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Background: Amyotrophic lateral sclerosis (ALS) is a rapidly progressive fatal

neurodegenerative condition. There are no effective treatments. The only globally licensed

medication, that prolongs life by 2–3 months, was approved by the FDA in 1995. One

reason for the absence of effective treatments is disease heterogeneity noting that ALS is

clinically heterogeneous and can be considered to exist on a neuropathological spectrum

with frontotemporal dementia. Despite this significant clinical heterogeneity, protein

misfolding has been identified as a unifying pathological feature in these cases. Based

on this shared pathophysiology, we carried out a systematic review and meta-analysis to

assess the therapeutic efficacy of compounds that specifically target protein misfolding

in preclinical studies of both ALS and FTD.

Methods: Three databases: (i) PubMed, (ii) MEDLINE, and (iii) EMBASE were searched.

All studies comparing the effect of treatments targeting protein misfolding in pre-clinical

ALS or FTD models to a control group were retrieved.

Results: Systematic review identified 70 pre-clinical studies investigating the effects of

therapies targeting protein misfolding on survival. Meta-analysis revealed that targeting

protein misfolding did significantly improve survival compared to untreated controls (p

< 0.001, df = 68, α = 0.05, CI 1.05–1.16), with no evidence of heterogeneity between

studies (I2 = 0%). Further subgroup analyses, evaluating the effect of timing of these

interventions, showed that, only treating prior to symptom onset (n = 33), significantly

improved survival (p< 0.001, df= 31, α= 0.05, CI 1.08–1.29), although this likely reflects

the inadequate sample size of later time points. Furthermore, arimoclomol was found to
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significantly reduce secondary outcome measures including: (i) histological outcomes,

(ii) behavioral outcomes, and (iii) biochemical outcomes (p < 0.005).

Conclusions: This analysis supports the hypothesis that protein misfolding plays an

important role in the pathogenesis of ALS and FTD and that targeting protein misfolding,

at least in pre-clinical models, can significantly improve survival, especially if such an

intervention is administered prior to symptom onset.

Keywords: systematic review, meta-analysis, amyotrophic lateral sclerosis, motor neurone disease, proteostasis,

preclinical, therapeutic, survival

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive multi-system
neurodegenerative disease caused by the selective degeneration of
brain and spinal cord motor neurons. The condition is markedly
heterogeneous with respect to both the genetic and pathologic
basis and the phenotypic manifestations. Survival ranges from
only a few months to decades. The motor manifestations of the
condition also vary widely according to both the site of onset and
the rate of disease progression (Pupillo et al., 2014; Martin et al.,
2017). It is now known that 50% of ALS patients are also affected
by cognitive impairment and that the criteria for co-morbid
dementia in ALS-Frontotemporal dementia (ALS-FTD) is met
in 10–15% of cases (Goldstein and Abrahams, 2013; Crockford
et al., 2018). The identification of a misfolded protein (TDP−43),
common to both ALS and FTD has redefined these diseases as
existing on a clinico-pathological spectrum (Arai et al., 2006;
Neumann et al., 2006). TDP-43 proteinopathy is identified at post
mortem in almost all cases of ALS and up to 50% of FTD cases
(Neumann et al., 2006; Cairns et al., 2018). While ALS disease
causing mutations have now been identified in over 25 genes
involved in biological processes ranging from transcriptional
regulation, energy metabolism to proteostasis (Nguyen et al.,
2018), mutations in only four genes account for over 50% of all
familial ALS cases (Ling et al., 2013). The corresponding protein
products or associated proteins for these four genes; TDP-43,
SOD1, FUS and C9orf72 have been identified in pathological
ubiquitinated aggregates across mutant and sporadic cases alike
(Ramesh and Pandey, 2017).

Transactivation response DNA binding protein 43 kDa,
TAR DNA-binding protein 43 (TDP-43), the neuropathological
hallmark of ALS (Arai et al., 2006; Neumann et al., 2006)
is a ubiquitously expressed DNA and RNA binding protein
from the heterogeneous nuclear ribonucleoprotein (HnRNP)
family, which regulates transcription and splicing. The full length
414 amino acid protein contains an N-terminal domain, two
RNA-recognition motifs (RRM) and a glycine rich C-terminal
sequence (Ayala et al., 2005). In cases of ALS and FTD, TDP-
43 is truncated in to c-terminal fragments (25 and 35 kDa in
size), hyperphosphorylated, ubiquitinated and mislocalised from
the nucleus forming cytoplasmic aggregates (Neumann et al.,
2006; Van Deerlin et al., 2008). Fused in sarcoma (FUS), is
another ubiquitously expressed HnRNP protein and consists of
an N-terminal low complexity domain, RGG-rich domains, a
RRM, a zinc finger domain and a nuclear localization signal

