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ABSTRACT
We provide analytical and numerical results concerning multi-scale correlations be-
tween the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large
eddy simulations (LES). Following previous studies for Navier-Stokes equations
(NSE), we derive the exact hierarchy of LES equations governing the spatio-temporal
evolution of velocity structure functions of any order. The aim is to assess the influ-
ence of the sub-grid model on the inertial range intermittency. We provide a series
of predictions, within the multifractal theory, for the scaling of correlation involving
the SGS stress and we compare them against numerical results from high-resolution
Smagorinsky LES and from a-priori filtered data generated from direct numerical
simulations (DNS). We find that LES data generally agree very well with filtered
DNS results and with the multifractal prediction for all leading terms in the balance
equations. Discrepancies are measured for some of the subleading terms involving
cross-correlation between resolved velocity increments and the SGS tensor or the
SGS energy transfer, suggesting that there must be room to improve the SGS mod-
elisation to further extend the inertial range properties for any fixed LES resolution.

KEYWORDS
isotropic turbulence, large eddy simulation, structure functions

1. Introduction

One of the main challenges in numerical and experimental turbulence is the existence of
anomalously strong non-Gaussian fluctuations, which are a generic feature of all three-
dimensional flows [1–3]. Such extreme events occur in a variety of flow configurations,
both on Eulerian and Lagrangian domains [4–9] and become more and more important
with increasing Reynolds number, Re = U0L0/ν, where U0, L0 are the characteristic
velocity and length scale of the flow, while ν is the viscosity. The Reynolds number
measures the relative importance of linear vs non-linear terms in the Navier-Stokes
evolution. For large Re, the dynamics becomes fully turbulent and an inertial-range
energy cascade develops. Power laws with anomalous scaling exponents are observed
for moments of velocity increments in the inertial range, a phenomenon known as
intermittency. No systematic derivation of the value of the scaling exponents is known
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from first principle, and the problem is considered key for both fundamental aspects
and its applied consequences, being connected to the existence of wild fluctuations
in the velocity increments and in the energy dissipation field. Empirical data are
always affected by spurious and/or sub-leading contributions, making an accurate
determination of the scaling exponents difficult. Hence, it is mandatory to develop more
and more refined experimental and numerical techniques to increase the scaling range
and/or to improve the scaling properties. State-of-the-art data in the laboratories reach
a maximum inertial range extensions of one/two decades [10], and the exponents are
often evaluated using sophisticated finite-size-techniques as Extended Self Similarity
[11] in order to reduce spurious effects. Similarly, concerning numerical studies, despite
the huge progresses made in recent years [12–14] we are still far from reaching a
resolution high enough to give a firm statement about scaling, in particular concerning
subtle issues connected to the alleged different statistical properties of longitudinal and
transverse velocity increments, or of the enstrophy and stress.

A potential alternative strategy to minimise viscous effects and to concentrate
only on high Reynolds number properties is provided by the application of large eddy
simulation (LES), where we introduce a model for the small-scale dynamics while fully
resolving the most energy-containing scales [2,3,15–25]. In this paper, we perform a
first step in order to assess how much LES can be used to estimate inertial range
scaling properties of fully developed turbulence. The aim being twofold, first to have
a tool able to minimise viscous and small-scale effects on the inertial range, second to
assess the performance of high Reynolds LES tout-court owing to the emergent role of
high-resolution modelling where the cutoff scale lies in the inertial subrange [26,27].

In order to assess the performance of LES models in reproducing the aforemen-
tioned extreme events with reasonable accuracy, it is first mandatory to understand
the statistical coupling between the resolved velocity field and the subgrid model. The
present paper is mainly concerned with this point. To do that, we derive the exact
hierarchy of equations satisfied by the generic nth order structure functions made in
terms of moments of the resolved velocity increments and involving the correlations
with the modelled subgrid-scale (SGS) stress-tensor. Furthermore, we provide a set of
multifractal (MF) predictions for the scaling behavior of all correlations entering in the
equations of motion, which are subsequently compared to data obtained from a-priori
filtered direct numerical simulations (DNS) of homogeneous isotropic turbulence on
up to 20483 grid points and from a-posteriori highly resolved Smagorinsky LES using
up to 10243 grid points. We focus here on the Smagorinsky model party because of
its simplicity and wide usage. More importantly, the Smagorinsky model is unable
to model interactions leading to backscatter events. As most LES models include a
dissipative part to prevent numerical instabilities, the modelling of backscatter events
is still a challenge in LES. In view of potential applicability of LES models to study
inertial-range physics, we also wish to assess if and how the absence of backscatter
affects the scaling of the correlation functions, and the Smagorinsky model is partic-
ularly well suited to this part of the analysis.
The main conclusion is that already the Smagorinsky LES modelling is a good tool to
minimise effects induced by the ultraviolet, large wavenumber, cut-off on the inertial
range: all leading scaling properties measured on the real a-priori data are well repro-
duced by the a-posteriori LES data. This opens the way to perform highly resolved
LES to improve the actual knowledge of the inertial range physics, by further min-
imising the dissipative effects. For the sake of simplicity, we start here to address only
homogeneous and isotropic turbulence but the whole machinery can be reproduced for
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bounded flows as well, at the price of a higher analytical complexity.
This paper is organised as follows. The structure function hierarchies are derived in
Sec. 2 and in Appendix A and B for different formulations of the filtered Navier-Stokes
equations (NSE). Section 3 is concerned with the predictions for scaling behaviour of
multi-points correlation functions based on the MF hypothesis. The numerical results
are presented in Sec. 4, and we conclude with a summary in Sec. 5.

2. Structure function hierarchies for LES

The application of LES requires a splitting into resolved scales and unresolved (sub-
grid) scales. The resolved-scale quantities are defined though the application of a filter
kernel G∆ at a given scale scale ∆ to the velocity field v

v(x, t) ≡
∫

Ω
dy G∆(|x− y|)v(y, t) , (1)

where Ω is the domain of definition of v, while for the sake of concreteness one can
think G∆ as given by a projection operation in Fourier space, i.e. through spherically
symmetric Galerkin truncation for all wavenumbers such that k > 2π/∆.

In order to derive a hierarchy of equations relating the structure and correlation
functions applicable to LES, we consider the filtered incompressible NSE on a three-
dimensional domain Ω = [0, L]3 with periodic boundary conditions

∂tvi + ∂j(vivj + Pδij + τ∆
ij ) = fi , (2)

∂ivi = 0 , (3)

where P denotes the pressure, f the external force and τ∆
ij = vivj−vivj the SGS stress

tensor, which is replaced by a model in LES applications. The density has been set to
unity for convenience, and the contribution of the viscous term is neglected. The filter
scale ∆ is assumed to be smaller than the forcing scale Lf , such that f = f .
The aim of this paper is to study the exact equations that must be satisfied by the
velocity structure functions, i.e. the moments of the resolved velocity-field increments

δrv(x) = v(x + r)− v(x) . (4)

The equation for the second-order correlation function, 〈δrviδrvj〉, has been already
derived in [28]. Here, we will further extend the previous results by generalising the
exact hierarchy to moments of any order and by studying the relative importance of
the different contributions entering in the corresponding equations of motion by using
a-priori and a-posteriori LES at high resolution. The general evolution equation for the
nth-order correlation tensor consisting of velocity field differences is derived from the
momentum balance at points x and x′ = x + r. Assuming homogeneity, we can make
a change of variables X = 1

2(x + x′) and r = x′ − x , and dropping all dependencies
from X in the averaged quantities. Furthermore, the partial derivatives with respect to
x′- and x-coordinates will be written as ∂′i ≡ ∂x′i , ∂i ≡ ∂xi , and homogeneity implies
∂′i = ∂ri = ∂i. Using the aforementioned results, one obtains the following evolution
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equation for the nth-order correlation tensor for homogeneous isotropic turbulence

∂t〈δrvi1 . . . δrvin〉 =− ∂k〈δrvi1 . . . δrvinδrvk〉

− 1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kPδkiσ(n)
)〉

+
1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δrfiσ(n)
〉

− 1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kτ
∆
kiσ(n)

)〉 , (5)

where Sn denotes the symmetric group in n elements, that is, we sum over all permu-
tations of the indices i1, . . . , in. In order to avoid counting identical terms involving
products of n− 1 velocity field increments multiple times, it is necessary to divide the
sum over all permutations in Sn by the number of elements of Sn−1 denoted by |Sn−1|.
It is important to stress that a similar hierarchy of equations for the structure func-
tions corresponding to the full Navier-Stokes evolution was derived in two different
ways in [29] and in [30]. For comparison, the first two lines of eq. (5) are identical to
eq. (3.1) in Ref. [30] obtained for the Navier-Stokes evolution, except for the absence
of viscous terms in our case. The additional terms present in eq. (5) describe the effect
of the forcing in the third line and the correlations between the velocity-field incre-
ments and the SGS tensor in the last line. This last term is the core object in the
present paper, and our aim is study its scaling properties and its role in the balance
equations. In the evolution equation for correlation tensors derived from the original
NSE, the correlation with the viscous stress appears with the same structure as the
correlation with the SGS-stress in Eq. (5). The hierarchy of equations in [30] was
derived from kinematic constraints only. These are: the geometric constraints, i.e. re-
strictions on the form of the correlation tensors due to their invariance under rotations
and reflections, and incompressibility. Since no dynamical information was used in the
derivation of the hierarchy for the full Navier-Stokes evolution, the algebraic structure
of the LES hierarchy is exactly the same. Furthermore, the additional correlation ten-
sor in eq. (5) must also obey the same kinematic constraints as the velocity increment
tensors. Hence, in order to derive the LES hierarchy relating structure functions of
any order, the only necessary work lies in the evaluation of the correlation tensors
involving the SGS-stress,

Hi1...in ≡
1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kτ
∆
kiσ(n)

)〉 . (6)

The necessary calculations are summarised in Appendix A. Let us first introduce
some general notations for the correlation functions that will be met during the
calculations. By restricting our analysis to homogeneous and isotropic turbulence
we can characterise all velocity correlation functions in terms of longitudinal and
δrvL = (v(x + r)− v(x)) · r/r and the transverse, δrvN , components, where the latter
is any component of the vector δrvN = δrv− δrvLr/r. We will denote the correlation
function made of m longitudinal and n transverse velocity increments at scale r as:

