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Visual abstract 21 

Key question:  Do modern machine learning models improve the prediction of in-22 

hospital mortality after cardiac surgery?  23 

Key findings: machine learning models performed similarly to logistic regression 24 

models. 25 

Take-home message: prediction of in-hospital mortality is not improved by machine 26 

learning relative to traditional methods based on logistic regression  27 
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ABSTRACT 28 

Objective(s): Interest in the clinical usefulness of machine learning (ML) for risk 29 

prediction has bloomed recently. Cardiac surgery patients are at high risk of 30 

complications and therefore pre-surgical risk assessment is of crucial relevance. We 31 

aimed to compare the performance of ML algorithms over traditional logistic 32 

regression (LR) model to predict in-hospital mortality following cardiac surgery.  33 

Methods: A single centre dataset of prospectively collected information from patients 34 

undergoing adult cardiac surgery from 1996 to 2017 was split into 70% training set 35 

and 30% testing set.  Prediction models were developed using neural network, random 36 

forest, naïve Bayes and retrained logistic regression based on features included in the 37 

EuroSCORE. Discrimination was assessed using area under the receiver operating 38 

characteristic curve (AUC) and calibration analysis was undertaken using calibration 39 

belt method. Model calibration drift was assessed by comparing Goodness of fit chi-40 

squared statistics observed in two equal bins from the testing sample ordered by 41 

procedure date.  42 

Results: A total of 28,761 cardiac procedures were performed during the study period. 43 

The in-hospital mortality rate was 2.7%.  Retrained LR (AUC 0.80; 95% CI 0.77, 0.83) 44 

and random forest model (0.80; 95%CI 0.76, 0.83) showed the best discrimination. All 45 

models showed significant miscalibration. Retrained LR proved to have the weakest 46 

calibration drift.  47 

Conclusions: Our findings do not support the hypothesis that ML methods provide 48 

advantage over LR model in predicting operative mortality after cardiac surgery.  49 
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Keywords: machine learning, mortality prediction, neural network, random forest, 50 

naïve Bayes.   51 
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ABBREVIATIONS 52 

AUC: Area Under the Receiver Operating Characteristic curve 53 

LR: logistic regression 54 

ML: machine learning  55 
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INTRODUCTION 56 

Pre-operative assessment of surgical risk is of crucial importance in cardiac surgery 57 

due to the high risk of intraoperative and postoperative complications. Risk models 58 

can help health professionals to advise patients during the decision-making process, 59 

as well as in monitoring surgical performance and cost-benefit analyses.  60 

Several risk stratification models have been developed to predict in-hospital mortality 61 

following cardiac surgery, for example as the European System for Cardiac Operative 62 

Risk Evaluation, EuroSCORE [1,2] and the North American Society of Thoracic 63 

Surgeons (STS) score [3]. However, a main limitation of these scores is overestimation 64 

of risk in high risk patient subgroups [4,5]. This can potentially translate into risk-averse 65 

practice, falsely reassuring conclusions about surgeon and centre performance, and 66 

impaired decision-making.  67 

Current risk scoring systems are based on logistic regression (LR). Development of 68 

LR models requires input from the modeler to address complex interaction among 69 

features and non-linear relationships of features with the outcome. For instance, the 70 

contribution of advanced age to mortality risk may not be constant across the spectrum 71 

of co-morbidities. If features interactions are overlooked in a LR model, its prediction 72 

ability will be negatively affected. In contrast, machine learning (ML) algorithms require 73 

less input from the modeler and interactions among features and non-linear 74 

relationships can be learnt automatically from the data [6]. However, the extra flexibility 75 

of ML algorithm requires larger sample to train the model.  76 

Despite research on the utility of ML methods to improve prediction in healthcare has 77 

exponentially increased, ML methods have not been widely adopted in the clinical 78 

practice. Moreover, recent reports have challenged the additional value of ML in the 79 

development of clinical prediction models in a variety of clinical conditions [6]. 80 
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The objective of this study was to compare ML algorithms with LR model in the 81 

prediction of in-hospital mortality after cardiac surgery, based on the set of features 82 

included in the EuroSCORE [1]. 83 

 84 

METHODS 85 

The present study was approved by Health Research Authority and Health and Care 86 

