

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Social as much as environmental: the drivers of tree biomass in smallholder forest landscape restoration programmes

Citation for published version:

Wells, G, Fisher, J, Jindal, R & Ryan, C 2020, 'Social as much as environmental: the drivers of tree biomass in smallholder forest landscape restoration programmes', *Environmental Research Letters*. https://doi.org/10.1088/1748-9326/ab96d1

Digital Object Identifier (DOI):

10.1088/1748-9326/ab96d1

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Environmental Research Letters

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

ACCEPTED MANUSCRIPT • OPEN ACCESS

Social as much as environmental: the drivers of tree biomass in smallholder forest landscape restoration programmes

To cite this article before publication: Geoff Wells et al 2020 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/ab96d1

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

Social as much as environmental: the drivers of tree biomass in smallholder forest landscape restoration programmes

4 Geoff J. Wells¹, Janet Fisher², Rohit Jindal³, Casey Ryan²

- 5 ¹ Stockholm Resilience Centre, Stockholm University
- 6 ² School of GeoSciences, University of Edinburgh
- 7 ³ Department of Decision Sciences, MacEwan University
- 8 Corresponding author: geoff.wells@su.se

Data availability: the data of the study are available upon request to the authors.

10 Abstract

A major challenge for forest landscape restoration initiatives is the lack of quantitative evidence on how social factors drive environmental outcomes. Here we conduct a transdisciplinary quantitative analysis of the environmental and social drivers of tree biomass accumulation across 639 smallholder farms restoring native tree species in Mexico, Uganda and Mozambique. We use environmental and social data to assess the relative effects of key hypothesised drivers on aboveground biomass accumulation at the farm-level over ten years. We supplement this with a qualitative analysis of perspectives from local farmers and agroforestry technicians on the potential causal mechanisms of the observed social effects. We find that the material wellbeing of farmers (e.g. assets) and access to agroforestry knowledge explain as much variation in biomass as water availability. Local perspectives suggest that this is caused by the higher adaptive capacity of some farmers and their associated ability to respond to social-ecological shocks and stresses. Additionally, the variation in biomass between farms increased over time. Local perspectives suggested that this was caused by emergent exogenous and stochastic influences which cannot be reliably predicted in technical analyses and guidance. To deal with this persistent uncertainty, local perspectives emphasised the need for flexible and adaptive processes at the farm- and village-levels. The consistency of these findings across three countries suggests these findings are relevant to similar forest restoration interventions. Our findings provide novel guantitative evidence of a social-ecological pathway where the adaptive capacity of local land users can improve ecological processes. Our findings emphasize the need for forest restoration programmes to prioritise investment in the capabilities of local land users, and to ensure that rules support, rather than hinder, adaptive management.

33 Introduction

Forest landscape restoration (FLR) initiatives are at the forefront of efforts to reverse
environmental degradation in terrestrial ecosystems (Chazdon et al., 2017). The success of
FLR initiatives, however, has so far has been mixed (J. Aronson & Alexander, 2013;
Mansourian et al., 2017).

A major challenge for restoration and other land management schemes is the difficulty of predicting, controlling and managing the outcomes of interventions in what are often highly complex and variable social-ecological systems (Messier et al., 2015). There is ongoing debate on the drivers of FLR outcomes, with different perspectives giving varying levels of emphasis to environmental and social factors. Some emphasise biophysical aspects and the need to build and support the integrity of ecological communities-there may be social benefits, but objectives can be primarily ecological, knowledge is technical, and minimising human intervention is seen as key (J. C. Aronson et al., 2018; Brudvig et al., 2017; Higgs et al., 2018; Suding et al., 2015; Temperton et al., 2019). Others emphasise the importance of institutional and social contexts that support good governance and adaptive management for sustainable and socially beneficial restoration (Mansourian, 2016; Van Oosten, 2013b). This divergence of perspectives on the drivers of environmental outcomes also extends to the related fields of conservation and payments for ecosystem services (Ezzine-de-Blas et al., 2016; Naeem et al., 2015; Pascual et al., 2014; Soule, 2013), and to the fields of land system science where existing models and approaches continue to struggle to integrate local-level social factors and context (Stephanson and Mascia, 2014; Iwamura et al., 2018). Effective interdisciplinary approaches to FLR and similar interventions remain rare (Huber-Stearns et al., 2017; Mansourian et al., 2017).

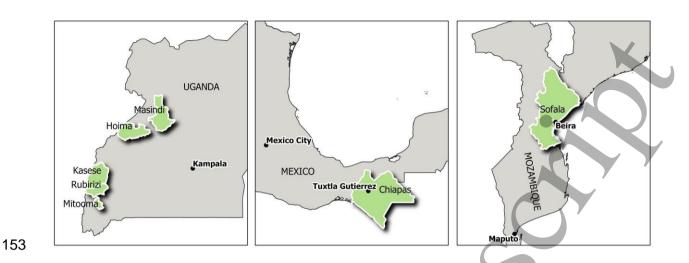
One of the key gaps in interdisciplinary FLR remains the quantification of how local (e.g. household-level) social factors drive biophysical outcomes, and clear knowledge on their causality (Chazdon et al., 2017; Wortley et al., 2013). While the field of restoration ecology has generated a wealth of quantitative empirical research on how environmental aspects drive outcomes (Perring et al., 2015), due to the difficulty of measuring social phenomena, ex-post quantitative field studies testing the effects of social drivers have remained rare (Geist & Galatowitsch, 1999; Kibler et al., 2018; Le et al., 2012; Miller & Hobbs, 2007; Sapkota et al., 2018).

In the land systems, forest transition and FLR literature, existing ex-post field studies that do cover the social drivers of biophysical outcomes have mainly focused on showing how socio-economic factors influence land users to join a scheme (e.g. Baynes et al., 2017; Mullan and Kontoleon, 2012; Yin et al., 2010). While useful for targeting initial tree planting, there remains a dearth of field studies quantitatively assessing how social drivers effect biophysical outcomes (e.g. tree growth) at the local level. The few field studies that do assess biophysical outcomes have mainly focused on broad assessments of project-level factors such as institutional design and economic incentives, and have found that social drivers are secondary to environmental drivers (Le et al., 2014; Yackulic et al., 2011). However, such project-level assessment likely miss the great social diversity at sub-project (e.g. household) levels which likely has great effect on land management and tree care (Nahuelhual et al., 2018; Pritchard et al., 2018; Tittonell et al., 2005).

- $\begin{array}{c} 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\end{array}$

- A consequence of the lack of fine-grained social analyses, is that models and guidance for predicting and managing FLR outcomes are often focused on technical, largely environmental, factors (Wortley et al., 2013). On the other hand, in implementation, land management schemes are challenged to contend with a much broader array of both social and environmental factors (Van Oosten, 2013). Generating quantitative evidence on the relative importance and causal mechanisms of social factors remains a research frontier for FLR and other land management interventions (Chazdon et al., 2017). Here we begin to address this gap through an novel ex-post, field-based interdisciplinary quantitative analysis of environmental and social drivers of tree biomass accumulation across 639 smallholder agroforestry farms restoring native tree species in projects in Mexico, Uganda and Mozambigue. To our knowledge this is the first such quantitative analysis of its kind. Additionally, as we will elaborate, the consistency of our results across three countries strengthens the generalisability of our findings to similar land management interventions. Agroforestry with native species is increasingly advocated as a key method of FLR, where farmers can increase native tree cover while maintaining crop production in agricultural landscapes (Erdmann, 2005; Robiglio & Reyes, 2016; Schroth et al., 2011). Smallholders are estimated to manage approximately 75% of the world's agricultural land (Lowder et al., 2016), and to make up most of the world's poor (Morton, 2007). Thus, many FLR initiatives, and particularly those in developing countries, will engage smallholders-and native-species agroforestry offers a key way to do this. We focus on five key environmental and social factors theorised (by both experts and local land users) to drive biomass outcomes in such interventions: water availability; soil quality; existing tree cover at time of planting; household wealth and living standards (henceforth 'material wellbeing'; White, 2010); and household access to agroforestry knowledge. The environmental variables cover the key ecological considerations in designing agroforestry systems: sufficient water and soil nutrients are fundamental for tree growth, while tree cover at the time of planting serves as a proxy for inter-plant competition (Ashton & Montagnini, 1999; Corona-Núñez et al., 2018). For social drivers, dimensions of household material wellbeing have been shown to be key factors in determining smallholder land management and resource use-people with different levels of deprivation have different capacities to manage land, and rely on different resources (Nahuelhual et al., 2018; Pritchard et al., 2018; Tittonell et al., 2005). For access to agroforestry knowledge, both vertical (expert to farmer) and horizontal (farmer to farmer) extension services (Altieri & Toledo, 2011) have been associated with the successful uptake of new land management techniques amongst smallholders (Baird et al., 2016; Clark et al., 2011).
 - More broadly, access to assets and knowledge are theorised to be central to the adaptive capacity, and associated resilience, of actors in natural resource management-a key factor underpinning the achievement of land management objectives despite emergent shocks and stressors (Thiault et al., 2019). For FLR, social factors, extension services and associated adaptive capacity are postulated to be key enabling factors for successful outcomes (Chazdon et al., 2017; Yin et al., 2013).