Dn,m(r) ≡ 〈(δrvL)n(δrvN )m〉 , (7)
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and the multi-scale correlation functions including also the components of the SGS
stress tensor as:

Gn,mi,j (r,∆) ≡ 〈(δrvL)n(δrvN )mτ∆
ij 〉 . (8)

It will be useful to introduce also two more quantities for correlation functions similar
to Eq. (8), namely:

Sni,j(r,∆) = 〈(δrvL)nτ∆
ki∂kvj〉 , (9)

and

Tni,j(r,∆) = 〈(δrvL)nτ∆
ki∂
′
kv
′
j〉 , (10)

where for the last two cases for the sake of simplicity we have introduced only the
longitudinal velocity increments (for the set of exact equations we are going to analyse
in this paper it turns out that this choice is not restrictive). Finally, the pressure
correlations are denoted as

Pn(r,∆) = 〈(δrvL)nδr(∂iPδiL) 〉 . (11)

Let us note that we have retained the dependencies on r and ∆ as appropriate, in order
to stress the explicit dependencies on the sub-grid stress tensor and on its characteristic
scale ∆ when relevant. After some algebra, one derives the exact hierarchy obtained
for the evolution of the general longitudinal nth order structure function, ∂tD

n,0(r)
(see Appendix A and also [29,30] for similar derivation obtained for the case of NSE):

∂tD
n,0(r) =−

(
∂rD

n+1,0(r) +
2

r
Dn+1,0(r)− 2n

r
Dn−1,2(r)

)
− 2n

(
∂r +

2

r

)
Gn−1,0
L,L (r,∆) +

4n

r
(Gn−2,1

L,N (r,∆) +Gn−1,0
N,N (r,∆))

+
2n!

(n− 2)!
(Sn−2
L,L (r,∆) + Tn−2

L,L (r,∆))− 2nPn(r,∆) + 2nFn(r) , (12)

where the correlations involving the forcing Fn(r) are described in Appendix A. The
form and properties of the correlation tensors are discussed in detail in Appendix C.1
for those leading to the functions Gn−1,0

L,L (r,∆), Gn−1,0
N,N (r,∆) and, Gn−2,1

L,N (r,∆). The

functions Tn−2
L,L (r,∆) and Sn−2

L,L (r,∆) including their common combinatorial prefactor
are treated in Appendix C.2, and the pressure correlations are contained in Appendix
C.3. A similar set of equations can also be obtained for the evolution of the most
general mixed longitudinal-transverse case, Dn,m(r).
Let us notice that not all terms are always present, as one can explicitly see by rewriting
the above relation for the first low order moments, n = 2 (corresponding to the Monin-
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Kármán-Howarth energy balance equation), n = 3 and n = 4:

∂tD
2,0(r) =−

(
∂r +

4

r

)(
1

3
D3,0(r) +G1,0

L,L(r,∆)

)
+ 4S0

L,L(∆) + 4F 2 , (13)

∂tD
3,0(r) =−

(
∂r +

2

r

)
D4,0(r) +

6

r
D2,2(r)− 6

(
∂r +

2

r

)
G2,0
L,L(r,∆)

+
12

r
(G1,1

L,N (r,∆) +G2,0
N,N (r,∆)) + 12(S1

L,L(r,∆) + T 1
L,L(r,∆))

− 6P 3(r,∆) + 6F 3(r) , (14)

∂tD
4,0(r) =−

(
∂r +

2

r

)
D5,0(r) +

8

r
D3,2(r)− 8

(
∂r +

2

r

)
G3,0
L,L(r,∆)

+
16

r
(G2,1

L,N (r,∆) +G3,0
N,N (r,∆)) + 24(S2

L,L(r,∆) + T 2
L,L(r,∆))

− 8P 4(r,∆) + 8F 4(r) . (15)

Equation (13) stands out from the hierarchy as the terms P 2(r,∆), T 2
L,L(r,∆),

G1,0
N,N (r,∆), G0,1

L,N (r,∆) and D1,2(r) are not present and the incompressibility con-

straint implies P 2(r,∆) = 0 and 2D1,2(r)/r = (∂r + 2/r)D3,0(r). T 2(r,∆), G1,0
N,N (r,∆)

and G0,1
L,N (r,∆) can be absorbed into the derivative of G1,0

L,L(r,∆); see Appendices A.1

and C.2 for further details. It is important to notice that the function Sn−2
L,L (r,∆) for

n = 2 in Eq. (13) is not a function of r, i.e. it is not a real multi-scale function, since

S0
L,L(∆) = 〈τ∆

kL∂kτkL〉 (16)

is proportional to the SGS energy transfer:

3S0
L,L(∆) = Π(∆) = −〈τ∆

ki∂kvi〉,

see Appendices A.1 and C.2 or Ref. [28], where Eq. (13) has been derived directly.
Before proceeding, let us make a few general comments about the structure of the
different terms entering in Eq. (12). It is important to notice that the terms containing

correlations of type Gα,βi,j (r,∆)/r with (α, β) = (n − 1, 0), (n − 2, 1) and the term

Sn−2
i,j (r,∆) have the same physical dimensions but two completely different roles: the

former consists of n− 1 velocity-field increments multiplied by the SGS stress tensor,
the latter consists of n − 1 velocity-field increments multiplied by terms of the form
τ∆
ki∂kvj that contribute to the definition of the SGS energy transfer, Π(∆). As a result,

the latter will play a key role in the balancing of the hierarchy as suggested from the
fact that also in the original NSE the presence of the dissipative anomaly is a signature
of non-trivial multi-scale correlation functions among viscous and inertial scales. On
the contrary, the terms labelled Tn−2

i,j (r,∆) are not correlated to the local energy
transfer being defined in terms of the SGS stress tensor and the velocity gradient at
two different points x and x′.
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3. Scaling of correlation functions

In this section, we will first assess the scaling properties of all terms entering in the
previous hierarchy (12) from a phenomenological point of view. In Section 4, we will
check using DNS and LES what is observed in reality and whether SGS modelling
based on the Smagorinsky eddy viscosity is indeed able to reproduce the correct ob-
servations.
A popular and fruitful way to phenomenologically introduce intermittency in turbu-
lence theory is to suppose that the velocity field is described by a MF process, where
the velocity increment scales with a local Hölder exponent h, that is, δrv ∼ rh, on a
fractal set of dimension D(h). Such phenomenological hypothesis has been used in the
past to explain the observed anomalous scaling properties of the single-scale longitudi-
nal and transverse velocity structure functions, the distribution of velocity gradients,
of particles’ accelerations, velocity increments along particle trajectories and many
other single and multi-scale turbulent properties [12,31–35]. The simplest way to build
up a MF-signal is to embed the velocity field into a multiplicative process, supposing
that the velocity-field fluctuations at two nested, inertial-range, scales r1 < r0 are
connected by a scaling relation:

δr1v =

(
r1

r0

)h
δr0v (17)

and imagining that the successive breaking into eddies at smaller scale r2 < r1 will be
given by another multiplicative process with a different, but identically distributed,
realisation of the local exponent, h′ [36–39]

δr2v =

(
r2

r1

)h′
δr1v. (18)

Using this approach it is possible to predict the scaling behaviour for all terms entering
in the hierarchy (12). We examine now the most important ones.

3.1. Single-scale Structure Functions Dn,m(r)

From the multiplicative MF Ansatz and by assuming that longitudinal and transverse
increments do follow the same scaling distribution, it is straightforward to predict that
[40]

Dn,m(r) ∼
∫
dh

(
r

L0

)h(m+n)( r

L0

)3−D(h)

(δL0
v)n+m ∼ An,m

(
r

L0

)ζn+m

(19)

where the last equality is obtained by estimating the integral in the saddle node
approximation, r � L0 → ζ(n + m) = minh(h(m + n) + 3 − D(h)). The prefactors
An,m = O(1) are non-universal quantities which depend on the large-scale velocity
distribution δL0

v. One can immediately see that as soon as multiple realisations of
the local Hölder exponent exist, the scaling properties are characterised by anomalous
power laws, i.e. ζ(n) 6= n/3. Nevertheless, it is important to notice that the MF
approach contains the Kolmogorov K41 phenomenology as a limiting case, where the
energy cascade is assumed to develop in a homogeneous way with a Hölder-1/3 velocity
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field everywhere in the three-dimensional volume, since h = 1/3 and D(1/3) = 3 imply
ζ(n) = n/3.

3.2. Multi-scale correlation functions and Fusion-Rules

Using the same approach, one can show that multi-scale correlation functions must also
be characterised by anomalous scaling properties. For the generic two-scale correlation
functions with r < R we have the Fusion-Rules (FR) behaviour [41–43]:

〈(δrv)n(δRv)m〉 ∼ 〈
( r
R

)n
(δRv)n(δRv)m〉 ∼

∼
∫
dhdh′

( r
R

)hn+3−D(h)
(
R

L0

)h′(n+m)+3−D(h′)

∼
( r
R

)ζn ( R

L0

)ζn+m

; r � R� L0 (20)

where we have assumed a large separation among all scales, that r and R belong to
the inertial range and we have applied a double saddle-node approximation of the
integrals. Notice that Eq. (20) would correspond to the uncorrelated result iif the
exponent follows K41, ζn = n/3,

〈(δrv)n(δRv)m〉 ∼ rn/3Rm/3. (21)

3.3. Multi-scale Correlation among velocity increments and SGS-stress,
Gn,m

i,j (r,∆)

In order to introduce multi-scale correlation with the SGS stress tensor and the SGS
energy dissipation entering in the hierarchy (12) we start from the observation made
by [44–46] that the local SGS stress tensor can be estimated in terms of a suitable
average of local velocity increments. As a result, for any Hölder-continuous velocity
fields with local Hölder exponent h one might estimate τ∆ to be a (local) MF-scaling
function of the coarse-graining grid ∆ [47–50]:

τ∆
ij ∼ ∆2h (22)

Any correlation tensor involving velocity field increments at scale r and the SGS-stress
τ∆
ij can therefore be treated as a correlation tensor involving the two scales r and ∆

within the Fusion-Rules approach. Following the same MF Ansatz of the previous
section, we end up with:

δ∆vL ∼
(

∆

r

)h
δrvL . (23)