Research Wales. Data were obtained from the National Adult Cardiac Surgery Audit 87 

(NACSA) dataset which prospectively collects clinical information for all major heart 88 

operations carried out in the United Kingdom. In the present analysis, we used a 89 

subset of patients who underwent cardiac surgery at University Hospitals Bristol NHS 90 

Trust between 1 April 1996 and 30 December 2017.  91 

Missing or conflicting data for in-hospital mortality were obtained via record linkage to 92 

the Office for National Statistics census database. For records where data required to 93 

calculate a EuroSCORE variable was missing, it was assumed that the risk factor was 94 

not present (equal to the reference level). Missing patient age at the time of surgery 95 

was imputed as the median patient age for the corresponding financial year. 96 

Statistical analysis and models 97 

The primary endpoint was in-hospital mortality following cardiac surgery. Numerical 98 

variables were summarised as mean and standard deviation or median and 99 

interquartile range and compared using t-tests or Mann-Whitney tests. Categorical 100 

variables were tabulated as frequencies and percentages and compared using chi-101 

squared test.  102 

Procedures were ordered chronologically, the first 70% of records (01/04/96 - 103 

27/09/11) were used for training and hyperparameter selection through five-fold cross-104 

validation. Final model performance was evaluated using the remaining 30% 105 
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(27/09/11 - 30/12/17). All prediction models were developed using the 17 features 106 

included in the original EuroSCORE [1], which include information prior to surgery on 107 

a range of patient, cardiac and operative factors. The features are age, gender, chronic 108 

obstructive pulmonary disease, extracardiac arteriopathy, neurological dysfunction, 109 

previous cardiac surgery, creatinine >200 µmol/l, active endocarditis, critical 110 

preoperative state, unstable angina, left ventricular function, recent myocardial 111 

infarction, pulmonary hypertension, emergency surgery, combined surgery other than 112 

coronary artery bypass graft, surgery on thoracic aorta, post-infarct septal rupture.  113 

We fitted a logistic regression (LR) (‘retrained LR’) model to the EuroSCORE risk 114 

factors. We used the following ML approaches: 115 

 Neural Network is a computational learning system that uses a network of functions 116 

to understand and translate a data input of one form into a desired output. Machine 117 

learning algorithms including neural networks generally do not need to be 118 

programmed with specific rules that define what to expect from the input. The 119 

neural net learning algorithm instead learns from processing many labelled 120 

examples (i.e. data with "answers") that are supplied during training and using this 121 

answer key to learn what characteristics of the input are needed to construct the 122 

correct output. Once a sufficient number of examples have been processed, the 123 

neural network can begin to process new, unseen inputs and successfully return 124 

accurate results. The more examples and variety of inputs the program sees, the 125 

more accurate the results typically become because the program learns with 126 

experience.  The basic unit of computation in a neural network is the neuron, often 127 

called a node or unit. It receives input from some other nodes, or from an external 128 

source and computes an output. Each input has an associated weight (w), which 129 

is assigned on the basis of its relative importance to other inputs. The node applies 130 
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a function f to the weighted sum of its inputs (i.e. f (w1+w2+w3...) to introduce non-131 

linearity into the output of a neuron. Nodes are arranged in layers. Nodes from 132 

adjacent layers have connections or edges between them. All these connections 133 

have weights associated with them. Neural network consists of three types of 134 

nodes:  neural nets consist of 3 layers. 1) Input Layers: this entry point takes input 135 

data (i.e. numbers, texts, etc); 2) Hidden Layers: are responsible for number 136 

crunching i.e. mathematical operation, to detect patterns data. There can be a 137 

