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Large-scale dynamics of magnetic helicity
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In this paper we investigate the dynamics of magnetic helicity in magnetohydrodynamic (MHD)
turbulent flows focusing at scales larger than the forcing scale. Our results show a nonlocal inverse
cascade of magnetic helicity, which occurs directly from the forcing scale into the largest scales of
the magnetic field. We also observe that no magnetic helicity and no energy is transferred to an
intermediate range of scales sufficiently smaller than the container size and larger than the forcing
scale. Thus, the statistical properties of this range of scales, which increases with scale separation,
is shown to be described to a large extent by the zero flux solutions of the absolute statistical
equilibrium theory exhibited by the truncated ideal MHD equations.

The current explanation for the existence of stellar and
planetary magnetic fields is attributed to dynamo ac-
tion [1]. One of the theoretical arguments to explain the
generation and preservation of magnetic fields in spatial
scales much larger than the outer scales of fluid motions
is the inverse cascade of magnetic helicity in MHD turbu-
lence [2]. Magnetic helicity plays a fundamental role in
the long-term evolution of stellar and planetary magnetic
fields [3] and hence its dynamics across scales is impor-
tant to shed light on the saturation mechanisms of these
large-scale magnetic fields.

Previous investigations concerning the inverse cascade
of magnetic helicity reported both local and nonlocal
transfers with various scaling exponents measured for the
spectra at large scales [4–6]. However, it is presently un-
clear whether these local and non-local transfers should
be associated with a process that takes place with con-
stant flux [7]. Due to growing evidence for the impor-
tance of non-local interactions in the dynamics of MHD
turbulence [4, 7–9], concern has been raised over the use
of the term cascade [6, 10]. Therefore, in our context
the term cascade does not necessarily imply locality in
wavenumber space.

In spite of the importance of the inverse cascade of
magnetic helicity, there is a lack of understanding about
its non-linear dynamics at large scales. In this paper
we aim to elucidate the steady-state dynamics of mag-
netic helicity and its role in the long time evolution of
the large-scale magnetic field. To do this we consider
flows with high enough scale separation by applying he-
lical electromagnetic forcing at intermediate scales using
direct numerical simulations (DNS) and we focus on the
dynamical and statistical properties of the large scales.
We show that the inverse cascade of magnetic helicity is a
manifestation of non-local transfers from the forcing scale

∗ linkmann@roma2.infn.it
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to the largest scales of the magnetic field in agreement
with previous studies [4, 5]. Moreover, we demonstrate
that despite the fact that in three-dimensional MHD tur-
bulence the scales between the forcing scale and the con-
tainer size are not isolated from the turbulent scales, their
statistics may still be reasonably approximated as if they
were in statistical equilibrium for high enough scale sep-
aration.

In planets and stars as well as in laboratory exper-
iments, physical boundaries confine fluids and set the
largest possible characteristic length scale of the flow. In
our DNS, the size of the periodic box 2πL is the surrogate
for this spatial confinement. In order to study the large-
scale dynamics of turbulence, large enough scale sepa-
ration is necessary between the box size and the forcing
scale, while at the same time one has to ensure that small-
scale turbulence is still resolved. Forcing at intermediate
scales and aiming for a turbulent flow with high enough
scale separation is therefore almost prohibitive even with
today’s supercomputers. We partly circumvent this dif-
ficulty by considering hyper-dissipative terms under the
assumption that the dissipative scales should not signifi-
cantly affect the statistical properties of the large scales.
Due to the presence of the inverse cascade of magnetic
helicity we consider a large-scale dissipation mechanism
to saturate the expected energy growth. Otherwise, en-
ergy accumulates in the largest scales of the box until it
is balanced by viscosity leading to the formation of very
large amplitude vortices [11]. Therefore, we consider the
following dynamical equations:

(∂t − ν−∆−m − ν+∆n)u = u× ω + j × b−∇P + fu ,

(∂t − η−∆−m − η+∆n)b = ∇× (u× b) + fb , (1)

where u denotes the velocity field, b the magnetic induc-
tion expressed in Alfvén units, ω = ∇× u the vorticity,
j = ∇ × b the current density, P the pressure, fu and
fb the external mechanical and electromagnetic forces,
respectively. Energy is dissipated at the small scales by
the terms proportional to ν+ and η+ and at the large

ar
X

iv
:1

60
5.

