN architecture. 
Okubanjo (2016) and Okubanjo et al. (2018) had formulated a Markov model to obtain PFDavg for burner 
management system (BMS) of non-identical subsystem configuration. They further proposed the lowest 
failure rate and maximum beta factor contrary to the pragmatic choice of existing beta-factor to evaluate 
the commonality of the failure in the BMS.  Karimi et al. (2014) proposed novel availability approach for 
hybrid M-out-of-N system and Khatab et al. (2009) further extend the availability to K-out-of-N: G systems 
for non-identical component subjected to repair priorities.  

IEC 61508 has established analytical formulas for estimating the average probability of failure on 
demand for KooN architectures. However, these formulas are limited to the system with identical 
components and this limitation has not been addressed in many researches. So, publications on 
unavailability of the system architecture for non-identical components are rarely reported. This paper aims 
to address this limitation by proposing a unique Markov chain to model the unavailability of redundant SIS 
for non-identical components.  

2. Materials and Methods 

2.1 Markov Modelling of Safety Instrumented System 

A Markov model (MA) is mathematical model whose dynamic behaviour is such that the probability 
distribution for its future state is independent of the previous state history. The main assumption in the 
Markov model is that the system is memory less, that is, the transition probabilities are determined only by 
the current state and not on the past history. The model uses state transition diagrams to represent system 
states and the possible transition paths between the states and transition rate. The solution of a Markov 

model for a system with N components involve M system states, where
NM 2 . The probability of being 
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in a particular state at some time t  is called a state probability. To be able to evaluate the unavailability of 
SIS on demand, the state probabilities are developed by a set of first-order differential equation named after 
a famous Russian mathematician  Chapman-Kolmogorov (1903-1987), which is presented in (Rausand & 
Høyland, 2004) as: 

        




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ikkjijjik
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                                         1  

Hence, this study aims to evaluate the SIS performance, and it is assumed that the Markov process 

system has a state i at time o, that is   iX 0  and the probability of  

     100  iXPPi  
and     

   
     000  kXPPk  for ik                                                       2  

This permits us to simplify the notation by writing ijP  as jP , hence, equation  1  is further simplified 

using this assumption as  

   

  k

r

k

kjj PatP 



0

.

                                                         3  

2.2  Assumptions 

The following assumptions were made: 

(a) all the N components in a KooN system are non-identical and dependent; 
(b) the SIS components are limited to operational or failed states; 

(c) the failure rates of the N components of the KooN system are different but constant; 
(d) the repair is assumed to be impossible because the failure rates are dangerous undetected; 
(e) the mean time to repair is ignored since repair is not possible; and 
(f) each system state is a function of all components states, and is either an operational system state or 

a failed system state. 

2.3.  Markov Model for Unavailability of 1-out-of-3 Non-identical Subsystem or System 

The 1-out-of-3 (1oo3) configuration for non-identical system can be well understood by considering 
three components arranged in parallel and the state for such configuration is detailed in Table 1 and the 
Markov state transition diagram is illustrated in Figure 1. 

Table 1. System state and its description for 1oo3 configuration 

State Probability State State Description 

Po 0 All the components 1, 2, and 3 are operational 

P1 1 Components 2 and 3 are operational while component 1 failed 
P2 2 Components 1 and 3 are operational while component 2 failed 
P3 3 Components 1 and 2 are operational while component 3 failed 
P4 4 Component 3 is operational while components 1 and 2 failed 
P5 5 Component 1 is operational while components 2 and 3 failed 
P6 6 Component 2 is operational while components 1 and 3 failed 
P7 7 All the three components 1, 2, and 3 failed 

 
The Chapman-Kolmogorov set of differential equations are given as: 

                

     tP
dt

tdP
DUDUDu 03,2,1,

0  
                                                         4  

           

 
     tptP

dt

tdP
DUDUDU 13,2,01,

1  
                                     5  

             

 
     tPtP

dt

tdP
DUDUDU 23,1,02,

2  
                                     6  
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Figure 1. Markov State transition diagram for 1oo3 non-identical configuration 

