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Body dimensions of the extinct 
giant shark Otodus megalodon: 
a 2D reconstruction
Jack A. cooper1, catalina pimiento2,3,4*, Humberto G. Ferrón1 & Michael J. Benton1

Inferring the size of extinct animals is fraught with danger, especially when they were much larger 
than their modern relatives. Such extrapolations are particularly risky when allometry is present. The 
extinct giant shark †Otodus megalodon is known almost exclusively from fossilised teeth. Estimates 
of †O. megalodon body size have been made from its teeth, using the great white shark (Carcharodon 
carcharias) as the only modern analogue. This can be problematic as the two species likely belong 
to different families, and the position of the †Otodus lineage within Lamniformes is unclear. Here, 
we infer †O. megalodon body dimensions based on anatomical measurements of five ecologically 
and physiologically similar extant lamniforms: Carcharodon carcharias, Isurus oxyrinchus, Isurus 
paucus, Lamna ditropis and Lamna nasus. We first assessed for allometry in all analogues using linear 
regressions and geometric morphometric analyses. Finding no evidence of allometry, we made 
morphological extrapolations to infer body dimensions of †O. megalodon at different sizes. Our results 
suggest that a 16 m †O. megalodon likely had a head ~ 4.65 m long, a dorsal fin ~ 1.62 m tall and a 
tail ~ 3.85 m high. Morphometric analyses further suggest that its dorsal and caudal fins were adapted 
for swift predatory locomotion and long-swimming periods.

Estimating the body size of exceptionally large extinct taxa is a difficult task because the fossil record is inherently 
incomplete and because allometry, if present, can make extrapolations hard to model. Palaeontologists therefore 
have to rely on the relationships between often isolated and fragmented body-part remains and length in extant 
relatives to estimate the body size of extinct  giants1, 2. The extinct †Otodus megalodon has been estimated to be 
the largest macropredatory shark known to have  existed3. Based on its fossil teeth and using the modern great 
white shark (Carcharodon carcharias) as an analogue, it has been calculated that it reached a maximum total 
length (herein, TL) of ~ 15 to 18  m3–5.

†Otodus megalodon was originally classified in the family Lamnidae (order Lamniformes) with C. carcharias 
considered its closest living  relative3, 6–8. This classification was based on similar tooth  morphologies3, 7, 8, which 
also implied that the two species shared an ecological function as apex macropredators. Carcharodon carcharias 
has therefore been widely used as the main modern analogue of †O. megalodon3, 4, 9, 10. Accordingly, linear rela-
tionships between tooth crown height and TL recorded in C. carcharias5, 11 have been used extensively to infer 
the size and skeletal anatomy of †O. megalodon3–5, 9, 12–14. A detailed examination of tooth morphology challenged 
the relationship between C. carcharias and †O. megalodon, revealing that C. carcharias descended from a lineage 
that includes the mako sharks (Isurus spp.) and other closely related taxa (i.e. †Cosmopolitodus) rather than †O. 
megalodon15. This hypothesis has further been supported by the fossil record of Carcharodon16–19. Accordingly, 
†O. megalodon was reassigned to the family †Otodontidae within the order  Lamniformes15, 17–25. Given the differ-
ent hypotheses for its phylogenetic placement, †O. megalodon has been reported in the literature under different 
genera such as †Carcharocles, †Megaselachus and †Procarcharodon21. We follow the hypothesis supporting the 
†O. megalodon lineage as a distinct family (†Otodontidae), derived from the extinct genus †Cretalamna7, 15, 22, 
and therefore use the genus †Otodus.

Despite the fact that the placement of †O. megalodon in the family †Otodontidae has been widely  explored22, 
the interrelationships between otodontids and other lamniforms remain  questionable25. This uncertainty, coupled 
with the fact that sharks of different sizes have been reported as being geometrically similar in body  profile26, 27, 
suggests that other macropredatory lamniforms, in addition to C. carcharias, could serve as modern analogues 
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of †O. megalodon, thus aiding the reconstruction of body dimensions (i.e. head length, dorsal fin height and 
width, tail height).

