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Abstract—This paper investigates the use of additional me-
teorological (temperature, wind) data, to obtain more reliable
estimates of risk metrics for capacity adequacy in systems with
significant wind generation. The advantage of this approach,
which requires the careful verification of a number of statistical
conditions (well satisfied in practice), is that a considerably
longer dataset may be used to estimate the distribution of wind
generation, and so also that of demand-net-of-wind, thereby
overcoming the otherwise serious problem of a lack of data in the
critical region of high demand and low wind. A further advantage
is that a block-bootstrapping procedure may be used to assess
the remaining uncertainty associated with wind generation, and
the effect of that uncertainty on desired risk metrics. This is in
contrast to the hindcast approach, where no such uncertainty
estimation is possible and where there may be serious concerns
about the calculated values of the risk metrics.

Index Terms—Capacity adequacy, reliability

I. INTRODUCTION

The planning of a secure electricity supply requires the
use of metrics such as Loss of Load Expectation (LoLE) and
Expected Energy Unserved (EEU) to assess shortfall risks. It
is important that methods used to estimate these risk metrics
are accurate and robust, and that uncertainty in their estimated
values is properly considered.

In such analyses the future period (year or peak season)
under study is usually divided into n time intervals. Then
LoLE = nP (Z ≤ 0) and EEU = nE[max(−Z, 0)] where the
“time-collapsed” random variable Z is such that P (Z ≤ z) =
1
n

∑n
t=1 P (Zt ≤ z) and where Zt is the excess of supply over

demand in time interval t. In Great Britain (GB), where solar
power does not contribute at times of peak demand, we have
Z = X +W −D where the similarly time-collapsed random
variables X , W and D represent respectively conventional
generation, wind generation and demand. (For more details
on background see [1] and references therein.)

Conventional generation X is usually and reasonably mod-
elled as probabilistically independent of the pair (D,W ) and
its distribution uncontroversially evaluated using the avail-
ability probabilities of individual generators. This distribution
needs to be convoluted with (the negative of) that of the
random variable D − W representing demand-net-of-wind.

This research was supported by EPSRC grants EP/K03832X/1 and
EP/N030028/1 and National Grid

Estimation of the distribution of the latter is more difficult. It
is usually made from observed paired (demand, wind speed)
traces for historical years, observations being made at hourly
or half-hourly intervals. For each such historical year the
demand trace is “forward-mapped” (typically by appropriate
rescaling) to provide a corresponding demand trace for the
future year under study; the wind speed trace—usually of
observations at each point on a geographical grid—is similarly
forward-mapped to a total wind generation trace for the future
year under study by considering the likely locations, capacities
and power curves of wind farms in that future year. Thus each
year of historical (demand, wind) data yields a corresponding
trace of paired “observations” (dt, wt), t = 1, . . . , n, of total
demand and wind generation for the future year of interest.
These paired “observations” may then be used to estimate
the predicted distribution of demand-net-of-wind, and hence
ultimately the values of risk metrics as described above.
Separate estimates of risk metric values for the future year of
interest may be made on the basis of each year of historical
data; alternatively the historical data may be pooled to obtain
overall estimates [2].

The distribution of demand-net-of-wind D−W is therefore
to be estimated from one or more time series of n paired
“observations” (dt, wt) of (D,W ). A major difficulty here
is that it is only the extreme right tail of this distribution—
that corresponding to particularly high demand coupled with
the simultaneous occurrence of low or almost no wind—
which makes any significant contribution to the left tail of
the distribution of the random variable Z = X + W − D,
and so to the values of risk metrics such as LoLE and EEU.
Further it is precisely in this region of high demand and low
wind that there is very little data upon which to base the
required estimation. The problem is compounded by the fact
that, as demand patterns gradually change through time, there
are typically relatively few years of historical data (dt, wt)
which can be used as described above.