For ∆ < r, the scaling behaviour of the correlations between the nth power of a longi-
tudinal velocity field increment and the SGS-stress can be estimated using Eq. (20):

〈τ∆
LL(δrvL)n〉 ∼

〈
(δ∆vL)2(δrvL)n

〉
∼
〈

∆2h

r2h
(δrvL)n+2

〉
∼
(

∆

r

)ζ2 ( r
L

)ζn+2

, (24)
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hence

〈(δrvL)nτ∆
LL〉 ∼

(
∆

L

)ζ2 ( r
L

)ζn+2−ζ2
. (25)

A few comments are now in order. First, the FR approach, being based on a MF
multiplicative cascade, does not easily incorporate differences among scaling properties
of longitudinal or transverse velocity increments. In fact, the most recent literature
[14] shows that such a differences might disappear with increasing Reynolds numbers.
Hereafter we will always assume that it is not important to distinguish among scaling
properties of longitudinal, transverse or mixed longitudinal-transverse components,
i.e. in all cases only the total number of velocity increment matters. Second, the FR
estimate (24) is meant to capture only the leading power law behaviour and cannot take
into account cancellations and symmetry constraints which may affect the prefactors.
For example, the prediction (20) cannot hold for the special case of mixed longitudinal-
transverse correlation with an odd power for the transverse increment, because in such
a case Dn,2m+1(r) = 0, ∀m because of isotropy [51]. We will come back to this point
in Sec. 4 where we analyse the data from DNS and LES. For the sake of comparison,
it will be important to estimate the multi-scale correlation functions by assuming that
the fields at different scales are almost decorrelated:

〈(δrvL)nτ∆
LL〉 ∼

〈( r
L

)nh(∆

L

)2h′
〉
∼
( r
L

)ζn (∆

L

)ζ2
. (26)

Since ζn+2−ζ2 < ζn and r/L < 1, the uncorrelated scaling Ansatz would be subleading
with respect to that obtained from the MF cascade process. We will return to this point
in Sec. 4.

3.4. Correlations between velocity field increments and components of
the SGS-energy, Sn

i,j(r,∆)

The multiplicative cascade Ansatz can also be used to estimate the scaling behaviour
of the correlations functions involving the components of the SGS-energy transfer

Sni,j = 〈τ∆
ki∂kvj(δrvL)n〉. (27)

As already noticed in the previous subsection, we will assume that no major scaling
differences exist concerning the longitudinal or the transverse components of the dif-
ferent observables, and we proceed by applying the MF approach by specifying it for
the case where all components are chosen in the longitudinal directions.

〈τ∆
LL∂xLvL(δrvL)n〉 ∼

〈
(δ∆vL)2 δ∆vL

∆
(δrvL)n

〉
∼ (28)

∼
〈

∆3h−1

r3h
(δrvL)n+3

〉
∼ 1

∆

(
∆

r

)ζ3 ( r
L

)ζn+3

.

Using the exact scaling property ζ3 = 1 one obtains

〈τ∆
kL∂kvL(δrvL)n〉 ∼ r−1〈(δrvL)n+3〉 ∼ rζn+3−1 (29)
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hence, in the inertial-range scaling regime, all curves obtained at different ∆ must
collapse. Before summarising all results, let us mention that the scaling of the pressure
terms, Pn(r,∆) in Equation (12) will necessarily be connected to a mixing of all previ-
ous correlation functions, because it feels contributions from both the advection term
vi∂ivj and SGS tensor in Equation (2). On the contrary, one expects that the terms
involving Tni,j(r,∆) will always be sub-leading with respect to Snij(r,∆), because it con-
sists of velocity gradients and SGS stress components in two different spatial locations.

More importantly, the above scaling relations tell us that the contribution involving
the correlation with the components of the SGS energy transfer in Equation (12) are
independent of ∆ and they have the same contributions as the non-linear single-scale
structure-function terms

∂rD
n+1,0(r) ∼ r−1Dn+1,0(r) ∼ r−1Dn−1,2(r) ∼ Sn−2

L,L (r) ∼ rζn+1−1 , (30)

while the terms involving correlations with the SGS stress are subleading in the limit
∆/r → 0, and do depend on the cut-off ∆

r−1Gn−1,0
L,L (r,∆) ∼ r−1Gn−2,1

L,N (r,∆) ∼ r−1Gn−1,0
N,N (r,∆) ∼

(
∆

r

)ζ2
rζn+1−1 . (31)

4. Numerical results

In order to measure scaling exponent, to compare them to the derived scaling results,
and to establish which terms in the balance equations are leading or sub-leading, we
need to generate data-sets for both a-priori and a-posteriori analyses. For the a-priori
analysis, data-sets are generated through DNSs of the viscous and hyper-viscous NSE

∂tv = −∇ · (v ⊗ v)−∇p+ ν(−1)α+1∆αv + f , (32)

∇ · v = 0 , (33)

where v denotes the velocity field, p the pressure divided by the density, f an external
force, α the power of the Laplacian and ν the kinematic (hyper)viscosity. We carry out
series of numerical simulations with either normal viscosity (α = 1) or hyperviscosity
(α = 2 and α = 4), the data-sets are distinguished by the labels V (visco) and H
(hyperviscous), respectively. The DNS velocity fields are subsequently filtered through
spherically symmetric Galerkin truncation at a cut-off wavenumber kc = π/∆ [2], i.e.
G∆ is given by a projection operation in Fourier space. For the a-posteriori analysis,
LESs are carried out following Eq. (2) using the standard static Smagorinsky model
for the deviatoric part of the SGS stress tensor

τ∆,SMAG
ij = −2(c∆

s ∆)2
√
sijsij sij = −2ν

E
sij , (34)

where ν
E

= (c∆
s ∆)2

√
sijsij is the scalar eddy viscosity, c∆

s is the Smagorinsky constant

which is here set to c∆
s = 0.16 and sij = 1/2(∂jvi+∂ivj) is the resolved strain-rate ten-

sor [18,52]. The respective evolution equations for DNS and LES are solved numerically
on a domain Ω = [0, 2π]3 with periodic boundary conditions using the pseudospec-
tral method with full dealiasing according to the 2/3rds rule [53]. In both cases the
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large-scale forcing was given in Fourier space by a second-order Ornstein-Uhlenbeck
process, which is active in the wavenumber band k ∈ [0.5, 1.5] [54,55], corresponding
to the forcing scale Lf = 2π/kf = 4.2, where kf = 1.5 is the upper limit of the forcing
interval.. The resolution for the DNSs is ηα/dx ' 0.7 for all simulations, where dx is
the grid spacing and ηα = (ν3/ε)1/6α−2 the generalised Kolmogorov microscale [56]
with ε denoting the mean dissipation rate. After reaching a statistically stationary
state the DNS and LES velocity fields and the LES SGS-tensor have been sampled at
intervals of one large-eddy turnover time in order to create ensembles of statistically
independent data, from which all correlation functions are calculated. Concerning the
resolution of the DNSs, runs V1 and H1 are carried out on 10243 collocation points
while 20483 collocation points were used for runs V2 and H2. For LES, grids of size
1283, 5123 and 10243 we used, the corresponding runs are labelled LES1, LES2 and
LES2. Further details of all DNS and LES are given in table 1. Steady-state energy
spectra of all data-sets are shown in Fig. 1.

Data N Re ε,max[Π] U0 L0 ν α T0

Teddy
∆

V1 1024 2570 1.9 1.8 1.2 0.0008 1 25 π/12− π/40
V2 2048 8000 1.4 1.5 1.2 0.0003 1 9 π/12− π/40
H1 1024 8000 1.9 1.9 1.3 2× 10−8 2 7 π/12− π/40
H2 2048 26000 1.5 1.6 1.1 5.7× 10−20 4 6 π/80

LES1 128 - 1.3 1.5 1.2 0 - 190 π/41
LES2 512 - 1.5 1.7 1.3 0 - 10 π/171
LES3 1024 - 1.3 1.4 0.8 0 - 27 π/342

Table 1. The DNSs have been carried out with either normal or hyperviscosity, where α is the order of

the Laplacian and the corresponding data-sets are identified by the labels V1, V2 and H1, H2, respectively. N
denotes the number of grid points in each Cartesian coordinate, U0 the RMS velocity, L0 = (π/2U2

0 )
∫
dk E(k)/k

the integral scale, ν the kinematic hyperviscosity, ε the dissipation rate which equals the maximal inertial flux

max[Π] in steady state, T0/Teddy the steady-state run time in units of large-eddy turnover time Teddy = L0/U0,
and ∆ = π/kc the filter scale in terms of the cut-off wave number kc. The values given for ε, U0, L0 and max[Π]

are time averages, where max[Π] is reported for LES while ε is reported for DNS. The integral-scale Reynolds

number is defined as Re = C(L0/ld)4/3, where C is a constant estimated by comparison to data-set V1 and
ld is the scale corresponding to the maximum of k2E(k); for further details see Ref. [50]. The forcing scale

Lf = 2π/kf = 4.2, with kf = 1.5 being the maximum wavenumber where the forcing is applied, is the same

for all simulations.
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Figure 1. Energy spectra, E(k), averaged on time in the stationary state for the different sets of simulations.
The spectra for the LES are shifted upward while the spectra for data-sets with normal viscosity (V) are shifted

downward.