Here, based on a series of anatomical measurements from extant macropredatory lamniforms, we reconstruct 
the linear body dimensions of †O. megalodon at different life stages. We do this using regression analyses of body 
parts as a function of TL, which have been previously used for both morphological scaling of body  form26, 27, 
and to predict nonlinear variables such as body mass in  sharks28. To select our additional analogues alongside C. 
carcharias, we utilise extant phylogenetic  bracketing29. This method allows us to base our chosen taxa on shared 
traits between the extant and extinct taxa—in this case, dental, ecological and physiological  similarities24, 25. We 
therefore select the five extant species of family  Lamnidae30 as our analogues based on their shared traits with 
†O. megalodon (see “Methods” for more details). Our results reveal the potential measurements of (and distances 
between) body parts given different total lengths (i.e., 3, 8 and 16 m). The estimates of body dimensions of this 
extinct species have the potential to inform future anatomical, physiological and ecological reconstructions.

Results
Allometry: linear regressions and morphometrics. We first tested for allometry within and between 
species by modelling 24 anatomical measurements (Supplementary Table S1, S2; Supplementary Data 1, 2) as 
functions of TL in all five modern analogues (Carcharodon carcharias, Isurus oxyrinchus, Isurus paucus, Lamna 
ditropis and Lamna nasus). Measurements in all species showed positive linear relationships with TL, with no 
evidence for allometry between or within species (Supplementary Fig. S1). Similar relationships were observed 
within individual life stages (i.e. juveniles, subadults and adults; Supplementary Figs. S2–S4). The slope of all lin-
ear regressions overlapped, ranging within ~ 0.1 units of one another between species (Supplementary Fig. S5). 
Adjusted  R2 values were relatively high, with 89% of them over 0.7 and 62% over 0.9 (Supplementary Data 3). 
Of the 144 recorded linear relationships, only six did not show statistical significance (Supplementary Data 3). 
The most statistically significant linear regressions came from the model using data from all analogue species 
(P < 0.01; Supplementary Data 3).

To complement the linear regressions, we used geometric morphometrics to evaluate the morphology of the 
head and fins of the five analogue species, and performed regression analyses between shape and TL to assess 
for allometry (see “Methods”). A principal component analysis (PCA) revealed shared morphospace in all body 
parts tested (Fig. 1), the only exception being I. paucus (Fig. 1b,c). Morphological variability between our spe-
cies is explained by changes in the length of the snout and robustness of the head, in the span and length of the 
pectoral and dorsal fin, and in the relative length of the dorsal and ventral lobe and the span of the caudal fin. 
The regression analyses indicate that larger analogues had slightly more robust heads (Fig. 1a; P = 0.1106) and 
more convex dorsal fins (Fig. 1c; P = 0.0038), whereas smaller analogues had slender heads and more concave 
rear edges in the dorsal fins (Fig. 1a,c). No allometric change was detected in the pectoral (Fig. 1b; P = 0.5924) or 
caudal fin (Fig. 1d; P = 0.3208). The caudal fin was found to be the same dorsally directed shape in all analogues 
(Fig. 1d). All of these results were also observed when all landmarks (total body) were analysed together within 
a single configuration (Supplementary Fig. S6), with no allometric change detected (P = 0.3028).

2D reconstruction of linear body dimensions.  The best linear model (highest statistical significance 
by 7–33 orders of magnitude; see above and Supplementary Data 3) came from the regression that uses all five 
analogues together and it is therefore the basis for our extrapolations. We visualise our extrapolations in sil-
houetted shark models, and in a palaeoartistic reconstruction that also considers our generalised fin and head 
shape changes in relation to TL uncovered in our morphometric analyses (Fig. 2). Converting the anatomical 
measurements of our analogues into proportions based on TL indicate that a mature, 16 m †O. megalodon would 
have had a head ~ 4.65 ± 0.42 m long (~ 29% TL), a dorsal fin ~ 1.62 ± 0.36 m tall (~ 10% TL) and 1.99 ± 0.3 m 
wide (~ 12% TL), a height of 4.53 ± 0.56 m (~ 28% TL) from the tip of the dorsal fin to the abdomen, and a 
tail ~ 3.85 ± 0.7 m high (~ 24% TL) (Fig. 2a; Table 1). These measurements for a neonate (3 m; Fig. 2b) and a juve-
nile †O. megalodon (8 m; Fig. 2c) can be found in Table 1. No dimension in individual life stages overlap within 
the predicted ranges of other stages (mean ± standard deviation). Our model of a 16 m †O. megalodon using all 
analogues was stockier (wider vertical dimensions; Supplementary Table S3) and had stronger statistical support 
(by 7–29 orders of magnitude; see Supplementary Data 3) than an alternative model based on C. carcharias only 
(the sole analogue previously used). Finally, this multi-analogue model accurately predicted 22/24 of the dimen-
sions of a C. carcharias of known size (Supplementary Table S4). 