The hindcast approach simply estimates the tail of the
distribution of D − W by the empirical distribution of the
observations dt − wt, of which there are typically very few
in the critical region. An alternative [3] is to estimate first
the distribution of demand, either by its empirical distribution
or via some form of smoothing in its right tail, and to then
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Fig. 1. Plot of wind generation against daily peak demand with smoothed
lowess curve showing estimated mean wind generation conditional on demand.

form some reasonable estimate of the distribution of wind
generation conditional on demand such that this distribution
varies smoothly as demand is varied. This allows observations
of wind when demand is not at its most extreme to contribute
also to the estimation of the conditional distribution of wind
when demand is extreme. The simplest version of such an
approach is given by assuming wind generation W to be
independent of demand D, thereby allowing the distribution
of W , including its critical left tail, to be estimated from all the
observations wt of W . However, the independence assumption
requires checking and is not always sufficiently well satisfied.
Figure 1 gives a scatter plot of wind generation against daily
peak demand throughout the peak season over seven years in
GB. As can be seen by the smoothed curve overlaid on the
plot, there is some evidence that mean wind generation drops
at high demands.

This paper explores an alternative approach to overcoming
the lack of paired observations (dt, wt) of (D,W ) in the
critical region of high demand and low wind. As before,
the distribution of demand D is estimated from the forward-
mapped observations dt of that variable, corresponding to the
limited number of years of relevant historical data. However,
the observations dt are now supplemented with concurrent
observations tet of the further meteorological variable temper-
ature, denoted by TE . In the probabilistic arguments below,
everything is conditioned on the time t—i.e. the time of
year and time of day—at which observation is made. Given
this time, the variables TE and D are generally closely
statistically associated. (For example, we shall show this is
so in GB.) If this statistical association were perfect (i.e.
if, given time as above, TE and D were deterministically
related), then the conditional distribution of wind W , given
time t and demand D, would be the same as that of wind W ,
given time t and the corresponding value of temperature TE .
This conditional distribution could then be estimated from a
meteorological dataset consisting of concurrent observations
of temperature TE and wind W obtained over a considerably
greater number of years than the necessarily limited number

of years used to obtain the observations (dt, wt) of (D,W ).
The result would be a considerable increase in the reliability
of the estimated conditional distribution of wind W .

In reality the above statistical association, while typically
strong, is not perfect. Thus, given the time t at which obser-
vation is made, and the observed value of temperature TE
at that time, there is some (typically small) residual variation
in demand D. Suppose, however, that there is satisfied the
further condition that, again given the time t and corresponding
temperature TE , demand D and wind W are approximately
independent—something which we again show to be typically
the case. Then, in the procedure described above in which at
each time t the observation dt of demand D is supplemented
with the concurrent observation tet of temperature TE , the
conditional distribution of wind W given both D and TE is
just the conditional distribution of W given TE alone and may
again be estimated from a considerably longer meteorological
dataset. We may thus proceed as before with the caveat that
what is now being estimated is the conditional distribution
of wind W given both D and TE . Future values of tempera-
ture TE given time t are not precisely known and the effect of
this additional conditioning is to introduce a little additional
noise into the estimation of the distribution of W given D
(which is what is really required), partially offsetting the
benefits gained from the use of an extended dataset as above.
Provided that, as asserted above, the statistical association
between temperature TE and demand D, given time t, is close,
then the effect is small. However, it is necessary to check that
this is indeed the case.

Thus the method of proceeding is as follows. Historical
data consisting of concurrent observations of (demand, wind,
temperature) are mapped forward as previously described to
produce concurrent “observations” of these variables appro-
priate to the future year under study. The forward-mapped
data are first used to check, given knowledge of the time t
at which observation is made, both the closeness of the
statistical association of TE and D, and the conditional
independence of D and W given TE . Then, conditional on
the (D,TE ) data derived from any given historical year, an
estimate is made of the distribution of D − W as follows:
at each time t the forward-mapped “observation” (dt, tet) of
(D,TE ) is supplemented by a sufficiently large number N
of simulations drawn from the conditional distribution of W
given the observed temp tet and time t (see Section IV). This
conditional distribution is well estimated from an auxiliary
wind generation model, utilising a considerably longer me-
teorological time series of concurrent temperature and wind
observations. For each such time t, there is thus obtained a set
of N simulations of demand-net-of-wind D −W appropriate
to the future year under study. Required risk metrics such as
LoLE and EEU may now be estimated conditioned on the use
of each such historical year of (D,TE ) data. Alternatively
these may be aggregated over such years to give unconditional
estimates.