[(Monahan et al., 2017); NLS]. FUS pathology was identified
within a subgroup of FTD cases (Neumann et al., 2009) and
subsequently FUS cytoplasmic inclusions have been identified
in human neuronal and glial cells from spinal cord tissue of
ALS cases with known FUS mutations, sporadic ALS, ALS/FTD
and non-SOD1 familial ALS cases (Deng et al., 2010). FUS
mislocalisation affects approximately 5% of familial cases of ALS
and fewer than 1% of sporadic cases. This is in stark contrast
to TDP-43 inclusions, which are present in the majority of
cases of ALS. Whilst FUS protein inclusions do not co-occur
in the presence of TDP-43 inclusions, both TDP-43 and FUS
proteins contain a highly aggregation prone domain with a high
density of exposed hydrophobic residues. Mutations within this
aggregation-prone region further increase the hydrophobicity
and thus its tendency to aggregate (Patel et al., 2015).

Copper-zinc superoxide dismutase protein (SOD1) is a
dimeric anti-oxidant enzyme, the pathological neuronal and
glial aggregates of which have also been identified in post
mortem sporadic and familial ALS cortical and spinal cord
tissue (Shibata et al., 1996; Banci et al., 1998; Valentine et al.,
2005; Forsberg et al., 2010, 2019). SOD1 mutations have been
found to destabilize the protein structure increasing hydrophobic
surface exposure thereby promoting aggregation (Münch and
Bertolotti, 2010; Tompa and Kadhirvel, 2019). Other factors
influencing the propensity of wild type protein to aggregate
have been studied including oxidative damage or metalation
status which may account for sporadic cases (Watanabe et al.,
2001; Rakhit et al., 2004; Tompa and Kadhirvel, 2019). The
commonest cause of ALS/FTD, the C9orf72 hexanucleotide
repeat expansion has also been identified as a prominent
proteinopathy (Al-Sarraj et al., 2011). This hexanucleotide repeat
has been found to lead to non-ATG translation producing
highly aggregation-prone dipeptide repeat (DPR) proteins (Ash
et al., 2013). Concomitant TDP-43 aggregates are also a
prominent part of C9orf72 pathology found at post mortem.
Additionally, TDP-43 negative inclusions comprised of DPRs
as well as markers of the ubiquitin proteasome system (UPS)
have been identified in FTD and ALS cases with a C9orf72
mutation (Mackenzie et al., 2013). Accumulation of p62
otherwise known as Sequestosome 1 (SQSTM1), a ubiquitin
binding protein and adapter molecule for autophagy is also
a pathological feature of neuronal and glial inclusions across
a broad range of neurodegenerative diseases (Kuusisto et al.,
2001), however extra motor p62 neuronal and glial inclusions
(in particular the granule cell layers of the cerebellum and
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hippocampus) have been found to be over-represented in
C9orf72 cases (Al-Sarraj et al., 2011; Cooper-Knock et al.,
2012).

Proteostasis consists of parallel complementary mechanisms
operating to continuously reduce the burden of intra- and
extracellular protein misfolding. The main intracellular systems
are the ubiquitin proteasome system (UPS) and autophagy
where the UPS encompasses the initial tagging of proteins
with ubiquitin molecules followed by degradation by the
26S proteasome complex (Glickman and Ciechanover, 2002).
Autophagy is a lysosomal degradation system and includes the
subtypes; macroautophagy to degrade large protein aggregates
and damaged organelles, microautophagy as the direct uptake
of cytosolic components in to the lysosome and chaperone-
mediated autophagy (Guo et al., 2018). Chaperone-mediated
autophagy, is the major pathway for maintaining both intra-
and extracellular proteostasis and involves the formation of
target protein-chaperone complexes which are then transported
in to the lysosome (Glick et al., 2010). The heat shock
proteins (HSPs) as chaperone proteins are also involved
in protein maintenance more broadly; facilitating normal
protein folding as well as monitoring protein quality (Kalmar
and Greensmith, 2017). Over-arching regulatory signaling
pathways are activated in response to an increased burden
of misfolded proteins (ER stress) to increase the ER protein-
folding capacity, termed the unfolded protein response (UPR).
However, prolonged UPR activation has a paradoxical effect
and correlates with cell death (Walter and Ron, 2011).
Studies have demonstrated that the main ALS causative genes
TDP-43, SOD1, FUS and C9orf72 are each mechanistically
linked to proteostatic systems (Kalmar and Greensmith, 2017).
Increasingly other mutations associated with dysfunction of
proteostatic mechanisms in ALS/FTD include either the
proteasome and/or autophagy (UBQLN2, TBK1, OPTN, VCP)
(Taylor et al., 2016).