Discussion
The lack of allometry in morphological measurements and strong correlations between the measured variables 
and TL indicate sufficient predictability and removes risk in the use of extrapolations to estimate the body 
dimensions of †O. megalodon. The small range in the slope of all linear models implies analogous anatomical 
relationships between species. These results are supported by earlier suggestions that lamniform morphology 
strongly links to  ecology31, 32. Therefore, our analogues share a basic external anatomy template that can be 
applied to †O. megalodon. Our extrapolations to †O. megalodon were based on a linear model that includes all 
five modern analogues. Although this may partially be due to the wider range of measurements resulting from 
combining the five analogues, this model statistically outperforms all others, including a model that considers 
C. carcharias only (Supplementary Table S3). Importantly, our model was proven to predict with accuracy the 
dimensions of a shark of known size (Supplementary Table S4).

As expected, given the presence of isometry, the dimensions of †O. megalodon body parts increase with TL 
and therefore, growth. Our calculated sizes can therefore be used to assist ecological inferences of †O. megalo-
don. It is worth noting that the largest estimated TL of †O. megalodon is more than twice the size of the largest 
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living  lamnid3–5. As such, it can be risky to use extrapolations instead of interpolations. The presence of larger 
living analogues (> 7 m TL) would make such extrapolations less risky, but such macropredatory lamniforms 
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Figure 1.  Regression shape changes (above) and PCA (below) of Procrustes coordinates for the five analogue 
species. These are recorded in the (a) head, (b) pectoral fin, (c) dorsal fin, and (d) caudal fin. In the regression 
analyses, light and dark grey configurations represent the morphological change occurring from the average 
shape towards higher scores, considering in all cases a magnitude of the shape change equal to 0.1. Individual 
colours represent each species in the PCA: green = Carcharodon carcharias; yellow = Isurus oxyrinchus; 
blue = Isurus paucus; orange = Lamna ditropis; red = Lamna nasus.
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do not exist in today’s  oceans30. However, the lack of significant allometry found in our analogues from both 
linear regression and geometric morphometric analyses justifies the use of extrapolations and therefore our 
ecological interpretations.

Morphometric analyses, albeit mainly used to aid our assessment of allometry, also revealed the possible 
shapes of the fins and the head in relation to TL. Two distinct dorsal fin shapes were found, with larger sharks 
possessing taller but narrower convex dorsal fins than smaller sharks (Fig. 1c). Convex dorsal fins in large sharks 
allow long cruising periods and quick bursts of speed to ambush  prey33, 34. The enormous †O. megalodon therefore 
likely had a convex dorsal fin built for stabilising swift predatory locomotion and long-swimming periods. This 
kind of locomotion could have been enhanced by mesothermy, enabling sudden acceleration in  predation23–25, 

34. However, such a large shark was unlikely to have been capable of long periods of fast  swimming34. Research 
in other giant extinct marine taxa such as ichthyosaurs has suggested that steadier swimming can be used by 
large predators to reduce energy expended in  locomotion35. Therefore, †O. megalodon may have also used scav-
enging as a feeding strategy, especially as it grew older. Opportunistic scavenging on large whale carcasses has 
been recorded in C. carcharias, with one  study36 noting from four occurrences over ten years that these carcasses 
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Figure 2.  Silhouette models visualising †Otodus megalodon body dimensions based on our extrapolations at 
different total lengths. (a)  ~ 16 m, (b)  ~ 3 m and (c)  ~ 8 m. Abbreviations as in Table 1. Silhouettes created in 
Adobe Illustrator CC 2018. (d) Palaeoartistic reconstruction of a 16 m †O. megalodon scaled against a 1.65 m 
human (illustration by Oliver E. Demuth). Fin shapes are based on our generalised morphometric shapes in the 
silhouettes whereas the reconstruction aims to capture their true biological shapes, i.e. the ceratotrichia of the 
tail present in all five modern analogues.