Further, the use of a block-bootstrapping technique for
assessing the uncertainty in the fitting of the wind generation
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model (see Section V) may be used to assess the corresponding
uncertainty in the risk metrics of interest.

II. DATA

The “future” year under study is taken to be winter 2014–
15. The risk of a shortage of capacity is negligible in summer
in GB, so only the peak winter season is considered. This
peak season is set to 21 weeks starting from the first Sunday
in October. Two datasets described in [4] and [5] are used for
the analysis:

• A primary dataset consisting of hourly historical obser-
vations of aggregate GB demand for the seven winter
seasons from 2007–08 to 2013–2014 inclusive. Obser-
vations are available for earlier years but these are not
thought to be representative of current demand profiles.
These historical observations are scaled to correspond
to demand conditions in the 2013–14 winter season. A
lowess curve is used to smooth the 90% quantiles of
demand for each winter season, giving a scaling factor
for each year. Observations in each winter season are then
multiplied by the ratio of the scaling factor in 2013–14
to the scaling factor in the given year. This scaling is
designed to preserve variation in demand between years
due to different weather conditions, but to eliminate any
trend in demand through time that might be caused by
changes in underlying demand patterns. The fitted lowess
curve models the variation in the 90% quantile of demand
through time due to changes in these underlying demand
patterns. This variation, unlike fluctuations in weather, is
expected to be smooth. Rather than smoothing the mean,
the 90% quantile was used because only observations
of high demand are of relevance for assessing the risk
of shortage of capacity. These re-scaled demand obser-
vations are referred to in the text as ‘forward-mapped’
demand. Note that the study year is 2014–15 so an
assumption is made that demand conditions in 2013–14
are similar to demand conditions in winter 2014–2015. In
practice, this assumption has no impact on the method-
ology as demand can be scaled to any required level.
These forward-mapped demand observations are paired
with concurrent historical population-weighted average
hourly air temperature measurements for GB.

• A further dataset consisting of hourly “observations” of
aggregate GB wind generation, appropriate to the study
year and represented by wind capacity factors. These
observations are obtained using 23.5 years of historical
wind speed measurements (mid 1991–2014), converted
to total GB wind generation by aggregating over the
locations of the installed wind generation fleet as at
January 2015. Wind capacity factors are then obtained
by dividing the total GB generation by the total installed
capacity. These wind generation observations are paired
with concurrent historical population-weighted average
hourly air temperature measurements for GB. This “long”
dataset is used to estimate the conditional distribution of
wind given temperature and time.

III. INVESTIGATION OF THE RELATIONSHIP BETWEEN
DEMAND, WIND AND TEMPERATURE

This section uses the forward-mapped historical (demand,
wind, temperature) data to investigate whether the required
conditions of the Introduction are satisfied, i.e. whether, condi-
tional on time, demand D and temperature TE are reasonably
closely statistically associated, and whether, conditional on
time and on temperature TE , demand D and wind W are
approximately independent. The analysis is based on the pri-
mary dataset described in Section II consisting of the available
seven years of such historical data.

We use a regression model for the daily peak demand PD
in the peak season. The wind generation available on the GB
system is such that any shortfall in total generation is likely
to occur at (or close to) times of peak demand, so that it is
primarily at these times that the statistical assumptions of the
present approach require to be tested.