Despite research efforts to trial ALS treatments for over two
decades, an effective therapy for ALS is yet to be identified.
Only one drug, the anti-glutamate treatment Riluzole, has
been shown to confer a modest survival benefit and the
search for novel therapies continues (Bensimon et al., 1994;
Amyotrophic Lateral Sclerosis/Riluzole Study Group et al., 1996).
One of the major barriers to the trialing of potential ALS
therapies lies within the genetic and phenotypic heterogeneity
of the disease, limiting the ability to conduct stratified and
therefore statistically robust studies. The observation of protein
misfolding as a unifying pathological feature across almost
all cases of ALS and FTD despite the heterogeneity of these
conditions presents a major therapeutic opportunity. A large
body of research assessing the experimental effects of therapies
which target and upregulate proteostatic mechanisms now
exists. The primary aim of this systematic review and meta-
analysis is to formally evaluate this literature to date and
to assess the therapeutic potential of such interventions. A
secondary aim of this work is to perform a structured quality
assessment of the literature and to assess for publication bias to
identify areas of improvement for future preclinical studies in
this field.

MATERIALS AND METHODS

Aims and Hypotheses
The aim of this piece of work was to assess the therapeutic
potential of compounds tested in preclinical studies that target
protein misfolding in ALS and FTD.

Primary Aim
1. Does targeting protein misfolding improve survival in

ALS/FTD preclinical models?

Secondary Aims
1. Does the timing of intervention affect the efficacy of

treatments targeting protein misfolding in ALS/FTD
preclinical models?

2. Does targeting protein misfolding affect outcomes other than
survival in ALS/FTD preclinical models?

3. Structured quality assessment of the included studies and
assessment for publication bias

PICOS Framework
Population: preclinical ALS/FTD animal models.
Intervention: therapeutics targeting protein misfolding.
Comparison: treatment vs. control group.
Outcome measure: primary outcome: mortality in
animal models.

Secondary outcome measures: mean biochemical, histological
and behavioral measurements.
Study design: all preclinical ALS or FTD animal or yeast model
studies assessing the efficacy of therapies targeting proteostasis on
survival compared to controls.

Search Methods
Pre-clinical data were obtained, with no restrictions on
publication date or language, from three databases; PubMed,
MEDLINE and EMBASE using the following search terms
(search date: 16/2/18). The references obtained from these
searches were collated and imported onto Endnote, where
duplicate studies were removed and full text articles retrieved.
Language restrictions were applied and only articles written in
plain English were included.

Search Terms
PubMed
[(“motor neuron disease” OR “motor neuron” OR “MND”
OR “ALS” OR “amyotrophic lateral sclerosis”) AND [(“protein
misfolding”) OR (protein aggregation) OR (proteostasis)] AND
(“mouse” OR “mice” OR “murine” OR “rat” OR “drosophila” OR
“fruit fly” OR “c elegans” OR “zebra fish” OR “yeast”)]

MEDLINE
[(“motor neuron disease” OR “motor neuron” OR “MND”
OR “ALS” OR “amyotrophic lateral sclerosis”) AND [(“protein
misfolding”) OR (protein aggregation) OR (proteostasis)] AND
(“mouse” OR “mice” OR “murine” OR “rat” OR “drosophila” OR
“fruit fly” OR “c elegans” OR “zebra fish” OR “yeast”)]
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EMBASE
[(“motor neuron disease” OR “motor neuron” OR “MND”
OR “ALS” OR “amyotrophic lateral sclerosis”) AND [(“protein
misfolding”) OR (protein aggregation) OR (proteostasis)] AND
(“mouse” OR “mice” OR “murine” OR “rat” OR “drosophila” OR
“fruit fly” OR “c elegans” OR “zebra fish” OR “yeast”)]

Eligibility Criteria
Studies were included if they compared the effect of treatments
targeting protein misfolding to a control group, in the specified
animal or yeast model, in ALS or FTD. Studies were excluded if
co-treatments were administered, if studies weren’t investigating
a therapeutic stated to target protein misfolding or didn’t
compare the treatment to a control group and didn’t investigate
therapeutics in ALS/FTD models or in the specified animal
or yeast models. Human trials, reviews and case reports were
also excluded.

Screening
Studies were exported to SyRF, an online platform (http://
syrf.org.uk) for performing systematic reviews where titles
and abstracts were screened by two independent reviewers to
determine their relevance. For studies that were disputed between
the two reviewers a third reviewer assessed its relevance to reduce
bias. The SyRF software is designed to limit learners bias by
showing studies later in the screening process to one reviewer that
had been screened early by the other reviewer.

Data Extraction
The primary outcome measure was defined as mortality in
animal models. The following data were extracted from included
papers: paper identification (surname of first author and year of
publication; if more than one paper was present for that author,
papers were numbered in brackets following the year of the
study), model used, intervention, the number of models used,
the survival measurement, the mean biochemical, histological
and behavioral measurements and whether the intervention
was efficacious for each of these measures was also recorded.
Biochemical outcomes included any molecular tests to identify
biochemical differences, such as Western blot performed to
detect levels of proteins, or markers of autophagy. Histological
outcomes included data derived from tissue sections (frozen
or formalin fixed, paraffin embedded), for example in situ
hybridization or immunohistochemistry. Behavioral outcomes
included any behavior in animals, e.g., locomotion or maze
activity. The timing of the intervention, if stated, was categorized
into one of four categories: (i) prior to symptom onset,
(ii) at symptom onset, (iii) after symptom onset, or (iv)
end-stage of disease. Finally, the quality of each study was
categorized based on the number of checklist items scored
from a modified version of the CAMARADES quality checklist
including: peer review publication; statement of potential
conflict of interests; sample size calculation; random allocation
to treatment; allocation concealment; blinded assessment of
outcome; appropriate control group identified; compliance with
animal welfare regulations; statement of temperature control.