minimum of one and many multiple hidden layers; 3) Output Layer:  takes input 138 

from the hidden layer to generate the desired output. [7,8]. As almost all ML 139 

approaches, neural networks were not meant for time-related event, but as 140 

research rapidly moved forward new methods have been introduced for this 141 

purpose [9]. In our model, number of hidden layers and nodes per hidden layer 142 

were configured manually in response to model discrimination (area under the 143 

receiver operating characteristic curve [AUC]) evaluated with cross-validation. The 144 

final model configuration used for evaluation was: input layer n=18 nodes, hidden-145 

layer one n=90 nodes, hidden-layer two n=36 nodes, output layer one node. 146 

 Random Forest represents an ensemble of several decision trees. Decision tree 147 

builds classification or regression models in the form of a tree structure. It breaks 148 

down a dataset into smaller and smaller subsets while at the same time an 149 

associated decision tree is incrementally developed. The final result is a tree 150 

with decision nodes and leaf nodes. A decision node has two or more branches. 151 

Leaf node represents a classification or decision. The topmost decision node in a 152 

tree corresponds to the best predictor called root node, which splits the records 153 

into mutually exclusive classes. After the root node, there are internal nodes which 154 

lead to other internal nodes or to two or more terminal leaf nodes. An item is 155 
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classified according to which leaf node is reached. Each item can be trained using 156 

resampling methods (i.e. bootstrapping) [10,11]. Random forest has several 157 

parameters that have to be set by the user, e.g., number of trees in the forest 158 

(estimator), max number of levels (depth) in each decision tree, min number of 159 

data points placed in a node before the node is split and minimum samples leaf. 160 

When new data are presented, each tree of the random forest votes for a class 161 

and the final prediction is based on the class receiving the majority of the votes. In 162 

our model, we manually tuned parameters in response to model discrimination 163 

(AUC) evaluated with cross-validation. (estimators n=700, maximum depth n=10, 164 

minimum samples split n=5, minimum samples leaf n=20). 165 

 Naïve Bayes: is based on the Byes theorem. It is called “naïve” because it assumes 166 

each feature contributes independently to the probability of classification. The final 167 

prediction of the model is the a priori probability modified by the likelihood of each 168 

predictor [12]. In our model, we used default parameters.   169 

Full model configurations and discrimination are provided in the Supplementary Table 170 

1. Models were developed and evaluate using scikit-learn v0.21.2 and TensorFlow 171 

v1.14.0 through Anaconda Python 3 v2019.07. 172 

Discrimination was assessed by calculating model AUC with its relative 95% 173 

confidence interval using bootstrapping (2000 repetitions) (pROC R-package v1.15.3). 174 

The assessment of calibration, i.e., the model's ability to provide reliable predictions, 175 

is crucial to test risk models. Statistical techniques such, the Hosmer–Lemeshow 176 

statistics and the Cox calibration test, are all non-informative with respect to calibration 177 

across risk classes. To better characterise the calibration of new models we used the 178 

calibration belt model [13]. In this new approach, the relation between the logits of the 179 

probability predicted by a model and of the event rates observed in a sample is 180 
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represented by a polynomial function, whose coefficients are fitted and its degree is 181 

fixed by a series of likelihood‐ratio tests. This method also enables confidence 182 

intervals to be computed for the curve, which can be plotted [13] (R-package givitiR 183 

v1.3) (R-package ResourceSelection v0.3.5). The calibration belt produces a trend 184 

with the 95% confidence interval containing the line of equality. Open-source code is 185 

available from: https://github.com/MRCIEU/cvd-mortality-ml. 186 

We also reported the performance of the original EuroSCORE I and EuroSCORE II 187 

for completeness. We were able to calculate the EuroSCORE II [2] only in 1889 188 

(21.9%) patients for whom exact values of serum creatinine were available.  189 

 190 

RESULTS 191 

Participants 192 

A total of 28,761 cardiac procedures were included in the final dataset (Supplementary 193 