- 119 Our research questions are: which of the hypothesised environmental and social drivers 120 have had the greatest effect on the AGB of trees established on agroforestry restoration 121 farms? What are the causal mechanisms of the social effects? What are the implications for 122 smallholder agroforestry, and other, FLR projects?
- 9 123 **Methods**


11 124 Study design

We use tree inventories, social surveys, spatiotemporal biophysical datasets, biomass modelling and mixed effects models to assess the relative effects of a set of hypothesised environmental and social drivers on the accumulation of aboveground biomass (AGB) at the farm-level across all three projects. We focus on AGB as a key metric for understanding changes in forest landscapes (Goetz et al., 2015), acknowledging that the benefits of trees in these landscapes go far beyond biomass. We identified the hypothesised drivers with reference to both the literature and interviews with local farmers and agroforestry technicians (details below). We also used these interviews to supplement the quantitative analysis with local perspectives on the potential causal mechanisms of the observed social effects.

²⁵ 134 Study areas

Our study sites cover farms participating in three smallholder agroforestry schemes: Scolel'te in Chiapas State in southern Mexico; Trees for Global Benefits in the districts of Rubrizi, Mitooma, Kasese, Hoima and Masindi in western Uganda: and the Sofala Community Carbon Programme in Sofala Province in central Mozambigue (Figure 1). The farms in Mexico occur across a 240 km section of the highlands in Chiapas, along an ecological gradient from montane tropical rainforests to subtropical pine-oak rainforests (De Jong et al., 1995, p. 99). Farmers are from a diverse range of villages, spanning five culturally distinct Maya linguistic groups, and mestizo farmers of mixed descent (Ruiz-De-Oña-Plaza et al., 2011). In Uganda, sites occur along a 330 km section of the Albertine Rift characterised by crater lakes and tropical high forests. Farmers are members of a range of different Bantu linguistic groups (ECOTRUST, 2018). In Mozambique, sites are spread across a 30 km area of tropical open miombo woodland (sometimes classified as savannah) bordering the Gorongosa National Park (Ryan et al., 2011; Woollen et al., 2012). Farmers generally share Sena as their local language and are comprised of both long term residents and refugees who have settled in the 1990s following the Mozambican civil war (Hegde et al., 2015).

152 Figure 1. Maps of the regions covered in the study.

Each project implemented its own types of agroforestry with different species and management protocols, designed for different existing land uses and bioclimatic zones (Table 1). The different existing land uses and species likely imply different natural growth rates, and different levels of tree management and care. To enable an analysis across agroforestry types and bioclimatic zones, we use a relative measure of biomass accumulation which controls for different land uses, species and management (see Methods). Each village in the project relied on its own nursery for tree saplings. Assuming sapling quality varies with nursery, to control for variation in sapling quality we nested our analysis at the village level.

While socio-ecologically diverse, all regions share similar levels of variance on the key variables in our analysis (Table 2, in bold). Additionally, all can be categorised as remote areas dominated by subsistence agriculture and/or livestock systems, with high levels of poverty by global and national standards (OPHI, 2015, 2018a, 2018b). Additionally, all three schemes are funded by a mix of donor funds and carbon credits generated under the Plan Vivo Carbon Certification system (Plan Vivo, 2013). They thus have similar organisational processes and land management objectives, where a local organisation employs local technicians to help farmers to restore native tree species, and to monitor tree growth for 10 years after planting. These project processes are integrated with existing village institutions to varying degrees.

173	Table 1. Summary of agroforestry types and land uses
-----	--

Agroforestry type	Description	
Live fence, Mexico	Planting of <i>Cedrela odorata</i> around the edge of existing arable fields or areas of pasture. Initial minimum tree spacing of 3m (a stocking density of 133 stems around a one ha. field).	
Intercropping, Mexico	Establishment of forestry plantations of <i>C. odorata</i> and <i>Swietenia macrophylla</i> alongside existing annual agricultural crops. Initial minimum stocking density of 333 stems per ha.	
Coffee, Mexico	Enrichment planting of <i>C. odorata</i> to provide shade in coffee plantations. Initial minimum stocking density of 180 stems per ha.	
Improved fallow, Mexico	Planting of <i>Pinus oocarp</i> a and <i>Quercus spp.</i> on long term fallows or areas unsuited for agriculture. Initial minimum stocking density of 475 stems per ha.	
Live fence, Mozambique	Planting of native hard wood tree species (typical of miombo woodland) around the edge of existing arable fields. Initial minimum tree spacing of 4m (a stocking density of 84 stems around a one ha. field).	
Intercropping, Uganda	Establishment of forestry plantations of <i>Maesopsis emini</i> i alongside existing annual agricultural crops. Initial minimum stocking density of 333 stems per ha.	

174 Sampling

We analysed 639 randomly-selected households and their associated agroforestry farms (259 in Mexico, 321 in Uganda and 59 in Mozambique). In Mexico and Mozambique, we excluded farms for which we had insufficient social variables. Assessments of missing values showed no structure to the missingness, implying values were missing at random-and thus that our overall sample can continue to be considered random (Kowarik & Templ, 2016). Our sampling frame covers populations of farmers who opted to participate in FLR in three different countries. We therefore interpret our results as case studies having relevance to similar interventions (Yin 2014).

51 183 Data: relative aboveground biomass

To generate farm-level estimates of AGB per hectare, we used farm-level tree inventories, the pantropical allometric models provided by Chave et al. (2009, 2014); and the BIOMASS package in R (Rejou-Mechain et al., 2018). Tree inventories were census-style surveys, measuring all planted trees on the farms and recording species, tree diameter-at-breast-height (DBH; approx. 1.3m), tree height, wood density and plot location. Height was recorded for all trees (including saplings), while DBH was measured for all trees with DBH >= 5cm. The BIOMASS packages in R package accounts for variation in allometry by

bioclimatic zone based on the expected location of the plot. We used Monte Carlo simulationto generate 95% credibility intervals (CI) of AGB on each farm.

Each project implemented different styles of agroforestry (Table 1), with different tree communities for different bioclimatic zones, and so different expected rates of biomass accumulation. To enable comparisons of performance between agroforestry styles and bioclimatic zones, and plots of different ages we calculated a measure of relative aboveground biomass (RAGB). First, we used chronosequences (Walker et al., 2010) and least square log-linear regressions (Paine et al., 2012) to find the expected 'average' AGB per hectare for a particular year (up to 10 years since planting) for a given agroforestry style. We then extracted for each farm the adjusted standardised pearson residuals (i.e. the deviation of the farm AGB from the expected AGB, in standard error units; similar to a z-score) as an indicator of relative performance (Sorice et al. 2014; Kastenholz et al. 2007; Maschinski et al. 1997). We used the conservative RAGB value for each farm (the lower 95% CI RAGB for farms with mean RAGB > 0, and the upper 95% RAGB for farms with mean RAGB < 0, where RAGB = 0 indicates average performance).