4.1. Second-order balance (n = 2)

Following Ref. [28] and eq. (13) we obtain the equivalent of the four-fifth law within
the LES formulation which reads in the stationary state:

1

r

(
D3,0(r) + 3G1,0

L,L(r,∆)
)

= −4

5
〈Π(∆)〉 , (35)

where we have neglected the forcing contribution because it is always sub-leading for
scales smaller than the forcing scale Lf ; see Appendix A.1. In Fig. 2(a), we show the
importance of the two terms on the left-hand side, using both the filtered DNS data
at 12 6 kc 6 40 and the data from the LES1 simulation. Panels (b) and (c) of the
same figure show the same curves for LES data only upon changing the resolution. It
is clear that the LES approach does not introduce any important spurious physics in
the inertial range if compared either with the viscous or the hyperviscous simulations.
In particular, panel (a) shows that the LES curves are recovered from the a-priori
analysis by decreasing the filter cut-off. The solid lines (r/∆)−ζ2 in Figs. 2(a-c) in-

dicate the MF prediction for G1,0
L,L(r,∆)/r, which for n = 1 and m = 0 would give

G1,0
L,L(r,∆)/r ∼ rζ3−ζ2−1 = r−ζ2 . It is clear from the figures that G1,0

L,L(r,∆) does not
obey the MF scaling in both the a-priori and the a-posteriori analyses. Instead, inter-
estingly enough, it is even more sub-leading than the MF prediction, indicating that
the details of the SGS-model should have little effect on the energy balance. The devi-
ation from the MF in the DNS data is probably due to the existence of cancellations
given the particular structure of G1,0

L,L(r,∆) where the longitudinal increments appear
only in a linear way, a fact that would lead to an exactly vanishing contribution in
the case of weak correlation with the SGS stress tensor, because of homogeneity. For
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the LES case we will comment on this later on in this section. Since D3,0(r) ∼ r3

for r → 0, G1,0
L,L(r,∆) must satisfy −3G1,0

L,L(r,∆) = 4
5〈Π(∆)〉 for r → 0. This is the

case as can be seen in Fig. 2(a)-(c) for both the filtered DNS and the LES. Moreover,
the scaling range of the correlation and structure functions obtained though the LES
simulations extends with increasing resolution as shown in Figs. 2(b,c), as it must be
expected for a good subgrid parametrisation.
Finally, we compare in Fig. 3 the highest resolved LES3 data-set against results from
the viscous and hyperviscous data-sets V1 and H1 without filtering, where all sim-
ulations were carried out on 10243 grid points. Here, for the two data sets from
the Navier-Stokes cases we need to consider that the 4/5 law (35) will include the
dissipative term: νLαrD2,0(r), where Lαr is a differential operator which depends on
the order α of the Laplacian. The dissipative term replaces term G1,0 in the 4/5-th
law; for data-set V1 it is given as L1

rD
2,0(r)/r = 6∂rD

2,0(r)/r while for data-set H1
L2
rD

2,0(r)/r = 12D2,0(r)/r2 + 12(
∫ r

0 ds sD
2,0(r))/r4 − 6∂3

rD
2,0(r)/r.

For data-set V1, the form of the dissipative term implies that it should scale
as rζ2−2 ≈ r−1.3, which is well satisfied, as can be seen from panel (a). Interest-

ingly, the function G1,0
L,L(∆, r)/r scales similarly as a function of r at fixed ∆; a

possible explanation for this behaviour is given below in eq.(36). For data-set H1,
L2
rD

2,0(r)/r = 12D2,0(r)/r2 + 12(
∫ r

0 ds sD
2,0(r))/r4 − 6∂3

rD
2,0(r)/r, and therefore,

at leading order L2
rD

2,0(r)/r ∼ D2,0(r)/r2 for r > ηα, does show the same scaling
properties as the viscous case. Panel (b) shows that the third-order structure function
obtained from LES3 has an inertial-range scaling much more extended than the vis-
cous case and even better than the H1, supporting the statement that the LES closure
is a dissipative closure more efficient than hyperviscosity. Overall, we can conclude
that if the use of the hyperviscosity is interpreted as an effective ‘subgrid model’, it
leads to a larger influence of the dissipative term than the SGS modelling of the LES
simulation.

13



10−3

10−2

10−1

100

0.1 1 10 100

(r/∆)ζ2−2
(r/∆)−ζ2

(a)
X = 3G1,0

L,L

X = D3,0

X
/(

4 5
〈 Π

∆
〉r

)

r/∆

10−5

10−4

10−3

10−2

10−1

100

101

1 10 100

(r/∆)ζ2−2
(r/∆)−ζ2

(b)

X
/(

4 5
〈Π

∆
〉r

)

r/∆

LES3
LES2
LES1

10−5

10−4

10−3

10−2

10−1

100

101

0.01 0.1 1

rζ2−2

r−ζ2

(c)

X
/(

4 5
〈Π

∆
〉r

)

r

LES3
LES2
LES1

Figure 2. Top panel (a): comparison of the two terms in the left hand side of the four-fifth law, eq. (35). Full

symbols represent D3,0(r) while open symbols are 3G1,0(r,∆), both normalised with 4/5〈Π(∆)〉r. The two

terms are calculated for the LES1 data-set at ∆ = π/42 (circles) and for the filtered DNS data using different
cut-off ∆, (black rhombus) ∆ = π/12, (black downwards triangles) ∆ = π/20, (black upwards triangles)

∆ = π/30 and (black squares) ∆ = π/40. Bottom panels (b and c): the same quantities, D3,0(r) (full triangles)

and 3G1,0(r,∆) (open circles) are presented for different LES data-sets, namely: LES1, ∆ = π/42 (blue
coluor/dark grey). LES2, ∆ = π/171 (red/grey) and LES3 ∆ = π/342 (green/light grey) against r/∆ in panel

(b) and against r in panel (c). The solid line (r/∆)−ζ2 shown in all panels, indicates the MF scaling prediction

(25), while the solid line (r/∆)ζ2−2 corresponds to the scaling prediction based on the assumption of a constant
eddy viscosity (36).

14



10−5

10−4

10−3

10−2

10−1

100

101

1 10 100

rζ2−2

X = D3,0

X = G1,0
L,L

X = νL1
rD

2,0

X = νL2
rD

2,0

(a)

X
/(

4 5
〈Π

∆
〉r

)

r/∆

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100

X = D3,0

X = G1,0
L,L

X = νL1
rD

2,0

X = νL2
rD

2,0

(b)

X
/(

4 5
〈Π

∆
〉r

)

r/∆

Figure 3. Four-fifth law: comparison between full DNSs’ data with normal viscosity (V1, black circles), with
hyperviscosity (H1) (black squares) and the Smagorinsky LES data at ∆ = π/342 (green/light grey triangles)

always using 10243 grid points. Full symbols are the third order structure functions D3,0(r) while open symbols
represent either the viscous term, νLαrD2,0

L,L(r) (black colour), or the correlation with the SGS tensor, G1,0(r,∆)

(green/light grey). All terms are normalised with 4/5〈Π(∆)〉r. Panel (a): data are presented in log-log scale
to show the scaling properties of the different functions. Panel (b): same data in lin-log scale to highlight how

the four-fifth law expected value (dashed line) is recovered by the different structure functions in the inertial

range.

Before moving to the balance equation of higher-order correlations, let us have a
look in more details at the scaling of the SGS-term in the 4/5 law, G1,0

L,L(r,∆). As
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noticed, we observe a deviation from the MF prediction and a good agreement with
the purely dissipative scaling G1,0

L,L(r,∆) ∼ rζ2−1. This can be understood considering

that using the Smagorinsky closure (34), one breaks the phase correlation between the
three velocity increments entering in the SGS modelling, due to the fact that two terms
appear inside the square-root and have a definite sign. As a result, concerning multi-
scale correlation, the SGS Smagorinsky stress will behave as τ∆,SMAG ∼ const s̄ij . If
this is the case, one predicts the SGS tensor to act as a linear dissipative operator:

Gn,0L,L(r,∆) ∼ ∂rDn+1,0(r) ∼ rζn+1−1 (36)

explaining the scaling shown in Fig.(3) for G1,0
L.L(r,∆)/r ∼ rζ2−2.

In summary, the Smagorinsky SGS-model performs well at the level of the second-
order balance equation in the sense that:
(1) Both D3,0(r) and G1,0

L,L(r,∆) obtained from the LES show the same scaling
behaviour as those obtained from filtered DNS.
(2) The effect of the SGS-stress on the two-point energy balance is subleading.

(3) The measured scaling of G1,0
L,L(r,∆) obtained from the Smagorinsky LES is robust

under increasing scale separation between r and ∆.
(4) At the same resolution, the LES simulation have a larger extension of the DNS,
even if compared with the hyperviscous Navier-Stokes case.