Figure 1). Patients younger than 18 years at time of surgery were excluded (n=41) to 194 

avoid inclusion of congenital abnormalities. The outcome and full set of features were 195 

available for all records after imputation. The overall percentage of missing data in the 196 

EuroSCORE variables was very low (1.7%) and records of age were missing in 86 197 

patients. Patient characteristics are presented in Table 1. All features included in 198 

EuroSCORE I were robustly associated with the outcome in univariable analyses, 199 

except of elevated systolic pulmonary pressure. In-hospital mortality rate was 2.7% 200 

(n=786).  201 

Model discrimination 202 

Results of model selection and hyperparameter tuning using the training set are 203 

reported in Supplementary Table 1. Discrimination ability of models selected in the 204 

testing set is presented in Figure 1. Retrained LR showed good discrimination (AUC 205 
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0.80; 95% CI 0.77, 0.83). Among the ML classifiers, random forest showed the best 206 

discrimination ability (0.80; 95% CI 0.76, 0.83) which was comparable to retrained LR 207 

model. Neural network and naïve Bayes AUC were 0.77 (95% CI 0.73, 0.80) and 0.77 208 

(95% CI 0.74, 0.80) respectively. Original EuroSCORE I and II AUC were 0.76 (95% 209 

CI 0.73, 0.79) and 0.77 (0.70, 0.84) respectively.  210 

Probability calibration 211 

Retrained LR had strong evidence against the null hypothesis of well calibrated 212 

probabilities when applied to our data (P < 0.001; Figure 2 Panel A). Among the 213 

contemporary classifiers, neural network and random forest also showed poor 214 

calibration (P<0.001; Figure2 Panel B and C) although the latter produced probabilities 215 

that did not depart far from the line of equality. Naïve Bayes produced probabilities 216 

that suggest very poor calibration. EuroSCORE I showed poor calibration (P < 0.001 217 

Figure 3 Panel A) while EuroSCORE II was well calibrated although the sample size 218 

and event number was smaller increasing the possibility of a type II error (P=0.64 219 

Figure 3 Panel B). To evaluate calibration drift in the retrained LR and ML models, the 220 

test dataset was divided into two equal bins ordered by procedure date with 221 

approximately equal number of events (n=102 vs n=105). Hosmer-Lemeshow 222 

goodness of fit chi-squared statistics were calculated for first and second quantiles 223 

(Table 2). Retrained LR had the weakest change in test statistic between quantiles 224 

(+15.9%) and therefore weakest calibration drift. Random forest had the second 225 

smallest effect (+21.2%). EuroSCORE II had too few events and could not be reliably 226 

evaluated. 227 

 228 

DISCUSSION  229 
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The main finding of the present study is that when trained on the same set of variables, 230 

ML algorithms do not improve prediction over LR model. Both LR and random forest 231 

model proved to be associated with good discrimination ability but substantial 232 

miscalibration. However, these two models showed the least calibration drift.  233 

Interest in risk-prediction models has bloomed in clinical use to aid in multidisciplinary 234 

shared-decision making. They are also used for benchmarking outcomes and both 235 

monitoring innovations. All this applies especially in an era of expanding multimodal 236 

therapy for coronary artery and valve disease where risk prediction plays an important 237 

role in determining which patients would benefit most from surgery or percutaneous 238 

therapy. Moreover, national cardiac surgical registries have been established in many 239 

countries and they are used to develop risk prediction model with improved 240 

performance for local populations. Two of the most used risk stratification models in 241 

cardiac surgery the European System for Cardiac Operative Risk Evaluation version 242 

(EuroSCORE and EuroSCORE II) [1,2] and the STS-PROM Score [3] were both 243 

developed based on LR. The EuroSCORE I and II have been extensively criticized 244 