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14596  | https://doi.org/10.1038/s41598-020-71387-y

www.nature.com/scientificreports/

quickly attracted large adult individuals. Based on the fact that all analogues share the same dorsally directed 
caudal fin shape, the same morphology was likely displayed by †O. megalodon (Fig. 2d). This tail anatomy has 
been categorised as a “type 4” among extant  lamniforms32. Tail morphology and evolution have been proposed 
to be strongly linked to  ecology32. Taken together, morphometric analyses of the fins suggest that the giant †O. 
megalodon was likely a thunniform swimmer, where swimming motion is confined to the tail for high speeds 
and long distance  swimming30, 32.

In terms of the head, the distinct morphology of larger analogues suggests that the head of †O. megalodon 
was likely robust, corroborating a large-prey preference as previously proposed based on the fossil  record8, 37. 
Nevertheless, given that during ontogeny †O. megalodon likely shifted its dietary preference from fishes to 
marine  mammals9, 38, such a robust head might have particularly benefited adult individuals with high energetic 
 demands39. †Otodus megalodon’s head would have therefore needed large muscles to support its massive jaws, 
likely resulting in a more curved snout than in C. carcharias since the body would not have been able to taper to 
the nose so  sharply3. This agrees with the previous suggestion that †O. megalodon had a much greater bite force 
than that of C. carcharias, and perhaps the greatest bite force of any marine predator known throughout geological 
 time40. Finally, based on the external colouring of extant macropredatory  sharks41, we propose that †O. megalodon 
was likely countershaded. This would have allowed the shark to camouflage against light  flow41, 42, hence facilitat-
ing ambush  predation8, 37, 39 and the evasion of predators by nursery-dwelling  juveniles9, 14. Our palaeoartistic 
reconstruction based on our results and ecological inferences allowed us to visualise this hypothesis, as well as 
the generalised fin and head shapes not captured by the silhouetted shark models (Fig. 2).

This study marks the first quantitative estimate of †O. megalodon specific body-part dimensions, beyond 
its overall body size. Our model based on a selection of modern analogues outperforms those using individual 
species (e.g. C. carcharias) and accounts for variability around body dimension averages. Our results reveal that 
body dimensions of our analogues isometrically correlate to TL. This finding agrees with previous discoveries of 
similar relationships in linear body dimensions of several other extant shark  species26, 27. Although the exact phy-
logenetic relatedness of †O. megalodon and its family to the order Lamniformes remains poorly  understood21, 22, 25, 
our chosen analogue taxa are the most ecologically and physiologically similar living species to †O. megalodon. 
As such, our ecological inferences for †O. megalodon are similar to those of our analogues, but also line up with 

Table 1.  Proportional mean and standard deviation of all variables against TL and their extrapolations to 
a 3 m, 8 m and 16 m O. megalodon. Measurements are in cm and accurate to two decimal places. HL head 
length, SE snout-eye distance, UJH upper jaw height, LJH lower jaw height, SP snout-pectoral fin distance, GS 
gill size, PecL pectoral fin length, PecW pectoral fin width, SD snout-dorsal fin distance, DH dorsal fin height, 
DW dorsal fin width, DAP dorsal anterior-pectoral fin distance, DTA dorsal tip-abdomen distance, DPA dorsal 
posterior-abdomen distance, DD primary-secondary dorsal fin distance, PP pectoral-pelvic fin distance, 
PelL pelvic fin length, PelW pelvic fin width, BPA dorsal side-pelvic fin anterior distance, PA pelvic-anal fin 
distance, DA secondary dorsal-anal fin distance, DC dorsal-caudal fin distance, FH fork height, TH tail height.