Data Analysis
Survival/mortality data extracted from the included papers were
included on a forest plot using the freely available Review
Manager (RevMan 5.0) software. Given the variety of model
organisms included in the analysis, we expressed effect sizes
for the primary outcome data (survival summary data) as odds
ratios (OR; Vesterinen et al., 2014). For non-survival outcomes
standardized mean difference (SMD) was used. This allowed
us to compare the magnitude of the effect size rather than
absolute effect sizes, meaning that all data were on the same
scale irrespective of the animal model used. The OR/SMD were
included on a forest plot using Review Manager 5 (RevMan5.0)
software. We calculated summary estimates using a random
effects model using the RevMan 5.0 software, weighted by study
size, using Hedges g statistic to account for bias from small
sample sizes. We reported heterogeneity using I2 values and
used a funnel plot to assess for the presence of publication
bias. Predetermined subgroup analyses were performed on
compounds tested in three or more separate studies (rapamycin
and arimoclomol and lithium were the only three compounds to
fit this a priori criterion). Other predefined subgroup analyses
included an assessment of timing of intervention and quality
of studies, where studies were grouped by the (i) timing of
the intervention tested (pre-symptom onset, at symptom onset,
after symptom onset, end-stage disease) or (ii) quality score and
the number of studies showing efficacy were compared between
groups using a 2-way ANOVA.

RESULTS

Database searching identified 2,709 papers meeting the search
criteria, which after duplicate removal, resulted in 1,609 articles
that underwent screening (Figure 1). Abstracts and titles of
articles were screened by three independent screeners using
the online SyRF facility resulting in 141 articles that met
the predefined inclusion criteria. Following full-text retrieval
only 81 of these articles were included in the quantitative
analysis (Figure 1A). The majority of animal models investigated
were mouse models, with particular emphasis on the SOD1
G93A mutant mouse model. Other models used included rat,
Drosophila, C. elegans and yeast (Figure 1B).

Targeting Protein Misfolding Confers a
Statistically Significant Improvement of
Survival
Out of the 81 articles which met the eligibility criteria, 70
studies assessed survival/mortality as an outcome measure and
were included in the meta-analysis to assess the hypothesis
that targeting protein misfolding improves survival in ALS/FTD
preclinical models. Targeting protein misfolding did significantly
extend survival compared to untreated controls (p<0.001,
degrees of freedom (df) = 68, α = 0.05 and 95% confidence
intervals (CI) 1.05-1.16; Figure 2). The heterogeneity of these
included studies was estimated by calculating an I2 value. The I2

value in this analysis was 0%, indicating a high level of agreement
between studies favoring treatment over control (Figure 2).
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FIGURE 1 | PRISMA flowchart. (A) PRISMA Flow Diagram The PRISMA Group (2009) indicating numbers of studies at each stage of the review. (B) Frequency

distribution summarizing the number of studies conducted in each of the animal models, demonstrating the majority of studies are conducted in mice and

predominantly in the SOD1 G93A mouse model.

Timing of Intervention Favors Early
Treatment
To assess the hypothesis that targeting protein misfolding at
different stages of the disease process will affect the efficacy of

treatments on survival, studies were included in a forest plot

grouped by timing of intervention and repeat sub-group meta-
analyses were performed (Figures 3A–D). These analyses found

that only treating prior to symptom onset (n = 33) significantly
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FIGURE 2 | Meta-analysis of preclinical studies shows therapeutic potential for targeting proteostasis in ALS. Forest plot showing the odds ratio and confidence

intervals calculated from survival summary data study from each study, weighted by study size. Overall effect estimate is demonstrated (with 95% confidence intervals)

as a black diamond at the bottom of the graph. Heterogeneity is displayed as an I2 value. Results demonstrate an overall statistically significant effect favoring the

targeting of proteostasis in ALS.

improved survival (p < 0.001, df = 31, α = 0.05 and CI = 1.08–
1.29; Figure 3A). No significant improvement in survival was
found when treating at symptom onset (p = 0.50, α = 0.05, df

= 7, n= 8, and CI= 0.91–1.21; Figure 3B), after symptom onset
(p= 0.40, α= 0.05, df= 8, n= 9, and CI= 0.91–1.28; Figure 3C)
or at the end stage of disease (p = 0.97, α = 0.05, df = N/A, n =
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FIGURE 3 | Majority of studies are conducted at early time points in ALS research and show that with early interventions there is a statistically significant improvement

in survival. Forest plots showing the odds ratio and confidence intervals calculated from survival summary data study from each study, weighted by study size. Overall

effect estimate is demonstrated (with 95% confidence intervals) as a black diamond at the bottom of the graph. Heterogeneity is displayed as an I2 value.