24 206 Data: environmental explanatory variables

For water availability, we modelled the mean annual climatic water deficit (CWD: potential evapotranspiration minus actual evapotranspiration) since planting on each farm (for a similar approach see Poorter et al. 2016) using farm location data, global spatio-temporal records of temperature and rainfall since tree planting (data from Willmot et al. 2014; digital-elevation-model assisted interpolation from weather station records to 0.5 degree resolution), digital elevation models (INEGI, 2018; USGS, 2006; 30m resolution) and the CWD R function from Redmond (2015). For soil quality, we used estimates of cation exchange capacity (CEC) from the ISRIC SoilGrids global spatial datasets (Hengl et al. 2017; from soil field measurements extrapolated using 158 remote-sensing-based soil covariates at 250m resolution). For existing tree cover, we used farm locations and assessments of tree cover from spectral Landsat and MODIS remote sensing data (Sexton et al., 2013; 30m resolution) to estimate the proportion of tree cover on the plot in the year of planting. We also included the initial stocking density of tree on each plot as a supplementary measure of competition., and the size of the farm to check for bias from farm size (e.g. the overestimation of biomass on smaller farms).

Data on CWD, CEC and initial tree cover are at a coarser resolution than all other variables, which all operate at the farm-level or similar scales. The spatial mismatch between CWD and CEC and our outcome measurements increases the likelihood of random error in the modelling, which would weaken their effects in the regression analysis. Nonetheless, we include these variables to assess whether broad variation in these soil and climate variables have an overwhelmingly large effect on biomass accumulation that renders social factors obsolete.

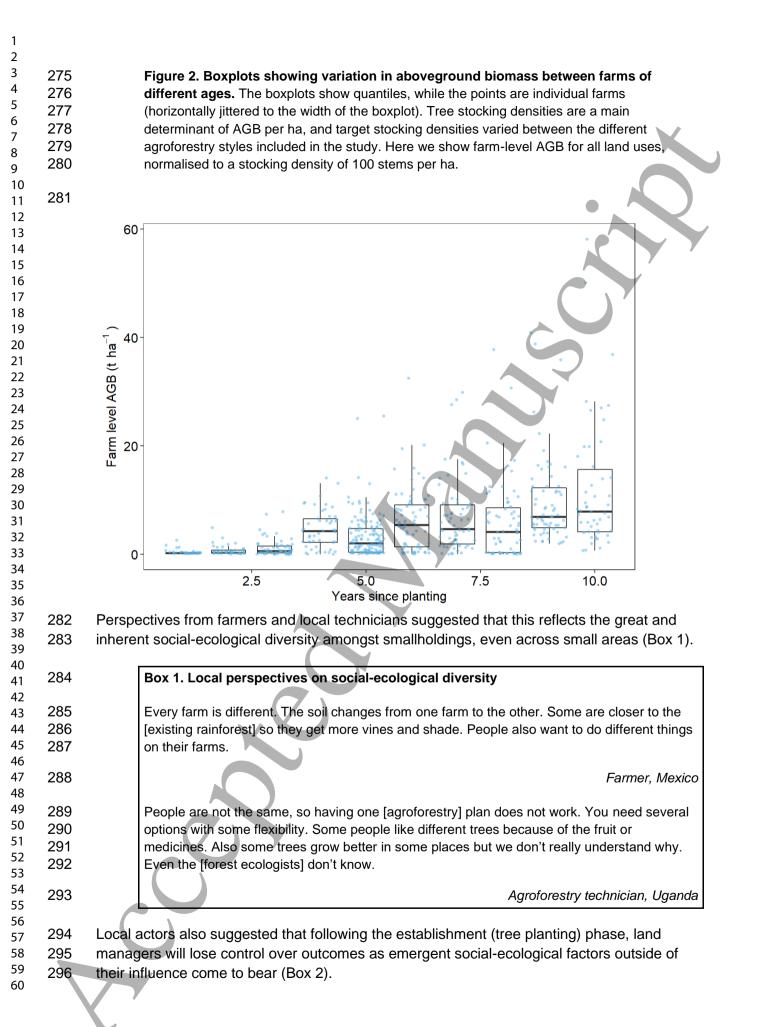
⁵⁴ 229 Data: social explanatory variables
 ⁵⁵ 229 Data: social explanatory variables

For material wellbeing, we constructed an index of multi-dimensional material wellbeing
using similar indicators and the same 'counting' approach as the widely-used global
multidimensional poverty indicator (MPI; see Alkire & Jahan, 2018). Data were sourced from
household surveys conducted with the randomly selected farmers in each country. All

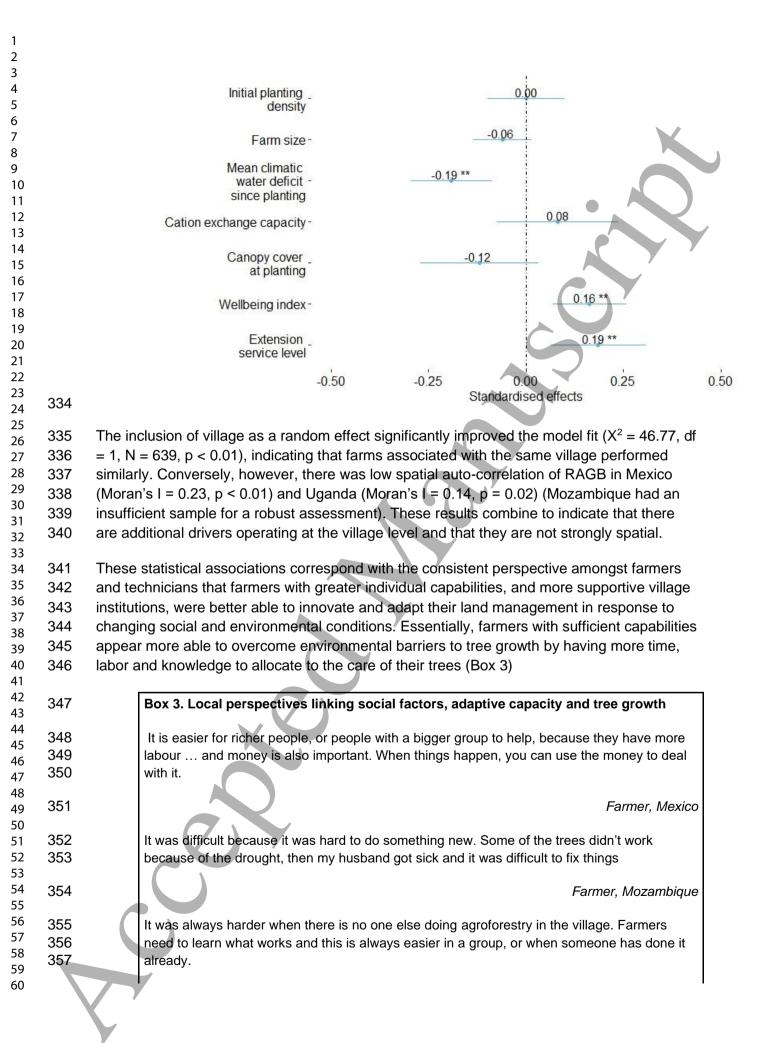
Table 2. Descriptive statistics of variables. Variables in bold are included in the main model.