The regression model fitted omits in the first instance any
wind term—the effect of adding this term is tested subse-
quently to check the second of the above conditions. The
model includes as explanatory variables the day of the week,
a temperature variable TE (defined more precisely below)
and Fourier terms [6] to capture the annual variation in peak
demand (see [7] for further discussion of these variables).
Letting pdt denote the observed daily peak demand (in MW)
for the day t, the model may be written

pdt =β0 +

2∑
j=1

(
βj
1 sin

(
2jπt

365.25

)
+ βj

2 cos

(
2jπt

365.25

))
+ β3tet + β4(dowt) + εt, (1)

where dowt is a categorical variable mapping the day t to
the corresponding day of the week, tet is the observed value
of temperature TE at the time of daily peak demand on
day t, and εt is an error term with zero mean and constant
variance; the constants β0, β

j
1, β

j
2, β3 and the effects β4(·)

corresponding to the levels of the categorical variable dowt

are to be estimated. In each year, 13 days over the Christmas
period are omitted from the analysis. As demand is lower than
average on holidays, this has no effect on the conclusions. The
“observed” temperature tet on day t is the value, at the time
of the daily peak demand, of a smoothed hourly temperature
teh defined in each hour h as

teh =
1

2
(teh−24 + toh),where

toh =
1

4
(tah + tah−1 + tah−2 + tah−3),

and tah is the air temperature in hour h in degrees Celsius.
This smoothed temperature variable, frequently employed by
National Grid, is designed to smooth the measurements in
each hour to reflect the lagged dependence of demand on
temperature. For possible alternatives see [7].

Least squares is used to fit the model (1) to the primary
dataset of seven years of concurrent demand and temperature
data. All terms in the model are found to be necessary,
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Fig. 2. Boxplot of residuals of model (1) against wind capacity factor wt

split by quantile.

as measured by the coefficient of determination, which for
the full model is 0.925. This coefficient of determination is
sufficiently close to one as to imply that model (1) is very
successful in explaining the variation in peak demand. Thus
there is sufficient evidence to support the first condition of the
Introduction, that temperature and time capture most of the
variation in demand.

To test the second condition of the Introduction, i.e. whether,
conditional on time and on temperature TE , demand D and
wind W are approximately independent, we now investigate
whether the inclusion of wind generation (represented by
wind capacity factors) in model (1) provides significant extra
explanation of the variation in demand. Let wt be the observed
wind generation capacity factor at the time of peak demand
on day t. Figure 2 is a boxplot of the residuals of model (1)
against the further observations wt. The values of wt are split
into ten equally sized bins corresponding the quantiles of their
empirical distribution. (For example, the first component of the
plot on the left hand side shows the variation in the residuals
of the model for the lowest 10% of the observed capacity
factors wt.) As can be seen, any dependence of the residuals
of model (1) on the observed capacity factors wt is weak,
and in particular there is no observable relationship in the
more critical region corresponding to lower values of wind
generation.

As a further test of the conditional independence of de-
mand D and wind W , given time t and temperature TE , a
wind capacity factor term β5wt may be added to model (1).
The addition of this extra term has very little effect on
the estimated coefficients β0, β

j
1, β

j
2, β3 and the effects β4(·).

While the new coefficient β5 corresponding to the capacity
factors is formally statistically significant under the assump-
tion of independence of the model residuals, nevertheless,
given temperature and time, wind generation makes almost
no further contribution to the prediction of demand, only
increasing the coefficient of determination for the model fit
from 0.925 to 0.929.

Thus, from the above analyses, we may conclude that the
required conditional independence of demand D and wind W ,
given time and temperature TE , is also sufficiently well
satisfied.

IV. WIND GENERATION MODEL

This section develops the model for wind generation (repre-
sented by its capacity factor) conditional on temperature and
time, where the latter variable includes time of day, time of
year and year itself. Wind capacity factors may be converted
back to wind generation by multiplying by assumed installed
wind capacity for the future year under study. The distribution
of future demand-net-of-wind, conditional on demand and
temperature data for any given historical year, is then obtained
as described in the Introduction. The wind generation model
is fitted using concurrent wind and temperature data for
23.5 peak seasons, as described in Section II, and uses data
from all hours of the day rather than just the hour of peak
demand. This “long” dataset is sufficiently extensive as to
permit reasonably reliable inference of the distribution of wind
generation (represented by the corresponding wind capacity
factor) given temperature and time.