01
69

7v
3 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

9 
M

ay
 2

01
7

mailto:linkmann@roma2.infn.it
mailto:v.dallas@leeds.ac.uk


2

scales by ν− and η−. The indices n,m specify the or-
der of the Laplacian used. In order to obtain a large
inertial range, we chose n = m = 4. For all runs, we
chose ν+ = η+ and ν− = η−. In the absence of forcing
and dissipation, Eqs. (1) reduce to the ideal MHD equa-
tions, which have three conserved quantities: the total
energy E = Eu + Eb = 1

2

∑
k(|uk|2 + |bk|2), the mag-

netic helicity Hb =
∑

k ak · b−k, and the cross-helicity
Hc =

∑
k uk · b−k, where a denotes the vector potential

of the magnetic field.

The forces fu and fb are constructed from a random-
ized superposition of eigenfunctions of the curl opera-
tor [4, 6, 12], resulting in Gaussian distributed and δ(t)-
correlated forces whose helicities 〈fu,b ·∇×fu,b〉 and cor-
relation 〈fu · fb〉 can be exactly controlled (〈·〉 indicates
spatial averages unless indicated otherwise). The specific
random nature of the forces ensures that at steady state
the total energy input rate ε = εu+εb = 〈u·fu〉+〈b·fb〉 ∝
|fu|2 + |fb|2 is known a priori [13] with |fu| = |fb| = f0.
In this case, ε can be used as a control parameter. Note
that we choose to force both u and b with the same forc-
ing amplitude so that both quantities are dynamically
important and b has a nonlinear feedback on the flow
through the Lorenz force.

The use of an electromagnetic forcing is typical in stud-
ies that have focused on the dynamics of magnetic helic-
ity [5, 6, 12] in contrast to dynamo studies. Realistic
analogues of such a forcing are, for example, the toroidal
current that is driven in tokamaks in order to generate
a poloidal magnetic field, and the force that is applied
in electromagnetic pumps, which are driven by means
of a traveling magnetic field imposed by external coils.
Note that our intention in this study is not to simulate
such a system but to further understand the dynamics
of Hb, whose interpretation from dynamo simulations is
ambiguous because in these simulations Hb, and most im-
portantly its mean flux, change sign in the inertial range
of scales. However, by forcing the induction equation
it is possible to maintain a sign-definite mean value of
Hb, which allows us to study the non-linear dynamics of
magnetic helicity across scales unambiguously.

The forces are chosen such that the helicity of fu is
negligible while fb is fully helical for all simulations; and
they are decorrelated, i.e., 〈fu · fb〉 = 0. Thus, no Hc

and no kinetic helicity Hu = 〈u · ω〉 are injected into the
flow, while the injection of Hb is maximal. Here, we ex-
clude the injection of cross-helicity in the flow in order to
avoid introducing correlations between the velocity and
the magnetic field which would affect the cascade dynam-
ics of the conserved quantities [10]. Moreover, we avoid
injecting kinetic helicity into the flow in order to exclude
any generation of mean magnetic helicity due to the pres-
ence of a strong component of mean kinetic helicity in the
flow. Finally, the initial Gaussian distributed random
magnetic and velocity fields are in equipartition with en-
ergy spectra peaked at the forcing wave number kf and
zero helicities, i.e., Hb = Hc = Hu = 0. We should point
out here that Hc remains negligible in our flows, however,

kfL N Ref ν+ = η+ ν− = η− f0 T/tf

10 128 7× 103 6.30× 10−12 0.05 1 320

20 256 7× 103 4.92× 10−14 0.05
√

2 130

40 512 7× 103 3.68× 10−16 0.05 2 100

TABLE I. Numerical parameters of the simulations. Note
that kf denotes the forcing wavenumber, T the total runtime
in simulation units, f0 = |fu| = |fb| the forcing amplitude
and tf ≡ (ufkbox)−1 a timescale defined based on the control
parameters. All simulations are well resolved with kcut/kd >
1.25.

Hu increases with Hu/(〈|u|2〉〈|ω|2〉)1/2 ' 0.2 at steady
state.

Equations (1) are solved numerically using the stan-
dard pseudospectral method, which ensures that∇·u = 0
and ∇ · b = 0. Full dealiasing is achieved by the 2/3-rule
and as a result the minimum and maximum wave num-
bers are kbox = 1 and kcut = N/3, respectively, where N
is the number of grid points in each Cartesian coordinate.
Further details of the code can be found in Refs. [14, 15].

Following previous studies [16, 17], a Reynolds num-
ber may be defined based on the control parameters of

the problem as Ref ≡ ufk1−2nf /ν+ with uf ≡ (ε/kf )
1/3

.