Variables Mean proportion Sd proportion Mean (3 m) SD (3 m) Mean (8 m) SD (8 m) Mean (16 m) SD (16 m)

HL 0.29 0.03 87.16 7.82 232.43 20.86 464.86 41.71

SE 0.05 0.02 14.94 4.79 39.85 12.77 79.69 25.55

UJH 0.07 0.01 22.25 3.26 59.33 8.7 118.66 17.39

LJH 0.04 0.01 10.68 4.08 28.47 10.89 56.95 21.78

SP 0.26 0.03 79.06 8.65 210.84 23.08 421.68 46.16

GS 0.09 0.01 26.47 4.25 70.6 11.33 141.19 22.66

PecL 0.19 0.05 57.83 14.48 154.21 38.61 308.42 77.22

PecW 0.1 0.02 30.9 5.87 82.4 15.65 164.79 31.29

SD 0.37 0.03 111.32 9.4 296.85 25.08 593.71 50.15

DH 0.1 0.02 30.47 6.66 81.24 17.77 162.48 35.53

DW 0.12 0.02 37.31 5.63 99.48 15.01 198.96 30.01

DAP 0.15 0.02 43.6 6.39 116.27 17.04 232.54 34.09

DTA 0.28 0.03 84.96 10.45 226.55 27.88 453.11 55.76

DPA 0.18 0.03 52.58 7.55 140.21 20.13 280.41 40.26

DD 0.23 0.02 70.02 6.22 186.71 16.6 373.43 33.19

PP 0.22 0.04 65.98 10.92 175.96 29.12 351.92 58.24

PelL 0.05 0.01 13.79 3.41 36.78 9.11 73.56 18.21

PelW 0.06 0.02 18.71 4.58 49.89 12.22 99.77 24.45

BPA 0.12 0.01 36.74 3.66 97.99 9.75 195.97 19.5

PA 0.09 0.02 28.19 5.25 75.18 14.01 150.35 28.01

DA 0.06 0.01 17.73 1.8 47.29 4.81 94.58 9.62

DC 0.51 0.03 151.58 8.82 404.22 23.52 808.43 47.04

FH 0.03 0.003 8.19 0.91 21.84 2.43 43.69 4.86

TH 0.24 0.04 72.26 13.08 192.68 34.89 385.36 69.78
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what has been inferred from its fossil  record3, 8, 9, 23–25, 37, 39. The knowledge of specific body dimensions beyond 
TL will therefore enhance further anatomical and ecological reconstructions of this giant marine apex-predator.

Methods
Analogue species.  Order Lamniformes comprises 15 extant  species30. Of these, five—the great white shark 
(Carcharodon carcharias), the shortfin mako shark (Isurus oxyrinchus), the longfin mako shark (Isurus paucus), 
the salmon shark (Lamna ditropis) and the porbeagle shark (Lamna nasus)—were selected as analogues to †O. 
megalodon based on dental, physiological and ecological similarities. Our analogues comprise the family Lam-
nidae; a group of large, fast-swimming, mesothermic, macropredatory  sharks30. Both lamnids and otodontids, 
the ‘megatoothed’ lineage which †O. megalodon belongs to, are believed to have evolved from the family Cre-
toxyrhinidae 7, 8, 21. This family has been interpreted as mesothermic based on sea surface palaeotemperature, 
swim speed estimates and metabolic  inferences24. These same methods were used for otodontids and the results 
suggested similar thermoregulatory  capabilities24. Moreover, a phylogenetic analysis of the evolution of ther-
mophysiology in this group found that mesothermy had likely evolved once in the  Cretaceous25. Based on these 
studies, we considered otodontids to be mesothermic. Furthermore, the five chosen analogue taxa possess tooth 
morphologies similar to various otodontids, suggesting similar diet and ecology. For example, both families 
show variation in occurrences of dental lateral  cusplets30, 43. Based on these variations, L. nasus is considered the 
best dental analogue for both †Cretalamna and †Megalolamna, mako sharks (Isurus spp.) have similar dental 
morphology to †Otodus, and C. carcharias has similar dentition to †Otodus (Carcharocles) and †Otodus (Megas-
elachus)21. As such, the five chosen analogues for this study share a unique physiological adaptation, ecology and 
dental morphology with †O. megalodon and other members of its proposed family.