(A) Intervention delivered pre-symptom onset; (B) at symptom onset and (C) after symptom onset. (D) At end stage of disease. Results demonstrate an overall

statistically significant effect favoring the targeting of proteostasis early in ALS (A).
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1, and CI = 0.35–2.94; Figure 3D). Although it should be noted
that there are considerably fewer studies conducted at these later
time points.

Arimoclomol and Lithium Demonstrate
Therapeutic Potential in Preclinical Studies
Three compounds met our predefined subgroup analysis criteria
having been investigated 3 or more times in independent studies;
rapamycin, arimoclomol, and lithium. Studies investigating
these compounds were evaluated by meta-analysis against both
primary and secondary outcome measures. Subgroup analyses
revealed that rapamycin treatment (n = 4) did not significantly
improve survival compared to control (p = 0.99, df = 3,
α = 0.05, and CI = 0.78–1.28; Figure 4A). Furthermore,
meta-analyses assessing the efficacy of rapamycin treatment
on secondary outcome measures revealed that it did not
significantly reduce histological outcomes (p = 0.08, df = 2,
α = 0.05, and CI = 0.94–2.75; Figure 4B) or behavioral
outcomes (p = 0.96, df = 4, α = 0.05, and CI = 0.11–
8.45; Figure 4C). However, rapamycin treatment did significantly
affect biochemical outcomes (p < 0.001, df = 18, α = 0.05, and
CI = 1.46-3.26; Figure 4D). The heterogeneity of the studies
investigating survival was 0%.

Meta-analysis assessing the efficacy of arimoclomol treatment
on survival (n = 4) revealed no significant improvement in
survival (p = 0.36, df = 3, α = 0.05, and CI = 0.85-
1.56; Figure 5A) but did show significant improvements in all
secondary outcome measures including histological outcomes
(p < 0.001, df = 15, α = 0.05, and CI = 1.78–1.97;
Figure 5B), behavioral outcomes (p < 0.001, df = 9, α =

0.05, and CI = 1.14-1.60; Figure 5C) and biochemical outcomes
(p= 0.003, df= 8, α= 0.05, and CI= 1.08–1.44; Figure 5D). The
heterogeneity of the studies investigating survival and behavioral
measures was 0% suggesting a high level of agreement between
studies. However, evaluation of heterogeneity when assessing
histological and biochemical measurements revealed high levels
of heterogeneity (I2 > 50).

Meta-analysis assessing the efficacy of lithium treatment on
survival (n = 3) revealed no significant improvement in survival
(p = 0.42, df = 2, α = 0.05, and CI = 0.87–1.39; Figure 6A)
but did show significant improvements in all secondary outcome
measures including histological outcomes (p = 0.0004, df = 7,
α = 0.05, and CI = 1.31–2.56; Figure 6B), behavioral outcomes
(p = 0.0004, df = 5, α = 0.05, and CI = 1.16–1.68; Figure 6C)
and biochemical outcomes (p = 0.04, df = 7, α = 0.05, and
CI = 1.06–6.96; Figure 6D). The heterogeneity of the studies
investigating survival and behavioral measures was 0 and 23%
respectively, suggesting a high level of agreement between
studies. However, evaluation of heterogeneity when assessing
histological and biochemical measurements revealed high levels
of heterogeneity (I2 > 50).

Overall Quality of Studies Did Not Affect
Likelihood of Efficacy
Number of checklist items scored was evaluated for all studies
and then plotted on a frequency distribution to evaluate

the likelihood of those studies demonstrating efficacy. The
hypothesis was that poorer quality studies would score fewer
checklist items and result in inappropriate demonstrations of
efficacy (i.e., false positive/false negative). The two-way ANOVA
comparing frequency of efficacy in the studies of different quality
and the post-hoc Bonferroni test accounting for multiple testing
found there was no significant difference in the frequency of
efficacy across differences in study quality (p= 0.118; Figure 7A).
Finally, to assess whether there was publication bias in studies
included in this review a funnel plot was created showing one
outlier study, but no evidence of publication bias (Figure 7B).