In the following, ε and ν+ are adjusted such that uf ,
and the ratio of kcut with the dissipation wave number
kd ≡ (ε/(ν+)3)1/(6n−2) remain the same for the different
simulations. That is, ε/kf is kept constant between sim-
ulations while increasing the scale separation kfL. This
results in the same Reynolds number, which highlights
that the only difference between the simulations is the
scale separation between kf and L. The numerical pa-
rameters of the simulations are given in Table I.

The flux of total energy ΠE(k) and magnetic helicity
ΠHb

(k) in Fourier space is given by

ΠE(k) ≡ 〈u<k (u · ∇u− b · ∇b)〉+ 〈b<k (u · ∇b− b · ∇u)〉,
ΠHb

(k) ≡ 〈a<k (b · ∇u− u · ∇b)〉, (2)

where the notation g<k denotes the Fourier filtered field
g such that only the modes satisfying |k| ≤ k are kept
[18]. Negative values of the fluxes imply inverse cascades
while positive values imply forward cascades.

The strength of forward and inverse cascades of
a conserved quantity at steady state can be quan-
tified by the rate of dissipation in the small and
large scales, respectively, which we define as ε± ≡
2ν±

〈∑
k 6=0 k

±2n(|uk|2 + |bk|2)
〉

, where 〈·〉 denotes a

time-average in this case. Then, the total energy dis-
sipation rate is given by ε = ε+ + ε−. A similar
decomposition can be made for the dissipation rate
of Hb resulting in εHb

= ε−Hb
+ ε+Hb

with ε±Hb
≡

2ν±
〈∑

k 6=0 k
±2n(ak · b−k)

〉
.

Since we are interested in the behavior of the total en-
ergy and the magnetic helicity at large scales we need to
ensure that our simulations have been integrated for long
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enough times so that the largest scales are in a statisti-
cally stationary state. This is satisfied when ε− reaches
a saturated state. In what follows we analyze the data
from these saturated states.

Absolute equilibrium (zero-flux) statistical mechanics
have been used effectively to suggest the directions of
cascades (finite flux) of the ideal conserved quantities
across scales. In particular, it has been shown [2] that
energy is transferred toward small scales (forward cas-
cade) while magnetic helicity is transferred toward large
scales (inverse cascade). In order to check if these pre-
dictions are true in our flows we plot ΠE(k) and ΠHb

(k)
normalized by their dissipation rates (see Fig. 1). The
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FIG. 1. Fluxes of total energy and magnetic helicity normal-
ized with the corresponding dissipation rates for the run with
kfL = 40. Black: normalized total energy flux ΠE(k)/ε. Blue
(dark gray): normalized magnetic helicity flux ΠHb(k)/εHb .
The inset presents the scaling ε−/ε ∝ εHb/(εL) ∝ (kfL)−1.
Black: ε−/ε. Red (light gray): ε−b /ε. Blue (dark gray):
εHb/(εL).

total energy has a forward cascade with ΠE(k) > 0 for
k ≥ kf , while ΠE(k) ' 0 for k < kf . The magnetic helic-
ity, however, has a dual cascade toward large and small
scales, even though the injection of Hb is maximal, with
∼ 90% of ΠHb

(k) being negative (i.e., ε−Hb
' 0.9εHb

)
at k < kf . From the inset of Fig. 1, we observe that
ε− = ε−b ∝ εHb

/L ∝ (kfL)−1ε. This scaling implies that
the ratio εHb

/(εL) determines the fraction of the total
energy flux that proceeds toward large scales. This can
be partly understood from the relation between the in-
jection rates of Hb and Eb due to the helical fb forcing,
i.e.,

εHb
= 〈a · fb〉 = k−1f 〈a · (∇× fb)〉 = k−1f 〈b · fb〉 = k−1f εb.

(3)
Note that no matter how εb (and therefore ε) may be
varied with kf , one obtains ε−b /ε ∝ (kfL)−1, that is, for

kfL � 1 we expect ΠEb
(k) = ε−b → 0 at k < kf and

hence ΠE(k) = ε− → 0 at k < kf since ε− = ε−b (see
the inset of Fig. 1). In other words, the inverse flux of
total energy will become negligible once the separation

between the forcing scale and the largest scale of the
system becomes very large. This results in a weak energy
input to sustain large-scale magnetic fields.