	Mexico	0	Moz	zambique	Ugan	da
Variable	n	Mean ± SD (% for binary)	n	Mean ± SD (% for binary)	n	Mean ± SD (% for binary
Travel time to city (mins)	259	154.45 ± 84.18	59	225.42 ± 16.75	321	71.01 ± 23.68
Amount land (ha)	259	9.38 ± 6.74	59	1.51 ± 1.45	321	10.76 ± 14.67
Literacy	259	93%	59	44%	321	74%
Valuable assets (2nd model only)	259	52%	59	12%	83	29%
Above primary schooling 2nd model only)	259	53%	59	17%	60	25%
Employment contract (2nd model only)	106	8%	59	15%	85	11%
Formal land tenure	259	80%	59	51%	321	24%
People in household	259	4.27 ± 1.4	59	6.22 ± 1.92	321	8.71 ± 0.88
Wellbeing index (main model: simpler, full sample)	259	3.93 ± 1.91	59	2.29 ± 0.89	321	1.99 ± 1.01
Wellbeing index (2nd model only: broader, partial sample)	106	5.06 ± 2.13	59	2.73 ± 1.16	60	1.68 ± 1.13
Village AF experience (years)	259	4.61 ± 2.8	59	2.54 ± 2.28	321	2.5 ± 2.3
Technician in village	259	85%	59	36%	321	70%
Extension services index	259	1.27 ± 0.47	59	0.59 ± 0.56	321	0.93 ± 0.55
Tree cover at planting (%/ha)	259	42.59 ± 13.06	59	10.04 ± 3.18	321	7.87 ± 2.36
Cation exchange capacity (cmol+/kg)	259	25.92 ± 3.54	59	9.38 ± 0.87	321	15.79 ± 3.49
Mean climatic water deficit (mm/yr)	259	-296.35 ± 139.11	59	-399.15 ± 119.75	321	-294.7 ± 128.
Initial planting density (stems/ha)	259	426.85 ± 242.68	59	75 ± 6.27	321	365.09 ± 24.2
Farm size (ha)	259	1.01 ± 0.43	59	1.1 ± 0.94	321	1.67 ± 1.31
Relative aboveground biomass	259	0.01 ± 0.74	59	0 ± 0.57	321	0.01 ± 0.79
$\langle \rangle$						

1		
2		
3 4	235	
4 5		
6	236	surveys were conducted face-to-face with the person responsible for managing the farm (i.e.
7	237	usually the farm owner). Interviews were conducted with the help of a local translator (see
8	238	S1 in the Supplementary Material for further details). We followed a similar approach to
9	239	construct an index of access to extension services based indicators identified from local
10	240	consultations and the existing literature (Altieri & Toledo, 2011; Birner et al., 2009; Krishna,
11 12	241	2004). All quantitative variables are summarised at Table 2.
13		
14	242	Data: local perspectives on causality
15		
16	243	To better frame our hypotheses, and to understand how social drivers operate, we
17	244	conducted semi-structured interviews with 39 farmers and 23 technicians during field visits to
18 19	245	Mexico, Uganda and Mozambique (29 in Mexico, 13 in Uganda and 20 in Mozambique). We
20	246	used a purposive sample to speak to farmers with varying levels of AGB performance and
21	247	the main technicians associated with those farms. We conducted these interviews as broad,
22	248	semi-structured conversations about the respondent's experience throughout the project,
23	249	including open questions on why some farmers have bigger or different trees compared to
24	250	others. Interviews were conducted with prior informed consent and anonymity was
25 26	251	maintained throughout. We documented interviews in notes and audio recordings,
26 27	252	sometimes with the assistance of translators fluent in the local languages.
28	202	
29	253	Analysis
30		
31	254	For the quantitative analysis, we used linear mixed models with REML estimation, and
32	255	village and country as a random effect (minimum of 12 households per village). Diagnostics
33 34	256	indicated a suitable fit with normally distributed residuals with homogenous variance and no
35	257	significant collinearity among independent variables (Zuur et al., 2007). We also
36	258	subsequently conducted a likelihood ratio test to check the significance of the random effect
37	259	of village (Kuznetsova et al., 2017). Given the varying resolution of the variables in our
38	260	analyses, we used variograms to assess the spatial dependence of all independent variables
39	261	and the dependent variable (RAGB), and global tests of Moran's I and correlograms to
40 41	262	assess spatial autocorrelation in the residuals of the main model. We also plotted model
41		
43	263	residuals against farm size to check for bias in biomass estimates from large trees on small
44	264	farm sizes. All analyses were performed in R, version 3.5.1 (R Core Team, 2019), and the
45	265	model code and diagnostics are in the Supplementary Material, section S3. For the
46	266	qualitative analysis, we used a thematic analysis (Ritchie et al. 2013) to frame the
47	267	hypotheses around material wellbeing and agroforestry knowledge and, following the
48 49	268	quantitative analysis, to examine in more depth the possible causal mechanisms behind the
49 50	269	observed social effects. We include illustrative (anonymised) quotes from respondents in the
51	270	results.


52 Results 271 53

Across our sites, farm-level AGB varied greatly, and this variation increased over time 272 56 (Figure 2). 273


57 58 274 59

54

55

2		
3	297	Box 2. Local perspectives on a loss of control over emergent social-ecological factors
4 5	-	
6	298	There have been big social and environmental changes since the beginning of the project. In
7	299	some places there were floods, and in other years there were small fires. Other years it was
8	300	ok. Also there are now more people and less land. [The project processes] had to change but
9	301	you can't control everything.
10 11	302	Agroforestry technician, Mexico
12		
13	303	It was easy [to grow trees] at first, but then some [farms] do better than others. We had a dry
14 15	304	year, so people that had just then planted now have smaller trees. Some people did a better
15 16	305	job at watering [the saplings], but even then that didn't always work.
17	306	Farmer, Mozambique
18	300	Farmer, Wozambique
19 20	307	In the regression analysis, the social factors of household material wellbeing and access to
20 21	308	extension services each explained similar amounts of variation in RAGB to that explained by
22	309	climatic water deficit (Figure 3). Cation exchange capacity, tree cover and initial planting
23	310	density had no significant effects. The relative homogeneity of residuals across countries
24	311	(Supplementary Material, Section S3a.i), and supplementary individual regressions for the
25	312	limited sample sizes in each country (Supplementary Material, Section S3b), indicate that
26 27	313	these results are robust across our sites. Additionally, farm size had no apparent influence
28	314	on the model residuals (S3a.ii), indicating that the results are robust to the influence of large
29	315	trees on small farms.
30	010	
31 32	316	Our results also appear robust to spatial autocorrelation (Supplementary Material, Section
33	317	S3d). While variograms indicate strong spatial dependence of some of our environmental
34	318	independent variables (CWD, CEC and initial tree cover), all other independent variables
35	319	and our dependent variables appear strongly spatially independent. Crucially, correlograms
36 37	320	of Moran's I of model residuals found no significant spatial dependence at different spatial
38	321	lags in Uganda and Mozambique, and only a very weak dependence at very large spatial
39	322	scales in Mexico (Moran's I = 0.05 , p < 0.01 , at distance class midpoint of 1.33 decimal
40	323	degrees; 148km at the equator).
41 42		
42 43	324	Broadly, these results suggest that social factors have a measurable impact on biomass
44	325	accumulation. Given that variability in AGB increases over time and that we only model
45	326	growth in the first ten years since planting, effects are likely to be greater by the time trees
46 47	327	reach maturity (25 to 40 years). Our conclusions on the relative influence of the
47 48	328	environmental factors of CWD, CEC and initial tree cover are limited by the coarser
49	329	resolution these variables. However, we view that the lack of significantly larger effects of
50	330	these environmental variables relative to social variables does emphasise that both are
51	331	integral to biomass accumulation in FLR schemes.
52 53	332	Figure 3. Effects of hypothesised drivers on relative aboveground biomass.
54	333	Standardised estimates with 95% confidence intervals. * = significant with 95% confidence
55	200	
56		
57 58		
59		
60		
		V