DISCUSSION

Targeting Protein Misfolding Confers
Significant Survival Improvement
The results of this study support the hypothesis that protein
misfolding plays a major role in the pathogenesis of ALS and
FTD. Meta-analysis of 70 studies (assessing survival outcomes)
identified that targeting protein misfolding significantly
extended survival compared to untreated controls with minimal
heterogeneity detected between studies (I2 = 0). A list of
the interventions that were tested in these studies, including
the putative mechanism of action of those interventions has
been provided in Table 1. Further analysis of interventions
investigated in at least three independent studies identified that
rapamycin did not confer an improvement in either survival
or secondary outcome measures (histological or behavioral).
The mammalian target of rapamycin (mTOR) is a ubiquitously
expressed kinase with a key role in mediation of major processes
such as; metabolism, immunoregulation and the inhibition
of autophagy. Rapamycin belongs to a class of drugs which
inhibit mTOR activity, the pro-autophagic effect of these
drugs has been explored in animal models of degenerative
proteinopathic disease such as Alzheimer’s disease (Dolcetta
and Dominici, 2019). The neuroprotective role of mTOR has
also been identified in SOD1 mouse models of ALS as a key
mechanism to prevent motor neuron degeneration and disease
progression (Saxena et al., 2013). One possible explanation for
our study findings may be the development of tolerance which
has been identified previously after continuous administration
of an mTOR inhibitor resulted in pathway hyper-stimulation
and an initial short-term stimulation of autophagy preceded
by a longer-term decrease in autophagy markers (Kurdi et al.,
2016). Another potential mechanism to explain the broader
inconsistency in mTOR inhibition efficacy in ALS models
(Zhang et al., 2011) is the observation in AD models of impaired
autophagosome clearance, as the pro-autophagic effects would
be counteracted by the accumulation of these autophagosomes
(Bove et al., 2011). The small sample size included in the
secondary meta-analysis of rapamycin may also limit the ability
to reach definitive conclusions.

Arimoclomol, a hydroxylamine derivative is a heat shock
protein (HSP) co-inducer and promotor of native protein
folding, the finding that arimoclomol treatment demonstrated an
improvement in behavioral outcomes may indicate that it could
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FIGURE 4 | Rapamycin does not demonstrate efficacy in targeting survival, behavioral or histological outcomes. Forest plots showing the odds ratio (for survival) and

SMD (for histological, behavioral and biochemical outcomes) and confidence intervals calculated from each study, weighted by study size. Overall effect estimate is

demonstrated (with 95% confidence intervals) as a black diamond at the bottom of the graph. Heterogeneity is displayed as an I2 value. (A) Studies assessing the

(Continued)
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FIGURE 4 | effect of rapamycin on survival (n = 4). (B) Studies assessing the effect of rapamycin on histological outcomes (n = 3). (C) Studies assessing the effect of

rapamycin on behavioral outcomes (n = 5). (D) Studies assessing the effect of rapamycin on biochemical outcomes (n = 19). Results demonstrate an overall

statistically significant effect only on biochemical outcome measures when treating with rapamycin (D).

be implemented as a promising therapeutic aimed at alleviating
symptoms and improving quality of life in ALS (Dairin et al.,
2004). However, it is worth noting that arimoclomol had no effect
on survival outcomes. Importantly, arimoclomol, as a co-inducer
rather than an activator can stimulate HSP network upregulation
within cells that are already stressed. This selectivity is important
mechanistically to prevent imbalances caused by single HSP
upregulation (for example selective Hsp90 or Hsp70 induction)
and also to target the HSPs only where required (Kalmar et al.,
2008). Indeed the potential therapeutic benefit of arimoclomol
has also been suggested by a recent phase II clinical trial including
a cohort of patients with rapidly progressive SOD1 ALS (Benatar
et al., 2018).

The diverse neuro-protective effects of lithium have been
explored in preclinical in vivo models of dementia and are
attributed to a range of mechanisms including oxidative
stress, neuro-inflammation, cell survival, neurogenesis, synaptic
plasticity and proteostasis. The main regulatory pathways are via
inhibition of inositol monophosphatase (IMPA) and glycogen
synthase kinase-3 (GSK-3), however multiple direct interactions
with downstream key mediators have also been identified (Kerr
et al., 2017). While inhibition of IMPA results in the mTOR
pathway-independent induction of autophagy, the inhibition
of GSK-3 results in modulation of multiple neuroprotective
mediators including Nrf2 and STAT3 (Kerr et al., 2018).
GSK-3β inhibition also has the therapeutically undesirable
effect of activating the mTOR pathway and attenuating
autophagy (Sarkar et al., 2008). The resultant opposing mTOR
independent/dependent effects on autophagy may reflect, in
part, why attempts to assess efficacy in SOD1G93A mice treated
with lithium mono-therapy have produced conflicting results
(Fornai et al., 2008; Gill et al., 2009; Pizzasegola et al., 2009).
To address the therapeutic limitation of lithium mediated
GSK-3β inhibition and resultant m-TOR activation, a targeted
strategy using combination therapy with lithium and rapamycin
has been assessed in a Huntington’s disease in vivo model
demonstrating an additive neuroprotective effect (Sarkar et al.,
2008). The combined approach of selectively manipulating
separate pathways simultaneously has been extended to the use
of lithium coupled with valproate and also a novel antioxidant,
in both studies concurrent administration resulted in improved
motor function and survival in SOD1G93A mice (Shin et al.,
2007; Feng et al., 2008). Furthermore, daily lithium treatment co-
administered with riluzole has been identified to reduce disease
progression in a study of ALS patients followed up over 15
months (Fornai et al., 2008).