According to Fig. 1, Hb has a constant negative flux
at k < kf , which implies an inverse cascade. This is
based on the idea that the time-averaged transfer is zero
in some intermediate wave-number range for flows with
large enough scale separation [19]. We should point out
here that zero time-averaged transfer does not necessar-
ily mean constant nonzero Hb transfer (i.e., no gain or
loss of Hb in a particular wave number k), it can also
mean zero Hb transfer between modes. Considering the
instantaneous transfers,

THb
(k, t) ≡

∑
|k|=k

∑
p+q=k

b−k · (up × bq) , (4)

at steady state (see Fig. 2), we see that THb
(k, t) = 0 for

5 < k < kf , implying not only vanishing average transfer
but also no instantaneous transfer of Hb into the large
scales, apart from the fluctuations that are observed at
the low k modes. Therefore, this observation suggests
a nonlocal transfer of magnetic helicity from the forcing
scale to the largest scales of the magnetic field.
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FIG. 2. Transfer spectra of magnetic helicity normalized
with εHbL for the flow with kfL = 40. The time-averaged
transfer THb(k) is indicated by the green (dark gray) curve
while the gray curves indicate the instantaneous transfers
THb(k, t).

To be precise on this statement, we analyze the shell-
to-shell transfers [5, 7] of magnetic helicity,

THb
(K,Q) ≡

∫
bK · (u× bQ)d3x (5)

from shell Q to shell K. This transfer term conserves
magnetic helicity, that is, it does not generate or de-
stroy Hb, but it is responsible for the redistribution of
Hb across different scales. This is expressed by the fact
that THb

(K,Q) is antisymmetric under the exchange of
K and Q, i.e., THb

(K,Q) = −THb
(Q,K), which is con-

firmed by Fig. 3.
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FIG. 3. Instantaneous normalized magnetic helicity transfer
THb(K,Q)/(εHbL) from shell Q to shell K rescaled with kf .

Figure 3 shows that all transfers of Hb between wave
numbers smaller than kf vanish apart from the transfer
from the forced shellQ/kf = 1 to the smallest shellK/kf .
Therefore, the Fourier modes at kf interact nonlocally
with the Fourier modes at k = 1 while the intermediate
wave numbers 1 < k < kf have THb

(K,Q) = 0 and
hence ΠHb

(k) = 0 in this range. In other words, the
constant negative value of ΠHb

(k) in the k < kf regime
is a manifestation of nonlocal transfers of Hb from the
forcing scale to the largest scale of the magnetic field.

In summary, as we increase kfL we observe ΠE(k)→ 0
at k < kf and ΠHb

(k) = 0 at 5 < k < kf . There-
fore, we expect the large-scale flow to be described to a
large extent from the predictions of the zero-flux solu-
tions given by absolute equilibrium statistical mechanics
[18, 20]. To verify this we examine the scaling of our spec-
tra at scales larger than the forcing length scale but also
sufficiently smaller than the box size and we compare
with the predictions from absolute equilibrium theory,
which we present below.

Following Ref. [2], we consider the Boltzmann-Gibbs
distribution for the truncated ideal 3D MHD equations
(i.e., only Fourier modes kmin ≤ k ≤ kmax are kept,
kmax being the truncation wave number) with zero cross-
helicity, P = Z−1 exp(−αE−βHb), where Z is the parti-
tion function of a Gaussian ensemble. The coefficients α
and β are determined by the total energy and the mag-
netic helicity of the system and can be interpreted as
the inverse temperatures in the classical thermodynamic
equilibrium sense. Using the discrete form of E and Hb

we can obtain the following expressions for their spectral

densities at absolute equilibrium:

Eu(k) =
4π

α
k2 ,

Eb(k) =
4π

α

k2

1− ( β
αk )2

,

Hb(k) = −4πβ

α2

1

1− ( β
αk )2

. (6)

In order for P to be normalizable, i.e., the quadratic
form αE + βHb to be positive definite, we need α > 0
and α > |β|/kmin. These spectra have a singularity at
wavenumber ks ≡ |β|/α < kmin outside the validity of
Eqs. (6).

Equations (6) suggest equipartition of kinetic energy
across scales while magnetic energy equipartition is only
true for k � ks. As k → kmin the values of Eb(k) and
Hb(k) diverge for values of ks close to kmin. The region
near kmin has maximal helicity where the total energy E
is dominated by Eb and therefore kmin|Hb| ' E. This di-
vergence of Hb(k) at low k (which is a conserved quantity
unlike Eb) is the indicator of the corresponding magnetic
helicity transfer toward large scales.