[14] including poor performance in external validation particularly for high-risk 245 

subgroup [15,16]. This has been partially attributed to the small proportion (10%) of 246 

patients aged 75 years and above in the reference dataset [17]. On the other hand, 247 

STS provides superior discrimination when compared to EuroSCORE II, but it shows 248 

suboptimal calibration, especially in the high-risk subgroup [18, 19].  249 

It is possible that poor calibration of EuroSCORE II and STS score can be partially 250 

attributed to the fact these LR-based models overlook complex interactions among 251 

features and non-linear relationship. ML methods can capture interaction among 252 

features and non-linearity without input from the modeller and this can potentially result 253 

in improved prediction. A recent systematic review [20] on the application of ML 254 



 

14 

 

methods in cardiovascular diseases acknowledged the potential premise of ML in 255 

certain applications such as automated imaging interpretation. However, the 256 

advantage of ML methods over traditional risk stratification tools remains unclear. 257 

Mendes et al. [21] found that neural networks did not outperform LR when predicting 258 

mortality in patients after coronary artery bypass grafting. Other studies have 259 

suggested an advantage from ML methods over LR. Random forest has been shown 260 

to provided better discrimination when compared to LR, EuroSCORE and 261 

EuroSCORE II [22,23]. Ghavidel et al. [24] found that decision trees achieved better 262 

discrimination power when compared to EuroSCORE and retrained LR. Nilsson et al. 263 

found that neural networks using 34 features determined a small improvement in 264 

accuracy in mortality risk prediction when compared to LR and EuroSCORE [25]. 265 

Recently, Kilic et al. [26] reported that a new ML method (i.e. extreme gradient 266 

boosting) may improve prediction in cardiac surgery when compared to the STS risk 267 

models. These discordant results can partially be explained by the fact that ML 268 

methods and in particular neural network need far more events per variable to be 269 

trained and therefore their application should only be considered if very large data sets 270 

are available [27]. An important limitation of available studies is that they focused on 271 

model discrimination while calibration has been inconsistently reported. Discrimination 272 

does not assess the model accuracy in individual risk predictions (calibration), which 273 

is crucial when using a predictive model to inform decisions about individual patient. 274 

Thus, a model might perform well based on discrimination measures while suffering 275 

substantial miscalibration [28].  276 

The present study was designed to get insights into the usefulness of ML methods to 277 

improve individual risk prediction in cardiac surgery. We used a large dataset 278 

collecting information on the set of features included in the EuroSCORE and we 279 
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assessed both model discrimination and calibration. We failed to show any significant 280 

advantage from ML methods over traditional LR model based on the same set of 281 

features included in the original EuroSCORE.  282 

There are possible explanations for the lack of advantage from ML model over LR 283 

observed in the present study. We had a limited number of events (hospital deaths) to 284 

train and test prediction models despite the large original sample. This may have 285 

limited our ability to exploit the superiority of ML methods in identifying patterns of 286 

features related to the outcome. Moreover, automatic ML model hyper-tuning could 287 

not be performed as dedicated technology required was not available. Age at the time 288 

of surgery was the only continuous variable included in the models and this may have 289 

limited the ability of ML models to capture non-linear interaction for continuous 290 

variables. We did not train models using features included in the EuroSCORE II 291 

because preoperative creatinine value was reported as dichotomous variable (<200 292 

or ≥ 200 mmol/l) while the actual value, which is part of the EuroSCORE II, was 293 

available only for a minority of patients. Similarly, we could not use the set of features 294 

of the STS-PROM score because our dataset did not include some of the items 295 

needed for its calculation. The present analysis aimed to compare the performance of 296 

different algorithms based on the same set of features. Therefore, data-driven variable 297 

selection to improve model performance was not performed. Finally, we limited our 298 

analysis to in-hospital mortality to be consistent with current prediction models [2,3] 299 

but we cannot exclude that ML algorithms can improve prediction of long-term 300 

outcomes [29].   301 

In conclusion, the present findings suggest that the application of ML algorithms alone, 302 

is unlikely to determine a substantial gain in prediction of in-hospital mortality following 303 

cardiac surgery if a small set of structured clinical data is available. A precise 304 