4.2. Higher-order balances (3 6 n 6 6)

Having examined the properties of correlations between velocity field increments and
the SGS-stress at the lowest nontrivial order in the LES structure function hierarchy,
we now examine the higher-order balances. Here, we need to study the correlations
which involve the resolved velocity field gradients, Tni,j(r,∆) and Sni,j(r,∆) also. The
latter describe the correlations between velocity field increments and part of the SGS
energy transfer. As will become clear in the following, even- and odd-order balances
require separate descriptions. In Figure 4 top panel we present all terms in Eq. (14)
for n = 3, obtained from the filtered DNS data-set H1 for kc = 40, while Figure
4 bottom panel presents the same terms for the a-posteriori data-set LES3. The
higher-order analysis, n = 4, n = 5 and n = 6, are reported, respectively, in Figures
5-7 where the results from filtered DNS are presented in the left panels and compared
to the one from the LES3 data-set shown in the right panels. The forcing term is not
shown in order to improve the readability of the individual figures.
Let us comment the general trends.
(i) For all orders, a-priori (DNS) and a-posteriori (LES) data are in pretty good
agreement, especially concerning the leading terms. This is seen by noticing that
for all orders the inertial range behaviour is dominated by the structure functions,
Dn,m(r) (black data). Moreover, the scaling is in agreement with the MF prediction
(19) and LES data do scale better than DNS data.
(ii) Correlation function involving Pressure (green/light grey data) do scale similarly
to Dn,m(r), suggesting a key role of them in the global balance.
(iii) For even orders (n = 4, 6) also the correlation, Sni,j(r,∆) involving the SGS-
energy transfer (blue/dark grey colour in Fig. 5 and Fig.7 ) play a leading role, in
agreement with what was found for the equivalent terms involving the correlation
with the energy dissipation in Navier-Stokes case in [57].
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(iv) The ensemble of correlation involving the SGS tensor Gn,m(r,∆), (red/grey
data) are always sub-leading and DNS data do show a different scaling from LES
data.
(v) Correlation given by the terms, Tni,j(r,∆), are never leading with respect to
Sni,j(r,∆) (both in blue/dark grey colour in all Figures) as argued after Eq. (29).
Let us now comment more on the previous results. We first focus on the analysis of
the data from the filtered DNS. As can be seen from a qualitative comparison the
odd- and even-order balances show important differences. For the odd orders (Figures
4 and 6), the pressure correlations must balance the inertial Structure Functions
contribution, Dn,m(r), as all the other terms scale in a sub-leading way. For the even
orders (Figures 5 and 7), the inertial terms are balanced also by the terms Sni,j(r,∆),
which describe the correlations between longitudinal velocity-field increments and
the components of the SGS-energy transfer. These differences could have been
expected from numerical results concerning the hierarchy of structure functions in
the original NSE obtained in [57]. Indeed, similar to the present case of filtered DNS,
it was found in [57] that the inertial contributions are balanced by the pressure for
the odd-order balances. For the even-order balances, the inertial contributions are
balanced also by the contributions from the viscous terms. The latter is similar to
our results for filtered DNS, as the correlations between the resolved-scale velocity
increments and the SGS energy transfer play a similar role to the viscous energy
dissipation in the full Navier-Stokes evolution – with the important difference that
energy dissipation is point-wise positive definite in the NSE. Differences between
even- and odd-order balances, in the filtered DNS data, are also visible concerning
the functions Sni,j(r,∆) and Tni,j(r,∆). The latter is always decaying by going to
larger and large scale separations, r/∆ � 1, the former matches the MF prediction
(30) only for even order (see right panels of Figs. (5) and (7), while odd orders
are much more depleted and very close to Tni,j(r,∆) (top panel of Fig. 4 and left
panel of Fig. 6). The above behaviour can be understood by noticing that odd-order
Sni,j(r,∆) correlations involves unsigned velocity increments and SGS energy transfer,
introducing non-trivial cancellations that brings the quantity away from its leading
MF prediction.
Concerning LES data, we found that Sni,j(r,∆) is in good agreement with DNS for
even orders (left columns of Figs. (5) and (7), while it is more intense than the
a-priori case for odd orders (bottom panel of Fig. 4 and right panel of Fig. 6). This
is probably due to the fact that in the Smagorinsky LES the SGS energy transfer is
positive definite, and it is not able to reproduce the cancellations present in the real
DNS, leading to a contribution larger than what would be in reality. To be more
quantitative, we show in all figures the straight-line corresponding to scaling MF
predictions (30) for the dominant contribution, which is in very good agreement for all
cases. The values for the scaling exponents ζn of the nth-order longitudinal correlation
functions used in this comparison are taken from Ref. [7,12], i.e., ζ2 = 0.70 ± 0.01,
ζ4 = 1.29± 0.03, ζ5 = 1.54± 0.03, ζ6 = 1.77± 0.04 and ζ7 = 1.98± 0.06.
As noticed, the whole set of multi-scale correlation function involving the SGS stress
(red data) given by the class G(r,∆) are always sub-leading with respect to Dn,m(r)
and to the pressure and they are in good agreement with the MF prediction (31) for
the a-priori DNS data and with (36) for the a-posteriori LES case (as shown by the
corresponding straight lines in all plots). Before concluding, let us summarise the
main findings.
1. A simple LES approach based on a Smagorinsky model is able to reproduce most
of the multi-scale physical properties of real turbulence at high Reynolds numbers,
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including the MF scaling in the inertial range of the structure functions, Dn,m(r), and
of the correlation among velocity increments and the SGS energy transfer, Sn(r,∆)
(for even n).
2. Nevertheless, some notable differences arise. In particular, the multi-scale corre-
lations (8) involving the SGS stress tensor have a smaller amplitude in LES than
for real DNS. By comparing the left and right columns of Figs. (5-7) one clearly
sees that for LES data, there exists a sharp difference among those correlations
that have the leading scaling behaviour and those that follow off for large r/∆
separation. This fact is a positive outcome, indicating that the LES closure has a
minor influences on the inertial range scaling properties than standard viscosity or hy-
perviscous effects. A different trend is also measured for the behaviour of correlation,
S3
ij(r,∆), which appears in the balance for n = 5 in Fig. (6) where the LES data (right

panel) do have a better scaling with a larger exponents than the DNS data (left panel).

5. Conclusions

This paper provides analytical and numerical results concerning the multiscale cor-
relations between the resolved-scale velocity field increments and SGS quantities for
a-priori and a-posteriori data. We derived the exact hierarchy of higher-order equations
for all structure functions obtained from filtered NSE. All correlations were measured
using a database consisting of filtered DNS on up to 20483 and Smagorinsky LES on
up to 10243 collocation points.
Under the assumption of a connection between resolved-scale and SGS statistics given
by a multiplicative MF cascade process, we provided scaling estimates for all two-point
functions involving correlations among the resolved velocity increments and the SGS
stress or the SGS energy transfer.
Concerning the comparison between filtered DNS and Smagorinsky LES, we find that
the results obtained from the Smagorinsky model agree well with those from filtered
DNS concerning all leading terms, i.e. those involving structure functions, pressure
correlations and correlations with the SGS-energy transfer. On the contrary, all terms
involving correlations with SGS tensor, Gn,mi,j (r,∆) have a smaller amplitude and a

faster decrease as a function of the scale separation ∆/r for LES data.
Overall, the LES approach works well, leading to a larger extension of the scaling range
with respect to the DNS at comparable numerical resolution. Since the Smagorinsky
model performs well concerning the scaling of the structure functions, in principle we
do not expect significant improvements from more sophisticated models. However, a
better LES model may be more efficient in reproducing inertial-range scaling than
the Smagorinsky model, in the sense that coarser grids may be possible for a suitable
model. A more detailed quantitative assessment of the effects of LES modelling on
the inertial range scaling properties, also comparing different subgrid closures will be
presented elsewhere.
Moreover, the numerical study of the a-priori filtered DNS data revealed some differ-
ences in the scaling behaviour of correlation functions belonging to even- and odd-order
balance equations, similar to results concerning the viscous contributions obtained
from the full Navier-Stokes evolution [57]. For even-order balances the leading terms
are the ones given by velocity structure functions, Dn,m(r), the pressure, Pn(r,∆) and
the correlation with the SGS energy transfer, Sni,j(r,∆). All of them follow the MF
prediction (30). For odd orders, the cross correlation involving the SGS energy balance
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are subleading. Terms involving the cross correlation with the SGS tensor, Gn,mi,j (r,∆)

are always sub-leading as well, as predicted by the MF; see Eq. (31).
In the Appendices we reproduce all technical aspects concerning the derivation of the
exact hierarchy for LES (see Appendix A) and for a modification of the closure equa-
tions where we explicitly took into account also the re-projection of the nonlinear term
involving the two filtered fields [2,50,58,59] which is somehow unavoidable in numerical
applications; see Appendix B. The latter induced complications in the derivation of
the structure function hierarchy, which are tackled through a distinction between the
actual SGS stress and the Leonard stress [60]. The contributions from the Leonard
stress only appear in the higher-order balance equation, with the four-fifth law (n = 2
in the hierarchy) remaining unaffected (see Appendix B and Ref. [50]). The properties
of the correlation tensors, which are used in the derivation of the LES-hierarchy of
longitudinal structure functions are summarised in Appendices C.1 and C.2 for those
of type Gn,mi,j (r,∆), Sni,j(r,∆) and Tni,j(r,∆), where we also comment on the general
structure of these terms. The latter is also used in Appendix C.3 in order to provide
an explicit form of the pressure correlation, which distinguishes correlations involving
velocity-field gradients from those only involving correlations between the pressure
and the velocity-field increments. Finally, Appendix A.1 contains a re-derivation of
the 4/5-th law for LES from the tensorial approach, and a subsequent comparison to
the corresponding result in Ref. [28]. It is important to stress that studies similar
to the one presented here can be performed also in the presence of anisotropy, for
wall-bounded [61] and high-Reynolds boundary layer flows [62]. In these cases, the
injection of energy due to the coupling with the mean shear leads to an increasing of
intermittency and to a more complicated scale-by-scale energy balance [63,64]. Small-
scale vorticity production is the key mechanisms that needs to be captured by LES
acting prominently at the cut-off scales [65,66]. Feedback of intense-but-rare small-
scale fluctuations on the resolved large-scale and on the mean profiles is even more
important than in homogeneous and isotropic case. An extension of our present study
on LES of wall bounded flows, would help to better quantify the accuracy of different
sub-grid models for such systems also for higher-orders statistics.

Acknowledgements

We acknowledge useful discussions with H. Aluie, R. Benzi, J. Brasseur and C. Men-
eveau. The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No.
339032.

Appendix A. Derivation of the LES structure function hierarchies

This appendix contains the derivation of Eq. (12) from Eq. (5). Since all tensors in
Eq. (5) which do not contain explicit correlations to the SGS stress are structurally
identical to those figuring in the evolution equations derived from the full NSE, the
only term that needs to be considered is the tensor

Hi1...in =
1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kτ
∆
kiσ(n)

) . (A1)
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This expression has been obtained through point splitting, that is one considers two
points x′ and x such that x′ = x + r. In order to separate single- and multiscale
contributions to the tensor H, we carry out a change of variables using

X =
1

2
(x + x′) and r = x′ − x , (A2)

x′ = X +
1

2
r and x = X− 1

2
r , (A3)

which leads to

∂Xi = ∂x′i + ∂xi , (A4)

∂ri =
1

2
(∂x′i − ∂xi) , (A5)

∂x′i =
1

2
∂Xi + ∂ri , (A6)

∂xi =
1

2
∂Xi − ∂ri . (A7)

In the new coordinates the increment δr(∂kτ
∆
ki ) can be written as

δr(∂kτ
∆
ki ) = ∂x′kτ

∆′
ki − ∂xkτ∆

ki = (∂x′k − ∂xk)(τ∆′
ki + τ∆

ki ) = 2∂rk(τ
∆′
ki + τ∆

ki ) . (A8)

Substitution of this equation into the expression for Hi1...in in eq. (A1) yields

Hi1...in =
1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kτ
∆
kiσ(n)

)〉

=
2

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

∂rk(τ
∆′
kiσ(n)

+ τ∆
kiσ(n)

)〉

=
2

|Sn−1|
∑
σ∈Sn

∂rk〈δrviσ(1) . . . δrviσ(n−1)
(τ∆′
kiσ(n)

+ τ∆
kiσ(n)

)〉

− 2

|Sn−1||Sn−2|
∑

s∈Sn−1

∑
σ∈Sn
〈δrvis(σ(1)) . . . δrvis(σ(n−2))

∂rk(δrvis(σ(n−1))
)(τ∆′

kiσ(n)
+ τ∆

kiσ(n)
)〉 .