1		
2 3	358	Agroforestry technicians, Uganda
4	350	Agroiorestry technicians, oganda
5	359	I lived next door to the house where the [agroforestry technicians] would stay. It helped to
6 7	360	have them next door. They would always come and give advice which helped the trees.
8		
9	361	Farmer, Mozambique
10	200	Mana has all such its such as a delling showed some significant offects much of the variation is
11 12	362	More broadly, while our modelling showed some significant effects, most of the variation in
13	363 364	AGB remained unexplained, despite the fact that we had accounted for (to the best of our ability) the major drivers suggested by least stakeholders and the technical literature. While
14	365	ability) the major drivers suggested by local stakeholders and the technical literature. While our use of a relative measure of biomass accumulation, and the nesting of our analysis at
15	366	village level, controls for broad differences in species, sapling quality and land management,
16 17	367	residual variation is likely explained by other ecological (e.g. disturbance; species
18	368	interactions; micro-climates) and social factors (e.g. the nuances of household participation
19	369	in resource governance institutions; within-household interactions) not covered in our
20	370	analysis. Combined with local perspectives on the inherent variability and dynamism of the
21 22	371	social-ecological system (Box 1), this suggests that there are no simple explanations for
23	372	variation in land management outcomes in our systems – drivers are likely diverse and very
24	373	hard to measure and predict. In this context of continued uncertainty, local perspectives
25	374	emphasised the importance of adaptive learning at the project, village and farm levels. As an
26 27	375	agroforestry technician in Uganda told us: "New things arrive in the project that you cannot
28	376	anticipate. So we need to be flexible if we can, while still caring for the trees and forest.
29	377	When changes come, we all change as one."
30		
31 32	378	Discussion
33	070	In this study, we find store a super Clather as ideas to that the material wells is a super large design.
34	379	In this study, we find strong quantitative evidence that the material wellbeing and knowledge
35	380	of farmers are key drivers of biomass accumulation in smallholder agroforestry FLR
36 37	381 382	interventions. To the best of our knowledge, this phenomenon has not previously been demonstrated quantitatively using ex-post field data linking directly to biophysical outcomes.
38	383	Additionally, the quantitative evidence suggests that these factors operate at both the village
39	383 384	and household levels.
40 41	504	
41	205	

Local perspectives emphasised that the broad causal mechanism for these social effects was that farmers with more resources and knowledge, and better support from village institutions, were better able to adapt their land use to emergent social-ecological shocks and stresses. This reaffirms existing theories on the importance of individual adaptive capacity and adaptive cogovernance for land management programmes (Thiault et al., 2019).

Our findings apply across sites in three countries. Given the need for FLR and other restoration programmes to engage rural smallholders in developing countries, we contend that our results are of relevance to the broader restoration field, and other land management interventions such as conservation and payments for ecosystem service schemes. Below we highlight two key contributions.

⁵⁷ 396 Social resilience and adaptive capacity drive restoration outcomes
 ⁵⁸

A part of the restoration literature continues to view social factors and objectives as secondary (albeit admirable) considerations for restoration initiatives, relative to more important biophysical considerations (Aronson & Alexander, 2013; Higgs et al., 2018; Suding et al., 2015; Temperton et al., 2019). This view is also prominent in part of the associated conservation and payments for ecosystem services literatures, where social objectives are sometimes seen as aspirational but not integral (and sometimes as a distraction) to technical and biophysical factors (Ezzine-de-Blas et al., 2016; Naeem et al., 2015; Soule, 2013). Our results provide robust empirical evidence demonstrating that the social situation of local resource users has a significant, tangible effect on biophysical restoration outcomes. This accords with existing literature on the importance of social factors supporting good governance (Mansourian, 2016; Van Oosten, 2013; Baynes et al. 2013), and extends this to emphasise the importance of supporting the adaptive capacity of individual participants. It also contrasts with coarser (e.g. project-level) analyses which have found no effect from social factors on biomass accumulation in FLR project (Le et al., 2014). By analysing at the household-level we have uncovered novel evidence on how social diversity drives biomass outcomes. While improvements in ecological processes are often theorised to benefit humans (Díaz et al., 2018; Chazdon and Brancalion, 2019), here we have clear evidence of a reciprocal pathway: in certain contexts improvements to human capabilities can benefit ecological processes. Essentially, the effectiveness of a land management intervention may only be as good as the social-economic resilience and adaptive capacity of its local participants. Restoration, and related conservation and payments for ecosystem services projects, should thus put such factors on par with biophysical and other technical considerations. One interpretation of this finding could be that restoration and similar programmes should avoid engaging poorer people with low capabilities. However, where interventions are aiming for a socially beneficial and landscape-level transformation, excluding more vulnerable people is likely not an option. On the social side, interventions would need to consider the social impacts of excluding already vulnerable and marginalised people from natural resource management programmes, and the related risk of elite capture (Persha & Andersson, 2014). Excluding particular actors could also have knock on effects on community support for the project, and associated local perceptions of project legitimacy (Pascual et al., 2014). Regarding landscape-level transformation, excluding particular actors could restrict interventions to site-level rather than landscape-level interventions, which would likely not achieve the changes that many hope for (Chazdon et al., 2016; Lamb et al., 2005). It could also drive 'leakage' where conservation of one place in the landscape just moves degradation elsewhere (Bode et al., 2015). Programmes seeking socially beneficial, landscape-level change will thus likely need to engage many actors, including vulnerable people. Allocating resources and designing institutions to supporting the adaptive capacity and capabilities of local resource users will be key. This will be particularly important for engaging smallholders, who are often poorer and control much of the world's land (Lowder et al., 2016; Morton, 2007).

438 Accepting uncertainty and supporting adaptive management

- A second key finding of our study is that great variability in land management outcomes may be the norm rather than the exception in smallholder FLR and similar projects, even amongst sites in similar areas with similar land use objectives. Further, this variability likely increases over time. Local perspectives suggest that, rather than technical staff and FLR administrators progressively refining their knowledge and management of the system to reduce variability in outcomes, such actors may in fact begin to lose influence over land management outcomes after the initial establishment of the system. After this, exogenous and stochastic influences may come to dominate, and early differences in the quality of tree planting are exacerbated, pushing the system beyond the predictive and managerial control of land analysts and users.
- Alongside our findings about local adaptive capacity, this emphasises the need to moderate expectations of being able to accurately design and predict interventions and outcomes (Brudvig et al., 2017). Instead our evidence supports calls to invest in flexible rules and institutions that support rather than hinder adaptive management in restoration and related initiatives (Mansourian et al., 2017; Murray & Marmorek, 2003). Adaptive management is increasingly argued to be key for dealing with uncertainty and complexity in social-ecological systems (Schultz et al., 2015), and our quantitative and qualitative findings support such an approach. This speaks to an ongoing tension in the restoration and conservation literature between those who wish to standardise 'best practice' approaches, and those who wish to maintain flexibility (Aronson et al., 2018; Higgs et al., 2018; Wunder et al., 2018). Our findings support adaptive management as one of the core principles of FLR (Besseau et al., 2018). We contend that all initial designs and predictions of restoration and other land management projects are likely to turn out to be at least a little inaccurate in practice-investing in adaptive project processes to adjust and correct interventions over time will therefore be key.

Conclusion

Our work offers novel evidence on the importance of social factors in driving outcomes in FLR and similar initiatives. We have shown across several hundred farms in three countries that the capability and knowledge of land users can drive outcomes alongside environmental factors—and that this is likely tied to the capacity of land users to respond and adapt to social-ecological shocks and stresses. While there are no doubt many other drivers of outcomes in our sites, and while the magnitude of the effects will likely vary across contexts, we argue that the consistency of our findings across three sites strengthens their relevance for other sites and programmes.

Broadly, we contend that restoration initiatives and similar land management programmes must build and maintain the adaptive capacity of smallholders and other local actors through both material and institutional support. Additionally, project designs, funding and rules must be flexible enough to support adaptive management in the context of continued uncertainty. Overall, we suggest that the field of 'restoration ecology' must become 'adaptive restoration social-ecology' if it is to succeed.