Let the paired (wind capacity factor, temperature) obser-
vation for hour t in year i be (wit, teit). Since the wit are
constrained to lie between 0 and 1, so as to better fit a
suitable model we make the logistic transformation w̃it =
log(wit/(1−wit)) [8]. A regression model is then used for the
dependence of transformed wind capacity factor observations
on temperature TE and time. For the dependence of wind on
temperature a linear term is here sufficient. For the dependence
of wind on time it is necessary to include a categorical
variable hodt mapping each time t to the corresponding hour
of the day and sufficient Fourier terms to capture slowly
varying annual dependence; a year effect yi for each year i is
also required. Thus, the model fitted is given by

w̃it = β0 + β1teit + β2(hodt) + yi

+
5∑

j=1

(
βj
3 sin

(
2jπt

8766

)
+ βj

4 cos

(
2jπt

8766

))
+ εit, (2)

where the constants β0, β1, β
j
3, β

j
4 , the hour effects β2(·) and

the year effects yi are all to be estimated. For this standard
least squares regression proves sufficient. The pattern of annual
variation of wind capacity is complex but fairly distinct, and
we use a total of five Fourier terms to model the annual
variations in capacity factor; the inclusion of further terms
runs a distinct risk of overfitting [6].

As measured by the standard assumption of independence
of residuals, the inclusion of each of the terms in the model (2)
is statistically significant. In particular the estimate of the tem-
perature coefficient β1 is 1.68×10−1 with a standard error of
1.51×10−3 and so the dependence on temperature, if modest,
is nevertheless highly statistically significant. The effects for
the individual years are also required. Their omission from
the model reduces the coefficient of determination from 0.178
to 0.157 (recall that there is much residual variation in wind
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generation not explicable by either temperature or time). As
the model is fitted on a logistic scale and is required as a
first step in the estimation of the entire distribution of wind
generation, as described in detail below, we do not report the
numerical values of all the fitted coefficients. Further there is
in reality considerable dependence in the sequence of model
residuals, and this increases the statistical uncertainty in the
model fit. Section V describes how to use block bootstrapping
to properly account for this.

Any given historical year generates a forward-mapped (de-
mand, temperature, time) trace for the future year of interest.
For each time period t during that year, given the forward-
mapped “observation” pair (dt, tet), a sufficiently large num-
ber N of simulations of wind generation are obtained by the
use of the fitted model (2) in which the residuals are randomly
sampled from the empirical distribution of the entire set of
residuals from the fitted model. (Note the need to reverse
here the logistic transformation of the wind capacity factors.)
The year effect in model (2) is taken to be that appropriate
to the historical year on which conditioning is taking place
(an alternative would be to treat the year effect as a random
effect when fitting the model and to sample from the fitted
distribution of that effect). Thus, for the given time period t
within the future year under study and conditional on (dt, tet),
there is obtained by simulation an estimate of the (marginal)
distribution of demand-net-of-wind. Hence, conditional on the
entire (demand, temperature) trace for the given historical year,
point estimates of LoLE and EEU for the future year of interest
are obtained as described in the Introduction.