Figure 4(a) shows the magnetic and kinetic energy
spectra compensated with k−2, with the Eu spectra be-
ing shifted by a factor of 10−3 for clarity. Note that
Eu(k)/Eb(k) ∼ 1 for wave numbers k/kf ≥ 0.3. The
spectra here collapse by rescaling with k/kf . Our data
displays the scaling Eu(k) ∝ k2 at low wavenumbers k <
kf with the range of validity increasing with kfL. The
magnetic energy spectra show a Eb(k) ∝ k2 scaling while
the magnetic helicity [see Fig. 4(b)] show Hb(k) ∝ k0 for
an intermediate range of wavenumbers kbox � k < kf .
These scalings are in agreement with the predictions of
the absolute equilibria for the truncated ideal MHD equa-
tions. We point out that altering the hypodiffusive expo-
nent m does not affect the scaling of the spectra at the
large scales.

In order to compare the numerical results with the pre-
dictions of the absolute equilibrium theory, we have plot-
ted Eqs. (6) as dashed lines in Fig. 4 using values of
α and β obtained from a linear fit. A measurable de-
viation from the theory is observed as k → kbox. The
amplitude of the deviation is independent of the dissi-
pation mechanism and only weakly dependent on scale
separation. The dashed lines in Fig. 4 predict that the
divergence of the spectra at ks = |β|/α is expected at
ks/kf = 3.5 ·10−4, which is beyond the expected validity
of the absolute equilibrium regime. Therefore, the devi-
ations from the power-law scalings are due to other pos-
sible reasons. The most important reason affecting the
magnetic energy spectra is the minimal but still finite
negative flux of Eb at large scales. However, we expect
better agreement of Eb(k) with the corresponding abso-
lute equilibrium prediction as scale separation increases
because ε−b /ε ∝ (kfL)−1. The nonlocal transfers of mag-
netic helicity from the forcing scale to the largest scales
(1 ≤ k ≤ 5) of the flow is an obvious reason for Hb(k)
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FIG. 4. (a) Magnetic and kinetic energy spectra com-
pensated by k−2, where Eu(k) has been shifted by a fac-
tor of 10−3. (b) Absolute value of magnetic helicity spec-
tra. The spectra are collapsed by rescaling with k/kf . The
dashed lines correspond to the predictions from absolute equi-
libria, i.e. Eqs. (6). The green (light gray) curves refers
to the simulation with kfL = 40, the blue (dark gray) to
kfL = 20 and the red (gray) to kfL = 10. The inset
shows the absolute value of the relative magnetic helicity
ρb(k) = Hb(k)/(〈|ak|2〉1/2〈|bk|2〉1/2)

.

to disagree with the equilibrium predictions. Finally, for
wave numbers close to kbox the assumptions of isotropy
used in the derivation of Eqs. (6) are not valid and de-
viations from the isotropic result are expected for all the

spectra in Fig. 4.
In the inset of Fig. 4(b), we also plot the absolute

value of the relative magnetic helicity spectrum ρb(k) =
Hb(k)/(〈|ak|2〉1/2〈|bk|2〉1/2) in order to quantify how far
the flow is from a maximally helical state. It is clear
that the magnetic field becomes fully helical only at the
largest scale of the flow while the rest of the scales have
moderate values of ρb(k).

The magnetic field can also be sustained without forc-
ing the induction equation, i.e., by dynamo action. A
recent numerical investigation [21] of the kinematic dy-
namo with kfL� 1 found that at scales larger than the
forcing scale the kinetic energy scales as k2, in agree-
ment with our results, while the magnetic energy scales
as k0. We expect that the scaling of the magnetic en-
ergy will change in the nonlinear stage of the dynamo,
where the Lorentz force is nonnegligible, and we specu-
late that a k2 spectrum will form in the saturated regime
of the dynamo. However, this is something that has to
be confirmed.

In this paper, we investigated the dynamics of mag-
netic helicity focusing on the large scales of MHD turbu-
lence. We demonstrate that the inverse cascade of mag-
netic helicity at steady state occurs nonlocally from the
energy injection scale into the largest scales of the flows
we considered. By increasing scale separation, we observe
that the inverse energy transfer diminishes and hence no
magnetic helicity and almost no total energy is trans-
ferred to an intermediate range of scales larger than the
forcing length scale but also sufficiently smaller than the
box size. Therefore, we show that in this range of scales,
helical MHD turbulence is described to a large extent by
the (zero flux) absolute equilibrium spectra, with devia-
tions expected at scales close to the largest available scale
of the system. Our results have direct implications for
the understanding of the preservation of planetary and
stellar magnetic fields on scales much larger than the size
of these astrophysical objects.
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