(A9)

The summands in the last term on the RHS of this equation can also be written as

〈δrvis(σ(1)) . . . δrvis(σ(n−2))
∂rk(δrvis(σ(n−1))

)(τ∆′
kiσ(n)

+ τ∆
kiσ(n)

)〉

=
1

2
〈δrvis(σ(1)) . . . δrvis(σ(n−2))

(∂x′kv
′
is(σ(n−1))

+ ∂xkvis(σ(n−1))
)(τ∆′

kiσ(n)
+ τ∆

kiσ(n)
)〉 , (A10)
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such that

Hi1...in =
2

|Sn−1|
∑
σ∈Sn

∂rk〈δrviσ(1) . . . δrviσ(n−1)
(τ∆′
kiσ(n)

+ τ∆
kiσ(n)

)〉

− 1

|Sn−1||Sn−2|
∑

s∈Sn−1

∑
σ∈Sn

〈δrvis(σ(1)) . . . δrvis(σ(n−2))
(∂x′kv

′
is(σ(n−1))

+ ∂xkvis(σ(n−1))
)(τ∆′

kiσ(n)
+ τ∆

kiσ(n)
)〉

=
2

|Sn−1|
∑
σ∈Sn

∂rk〈δrviσ(1) . . . δrviσ(n−1)
(τ∆′
kiσ(n)

+ τ∆
kiσ(n)

)〉

− 1

|Sn−1||Sn−2|
∑

s∈Sn−1

∑
σ∈Sn

〈δrvis(σ(1)) . . . δrvis(σ(n−2))
(∂x′kv

′
is(σ(n−1))

τ∆′
kiσ(n)

+ ∂xkvis(σ(n−1))
τ∆
kiσ(n)

)〉

− 1

|Sn−1||Sn−2|
∑

s∈Sn−1

∑
σ∈Sn

〈δrvis(σ(1)) . . . δrvis(σ(n−2))
(∂x′k(v

′
is(σ(n−1))

τ∆
kiσ(n)

) + ∂xk(vis(σ(n−1))
τ∆′
kiσ(n)

)〉 ,
(A11)

and we have separated three contributions; the first term on the RHS describes the
correlation between the velocity field increments and the SGS tensor, while the second
term describes the correlations between the velocity field increments with the velocity
field gradients and the SGS tensor evaluated at the same point and the third term
describes the correlations between the velocity field increments with the field gradi-
ents and the SGS tensor evaluated at different points. For n = 2 the second term
becomes the subgrid energy flux. We define three tensors to keep track of the different
correlations

Gi1...ink(r,∆) = 〈δrvi1 . . . δrvin−1
(τ∆′
ink + τ∆

ink)〉 , (A12)

Si1...in(r,∆) ≡ 〈δrvi1 . . . δrvin−2
(∂x′kv

′
in−1

τ∆′
ink + ∂xkvin−1

τ∆
ink)〉 , (A13)

Ti1...in(r,∆) ≡ 〈δrvi1 . . . δrvin−2
(∂x′kv

′
in−1

τ∆
ink + ∂x′kv

′
in−1

τ∆
ink)〉 , (A14)

and introduce their symmetrised versions

G{i1...in}k(r,∆) ≡ 1

|Sn−1|
∑
σ∈Sn

Giσ(1)...iσ(n)k(r,∆) , (A15)

S{i1...in}(r,∆) ≡ 1

|Sn−1||Sn−2|
∑

s∈Sn−1

∑
σ∈Sn

Sis(σ(1))...is(σ(n−1))iσ(n)
(r,∆) , (A16)

T{i1...in}(r,∆) ≡ 1

|Sn−1||Sn−2|
∑

s∈Sn−1

∑
σ∈Sn

Tis(σ(1))...is(σ(n−1))iσ(n)
(r,∆) . (A17)

We can therefore express the tensor Hi1...in as follows

Hi1...in = 2∂rkG{i1...in}k − S{i1...in} − T{i1...in} . (A18)
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From their definitions, it is clear that S{i1...in} and T{i1...in} are isotropic tensors
which are symmetric under the exchange of any pair of indices, the same applies
to ∂rkG{i1...in}k. Therefore Hi1...in is an isotropic tensor which is symmetric under the
exchange of any two indices, as it must be. Hence eq. (5) can be written more concisely
as

∂t〈δrvi1 . . . δrvin〉 =− ∂rk〈δrvi1 . . . δrvinδrvk〉 − P{i1...in}
− 2∂rkG{i1...in}k(r,∆) + S{i1...in}(r,∆) + T{i1...in}(r,∆) + F{i1...in} ,

(A19)

where P{i1...in} denotes the correlation tensor between the velocity and pressure gra-
dient increments and F{i1...in} the correlation with the force increments. Note that the
pressure tensor is structurally similar to Hi1...in ; therefore, a similar splitting should
be possible (see also Ref. [67]) and may be interesting in order to extend the results
of Ref. [30] by inclusion of the pressure-velocity correlation functions in explicit form.

The divergence of arbitrary nth-order isotropic tensors which are symmetric under
the exchange of two indices was calculated in general in Ref. [30] with details given in
Ref. [67]. These results can now be applied here, leading to the following hierarchy of
equations for the n-th order longitudinal structure function Dn,0:

∂tD
n,0(r) =−

(
∂rD

n+1,0(r) +
2

r
Dn+1,0(r)− 2n

r
Dn−1,2(r)

)
− 2n

(
∂r +

2

r

)
Gn−1,0
L,L (r,∆) +

4n

r
(Gn−2,1

L,N (r,∆) +Gn−1,0
N,N (r,∆))

+
2n!

(n− 2)!
(Sn−2
L,L (r,∆) + Tn−2

L,L (r,∆))− 2nPn(r,∆) + 2nFn(r) , (A20)

where the usual choice r = (r, 0, 0) was used and the divergence of the G-tensors has

been evaluated, leading to the presence of the functions Gn−1,0
L,L (r,∆), Gn−2,1

L,N (r,∆) and

Gn−1,0
N,N (r,∆). The function Fn denotes the contribution from the forcing

Fn = 〈δrvL . . . δrvL︸ ︷︷ ︸
n-1 times

δrfL〉 . (A21)

In order to derive this final hierarchy of equations, the tensors S and T and the
divergence of the tensors G must be evaluated. Unlike the tensors involving only
velocity increments, the tensors G are in general not symmetric with respect to the
exchange of arbitrary pairs of indices, which precludes the direct application of results
from Ref. [30]. Details of the evaluation of ∂rkG{i1...in}k can be found in Appendix C.1,
and the evaluation of the tensors of type S and T is carried out in appendix C.2. The
pressure tensors are considered in appendix C.3.

A.1. Recovery of the four-fifth law for LES for n = 2

We now treat the longitudinal components of S{ij}, T{ij} and (∂rkG{ij}k) on the RHS
of the tensor equation for the longitudinal case more in detail in order to relate eq. (13)
to the corresponding result in Ref. [28]. We begin by evaluating (∂rkG{ij}k). From the
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definition of the third-order tensor

G{ij}k = 〈δrvi(τ∆′
jk + τ∆

jk)〉+ 〈δrvj(τ∆′
ki + τ∆

ki )〉 , (A22)

we obtain

G{ij}k = 2
[
〈v′iτ∆

jk)〉+ 〈v′jτ∆
ki 〉
]
, (A23)

since 〈viτ∆′
jk 〉 = −〈v′iτ∆

jk〉 (see Appendix C.1). The evaluation of the divergence of
G{ij}k can be simplified through the incompressibility constraint, which results in

∂rk〈v′kτ∆
ij 〉 = 0. Therefore one obtains

∂rkG{ijk}(r,∆) = 2∂rk〈v′iτ∆
jk + v′jτ

∆
ik + v′kτ

∆
ij 〉

= 2∂rk〈v′iτ∆
jk + v′jτ

∆
ik 〉 = ∂kG{ij}k , (A24)

where the tensor G{ijk} = G{ij}k + 〈δrvk(τ∆′
ij + τ∆

ij )〉 is an isotropic tensor which is
symmetric under exchange of any pair of indices. Alongside incompressibility, these
geometric constraints result in G{ijk} to be of the following form [51,68]

G{ijk} = (G1,0
L,L − r∂rG

1,0
L,L)

3rirjrk
2r3

+ (G1,0
L,L + r∂rG

1,0
L,L)

[ ri
2r
δjk +

rj
2r
δki +

rk
2r
δij

]
,

(A25)
and its divergence can be calculated using the general results on the divergence of an
isotropic tensor which is symmetric under exchange of any pair of indices (see Ref. [30])

∂rkG{ijk} =

[(
∂r +

2

r

)(
3(G1,0

L,L − r∂rG
1,0
L,L)

2

)
+

(
2∂r −

2

r

)(
G1,0
L,L + r∂rG

1,0
L,L

2

)]
rirj
r2

+

[(
∂r +

4

r

)(
G1,0
L,L + r∂rG

1,0
L,L

2

)]
δij . (A26)

The evaluation of the tensor S{ij} is straightforward

S{ij} = 〈(∂x′kv′i)τ∆′
jk + (∂xkvi)τ

∆
jk + (∂x′kv

′
j)τ

∆′
ki + (∂xkvj)τ

∆
ki 〉

= 2〈(∂xkvi)τ∆
jk + (∂xkvj)τ

∆
ik 〉 . (A27)

Owing to the incompressibility constraint, the tensor T{ij} can in fact be expressed in
terms of the divergence of G

T{ij} = 〈(∂x′kv′i + ∂xkvi)(τ
∆′
jk + τ∆

jk)〉+ 〈(∂x′kv′j + ∂xkvj)(τ
∆′
ki + τ∆

ki )〉
= 〈∂xk(viτ∆′

jk ) + ∂x′k(v
′
iτ

∆
jk)〉+ 〈∂xk(vjτ∆′

ik ) + ∂x′k(v
′
jτ

∆
ik )〉

= 2∂rk〈v′iτ∆
jk + v′jτ

∆
ik 〉 = ∂rkG{ijk}(r,∆) , (A28)
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where the last equality follows from incompressibility: ∂rk〈v′kτ∆
ij 〉 = 0. The longitudinal

components of three tensors then become

(
∂rkG{ijk}(r,∆)

)
LL

= 2
∂r
r4

(r4G1,0
L,L(r,∆)) =

∂r
r4

(r4GLLL(r,∆)) , (A29)