V. BOOTSTRAPPING FOR WIND UNCERTAINTY

While the above estimates of wind generation are condi-
tional on the (forward-mapped) demand and temperature data
for a given historical year, it is important to quantify the un-
certainty in these estimates arising from the use of necessarily
finite data to fit the wind generation model (2). A considerable
difficulty here is that the successive residuals within this model
are not independent. Therefore, in order to quantify uncertainty
in the coefficients of model (2), we use a block-bootstrapping
approach (see [9] or [10] for details). The temporally ordered
sequence of residuals from the fitted model (2), which is
considered to form a stationary time series, is divided into
successive non-overlapping blocks of equal length. A total
of B new sequences of residuals, each of the same length
as the original, are formed by resampling with replacement
from these blocks. Each such bootstrap sequence of residuals
is then added back to the fitted model (2) to form a new
dataset for which the model (2) is refitted to give a bootstrap
estimate of its coefficients. The length of the blocks is chosen
sufficiently large that the residuals within distinct blocks are
reasonably independent of each other. However, within each
block the sequential dependence structure of the residuals is
preserved. Thus the empirical distribution of the processes of
residuals over a sufficient number B of such bootstrap samples
mimics reasonably closely the distribution of the stochastic
process of residuals corresponding to the original model (2).

Consequently the empirical distribution of the B bootstrap
estimates of the coefficients of that model probabilistically
quantifies the uncertainty in the original estimated coefficients.
Further quantities which depend on the fitted model (2), such
as LoLE and EEU, may similarly be calculated for each of
the B bootstrap estimates of the coefficients of model (2), so
that the empirical distributions of the resulting bootstrap esti-
mates of LoLE, EEU, etc, again probabilistically quantify the
uncertainty—due to wind variation—in the original estimates.
Probability intervals (confidence intervals) for the estimated
quantities are given by the corresponding quantiles of the
empirical distribution of the bootstrap estimates. (Note also
that, in simulating the conditional distribution of wind, given
time and temperature, as described above, we may continue to
use random draws from the set of residuals from the original
fit of the model (2): the uncertainty in the distribution of wind
generation is almost completely captured by the uncertainty in
the fitted coefficients for the model (2).)

In order to determine an appropriate block length, it is
necessary to examine the sequential structure of the residu-
als ε̂it from the original fit of the model (2). Figure 3 shows
both their partial autocorrelation function and autocorrelation
function [11]. These show that there is statistically significant
correlation out to time lags of around 160 hours, even after
accounting for correlation at shorter time lags. A reasonable
block length is therefore judged to be one week (or 168 hours).

0 50 100 200 300

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

0 50 100 200 300
0.

0
0.

4
0.

8

Lag

A
C

F

Fig. 3. Partial autocorrelation function (left) and autocorrelation function
(right) of residuals ε̂it of model (2).

Thus, separately for each year of historical data (forward-
mapped to the future year under study), and conditional on the
(demand, temperature) data for that historical year, estimates
may be made of LoLE and EEU for the future year of
interest as described above, in particular using simulation
to estimate the conditional distribution of wind given time
and temperature. The fit of the wind generation model (2)
describing this conditional distribution is based on the “long”
23.5 year set of (temperature, wind) data and is independent
of the chosen historical year of (demand, temperature) data. It
follows straightforwardly that pooled estimates of LoLE and
EEU based on all seven years of historical data are simply the
means of the estimates based on the individual years. In all
cases bootstrap estimation may then be used to quantify the
uncertainty in estimates. Again the bootstrap procedure relates
to uncertainty in the model (2), so that the same bootstrap
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estimates of the coefficients of this model may be used in
every case.

VI. RESULTS

For the given data (as described in Section II) the method-
ology of the present paper, including the procedure for sim-
ulating wind generation described in Section IV, is used to
calculate point estimates of the LoLE and EEU for the future
year of interest. (For the wind generation model sufficient
simulation is used to ensure convergence.) Separate estimates
of these risk metrics are obtained based on each of the
seven years of historical (demand, temperature) data, forward-
mapped as described. A 90% probability interval—accounting
for uncertainty arising from use of a finite dataset to estimate
wind generation—is estimated for each LoLE and EEU using
bootstrapping as described in Section V.