 

     

 
     tPtP

dt

tdP
DUDUDU 32,1,03,

3  
                                        7  

   

 
     tPtPtP

dt

tdP
DuDUDU 42,21,12,

4  
                                    8  

         

 
     tPtPtP

dt

tdP
DUDUDU 52,31,13,

5  
                                           9  

 
     tPtPtP

dt

tdP
DUDUDU 32,61,32,

6  
                                            10  

 
     tPtPtP

dt

tdP
DUDUDU 61,53,43,

7  
                                                  11  

By solving chapman-Kolmogorov system of equation presented in (4)-(11) with the inclusion of the 
boundary initial conditions of each state, an analytical solution is obtained for probability of each state as: 

   tDUDUDUetP 3,2,1,

0

 


                                                              12  

     tt DUDUDUDUDU eetP 3,2,1,3,2,

1

 
                                       13  

     tt DUDUDUDUDU eetP 3,2,1,3,1,

2

 
                                      14  

     tt DUDUDUDUDU eetP 3,2,1,2,2,

3

 


                                       15  

         tttt DUDUDUDUDUDUDUDU eeeetP 3,3,1,3,2,3,2,1,

4

 
                   16  

         tttt DUDUDUDUDUDUDUDU eeeetP 2,2,1,3,2,3,2,1,

5

 


                  17  

         tttt DUDUDUDUDUDUDUDU eeeetP 1,3,1,2,1,3,2,1,

6

 


              18

               ttttttt DUDUDUDUDUDUDUDUDUDUDUDU eeeeeeetP 3,2,1,3,2,3,1,2,1,3,2,1,17

 


   19  
The 1oo3 configuration will fail to perform its intended function on demand if all the components 

fail on demand, hence,  tP7  denotes the probability that the SIF component is not able to perform the 

safety function at time t , that is, the    unavailability of the 1oo3 configuration. Since, we are more concerned 
about the SIF unavailability on demand over average proof test interval, there is need to compute average 
probability of failure on demand of the system configuration over the time period to a full system test : 

  
 dttPPFDavg 



 0
7

1

                                                           20  
The exponential function is approximated using Taylor series and the first five terms are substituted 

in (20) 



 
 

Unavailability of K-out-of-N: G Systems with non-identical Components Based on Markov Model. 
 

 

I S S N :  2 6 3 6 - 6 0 7 X                       29 | P a g e  
 

      

    



3,2,1,3,1,2,1,3,2,1,

4
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.

6
!4

1
.

DUDUDUDUDUDuDUDUDUDU

DUDUDUDUDUDUDUDUDuDUDUDUDU

avgPFD






            21  
After simplification the average probability of failure on demand for 1oo3 non-identical component 

architecture is given as:  

    

   
4

.. 3

3,2,1,31
 DUDUDUoo

avgPFD 
                                                   22  

2.4.  Markov Model for Unavailability of 3-out-of-3 Non-Identical Subsystem or System 

The state and its description for 3oo3 configuration for non-identical components is shown in                  
Table 2 and the Markov diagram for this configuration is shown in Figure 2. 

Table 2. System state and its description for 3oo3 configuration 

State Probability State State Description 

Po 0 All the components 1,2, and 3 are operational 
P1 1 Component 1  while components 2  and 3 are operational 
P2 2 Component 2 failed while components 1  and 3 are operational 
P3 3 Component 2 while components 1  and 2 are operational 

 
Figure 2. Markov State transition diagram for 3oo3 non-identical configuration 

Similarly, The Chapman-Kolmogorov set of differential equations are given as: 

       
   tPP DUDUDU 03,2,1,

.

0  
                                          23  

  
   tPtP DU 01,

.

1 
                                                                       24  

         
   tPtP DU 02,

.

2 
                                                                 25  

 
   tPtP DU 03,

.