S2
L,L = 〈τ∆

kL∂xkvL〉 , (A30)

T 2
L,L(r,∆) =

1

4

(
∂rkG{ijk}(r,∆)

)
LL

=
∂r
4r4

(r4G1,0
L,L(r,∆)) , (A31)

(A32)

and we obtain

∂tD
2,0 = − ∂r

3r4
(r4D3,0)− 2

∂r
r4

(r4G1,0
L,L) + 4S2 +

∂r
r4

(r4G1,0
L,L) + 2F 2 , (A33)

from which for ∂tD
2,0 = 0 and F 2 = 0 we recover eq. (47) in Ref. [28] stated here in

the notation used in Ref. [28]

DLLL = −6GL,LL(r,∆) +
12

5
〈τ∆
kL∂xkvL〉r = −6GL,LL(r,∆) + 6〈τ∆

LLsLL〉r . (A34)

where

GLLL(r,∆) = 〈v′Lτ∆
LL〉 =

1

2
〈δrvL(τ∆′

LL + τ∆
LL)〉 =

1

2
G1,0
L,L(r,∆) , (A35)

and DLLL ≡ D3,0. Concerning the last equality in Eq. (A34), note that the
term 6〈τ∆

LLsLL〉 must equal the SGS energy flux in stationary state, which implies
6〈τ∆

LLsLL〉 = −4
5〈Π(∆)〉 = 4

5〈τ∆
kjskj〉, which implies 〈τ∆

LLsLL〉 = 2
15〈τ∆

kjskj〉 (see also

eq. (71) [28]). These relations also imply 〈τ∆
kL∂xkvL〉 = 〈τ∆

kjskj〉/3. The contribution
from the forcing gives

2F 2 = 2〈δrvLδrfL〉 =
4

3
εIN − 4〈v′LfL〉 , (A36)

and for r << Lf we can approximate 〈v′LfL〉 ' εIN/3 (by isotropy 〈vLfL〉 = εIN/3).
Hence in stationary state, where 〈Π〉 = εIN, we again recover the four-fifth law with
〈Π〉 replaced by the numerically equal εIN.

Appendix B. Projected LES

In LES applications, the coarse computational grid cannot resolve small-scale dynamics
generated by the coupling of resolved-scale velocity-field components. In formal terms,
the existence of the LES grid therefore requires the evolution of the resolved-scale
velocity field to be confined to the same finite-dimensional vector space; hence, it is
necessary to project the momentum equation again, resulting in

∂tvi + ∂j(vivj + Pδij + τ∆,P
ij ) = fi . (B1)
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The equation derived from this momentum balance at points x and x′ for the nth-order
tensor of velocity-field increments in homogeneous isotropic turbulence then reads

∂t〈δrvi1 . . . δrvin〉 =− 1

|Sn−1|
∑
σ∈Sn〈

δrviσ(1) . . . δrviσ(n−1)

[(
v′k + vk

2

)
∂Xkδrviσ(n)

+ δrvk∂rkδrviσ(n)

]〉
− 1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kPδkiσ(n)
)〉

− 1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kτ
∆,P
kiσ(n)

)〉

+
1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δrfiσ(n)
〉 , (B2)

where

τ∆,P
ij ≡ vivj − vivj . (B3)

A further advantage of the projected LES formulation is that τ∆,P
ij only consists of SGS

quantities while the unprojected SGS stress τ∆
ij includes a residual coupling amongst

resolved scales. A detailed discussion of the difference between the two formulations is
given in Refs. [50,58,59]. For the derivation of a hierarchy of equations for the structure
functions from Eq. (B2) we immediately run into several difficulties:

1. The correlation tensor of the velocity field increments which arises from the
nonlinear term in eq. (B1) is no longer symmetric under the exchange of any two
indices.

2. Due to the asymmetry caused by the additional projector acting on the nonlinear
term, the derivatives with respect to Xk cannot be removed by homogeneity,
because they cannot be brought out from inside the average.

3. If we wish to bring the derivatives with respect to rk out from inside the average
additional terms appear from the product rule of differentiation again due the
asymmetry introduced by the projector acting on the nonlinear term.

4. We cannot relate the higher-order structure functions (n > 3, see below) to each
other without the introduction of a correction term.

However, by introducing a correction term

τ∆,LEO
ij ≡ vivj − vivj , (B4)

which is known as the Leonard stress [60], it is possible to rewrite the momentum
balance (B1) as

∂tvi + ∂j(vivj + Pδij + τ∆,P
ij + τ∆,LEO

ij ) = fi . (B5)

Using the correction terms originating from the Leonard stress, we obtain for the
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evolution of the nth-order correlation tensor of velocity-field increments

∂t〈δrvi1 . . . δrvin〉 =− ∂rk〈δrvi1 . . . δrvinδrvk〉

− 1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kPδkiσ(n)
)〉

− 1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kτ
∆,P
kiσ(n)

)〉

− 1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kτ
∆,LEO
kiσ(n)

)〉

+
1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δrfiσ(n)
〉 , (B6)

where the tensors involving τ∆,P
ij and τ∆,LEO

ij have the same symmetries. Hence, we

can use the results from the derivation of the equation hierarchy following Eq. (5) to
deduce the corresponding hierarchy for the projected LES (P-LES) following Eq. (B6)

∂tD
n,0 = −

(
∂r +

2

r

)
(Dn+1,0 + 2n(Gn−1,0,P

L,L +Gn−1,0,LEO
L,L ))

+
2n

r
(Dn−1,2 + 2(Gn−2,1,P

L,N +Gn−1,0,P
N,N +Gn−2,1,LEO

L,N +Gn−1,0,LEO
N,N ))

+
2n!

(n− 2)!

(
Sn−2,P
L,L + Sn−2,LEO

L,L + Tn−2,P
L,L + Tn−2,LEO

L,L

)
− 2nPn + 2nFn .

(B7)

Note that no correction terms are present for n = 2 since

GLEO
ijk = 2〈v′iτ∆,LEO

jk 〉 = 2〈v′ivjvk〉 − 2〈v′ivjvk〉 = 2〈v′ivjvk〉 − 2〈v′ivjvk〉 = 0 ,

T 0,LEO
L,L =

1

4

(
∂rkG

LEO
ijk

)
LL

= 0 ,

S0,LEO
L,L = 〈τ∆,LEO

kL ∂xkvL〉 = 〈(vkvL − vkvL)∂xkvL〉 = 〈vkvL∂xkvL〉 − 〈vkvL∂xkvL〉 = 0 ,

(B8)

i.e. at the level of the third-order correlation function the correlation between the
resolved field and the correction term vanishes. This is not the case at higher orders.
Correlation functions involving the Leonard stress are briefly discussed in Appendix
B.1.

B.1. Correlations involving the Leonard stress

In order to cover all contributions to the higher-order balance equations, we briefly
describe the correlations involving the Leonard stress. As mentioned earlier, these
are correction terms given in terms of resolved-scale quantities and as such do not
require modelling. At all orders n > 2 in the a-priori analysis of data-set H1 we find
that the functions Gn−1,0,LEO

L,L , Gn−1,0,LEO
N,N and Gn−2,1,LEO

L,L change sign around ∆ and
display power-law scaling in the inertial subrange. Since their scaling exponents are
always smaller than those of the functions Gn−1,0,LEO

L,L and Gn−1,0,LEO
N,N , the correlations
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involving the Leonard stress could in principle become more important than those
involving the actual SGS stress. At all orders considered here, we find that the Leonard-
stress correlations are small compared to the correlations with the SGS stress, however,
their significance increases in the higher-order equations. In contrast, the functions
Sn,LEO, which encode correlations between resolved-scale velocity-field increments and
parts of the energy transfer amongst the resolved scales, we consistently find negative
inertial-range scaling exponents. Furthermore, the Sn,LEO is always small compared
to Sn,P at all orders. Hence the contributions of Sn,LEO to the higher-order energy
balances are always subleading in the inertial range.

Appendix C. Properties of correlation tensors

In this appendix we summarise the properties of the correlation tensors that have been
used in the derivation of Eq. (12) as outlined in Appendix A.

C.1. Tensors involving velocity field increments

The tensors

Gi1...in−1,ink = 〈δrvi1 . . . δrvin−1
(τ∆′
ink + τ∆

ink)〉 , (C1)

are isotropic tensors which are symmetric under the exchange of any pair of indices
i1, . . . , in−1 as well as under the exchange of in with k. That is, it is the tensor product
of two tensors which are symmetric under the exchange of any pair of indices: a
N = n−1 subtensor and a N = 2 subtensor. This structure is used to obtain a general
formula for the divergence of Gi1...in−1,ink based on the results of Ref. [30] for tensors
which are symmetric under the exchange of any pair of indices. Here we provide some
more detail on this procedure for the lowest orders and we summarise some useful
properties of the G-tensors.

C.1.1. Second order correlation tensor

For n = 2 we obtain

〈v′kτ∆
ij 〉 =

(
〈v′Lτ∆

LL〉 − r∂r〈v′Lτ∆
LL〉
) rirjrk

2r3

+
(
2〈v′Lτ∆

LL〉+ r∂r〈v′Lτ∆
LL〉
) ( ri

4r
δij +

rj
4r
δik

)
− 〈v′Lτ∆

LL〉
rk
2r
δij . (C2)

From eq. (C2), the following property of 〈v′kτ∆
ij 〉 can be derived

〈vkτ∆′
ij 〉 = 〈vk(x)τ∆

ij (x + r)〉 = 〈vk(x− r)τ∆
ij (x)〉 = −〈v′kτ∆

ij 〉 , (C3)

where the second equality follows from homogeneity. This relation further implies that
in the limit r → 0 one obtains

〈vkτ∆
ij 〉 = lim

r→0
〈vkτ∆′

ij 〉 = − lim
r→0
〈v′kτ∆

ij 〉 = −〈vkτ∆
ij 〉 , (C4)
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and hence 〈vkτ∆
ij 〉 = 0. Hence for the correlation function G1,0

L,L = 〈δrvL(τ∆′
LL + τ∆

LL)〉
we obtain

〈δrvLτ∆
LL〉 = 〈δrvL(τ∆′

LL + τ∆
LL)〉 − 〈δrvLτ∆′

LL〉 = 2〈v′Lτ∆
LL〉 − 〈v′Lτ∆′

LL〉+ 〈vLτ∆′
LL〉

= 〈v′Lτ∆
LL〉 − 〈vLτ∆

LL〉 = 〈v′Lτ∆
LL〉 =

1

2
〈δrvL(τ∆′

LL + τ∆
LL)〉 . (C5)

The behaviour of the correlation function G1,0
L,L in the limit r → 0 can also be obtained

from

1

2
∂rG

1,0
L,L|r=0 = ∂r〈vL(x+rx̂)τ∆

LL(x)〉|r=0 = 〈∂rv′Lτ∆
LL〉|r=0 = 〈sLLτ∆

LL〉 = − 2

15
〈Π(∆)〉 ,

(C6)

see Ref. [28] or Appendix C.2 for the last equality. Therefore, G1,0
L,L = 2〈sLLτ∆

LL〉r for

small r, and limr→0G
1,0
L,L(r) = 0.