References

Alkire, S., & Jahan, S. (2018). The new global MPI 2018: Aligning with the sustainable

1 2		
2 3 4	481	development goals.
5 6	482	Altieri, M. A., & Toledo, V. M. (2011). The agroecological revolution in Latin America:
7 8	483	Rescuing nature, ensuring food sovereignty and empowering peasants. Journal of
9 10	484	Peasant Studies, 38(3), 587–612.
11 12	485	Aronson, J. C., Simberloff, D., Ricciardi, A., & Goodwin, N. (2018). Restoration science does
13 14	486	not need redefinition. Nature Ecology & Evolution, 2(6), 916.
15 16 17	487	Ashton, M. S., & Montagnini, F. (1999). The silvicultural basis for agroforestry systems. CRC
17 18 19	488	Press.
20 21	489	Baird, J., Jollineau, M., Plummer, R., & Valenti, J. (2016). Exploring agricultural advice
22 23	490	networks, beneficial management practices and water quality on the landscape: A
24 25	491	geospatial social-ecological systems analysis. Land Use Policy, 51, 236–243.
26 27	492	Besseau, P., Graham, S. and Christophersen, T., 2018. Restoring forests and landscapes:
28 29	493	the key to a sustainable future. Global Partnership on Forest and Landscape
30 31	494	Restoration, Vienna, Austria.
32 33 34	495	Birner, R., Davis, K., Pender, J., Nkonya, E., Anandajayasekeram, P., Ekboir, J., Benin,
35 36	496	S. (2009). From best practice to best fit: A framework for designing and analyzing
30 37 38 39 40	497	pluralistic agricultural advisory services worldwide. Journal of Agricultural Education
	498	and Extension, 15(4), 341–355.
41 42	499	Bode, M., Tulloch, A. I., Mills, M., Venter, O., & W. Ando, A. (2015). A conservation planning
43 44	500	approach to mitigate the impacts of leakage from protected area networks.
45 46	501	Conservation Biology, 29(3), 765–774.
47 48	502	Brudvig, L. A., Barak, R. S., Bauer, J. T., Caughlin, T. T., Laughlin, D. C., Larios, L., …
49 50	503	Zirbel, C. R. (2017). Interpreting variation to advance predictive restoration science.
51 52 53	504	Journal of Applied Ecology, 54(4), 1018–1027.
54 55	505	Baynes, J., Herbohn, J. and Unsworth, W. (2017). Reforesting the grasslands of Papua New
56 57	506	Guinea: The importance of a family-based approach. Journal of Rural Studies, 56,
57 58 59 60	507	pp.124-131.
	508	Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009).

1		
2 3 4	509	Towards a worldwide wood economics spectrum. Ecol Lett, 12(4), 351–66.
5 6	510	https://doi.org/10.1111/j.1461-0248.2009.01285.x
7 8	511	Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B.,
9 10	512	Vieilledent, G. (2014). Improved allometric models to estimate the aboveground
11 12	513	biomass of tropical trees. Glob Chang Biol, 20(10), 3177–90.
13 14	514	https://doi.org/10.1111/gcb.12629
15 16	515	Chazdon, R. L., Brancalion, P. H., Laestadius, L., Bennett-Curry, A., Buckingham, K.,
17 18 19	516	Kumar, C., Wilson, S. J. (2016). When is a forest a forest? Forest concepts and
20 21	517	definitions in the era of forest and landscape restoration. Ambio, 45(5), 538–550.
22 23	518	Chazdon, R. L., Brancalion, P. H., Lamb, D., Laestadius, L., Calmon, M., & Kumar, C.
24 25	519	(2017). A policy-driven knowledge agenda for global forest and landscape
26 27	520	restoration. Conservation Letters, 10(1), 125–132.
28 29	521	Chazdon, R. and Brancalion, P. (2019). Restoring forests as a means to many ends.
30 31	522	Science, 365(6448), 24-25.
32 33	523	Clark, W. C., Tomich, T. P., van Noordwijk, M., Guston, D., Catacutan, D., Dickson, N. M., &
34 35 36	524	McNie, E. (2011). Boundary work for sustainable development: Natural resource
36 37 38	525	management at the Consultative Group on International Agricultural Research
39 40	526	(CGIAR). Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0900231108
41 42	527	Corona-Núñez, R. O., Campo, J., & Williams, M. (2018). Aboveground carbon storage in
43 44	528	tropical dry forest plots in Oaxaca, Mexico. Forest Ecology and Management, 409,
45 46	529	202–214.
47 48	530	De Jong, B. H. J., Montoyagomez, G., Nelson, K., & Soto-Pinto, L. (1995). Community
49 50	531	Forest Management and Carbon Sequestration—A Feasibility Study from Chiapas,
51 52 53	532	Mexico. Interciencia, 20(6), 409.
53 54 55	533	Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R. T., Molnár, Z.,
56 57	534	Brauman, K. A. (2018). Assessing nature's contributions to people. Science,
58 59	535	359(6373), 270–272.
60	536	Dupuy, J. M., Hernández-Stefanoni, J. L., Hernández-Juárez, R. A., Tetetla-Rangel, E.,

1 2		
3 4	537	López-Martínez, J. O., Leyequién-Abarca, E., May-Pat, F. (2012). Patterns and
5 6	538	correlates of tropical dry forest structure and composition in a highly replicated
7 8	539	chronosequence in Yucatan, Mexico. Biotropica, 44(2), 151–162.
9 10 11 12	540	ECOTRUST. (2018). Annual Report: Trees for Global Benefits, 2018. ECOTRUST.
	541	Erdmann, T. K. (2005). Agroforestry as a tool for restoring forest landscapes. In Forest
13 14	542	Restoration in Landscapes (pp. 274–284). Springer.
15 16	543	Ezzine-de-Blas, D., Wunder, S., Ruiz-Pérez, M., & del Pilar Moreno-Sanchez, R. (2016).
17 18 19	544	Global patterns in the implementation of payments for environmental services. PloS
20 21	545	One, 11(3).
22 23	546	Geist, C., & Galatowitsch, S. M. (1999). Reciprocal model for meeting ecological and human
24 25	547	needs in restoration projects. Conservation Biology, 13(5), 970–979.
26 27	548	Goetz, S. J., Hansen, M., Houghton, R. A., Walker, W., Laporte, N., & Busch, J. (2015).
28 29 30 31 32 33 34 35 36	549	Measurement and monitoring needs, capabilities and potential for addressing
	550	reduced emissions from deforestation and forest degradation under REDD+.
	551	Environmental Research Letters, 10(12).
	552	Hegde, R., Bull, G. Q., Wunder, S., & Kozak, R. A. (2015). Household participation in a
37 38	553	payments for environmental services programme: The Nhambita Forest Carbon
39 40	554	Project (Mozambique). Environment and Development Economics, 20(5), 611–629.
41 42	555	Higgs, E. S., Harris, J. A., Heger, T., Hobbs, R. J., Murphy, S. D., & Suding, K. N. (2018).
43 44	556	Keep ecological restoration open and flexible. Nature Ecology & Evolution, 2(4), 580.
45 46	557	Huber-Stearns, H. R., Bennett, D. E., Posner, S., Richards, R. C., Fair, J. H., Cousins, S. J.,
47 48	558	& Romulo, C. L. (2017). Social-ecological enabling conditions for payments for
49 50	559	ecosystem services. Ecology and Society, 22(1).
51 52	560	Iwamura, T., le Polain de Waroux, Y. and Mascia, M.B. (2018). Considering people in
53 54 55	561	systematic conservation planning: insights from land system science. Frontiers in
56 57	562	Ecology and the Environment, 16(7), 388-396.
58 59	563	INEGI. (2018). Continuo de Elevaciones Mexicano 3.0 (CEM 3.0). Retrieved from
60	564	http://www.inegi.org.mx/geo/contenidos/datosrelieve/continental/continuoelevaciones
1		

1		
2 3 4	565	.aspx
5 6	566	Kastenholz, E., & Rogrigues, A. (2007). Discussing the potential benefits of hiking tourism in
7 8	567	Portugal. Anatolia, 18(1), 5–21.
9 10	568	Kibler, K. M., Cook, G. S., Chambers, L. G., Donnelly, M., Hawthorne, T. L., Rivera, F. I., &
11 12	569	Walters, L. (2018). Integrating sense of place into ecosystem restoration: A novel
13 14	570	approach to achieve synergistic social-ecological impact. Ecology and Society, 23(4).
15 16 17	571	https://doi.org/10.5751/ES-10542-230425
17 18 19	572	Kowarik, A., & Templ, M. (2016). Imputation with the R Package VIM. Journal of Statistical
20 21	573	Software, 74(7), 1–16.
22 23	574	Krishna, A. (2004). Understanding, measuring and utilizing social capital: Clarifying concepts
24 25	575	and presenting a field application from India. Agricultural Systems, 82(3), 291–305.
26 27	576	Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). ImerTest package: Tests in
28 29	577	linear mixed effects models. Journal of Statistical Software, 82(13).
30 31 32	578	Lamb, D., Erskine, P. D., & Parrotta, J. A. (2005). Restoration of degraded tropical forest
32 33 34	579	landscapes. Science, 310(5754), 1628–1632.
35 36	580	Le, H. D., Smith, C., Herbohn, J., & Harrison, S. (2012). More than just trees: Assessing
37 38	581	reforestation success in tropical developing countries. Journal of Rural Studies,
39 40	582	28(1), 5–19.
41 42	583	Le, H.D., Smith, C. and Herbohn, J. (2014). What drives the success of reforestation projects
43 44	584	in tropical developing countries? The case of the Philippines. Global Environmental
45 46	585	Change, 24, 334-348.
47 48 49	586	López-Martínez, J. O., Hernández-Stefanoni, J. L., Dupuy, J. M., & Meave, J. A. (2013).
50 51	587	Partitioning the variation of woody plant β -diversity in a landscape of secondary
52 53	588	tropical dry forests across spatial scales. Journal of Vegetation Science, 24(1), 33-
54 55	589	45.
56 57	590	Lowder, S. K., Skoet, J., & Raney, T. (2016). The number, size, and distribution of farms,
58 59	591	smallholder farms, and family farms worldwide. World Development, 87, 16–29.
60	592	Mansourian, S. (2016). Understanding the relationship between governance and forest