To calculate the risk metrics it is necessary to assume a
distribution of conventional generation. We let the random
variable X represent the amount of conventional generation
available at any point in time and follow [3] in using a two-
state model and assuming that X is independent of time, wind
generation and demand. Data obtained from National Grid
give a future scenario of installed conventional power plant
capacities and their corresponding availability probabilities. To
protect the sensitive nature of these data, a random error term
is added to the installed capacities. The results presented here
should therefore be thought of as an exemplar rather than a
precise representation of the GB system. A distribution for
conventional generation, traditionally represented as a capacity
outage probability table [12], is estimated by convoluting the
conventional plant capacities and availabilities.

Table I gives estimates of LoLE and EEU conditional on the
forward-mapped (demand, temperature) profiles of 2007–08
to 2013–14. Bootstrapped 90% probability intervals are given
in parentheses. These are based on 1,000 bootstrap estimates
of the coefficients of model (2). As can be seen, there is
substantial uncertainty in the risk metrics, highlighting the
importance of estimating this wind uncertainty—something
which is not possible with the hindcast approach. The variation
in LoLE and EEU corresponding to the use of different
years of historical (demand, temperature) data is considerable,
and can be used to assess the effect that different (demand,
temperature) profiles have on the LoLE and EEU estimates.

Hindcast estimates of LoLE and EEU are also shown
in Table I. These are generally lower than those obtained
using model (2). This difference may reflect variation in the
relationship between wind and temperature through time. By
using model (2) to simulate wind generation, the relationships
between wind, time and temperature are smoothed over 23.5
years of data. In contrast, each hindcast estimate uses only one
year of wind data (and hence frequently does not lie within the
given 90% probability interval). In particular, for each hindcast
estimate, LoLE and EEU are almost entirely determined by a
very small number of data points, and it is entirely plausible
that in a given year of historical data, there are simply no data
points with very high demand and almost no wind, despite the

fact that this situation is probabilistically quite possible and,
when it occurs, makes a major contribution to the above risk
metrics. Thus there is a serious risk that the hindcast approach
may significantly underestimate both LoLE and EEU. Further
investigation is required here.

Year LoLE LoLE EEU EEU
Simulation Hindcast Simulation Hindcast

07–08 2.99 (2.27,3.83) 2.64 3337 (2474,4337) 2512
08–09 3.13 (2.44,3.91) 1.76 3112 (2403,3940) 1588
09–10 3.80 (3.00,4.71) 1.57 3970 (3083,4980) 1477
10–11 15.91 (13.40,18.65) 9.64 21085 (17413,25189) 12049
11–12 1.18 (0.89,1.49) 0.86 1034 (774,1327) 785
12–13 8.44 (6.59,10.56) 7.84 9578 (7343,12134) 9315
13–14 0.55 (0.39,0.75) 0.31 437 (301,597) 219
Mean 5.14 (4.57,5.78) 3.52 6079 (5315,6938) 3992

TABLE I
LOLE AND EEU ESTIMATES WITH 90% PROBABILITY INTERVAL,

CONDITIONAL ON THE FORWARD-MAPPED (DEMAND, TEMPERATURE)
TRACE IN THE GIVEN HISTORICAL YEAR. HINDCAST ESTIMATES ARE

GIVEN FOR COMPARISON.

VII. CONCLUSION

This paper has investigated the use of additional meteoro-
logical data, in particular the use of (temperature, wind) data,
to obtain more reliable estimates of risk metrics for capacity
adequacy. The advantage of this approach, which requires the
careful verification of a number of statistical conditions (which
appear to be well satisfied in practice), is that a considerably
longer dataset may be used to estimate the distribution of wind
generation, and so also that of demand-net-of-wind, thereby
overcoming the serious problem of a lack of data in the critical
region of high demand and low wind. A further advantage is
that a block-bootstrapping procedure may be used to assess
the remaining uncertainty associated with wind generation,
and the effect of that uncertainty on the desired risk metrics.
In contrast, for the hindcast approach, no such uncertainty
estimation is possible and it is furthermore the case that the
hindcast approach may occasionally seriously underestimate
the values of these risk metrics.
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