Timing of Intervention
No significant improvement in survival was found when treating
at or after symptom onset, further analysis identified that only
treatment with therapies targeting protein misfolding prior to

symptom onset significantly improved survival. While this is in
keeping with the neurodegenerative model; to treat before the
accumulation of higher stability neurotoxic protein aggregates
(Glickman and Ciechanover, 2002), the practical application
of this to rapidly progressive diseases such as ALS presents
a major challenge. This raises the issue of genetic screening
within a genetically heterogeneous, variably penetrant disease.
Interestingly, the delivery of arimoclomol after symptom onset
and even at late-symptomatic disease stage has been found to
improve muscle function in a SOD1 mouse model, it has been
suggested that this reflects the stress-dependent mechanism of
action of arimoclomol. In this study, an increase in lifespan was
however only observed in treated mice from symptom onset
(Kalmar et al., 2008). Therapies designed to target different
proteostatic subsystems are likely to have differing windows of
optimal efficacy, for this reason the timing of therapy initiation
is a critical factor for further therapeutic research. Furthermore,
the small sample size of studies conducted at later time points
is a major limitation of the field of neurodegenerative diseases
and is likely impacting upon our ability to assess these time
points with confidence in our study. Future work should aim
to address this in the field with studies conducted at later time
points (especially after symptom onset) being more relevant to
our ability to effectively translate these interventions to the clinic.

Limitations
A key limitation of studies of this nature is that study
identification is based on a statement by the authors that the
intervention was tested on protein misfolding pathways. We
specifically employed this method to minimize bias and to
identify a comprehensive dataset, aware that drugs rarely have
a single mode of action, to enable us to study drugs where their
commonality is an effect on proteostasis, rather than their sole
effect. We note that no approach to identify such interventions is
perfect and if a study did not mention an action on proteostasis,
we were not able to include it in our analysis.

Furthermore, the majority of papers identified in this study
are carried out in the mutant SOD1 rodent model. Whilst this is
a well-established animal model used widely in the field, it does
not necessarily model the most common pathology seen in ALS
patients, which is the misfolding and mislocalisation of TDP-
43. Whilst many pathological consequences of proteostasis may
be shared between these misfolded proteins, wider use of other
animal models assessing the effects of modulating proteostasis on
other misfolded proteins is clearly warranted.

As anticipated, the heterogeneity of the dichotomous primary
outcome measure, survival, was consistently low. In contrast,
biochemical and histological outcomes (continuous rather than
dichotomous outcome measures) demonstrate varying levels of
heterogeneity, ranging from 0–100% across the three therapies
assessed in our subgroup analyses. This finding of higher levels of
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FIGURE 5 | Arimoclomol demonstrates potential in modifying all secondary outcome measures tested. Forest plots showing the odds ratio (for survival) and SMD (for

histological, behavioral and biochemical outcomes) and confidence intervals calculated from each study, weighted by study size. Overall effect estimate is

demonstrated (with 95% confidence intervals) as a black diamond at the bottom of the graph. Heterogeneity is displayed as an I2 value. (A) Studies assessing the

effect of arimoclomol on survival (n = 4). (B) Studies assessing the effect of arimoclomol on histological outcomes (n = 16). (C) Studies assessing the effect of

arimoclomol on behavioral outcomes (n = 10). (D) Studies assessing the effect of arimoclomol on biochemical outcomes (n = 9). Results demonstrate an overall

statistically significant effect only on all secondary outcome measures when treating with arimoclomol (B–D).
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FIGURE 6 | Lithium demonstrates potential in modifying all secondary outcome measures tested. Forest plots showing the odds ratio (for survival) and SMD (for

histological, behavioral and biochemical outcomes) and confidence intervals calculated from each study, weighted by study size. Overall effect estimate is

demonstrated (with 95% confidence intervals) as a black diamond at the bottom of the graph. Heterogeneity is displayed as an I2 value. (A) Studies assessing the

effect of lithium on survival (n = 3). (B) Studies assessing the effect of lithium on histological outcomes (n = 8). (C) Studies assessing the effect of lithium on behavioral

outcomes (n = 6). (D) Studies assessing the effect of lithium on biochemical outcomes (n = 8). Results demonstrate an overall statistically significant effect only on all

secondary outcome measures when treating with lithium (B–D).
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FIGURE 7 | Structured quality assessment shows no demonstrable effect on

study efficacy and no evidence of publication bias. (A) Frequency distribution

demonstrating that the structured quality score is not significant in determining

intervention efficacy (2-way ANOVA p > 0.05). (B) Funnel plot, each point is a

study, plotted against the effect size of that study (x-axis) and precision of that

study (SE(log[OR]); y-axis). Publication bias has not been detected in this

analysis.

heterogeneity with continuous outcomes measures is consistent
with the literature and for this reason it has been suggested
that different standards should be applied to the interpretation
of I2 for each (Alba et al., 2016). Where large variability in
effect estimates across continuous measures is observed, the
consistency in the direction of the effect is also a relevant factor
to consider.