2 3	593	landscape restoration. Conservation and Society, 14(3), 267.
4 5 7 8 9 10 11 12	594	Mansourian, S., Dudley, N., & Vallauri, D. (2017). Forest Landscape Restoration: Progress
	595	in the last decade and remaining challenges. Ecological Restoration, 35(4), 281–288.
	596	Maschinski, J., Frye, R., & Rutman, S. (1997). Demography and population viability of an
	597	endangered plant species before and after protection from trampling. Conservation
13 14	598	Biology, 11(4), 990–999.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	599	Messier, C., Puettmann, K., Chazdon, R., Andersson, K. P., Angers, V. A., Brotons, L.,
	600	Levin, S. A. (2015). From management to stewardship: Viewing forests as complex
	601	adaptive systems in an uncertain world. Conservation Letters, 8(5), 368–377.
	602	Meyfroidt, P. (2016). Approaches and terminology for causal analysis in land systems
	603	science. Journal of Land Use Science, 11(5), 501–522.
	604	Miller, J. R., & Hobbs, R. J. (2007). Habitat restoration-Do we know what we're doing?
	605	Restoration Ecology, 15(3), 382–390.
	606	Morton, J. F. (2007). The impact of climate change on smallholder and subsistence
	607	agriculture. Proceedings of the National Academy of Sciences, 104(50), 19680-
	608	19685.
	609	Mullan, K. and Kontoleon, A. (2012). Participation in Payments for Ecosystem Services
	610	programmes: accounting for participant heterogeneity. Journal of Environmental
	611	Economics and Policy, 1(3), 235-254.
	612	Murray, C., & Marmorek, D. (2003). Adaptive management and ecological restoration.
45 46	613	Ecological Restoration of Southwestern Ponderosa Pine Forests, 417–428.
47 48	614	Naeem, B. S., Ingram, J. C., Varga, A., Agardy, T., Barten, P., Bennett, G., Wunder, S.
49 50	615	(2015). Get the science right when paying for nature's services. Science, 347(6227),
51 52	616	1206–1207. https://doi.org/10.1126/science.aaa1403
53 54 55	617	Nahuelhual, L., Benra, F., Laterra, P., Marin, S., Arriagada, R., & Jullian, C. (2018). Patterns
56 57	618	of ecosystem services supply across farm properties: Implications for ecosystem
57 58 59	619	services-based policy incentives. Science of the Total Environment, 634, 941–950.
60	620	OPHI. (2015). Global MPI Country Briefing: Mexico, 2015. In Multidimensional Poverty Index

1 2		
3 4	621	Data Bank. OPHI, University of Oxford.
5 6	622	OPHI. (2018a). Global MPI Country Briefing: Mozambique, 2018. In Multidimensional
7 8	623	Poverty Index Data Bank. OPHI, University of Oxford.
9 10	624	OPHI. (2018b). Global MPI Country Briefing: Uganda, 2018. In Multidimensional Poverty
11 12	625	Index Data Bank. OPHI, University of Oxford.
13 14	626	Paine, C., Marthews, T. R., Vogt, D. R., Purves, D., Rees, M., Hector, A., & Turnbull, L. A.
15 16	627	(2012). How to fit nonlinear plant growth models and calculate growth rates: An
17 18	628	update for ecologists. Methods in Ecology and Evolution, 3(2), 245–256.
19 20 21	629	Pascual, U., Phelps, J., Garmendia, E., Brown, K., Corbera, E., Martin, A., … Muradian, R.
21 22 23	630	(2014). Social Equity Matters in Payments for Ecosystem Services. BioScience,
24 25	631	64(11), 1027–1036. https://doi.org/10.1093/biosci/biu146
26 27	632	Perring, M. P., Standish, R. J., Price, J. N., Craig, M. D., Erickson, T. E., Ruthrof, K. X., …
28 29	633	Hobbs, R. J. (2015). Advances in restoration ecology: Rising to the challenges of the
30 31	634	coming decades. Ecosphere, 6(8). https://doi.org/10.1890/ES15-00121.1
32 33	635	Persha, L., & Andersson, K. (2014). Elite capture risk and mitigation in decentralized forest
34 35	636	governance regimes. Global Environmental Change, 24, 265–276.
36 37	637	Plan Vivo. (2013). The Plan Vivo Standard for Community Payments for Ecosystem Services
38 39 40	638	Programmes [Report]. The Plan Vivo Foundation.
40 41 42	639	Poorter, L., Bongers, F., Aide, T. M., Zambrano, A. M. A., Balvanera, P., Becknell, J. M., …
43 44	640	Chazdon, R. L. (2016). Biomass resilience of Neotropical secondary forests. Nature,
45 46	641	530(7589), 211.
47 48	642	Pritchard, R., Ryan, C. M., Grundy, I., & van der Horst, D. (2018). Human Appropriation of
49 50	643	Net Primary Productivity and Rural Livelihoods: Findings From Six Villages in
51 52	644	Zimbabwe. Ecological Economics, 146, 115–124.
53 54	645	Ritchie, J., Lewis, J., Nicholls, C. M., Ormston, R., & others. (2013). Qualitative research
55 56	646	practice: A guide for social science students and researchers. Sage Publications.
57 58 59	647	R Core Team. (2019). R: A Language and Environment for Statistical Computing. Retrieved
60	648	from http://www.R-project.org/
	,	
		T

1 2		
3 4	649	Redmond, M. (2015). R script for calculating potential and actual evapotranspiration and
5 6	650	climatic water deficit at a monthly time step at sites. Retrieved from
7 8	651	https://naes.unr.edu/weisberg/old_site/downloads/
9 10	652	Rejou-Mechain, M., Tanguy, A., Piponoit, C., Chave, J., & Herault, B. (2018). BIOMASS:
11 12	653	Estimating Aboveground Biomass and Its Uncertainty in Tropical Forests. Retrieved
13 14	654	from https://CRAN.R-project.org/package=BIOMASS
15 16 17	655	Robiglio, V., & Reyes, M. (2016). Restoration through formalization? Assessing the potential
18 19	656	of Peru's Agroforestry Concessions scheme to contribute to restoration in agricultural
20 21	657	frontiers in the Amazon region. World Development Perspectives, 3, 42–46.
22 23	658	Ruiz-De-Oña-Plaza, C., Soto-Pinto, L., Paladino, S., Morales, F., & Esquivel, E. (2011).
24 25	659	Constructing public policy in a participatory manner: From local carbon sequestration
26 27	660	projects to network governance in Chiapas, Mexico. In Carbon Sequestration
28 29 30	661	Potential of Agroforestry Systems (pp. 247–262). Springer.
31	662	Ryan, C. M., Williams, M., & Grace, J. (2011). Above-and belowground carbon stocks in a
32 33 34 35 36	663	miombo woodland landscape of Mozambique. Biotropica, 43(4), 423-432.
	664	Sapkota, R. P., Stahl, P. D., & Rijal, K. (2018). Restoration governance: An integrated
37 38	665	approach towards sustainably restoring degraded ecosystems. Environmental
39 40	666	Development, 27, 83–94. https://doi.org/10.1016/j.envdev.2018.07.001
41 42	667	Schroth, G., da Mota, M. do S. S., Hills, T., Soto-Pinto, L., Wijayanto, I., Arief, C. W., &
43 44	668	Zepeda, Y. (2011). Linking carbon, biodiversity and livelihoods near forest margins:
45 46	669	The role of agroforestry. In Carbon Sequestration Potential of Agroforestry Systems
47 48	670	(pp. 179–200). Springer.
49 50	671	Schultz, L., Folke, C., Österblom, H., & Olsson, P. (2015). Adaptive governance, ecosystem
51 52 53	672	management, and natural capital. Proceedings of the National Academy of Sciences,
53 54 55	673	112(24), 7369–7374.
56 57	674	Sexton, J. O., Song, XP., Feng, M., Noojipady, P., Anand, A., Huang, C., others. (2013).
58 59	675	Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of
60	676	MODIS vegetation continuous fields with lidar-based estimates of error. International