3 
                                                                                    26  

Hence, the initial condition of the state probability are inserted, then the analytical solutions results  

   
   tDUDUDUetP 3,2,1,

0

 


                                                      27  

    

 
 

 

 3,2,1,

1,

3,2,1,

1,

1
3,2,1,

DUDUDU

DUt

DUDUDU

DU DUDUDUetP






 













               28  
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 

 

 3,2,1,

2,

3,2,1,

2,

2
3,2,1,

DUDUDU

DUt

DUDUDU

DU DUDUDUetP






 













                               29  
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 
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 3,2,1,

3,

3,2,1,

3,

3
3,2,1,

DUDUDU

DUt

DUDUDU

DU DUDUDUetP






 




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
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The 3oo3 configuration fails to perform its intended function on demand if one of the components 
fail on demand, the unavailability of in state 1, 2, 3 and the probability on demand is computed by summing 
the probabilities in the failed state. Hence, 

 t
avg

DUDUDUePFD 3,2,1,1
 


                                           31  

Similarly, the average probability of failure on demand is evaluated based on (20) 

      

      

  

     
 









 



3,2,1,

3,2,1,

0

0
321

1

1
1

1

3,2,1,

3,2,1,

DUDUDU

t

DUDUDU

t

avg

DUDUDU

DUDUDU

e

dte

dttPtPtPPFD

















                          32           

The first three terns of Taylor series for  
 tDUDUDUe 3,2,1,  

 is substituted in equation (32) and 
simplified to cancel out equal terms. Hence, the average probability on demand for 3oo3 configuration is 
expressed as  

   
2

3,2,1,33
 DUDUDUoo

avgPFD



                                               33  

2.5 Markov Model for Unavailability of 1oo2 and 2oo2 non-identical system 

The 1oo2 and 2oo2 non-identical subsystem or system is best explained with two parallel non-identical 
components. The system is considered to be in one of the four states at any time as detailed in Table 3. 
Since, the probability that the system undergoes a transition from one state to another is memoryless. We 

can use Markov model to compute  tPi , the probability that the system is in state i  at time t  and the 

system unavailability. The state transition diagram is depicted in Figure 4. 
Table 3. System state and its description for 1oo2 and 2oo2 configurations for non-identical component 

State Probability State Component 1 Component 2 

P3 3 operational operational 
P2 2 operational failed 
P1 1 failed operational 
P0 0 failed failed 

 
Figure 4. Markov State Transition Diagram for 1oo2 an 2oo2 non-identical configuration 

  
Based on (3), the chapman Kolmogorov differential equations are written as:  

    

 
   tPtP

dt

tdP
DUDU 22,12,

0  
                                                         34  
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 
   tPtP

dt

tdP
DUDU 12,31,

1  
                                                                             35  

  

 
   tPtP

dt

tdP
DUDU 21,32,

2  
                                                                                   36  

     tP
dt

tdP
DUDU 32,1,

3  
                                                                                       37  

After substitution of initial condition of the state probability couple with integrating factor method 
result in these set of solutions  

  
   tttt DUDUDUDU eeetP 2,1,2,1,10

 


                                          38  

      ttt DUDUDU eetP 2,1,2,

1

 
                                                          39  

   ttt DUDUDU eetP 2,1,1,

2

 
                                                        40  

For series 1oo2 configuration, the system is unavailable in state 0, that is, the 1oo2 configuration will 
fail to perform it intended function upon demand in state 0, hence, the Unavailability of the system is 
related to average probability on demand in reliability content, so, the PFDavg for 1oo2 is computed as: 
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This is further simplified by approximating the four terms of exponential function with Taylor series 

and higher orders are negligible such that the expression in (41) becomes 
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After cancellation of equal terms, the expression for 1oo2 configuration is  
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Similarly, for 2oo2 configuration is unavailable if at least one component fails. The unavailability states 

are 0, 1, 2 and the average probability of failure on demand for 2oo2 is computed as: 
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The derivation for all other voting configurations considered in this paper from 1oo1 to 3oo3 non-

identical components follow the same procedure. Table 4 presents the analytical solutions for the PFDavg 
of the derived voting Architectures and generalized formula for NooN and KooN voting configurations.        