Data collection.  We searched for images of all analogues in the Web using the species and common names. 
Most of these images were retrieved from online  databases44–46. In total, we collected 54 images. The source of 
each image and more details can be found in Supplementary Data 1. We took 25 anatomical measurements of all 
individuals from digital images (Supplementary Data 2; Supplementary Table S1). Scaled image measurements 
of both traditional and geometric morphometrics have been previously used to respectively acquire linear body 
dimensions and to infer variation in morphology and ecology in marine  organisms47–50. This method therefore 
represents a viable non-lethal alternative for collecting measurement data, which have been proposed as urgently 
needed for the declining populations of large predatory  sharks51. The life stage of each individual was also 
recorded (see Supplementary information for more details). We selected the best images for our analyses using a 
scoring system, in which images with no distortion or blur had the highest score and from which TL was known 
or could be estimated using a scale. Angled specimens were tilted to a purely lateral view using  ImageMagick52. 
Measurements were taken using  ImageJ53. In total, 41 shark individuals were used (C. carcharias: n = 9; I. oxyrin-
chus: n = 9; I. paucus: n = 5; L. ditropis: n = 9; L. nasus: n = 9) (image score = 3; Supplementary Data 1).

Linear regressions.  We tested for allometry across all data and in individual life stages by modelling all 
anatomical measurements as a function of TL in  R54. Because linear models assume normal distribution, raw 
data were Tukey transformed in the rcompanion  package55 (see Supplementary Table  S2). We retrieved the 
parameters of the relationship, extracting the linear regression from the model as:

where x = TL, y = body measurement, m = slope and c = intercept (see Supplementary Data 3).

Geometric morphometrics.  Our geometric morphometrics approach followed similar methodology to 
Ferrón et al.56, which used allometric regression analyses of shark palaeoecological data to infer the caudal fin 
morphology of †Dunkleosteus terrelli. We defined a series of landmarks of type 1, 2 and 3 (head: N = 10; pectoral 
fin: N = 15; dorsal fin: N = 20; caudal fin: N = 25; total body: N = 68) that were digitised using tpsDig2  software57 
(Supplementary Fig. S7). All subsequent analyses were conducted in  MorphoJ58. The superimposition of land-
mark configurations was carried out with full Generalised Procrustes Analysis (GPA) and Procrustes coordinates 
were subjected to principal component analysis (PCA) to determine morphospace occupation shared by the 
analogues. The significance of the regressions was checked by means of permutation tests (N = 10,000). Finally, 
the Pinocchio effect (where variation is extremely localised to a single landmark, or a small number, and is then 
smeared over a wider area during least-square Procrustes  superimposition59, 60), was checked by comparing full 
GPA and Resistant Fit Theta-Rho Analysis (RFTRA) superimpositions in IMP CoordGen8  software61. This risk 
of distortion was excluded by the results of these comparisons (Supplementary Fig. S8). All outlier sharks with 
fin abnormalities were removed from the analysis. These included images in which the pectoral fin was not in 
position for horizontal swimming, and, in one case, an image displaying “Lucy”, a ~ 5 m C. carcharias with a 
damaged caudal fin (Supplementary Data 2). If included, these specimens would have resulted in fin landmarks 
in differing positions in relative morphospace, something that can result in landmark distortion and potentially 
the Pinocchio effect. In all statistical analyses, we considered P < 0.05 as the threshold of statistical significance.

Morphological extrapolations. We converted anatomical measurements of the five analogues to pro-
portions based on TL. We then calculated the mean, standard deviation, maximum and minimum values of 
each measurement in centimetres (cm) and extrapolated them to †O. megalodon measuring 3 m (neonate), 8 m 
(juvenile)3, 9 and 16 m (conservative maximum body  size5) using the linear regression described above. Sizes 
chosen to represent each life stage were based on ontogenetic inferences made by Gottfried et al.3 in their skel-

y = mx + c
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etal reconstruction of †O. megalodon. We compared our extrapolations of a 16 m long †O. megalodon against 
an alternative model that considered only C. carcharias. Our model’s accuracy was tested by using it to infer the 
body dimensions of a ~ 7 m long C. carcharias. Finally, we created basic silhouette models to illustrate and scale 
our extrapolations at each life stage, and had a palaeoartistic reconstruction made to illustrate our results and 
ecological inferences in a biological light (Fig. 2d).

Data availability
The datasets generated and/or analysed during the current study can be found via the Dryad Digital Repository 
at: https ://datad ryad.org/stash /share /cGI08 m4rPY WUD6V ucWxu 0oz3T niVnL KC-5umhv LHgaE .
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