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This paper presents an empirical assessment of four state-of-the-art risk-averse approaches to deal with
the capacitated lot-sizing problem under stochastic demand. We analyze two mean-risk models based
on the semideviation and on the conditional value-at-risk risk measures, and alternate first and second-
order stochastic dominance approaches. The extensive computational experiments based on different
instances characteristics and on a case-study suggest that CVaR exhibits a good tradeoff between risk
and performance, followed by the semideviation and first-order stochastic dominance approach. For all
approaches, enforcing risk-aversion helps to reduce the cost standard deviation substantially, which is
usually accomplished via increasing production rates. Overall, we can say that very risk-averse decision-
makers would be willing to pay an increased price to have a much less risky solution given by CVaR.
In less risk-averse settings, though, semideviation and first-order stochastic dominance can be appealing
alternatives to provide significantly more stable production planning costs with a marginal increase of
the expected costs.

Keywords: Lot-sizing; two-stage stochastic programming; risk-aversion; CVaR; semideviation;
first-order stochastic dominance; second-order stochastic dominance.

1. Introduction

By recognizing that many practical production planning contexts are fraught with diverse sources
of uncertainty, the literature on lot-sizing under uncertainty has been increasing over the last
years. Non-deterministic lot-sizing problems are commonly addressed via probabilistic approaches,
in which stochastic programming (SP) arises as the most popular (Aloulou et al. 2014). SP is based
on the the knowledge of the probability distributions of uncertain parameters, which are usually
represented by a finite set of realizations or scenarios. In fact, SP has the advantage of being an
intuitive modeling approach to generate solutions that are able to hedge against multiple outcomes.
Although stochastic programming is sometimes criticized for being computationally prohibitive for
large-scale problems, Graves (2011) argued that with the increase in computational technology
and the development of efficient algorithms, this technique has been more exploited for production
planning problems in recent years.Stochastic lot-sizing formulations are mostly derived from either
two-stage (Amorim et al. 2015; Hu and Hu 2016; Alem et al. 2018) or multistage structures (Huang
and Küçükyavuz 2008; Li and Thorstenson 2014; Koca et al. 2018) in a risk-neutral (RN) perspec-
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tive, i.e., assuming that decision makers only focus on minimizing (maximizing) the expected cost
(profit).

Despite the advantages of using stochastic programming models, the limitation of the traditional
risk-neutral formulations in production planning and beyond is threefold. Firstly, RN models as-
sume that the same decisions are taken under similar conditions repeatedly over a certain time
period, implying by the Law of Large Numbers that, in the long-run, average and expected costs
will coincide. But especially in a short-term period and depending on the degree of uncertainty, it
is not possible to guarantee that the average of the first few results reflects a good decision along
the planning horizon. Secondly, the expected value problem can generate production plans with
good profits on average, but at the expense of experiencing very low profits, or even losses, in some
unfavorable scenarios (Riis and Schultz 2003; Ruszczynski and Shapiro 2004; Shapiro et al. 2009).
Thirdly, as the traditional stochastic programming leads to several and (possibly) very distinct
scenarios, it is expected that the recourse decisions are too different as well. In practice, it means
that production plans must be re-implemented every time a new scenario is materialized, which
can be expensive and/or operationally infeasible (Vladimirou and Zenios 1997; Alem and Morabito
2013).

The aforementioned drawbacks can be overcome by including terms in the objective function
that can measure exposition to risk and mitigate the effects of undesirable realizations, originating
the so-called risk-averse approaches, which are commonly embedded into RN models. The idea of
risk was first presented in Markovitz’s pioneering paper on portfolio selection (Markowitz 1952,
1959), in which the author proposed measuring the risk of a portfolio by combining the expected
return and the variance of the returns, defining a mean-risk model. In these models, risk is charac-
terized as a scalar measure of the variability of outcomes. Markovitz inserted the variance in the
objective function of the risk-neutral approach as a dispersion measure, considering that the larger
the variance, the higher risk of experiencing a return different from the expected one. Therefore,
the mean-risk model proposed by Markovitz allows to obtain solutions with a smaller variance
at cost of decreasing the expected return. Although different authors studied the idea of mitigat-
ing the volatility of the random variables in a risk-averse perspective, Mulvey et al. (1995) was
the first study that formalized a general approach to deal with robustness and risk reduction in
scenario-based stochastic programs. Currently, the quantitative risk management addresses how
to design representative and tractable risk measures, i.e., mathematical expressions to reflect the
manager’s preferences with respect to a set of random outcomes (Artzner et al. 1999; Ogryczak
and Ruszczyński 1999, 2001; Takriti and Ahmed 2004; Schultz and Tiedemann 2006; Gollmer et al.
2008; Krokhmal et al. 2011; Alonso-Ayuso et al. 2014), as well as applying existing risk-averse
models to different real-world applications, such as disaster management (Escudero et al. 2018;
Alem et al. 2016), cash-flow (Righetto et al. 2019), structural topology optimization (Eigel et al.
2018), waste management (Toso and Alem 2014; Broitman et al. 2018), amongst many others.