C.1.2. Third-order correlation tensor

For n = 3, we obtain from symmetry considerations for any isotropic tensor invariant
under the pairwise exchange of i with j and k with l [51,68]

Gij,lk = 〈δrviδrvj(τ∆′
lk + τ∆

lk )

= A1(r,∆)rirjrkrl +B1(r,∆)rirjδkl +B2(r,∆)rkrlδij

+B3(r,∆)(rirkδjl + rirlδjk + rkrjδil + rjrlδik)

+ C1(r,∆)(δikδjl + δilδjk) + C2(r,∆)δijδkl . (C7)

For r = (r, 0, 0), the only non-zero components are:

G2,0
L,L(r,∆) = G2,0,0

L,L (r,∆) = A1r
4 + (B1 +B2 + 4B3)r2 + 2C1 + C2 , (C8)

G2,0
N,N (r,∆) = G2,0,0

N,N (r,∆) = B1r
2 + C2 , (C9)

G0,2
L,L(r,∆) = G0,2,0

L,L (r,∆) = B2r
2 + C2 , (C10)

G1,1
L,N (r,∆) = G1,1,0

L,N (r,∆) = 2B3r
2 + C1 = G1,1

N,L , (C11)

G0,2,0
M,M (r,∆) = C2 = G0,0,2

N,N (r,∆), (C12)

G0,1,1
N,M (r,∆) = C1 , (C13)

G0,2,0
N,N (r,∆) = 2C1 + C2 = 2G0,1,1

N,M (r,∆) +G0,2,0
M,M (r,∆) , (C14)

where M denotes the second transversal component and the superscripts refer to the
number of longitudinal, first transverse and second transverse components. After some
rearrangement, the tensor Gij,lk can be expressed as

Gij,lk = (G2,0
L,L −G

2,0
N,N −G

0,2
L,L − 4G1,1

L,N +G0,2,0
N,N )

rirjrkrl
r4

+ (G1,1
L,N −G

1,1
N,M )(rirkδjl + rirlδjk + rkrjδil + rjrlδik)/r

2

+ (G2,0
N,N −G

0,2,0
M,M )

rirj
r2

δkl + (G0,2
L,L −G

0,2,0
M,M )

rkrl
r2

δij

+G1,1
N,M (δikδjl + δilδjk) +G0,2,0

M,Mδijδkl . (C15)
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In order to calculate the contribution of this tensor to eq. (14), we must calculate

∂rkG{ijl}k = ∂rk(Gij,lk +Gil,jk +Gjl,ik) . (C16)

The tensor G{ijl}k is now symmetric under the exchange of i, j, l, and one obtains

∂rkG{ijl}k = 3

(
∂r +

2

r

)
G2,0
L,L(r)− 6

r
(G2,0

N,N (r) +G1,1
L,N (r)) , (C17)

where we note that the contributions from the second transversal component can-
cel out. The contributions of the correlations tensors between τ∆

ij and velocity-field
increments figuring in the higher-order equations are calculated similarly, resulting in

∂rkG{i1...in}k(r,∆) = n

(
∂r +

2

r

)
Gn−1,0
L,L (r,∆)− 2n

r
(Gn−1,0

N,N (r,∆) +Gn−2,1
L,N (r,∆)) .

(C18)

C.2. Tensors involving derivatives of velocity field increments

In this appendix we derive expressions for the longitudinal components of the S-and
T -tensors, which for a general symmetric tensor γ have the form

S(γ){i1...in} =
1

|Sn−1||Sn−2|
∑

t∈Sn−1

∑
σ∈Sn
〈δrvit(σ(1)) . . . δrvit(σ(n−2))

∂x′kv
′
it(σ(n−1))

γ′iσ(n)k〉

+
1

|Sn−1||Sn−2|
∑

t∈Sn−1

∑
σ∈Sn
〈δrvit(σ(1)) . . . δrvit(σ(n−2))

∂xkvit(σ(n−1))
γiσ(n)k〉 ,

(C19)

S(γ){i1...in} =
1

|Sn−1||Sn−2|
∑

t∈Sn−1

∑
σ∈Sn
〈δrvit(σ(1)) . . . δrvit(σ(n−2))

∂x′kv
′
it(σ(n−1))

γiσ(n)k〉

+
1

|Sn−1||Sn−2|
∑

t∈Sn−1

∑
σ∈Sn
〈δrvit(σ(1)) . . . δrvit(σ(n−2))

∂xkvit(σ(n−1))
γ′iσ(n)k〉 .

(C20)

Symmetry arguments, i.e. homogeneity and isotropy, restrict the functional form of
the possible tensors, and one obtains∑

t∈Sn−1

∑
σ∈Sn
〈δrvit(σ(1)) . . . δrvit(σ(n−2))

∂xkvit(σ(n−1))
γ′iσ(n)k〉

=
∑

t∈Sn−1

∑
σ∈Sn
〈δrvit(σ(1)) . . . δrvit(σ(n−2))

∂x′kv
′
it(σ(n−1))

γiσ(n)k〉 , (C21)
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and ∑
t∈Sn−1

∑
σ∈Sn
〈δrvit(σ(1)) . . . δrvit(σ(n−2))

∂x′kv
′
it(σ(n−1))

γ′iσ(n)k〉

=
∑

t∈Sn−1

∑
σ∈Sn
〈δrvit(σ(1)) . . . δrvit(σ(n−2))

∂xkvit(σ(n−1))
γiσ(n)k〉 , (C22)

resulting in

T{ii,...,in} =
2

|Sn||Sn−1|
∑

t∈Sn−1

∑
σ∈Sn
〈δrvit(σ(1)) . . . δrvit(σ(n−2))

∂x′kv
′
it(σ(n−1))

τ∆
iσ(n)k〉 , (C23)

and

S{ii,...,in} =
2

|Sn||Sn−1|
∑

t∈Sn−1

∑
σ∈Sn
〈δrvit(σ(1)) . . . δrvit(σ(n−2))

∂xkvit(σ(n−1))
τ∆
iσ(n)k〉 . (C24)

The longitudinal correlation functions

Sn−2(γ) = 〈(δrvL)n−2γkL∂kvL〉 (C25)

Tn−2(γ) = 〈(δrvL)n−2γ′kL∂kvL〉 . (C26)

therefore occur with the combinatorial factor 2n!
(n−2)! in Eq. (12) for γ = τ∆. For n = 2

we obtain

S0
L,L(γ) = 〈γkL∂kvL〉 , (C27)

T 0
L,L(γ) = 〈γ′kL∂kvL〉 , (C28)

which for γ = τ can also be written as

S0
L,L(∆) =

1

4
(S{ij}(τ))0 =

∂r
4r4

(r4G1,0
L,L)|r=0 =

5

2
〈sLLτ∆

LL〉 , (C29)

T 0
L,L(∆) =

1

4
(T{ij}(τ))0 =

∂r
4r4

(r4G1,0
L,L) . (C30)

The expressions in eq. (C29) and (C30) follow from the more general expression

S{ij} = ∂rkG{ijk}(r,∆)|r=0 , (C31)

T{ij} = ∂rkG{ijk}(r,∆) . (C32)

Proof:
The second equation has already been verified in Appendix A, hence it suffices to con-
sider only the first equation. As shown in Appendix A, the incompressibility constraint
reduced the divergence of G{ijk} to

∂rkG{ijk} = 2∂rk
(
〈v′iτ∆

jk〉+ 〈v′jτ∆
ki 〉+ 〈v′kτ∆

ji 〉
)

= 2
(
〈∂rkv′iτ∆

jk〉+ 〈∂rkv′jτ∆
ki 〉+ 0

)
, (C33)

32



where the third term on the RHS vanishes by incompressibility. Hence

∂rkG{ijk}(r,∆)|r=0 = 2
(
〈∂xkviτ∆

jk〉+ 〈∂xkvjτ∆
ki 〉
)
, (C34)

which coincides with the expression for S{ij}(∆) given in Eq. (A27)

S{ij}(∆) = 2〈∂xkviτ∆
jk + ∂xkvjτ

∆
ki 〉 . (C35)

C.3. Tensors involving the pressure

The tensors describing the velocity-pressure correlations are

P{i1...in} =
1

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

δr(∂kPδkiσ(n)
)〉

=
2

|Sn−1|
∑
σ∈Sn
〈δrviσ(1) . . . δrviσ(n−1)

∂rk(P
′
+ P )δkiσ(n)

〉

=
2

|Sn−1|
∑
σ∈Sn

∂rk〈δrviσ(1) . . . δrviσ(n−1)
(P
′
+ P )δkiσ(n)

〉

− 2

|Sn−1|
∑
σ∈Sn

〈
∂rk(δrviσ(1) . . . δrviσ(n−1)

)(P
′
+ P )δkiσ(n)

〉
. (C36)

The longitudinal components Pn can now be obtained as for the tensors G, S and T :

P 2 = 0 , (C37)

P 3 = 6

(
∂r +

2

r

)
〈(δrvL)2(P

′
+ P )δLL〉

− 12

r
(〈(δrvL)2(P

′
+ P )δNN 〉+ 〈δrvLδrvN (P

′
+ P )δLN 〉)

− 3
〈
δrvL(P

′
+ P )(∂xkv

′
L + ∂xkvL)δkL

〉
= 6∂r〈(δrvL)2(P

′
+ P )〉 − 3〈δrvL(P

′
+ P )(s′LL + sLL)〉 . (C38)
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