 

16 

 

estimation of individual risk is likely to be achieved only by the identification of new 305 

powerful predictors that can explain more of the variance observed.  306 
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FIGURE LEGENDS 310 

Figure 1. Receiver operating characteristic curve of EuroSCORE I & II, logistic 311 

regression and machine learning classifiers: neural network, naïve Bayes and random 312 

forest using EuroSCORE I features. The axes are true positive rate against 1 – false 313 

positive rate. The area under the curve provides a measure of discrimination accuracy. 314 

The dashed line represents no classification discrimination ability. 315 

Figure 2. External probability calibration of logistic regression (Panel A), Neural 316 

Network (Panel B), and Random Forest (Panel C) using the calibration belt method. 317 

The method regresses true mortality on classifier probability of mortality (via logit 318 

function) using polynomial logistic regression. All models showed significant 319 

miscalibration (P<0.001). 320 

Figure 3. External probability calibration of EuroSCORE I (Panel A) and EuroSCORE 321 

II (Panel B) using the calibration belt method. The method regresses true mortality on 322 

classifier probability of mortality (via logit function) using polynomial logistic 323 

regression. EuroSCORE I (P<0.001) but not EuroSCORE II (P=0.64) showed 324 

significant model miscalibration. 325 

Supplementary Figure 1. Flow of participants in the study   326 
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Table 1. Distribution of features included in the EuroSCORE stratified for in-hospital 327 

mortality in patients who underwent adult cardiac surgery from 1996 to 2017. (SD, 328 

standard deviation. LVEF, left-ventricle ejection fraction).  329 

 
Alive 

N= 27934 
 

Dead 

N=786 

P 

Age (yrs mean, SD) 65.29 12.10 69.38 11.85 <0.001 

Female 7149 25.59% 286 36.39% <0.001 

Serum creatinine ≥200 

µmol/l 
332 1.19% 56 7.12% 

<0.001 

Extracardiac arteriopathy 2346 8.40% 131 16.67% <0.001 

Pulmonary disease 3370 12.06% 146 18.58% <0.001 

Neurological dysfunction 593 2.12% 27 3.44% 0.018 

Previous cardiac surgery 1734 6.21% 128 16.28% <0.001 

Recent myocardial infarct 6665 23.86% 226 28.75% 0.002 

LVEF 30-50% 5539 19.83% 226 28.75% <0.001 

LVEF <30% 1391 4.98% 129 16.41% <0.001 

Systolic pulmonary 

pressure >60 mmHg 
836 2.99% 28 3.56% 

0.414 

Active endocarditis 285 1.02% 23 2.93% <0.001 

Unstable angina 2554 9.14% 155 19.72% <0.001 

Emergency operation 884 3.16% 208 26.46% <0.001 

Critical preoperative state 417 1.49% 128 16.28% <0.001 

Ventricular septal rupture 53 0.19% 32 4.07% <0.001 
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Other than isolated 

coronary surgery 
10461 37.45% 464 59.03% 

<0.001 

Thoracic aortic surgery 1363 4.88% 148 18.83% <0.001 

  330 
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Table 2. Evaluation of calibration drift. The test dataset was divided into two equal 331 

bins ordered by procedure date with approximately equal number of events (n=102 vs 332 

n=105). Goodness of fit chi-squared statistics were calculated for first (G1) and second 333 

(G2) group.  334 

Model ꭓ2 (G1) ꭓ2 (G2) Change 

Logistic regression (retrained) 12.45 14.81 15.9% 

naïve Bayes 1242.96 2126.79 41.6% 

neural network 2.51 7.00 64.2% 

random forest 15.53 19.70 21.2% 

EuroSCORE I 15.94 26.93 40.8% 

.  335 
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