We did not detect any publication bias in the studies
included in this review. Publication bias can result in effect
size estimates being skewed to find a greater effect than is true
due to positive results being favored for publishing compared
to negative results. Indeed, the Amyotrophic Lateral Sclerosis
Therapy Development Institute found that on average, studies
report significantly greater effects of therapeutics on extending
survival than is true when compared to rigorous testing in
controlled laboratory conditions with conscious efforts to reduce
the risk of unconscious bias. This is thought to have contributed,
in part, to disappointing translation when these therapeutics
have been trialed in humans. These studies, taken together
with our data indicate that we should exercise caution in
interpreting preclinical studies and be aware that they could
reflect an overestimate of the true effect size. This highlights the
importance of quality assessments and risk of bias scoring done
as a part of systematic reviews such as ours. However, measures

TABLE 1 | List of interventions tested and putative pathways implicated.

Intervention tested Putative pathway

Clemastine Protein clearance (autophagy)

Trichostatin A Protein clearance (autophagy)

Methylene Blue Chaperone activity

Lithium Protein clearance (autophagy)

Dimebon Chaperone activity

Brilliant blue G Reduction in neuroinflammation (inhibits P2RY receptor)

therefore reduction in ER stress

Rapamycin Protein clearance (autophagy)

Latrepirdine Physical modulation of misfolded proteins and blockade

of calcium channels reducing excitotoxicity and

subsequent ER stress

Recombinant Hsp70 Chaperone activity

Riluzole Chaperone activity (modulates HSF1 expression)

Resveratol ER stress and autophagy

Follistatin Protein clearance (autophagy)

Bosutinib Protein clearance (autophagy)

Guanabenz ER stress

Arimoclomol Chaperone activity

Celastrol Chaperone activity

Progesterone Chaperone activity

Allopurinol Autophagy and ER stress

Trehalose Autophagy and ER stress

Zinc Chaperone activity

Withaferin A Ubiquitin proteasome system

17-AAG (geldanamycin) Autophagy and Chaperone activity

Cystatin C Physical modulation of and binding to misfolded proteins

and autophagy

Copper Chaperone activity

Melittin (bee venom) Autophagy and ER stress

A table listing the therapeutic interventions analyzed as part of this systematic review

including the putative pathway implicated in the mechanism of action. It is important to

note however that drugs can modulate multiple potential targets, and that the dogma of

‘single drug, single target’ is overly simplistic. This table is provided to give an overview

of the interventions tested with information of a putative target with respect to its role

in proteostasis, noting that many of these interventions will have other target effects not

listed here.

of quality, like the CAMARADES checklist, do not necessarily
reflect the importance of each quality control measure. For
example, lack of experimental blinding may affect the efficacy
and/or reproducibility of results more than peer review. This
means that even papers that have scored the highest number
of checklist items in our analysis are not achieving all of the
necessary quality control steps to improve reliability of results.
The limited number of high quality studies may also explain why
results are often overstated in the field because if fundamental
quality control is not implemented results can be unreliable
and this is likely to contribute to poor clinical translation of
potential therapeutics.

Implications and Recommendations for
Future Research
Protein misfolding, as a pathological entity, links many
diverse neurodegenerative diseases which have previously been
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considered to be distinct clinical entities andmay even contribute
to normal aging. The risk of pathological protein misfolding
can be increased by environmental stressors and disease-causing
mutations and the innate proteostatic mechanisms to counter
this are known to be compromised by aging (Kampinga and
Bergink, 2016; Kalmar and Greensmith, 2017). Therefore, it
is plausible that targeting of this common pathophysiology,
irrespective of the underlying genetic basis of the condition, may
be therapeutically beneficial for many other currently untreatable
neurodegenerative diseases.

CONCLUSIONS

This is the first study to formally assess the therapeutic potential
of targeting protein misfolding in ALS and FTD and to perform a
structured quality of assessment of the ALS and FTD preclinical
literature. Our data support the hypothesis that protein
misfolding contributes to pathology in ALS/FTD. We show that
targeting protein misfolding in ALS/FTD significantly improves
survival however, treatments only conclusively demonstrate
efficacy when administered prior to symptom onset. This
limits the clinical potential of these therapies targeting protein
misfolding, as genetic screening and pre-treatment of patients
has many ethical implications. Notwithstanding the potential
risk of bias owing to overestimation of effect sizes and risk
of bias between studies, we identified promising therapeutics,

such as arimoclomol and lithium, which demonstrated a
statistically significant improvement in histological, behavioral
and biochemical outcome measures. Further investigations
should be aimed at identifying specific therapeutics that target
protein misfolding and improve symptoms or survival, so
they can be developed for clinical trials to treat ALS/FTD
and future studies should employ multiple therapeutic
intervention timepoints to improve clinical translation in
the future.
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