Table 4. Equation for PFDavg for undetected failures from PFD formula method and Markov Model 
Voting 

architecture 
PFDavg as per PFD 

formula  
(Identical Components) 

PFDavg Markov Model (non-identical components) 
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where k is the number of minimal cutset  and is expressed as 

N

KNC 1  

2.6  Model Real-Life Application, Implementation and Validation 

This paper is different from the previous related works in terms of parameters and approach adopted. In 
the most real-life scenario, the repair is not taken into consideration, it is assumed that the repair rate is 
impossible because the failure rates are dangerous undetected. Also, this paper formulated a new average 
probability of failure on demand (PFDavg) formulae for evaluating all K-out-of-N and N-out-of-N 
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configurations. These formulae have not been achieved over years even in the developed world. It was a 
joint program sponsored by HAN University of Applied Sciences and Beldick Automation International. 
The research outcome has been adopted to solve a five years pending safety issues at Beldick Automation 
International.  

The derived models have been applied at Beldick Automation Inc. to solve safety issues such as a 
Burner Management System, nuclear reactor etc. Additionally, the data is taken from Beldick Automation 
Inc. the Netherlands with a period of 2 years January 2014 to December 2016. The validation technique is 
the Markov model and the proposed model is experimentally validated on a burner management system. 
Hence, the results of the research work have been validated with the previous research work and this has 
been reflected in the text. 

4 Results and Discussion 

This paper has presented a new unavailability model for a redundant safety instrumented system using 
Markov model approach. The main objective of this paper was to develop a new model for unavailability 
of K-out-of-N non-identical components in low demand operation. The present paper focuses on 
comparing architectures noting that the proof test coverage, repair rate and common cause failure are 
omitted and leading to conservative result. The PFDavg formula for non-identical components of a 
redundancy system is derived with MA model under slightly different assumptions as compared to 
commonly and widely used simplified formula of KooN voting architectures for identical components in 
the process industry.  

In Table 4, it can be seen that the only differences between the result of PFD method and the proposed 
Markov model are the failure rates that resulted in different voting configurations. However, it is remarkable 
to note that the results of the methods will be the same if the failure rates are assumed to be equal and 
constant. It can also be deduced from Table4 that the Markov model permits the possibility of formulating 
a generalized formula for NooN and KooN system architectures. Figs. 5 and 6 present PFDavg values of 
the different architectures according to the proof test interval of 10 years for identical and non-identical 
components respectively. It curves indicated that the PFDavg of all architectures increases with increasing 
proof test interval and when compared with 1oo3 configuration in both cases the 1oo1,1oo2,2oo2,2oo3, 
and 3oo3 are more influenced by the increasing proof test. For further work, it would be of great interest 
to study the effects of common cause failure on the safety unavailability with non-identical components. 

 

 
Figure 5. PFDavg for different architectures (identical components) 
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Figure 6.  PFDavg for different architectures (non-identical components) 

4 Conclusion 

In this paper, Markov models are formulated to modify the weakness of simplified formula in quantifying 
the probability of failure on demand for KooN architectures with different failure rates. It is a known fact 
that the Markov model shows great advantages in flexibility and ability to describe the time-dependent 
probability of failure on demand. Hence, the Markov models are derived analytically for PFDavg for 
different voting architectures of 1oo1, 1oo2, 1oo3, 2oo2, 2oo3, and 3oo3 for non-identical redundancy 
system. This is further extended to NooN configuration and a generalized formula is also proposed for 
KooN voting architectures of non-identical components.  

A comparison analysis of the existing PFD formula for voting architectures of identical components 
and the proposed Markov models formula are examined. The results are shown graphically by the aid of 
the MATLAB program. Results indicated that the PFDavg of the system configurations increases by 
increasing the proof test interval for both methods. The proposed generalized formulas are expedient in 
process industry especially in a burner management system with different SIF architectures. In the future, 
the contribution of common cause failure for non-identical components and the optimal approach to 
quantify the commonality should be the focus of interest. 
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