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Dynamic feedback control through wall suction in shear flows

Moritz Linkmann∗ and Bruno Eckhardt∗∗

Fachbereich Physik, Philipps-University of Marburg, D-35032 Marburg, Germany

This is a dedicatory.

Flow control is of interest in many open and wall-bounded shear flows in order to reduce drag or to avoid sudden large

fluctuations that may lead to material failure. An established means of control is the application of suction through a porous

wall. Here, we combine suction with a feedback strategy whereby the suction velocity is adjusted in response to either the

kinetic energy or the shear stress at the bottom wall. The control procedure is then used in an attempt to stabilize invariant

solutions and to carry out direct numerical simulations with a prescribed value of the friction coefficient.
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1 Suction velocity control

We consider a plane Couette setup with a fluid located in the gap between two infinitely extended parallel plates at a distance

2d. The bottom plate is stationary and the fluid is driven by the motion of the top plate with velocity U0 in x-direction.

The flow is assumed to be incompressible and isothermal such that the density can be regarded as constant. For large gap

widths and a constant suction velocity −Vs in the wall-normal y-direction through the bottom plate, this system is often used

to emulate the asymptotic suction boundary layer (ASBL). The aim here is to study the impact of variations in the suction

velocity on the global properties of the flow.

The stationary laminar solution of the Navier-Stokes equations is given by

U =





(

1− e−yVs/ν
)

−Vs/U0

0



 , (1)

in units of U0, with ν the kinematic viscosity. The deviations u from the laminar flow then obey the dimensionless equations

∂tu+ u · ∇u+U∇u + u∇U +∇p−
1

Re0
∆u = 0 , (2)

∇ · u = 0 , (3)

where p is the pressure divided by the constant density ρ and Re0 = U0d/ν the Reynolds number based on the velocity of the

top plate, the half-height of the domain and the kinematic viscosity of the fluid.

The feedback control procedure is based on a control variable R, here related to the suction velocity Vs by Vs/U0 = R/R2
0,

and an observable A, e.g. the L2-norm ‖u‖2 or the friction factor Cf = τw/(ρU
2

0
), where τw is the shear stress at the bottom

wall. The dynamics of the control variable is given by

Ṙ = −γ (R−R0)− γµ(A−A0) , (4)

where (A0, R0) are the values of R and A at the desired operating point and γ and µ are free parameters. The first parameter

defines the time scale on which the control is adjusted and, and second one regulates the sensitivity of the control variable

to changes in the observable. In order to achieve stabilization, the reaction of the control variable has to be faster than the

internal dynamics with which the dynamics runs away from the operating point, and the amplitude has to be sufficiently large

to switch between stable and unstable regions (details will be given in [4]).

2 Numerical aspects and simulation data

Equations (2)-(4) are solved numerically with an adapted version of the open-source code channelflow2.0 [1], using a

Fourier-Chebyshev-Fourier discretisation for the velocity field on a rectangular domain with periodic boundary condition in

stream- and spanwise directions and no-slip boundary conditions in the wall-normal direction for the stream- and spanwise ve-

locity component and a nonzero vertical suction velocity for the wall-normal velocity component. We note that an adjustment

in the suction velocity also results in a change in the laminar profile through Eq. (1).
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control variable observable Re0 Vs0/U0 µ γ perturbation type ‖δu0‖2/‖u0‖2

Vs L2-norm 1600 0.00058 −1.5× 107 0.1 random 0.01

Vs L2-norm 1600 0.00058 −1.5× 103 0.5 mean flow 4.5

Vs Cf 1600 0.00058 −104 - −105 1.0 random 1.5

Table 1: Simulation parameters and observables, with Vs the suction velocity, Cf the friction coefficient, Re0 = U0d/ν the Reynolds

number, Vs0 the suction velocity at the operating point, µ and γ the free parameters in Eq. (4) and δu0 a perturbation of the invariant

solution u0.
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Fig. 1: Left and middle: Controlled dynamics of an invariant solution subject to perturbations of the mean flow (left) and random perturba-

tions (middle). The initial data is indicated in blue and the operating point in red. The control line with slope 1/µ is shown in grey. Right:

Controlled dynamics for different values of µ (dark red: µ = −10
4, red: µ = −5× 10

4, orange: µ = −10
5) with a prescribed value of the

friction coefficient (solid black line). The dashed line corresponds to the uncontrolled dynamics.

The initial conditions are perturbations of an invariant solution u0 of Eqs. (2)-(3). Here we choose u0 to be a travelling

wave with one unstable direction in a subspace that enforces the symmetries of the invariant solution [2]. All simulations have

been carried out with spanwise, wall-normal and streamwise dimensions Lx×Ly×Lz = 4π×8×2π using Nx×Ny×Nz =
32× 65× 32 grid points. Further simulation parameters are summarized in table 1.

3 Results

Applying a linear feedback control to an invariant solution with one unstable direction can result in stabilisation thereof, if (i)

the control overlaps with the unstable direction, and (ii) if the stable directions are not destabilised. Unstable invariant solutions

have indeed been stabilised in pipe flow through an instantaneous feedback control strategy where the Reynolds number is

adjusted in response to an observable connected with deviations from laminar flow [3]. Here, we attempt to stabilise an

unstable travelling wave through the suction control procedure specified in Eqs. (2)-(4). Since the feedback procedure is based

on the suction velocity, which is translationally invariant in all directions, perturbations of the mean flow should be easiest

to control. The left and middle panels of Fig. 1 show phase-space representations of the controlled dynamics, starting from

either a strong perturbation of the mean flow (left panel) or a weak random perturbation (middle panel). One notes that the

controlled dynamics approaches the operating point in both examples. However, on longer times the systems slowly drifts

away from the target state, due to the adverse effects of the control on the stable directions of the invariant solution [4]. A

stable control hence requires a feedback that is orthogonal to the stable directions.

As a second application of the feedback control, we use it to target a global constraint on the flow. Specifically, we pick a

target value for the drag that is lower than the average drag Cf = 5 × 10−3 at a Reynolds number of Re0 = 1600. The right

most panel in Fig. 1 shows time series of the controlled for three different values of µ and the free dynamics, where the target

value of the shear stress was set to (Cf )0 = 1.25×10−3. The uncontrolled dynamics shows large fluctuations. The controlled

dynamics shows much smaller fluctuations if µ is large enough, approaches the target value and stays its vicinity for up to 200
time units.
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