1 2		
3 4	677	Journal of Digital Earth, 6(5), 427–448.
5	678	Soule, M. (2013). The 'New Conservation'. Conservation Biology, 27(5), 895–897.
7 8	679	https://doi.org/10.1111/cobi.12147
9 10	680	Sorice, M. G., Kreuter, U. P., Wilcox, B. P., & Fox III, W. E. (2014). Changing landowners,
11 12	681	changing ecosystem? Land-ownership motivations as drivers of land management
13 14	682	practices. Journal of Environmental Management, 133, 144–152.
15 16	683	Stephanson, S.L. and Mascia, M.B. (2014). Putting people on the map through an approach
17 18	684	that integrates social data in conservation planning. Conservation biology, 28(5),
19 20 21	685	1236-1248.
22 23	686	Suding, K., Higgs, E., Palmer, M., Callicott, J. B., Anderson, C. B., Baker, M., … Larson, B.
24 25 26 27	687	M. (2015). Committing to ecological restoration. Science, 348(6235), 638-640.
	688	Temperton, V. M., Buchmann, N., Buisson, E., Durigan, G., Kazmierczak, Ł., Perring, M. P.,
28 29	689	Overbeck, G. E. (2019). Step back from the forest and step up to the Bonn
30 31 32 33 34 35 36 37 38 39 40 41 42	690	Challenge: How a broad ecological perspective can promote successful landscape
	691	restoration. Restoration Ecology, 27(4), 705–719.
	692	Thiault, L., Gelcich, S., Cinner, J. E., Tapia-Lewin, S., Chlous, F., & Claudet, J. (2019).
	693	Generic and specific facets of vulnerability for analysing trade-offs and synergies in
	694	natural resource management. People and Nature.
	695	Tittonell, P., Vanlauwe, B., Leffelaar, P., Rowe, E. C., & Giller, K. E. (2005). Exploring
43 44	696	diversity in soil fertility management of smallholder farms in western Kenya: I.
45 46	697	Heterogeneity at region and farm scale. Agriculture, Ecosystems & Environment,
47 48	698	110(3), 149–165.
49 50	699	USGS. (2006). Shuttle Radar Topography Mission 1 Arc Second scenes, Uganda and
51 52 53	700	Mozambique. Global Land Cover Facility, University of Maryland.
55 55	701	Van Oosten, C. (2013). Forest landscape restoration: Who decides? A governance approach
56	702	to forest landscape restoration. Nat. Conserv, 1, 119–126.
57 58 59	703	Van Oosten, C. (2013b). Restoring landscapes—Governing place: A learning approach to
60	704	forest landscape restoration. Journal of Sustainable Forestry, 32(7), 659–676.
		4

2 3	705	Walker, L. R., Wardle, D. A., Bardgett, R. D., & Clarkson, B. D. (2010). The use of
4 5	706	chronosequences in studies of ecological succession and soil development. Journal
6 7	707	of Ecology, 98(4), 725–736.
8 9	708	White, S. C. (2010). Analysing wellbeing: A framework for development practice.
10 11 12	709	Development in Practice, 20(2), 158–172.
12 13 14	710	Willmott, Cort J., & Matsuura, K. (2014). Terrestrial air temperature and precipitation:
15 16	711	Monthly and annual time series (1950-2014). U.S. National Oceanic and Atmospheric
17 18	712	Administration, NOAA.
19 20	713	Woollen, E., Ryan, C. M., & Williams, M. (2012). Carbon stocks in an African woodland
21 22	714	landscape: Spatial distributions and scales of variation. Ecosystems, 15(5), 804–818.
23 24	715	Wortley, L., Hero, JM., & Howes, M. (2013). Evaluating ecological restoration success: A
25 26 27 28 29 30 31 32 33 34 35	716	review of the literature. Restoration Ecology, 21(5), 537–543.
	717	Wunder, S., Brouwer, R., Engel, S., Ezzine-de-Blas, D., Muradian, R., Pascual, U., & Pinto,
	718	R. (2018). From principles to practice in paying for nature's services. Nature
	719	Sustainability, 1(3).
	720	Yackulic, C.B., Fagan, M., Jain, M., Jina, A., Lim, Y., Marlier, M., Muscarella, R., Adame, P.,
36 37	721	DeFries, R. and Uriarte, M. (2011). Biophysical and socioeconomic factors
38 39	722	associated with forest transitions at multiple spatial and temporal scales. Ecology and
40 41	723	Society, 16(3).
42 43	724	Yin, R., Liu, T., Yao, S., & Zhao, M. (2013). Designing and implementing payments for
44 45	725	ecosystem services programs: Lessons learned from China's cropland restoration
46 47 48	726	experience. Forest Policy and Economics, 35, 66–72.
49 50	727	https://doi.org/10.1016/j.forpol.2013.06.010
51 52	728	Yin, R. K. (2014). Case study research: Design and methods. Los Angeles.
53 54	729	Yin, R., Yin, G. and Li, L., 2010. Assessing China's ecological restoration programs: what's
55 56 57 58 59 60	730	been done and what remains to be done?. Environmental Management, 45(3),
	731	pp.442-453.
	732	Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Analysing ecological data. New York ;

 733 734 734	 733 London: Springer. 734 734 735 734 736 737 737 738 738 739 739 734 734 734 735 734 734 734 735 734 735 734 734<	 733 London: Springer. 734 734 735 734 736 736 737 738 739 739 739 734 734 735 734 734<	 733 London: Springer. 734 734 735 734 736 734 737 734 734 735 734 734 735 734 735 734 734 735 734 734 735 734 734<	 733 London: Springer. 734 734 9 10 11 12 13 14 15 16 	 3 733 London: Springer. 5 734 6 7 8 9 10 11 	1 2		
5 734 7 8 9 0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 25 26 27 28 29 30 31	5 734 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	 734 734 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 	5 734 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 10 10 11 10 10 10 10 10 10 10 10 10 10	5 734 6 7 8 9 10 11 12 13 14 15 16	5 734 6 7 8 9 10 11	2 3 4	733	London: Springer.
35 36 37	32 33 34	28 29 30	23 24 25 26	18 19 20 21	12 13 14 15 16	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36		Lordon: Springer.
39 40	36 37 38 39 40	32 33 34 35 36 37 38 39 40	27 28 29 30 31 32 33 34 35 36 37 38 39 40	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	42 43		
	36	32 33 34 35 36	27 28 29 30 31 32 33 34 35 36	23 24 25 26 27 28 29 30 31 32 33 34 35 36	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	38 39		
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	13 14 15 16 17 18 19 20 21 22 23 24 25 26	13 14 15 16 17 18 19 20 21	13 14 15 16		10 11		
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	10 11 12 13 14 15 16 17 18 19 20 21	10 11 12 13 14 15 16	10 11	5 6		
5 734 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 77 28 29 30 31 20 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 27 28 29 20 20 21 22 23 24 25 26 27 27 27 27 27 27 27 27 27 27	5 734 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	5 734 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 25 26	5 734 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 10 10 11 10 10 10 10 10 10 10 10 10 10	5 734 6 7 8 9 10 11 12 13 14 15 16	5 734 6 7 8 9 10 11	2	733	London: Springer.