Surprisingly, the aforementioned existing literature on stochastic lot-sizing problems almost al-
ways neglect the potential disadvantages of risk-neutral formulations. Therefore, references re-
garding risk-averse stochastic lot-sizing problems in the technical literature are scarce. The few
exceptions we found did not elaborate on their choice for adopting a given risk-averse approach,
nor compared them to other popular methodologies. In this line, Zhang et al. (2014) proposed
joint chance constraints imposing an upper bound on the probability of a stockout within the
whole planning horizon to deal with demand uncertainty in lot-sizing problems. This approach is
rather different from using scenarios to describe the random nature of the uncertainty sources,
and the goal is usually the fulfillment of given service levels. In order to assess the benefit of
their new probabilistic formulation, they also developed a risk-averse lot-sizing model using the
mean-absolute deviation (MAD) as risk measure. The results were not compared to other risk-
averse approaches, but to robust optimization and pseudo-dynamic approaches. MAD has shown
a poor performance in achieving good tradeoffs between expected costs and service levels. Within
a scenario-based two-stage stochastic programming approach, Macedo et al. (2016) addressed a
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lot-sizing problem with remanufacturing option under several uncertain parameters in which risk
was modelled using the upper partial mean through a mean-risk framework. The authors claimed
that upper partial mean has the advantage of being asymmetric and tractable, while providing an
intuitive risk analysis because this dispersion measure resembles the standard deviation. However,
the fact that UPM often lead to suboptimal solutions to the second-stage problem problem in
which variability is falsely reduced is well-known in the academic literature (Takriti and Ahmed
2004; Barbaro and Bagajewicz 2004). Mahmutogullari et al. (2018) presented a scenario tree de-
composition approach to handle general risk-averse mixed-integer multi-stage stochastic problems
based on the Conditional Value-at-Risk (CVaR) measure. Their approach is tested on a lot-sizing
problem under stochastic costs. Despite the fact the authors present an interesting discussion on
the effect of partition strategies and possible lower bound choices on the optimality gap of the
algorithms, the performance of their approach concerning risk mitigation was not addressed.

Through the literature review and considering that the definition of risk is a subjective matter,
we realized that, as there is no unrestrictedly recommendable risk-averse approach for production
lot-sizing problems (or any other class of problems), the justification for adopting one risk-averse
approach over another is usually given either regarding the preferences of the decision maker, the
tractability of the resulting optimization model, or based on the properties of the risk measure. The
authors of Artzner et al. (1999) proposed a set of desirable properties that risk measures should
fulfill. These properties are i) translation invariance, ii) subadditivity, iii) positive homogeneity and
iv) monotonicity. Measures satisfying these four properties are defined as coherent risk measures.
Monotonicity implies that positions that lead to worse results present a greater risk. Translation
Invariance guarantees that adding cash to a position reduces its risk by the same amount that it
is added to it. Sub-additivity entails that the risk of a combined position is less than the sum of
individual risks, which is known as the principle of risk reduction via diversification. The positive
homogeneity axiom ensures that the risk proportionally increases or decreases with position size
accordingly (Righi 2017; Krokhmal et al. 2011). Risk measures satisfying these properties then
would behave appropriately, thus producing a suitable picture of risk exposure (Krokhmal et al.
2011).

In this context, the aim of this paper is to analyze four state-of-art risk-averse approaches to
deal with risk mitigation in the capacitated two-stage stochastic lot-sizing problem with stochastic
demands. Demand is deemed claimed to be one of the major exogenous uncertainty sources as it
depends on market factors, seasonality effects, changing customer preferences, product life cycles,
and so forth. We explore two different paradigms to handle risk based on mean-risk models and
stochastic dominance constraints. In the first case, we include two different risk measures, the
expected semideviation and the CVaR (Rockafellar and Uryasev 2000, 2002), in the objective
function of the RN problem. These risk measures have been selected since they are coherent risk
measures, as defined in Artzner et al. (1999), and can be mathematically formulated using linear
expressions. If we consider a cost minimization problem, the expected semideviation can be defined
as the difference between the expectation of those cost scenarios greater than the expected value and
the expected cost. Observe that cost distributions with a low expected deviation are desirable to
reduce the risk of experiencing costs greater than the expected one. A drawback of this risk measure
is that it is not able to identify the fat tail corresponding to worst scenarios that may appear in
cost distributions. However, the CVaR, for a given parameter α, is defined as the expectation of
costs in (1 − α) · 100% worst scenarios. Therefore, CVaR is able to detect the worst scenarios
and optimize over them. On the other hand, we also analyze the usage of stochastic dominance
constraints to handle the risk from a different point of view than typical mean-risk models, (Buckley
1986; Levy 1992; Dentcheva and Ruszczyński 2009). In this case, stochastic dominance allows to
identify acceptable solutions and optimize over them. We assume that a solution is acceptable if
the profit distribution associated with that solution is better than or dominates a pre-specified
distribution that plays the role of benchmark. The preference of a profit distribution over another
can be mathematically established using first- and second-order stochastic dominance constraints.
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The major contribution of this paper lies on the development, evaluation, and systematic com-
parison of four risk-averse approaches for the capacitaded lot-sizing problem with stochastic de-
mands within a scenario-based framework. For the first time, a novel formulation for the production
lot-sizing problem with first- and second-order stochastic dominance constraints is presented. In
particular, we devise a new way to model the first-order stochastic dominance principle, which is
based on the ideas developed in Luedtke (2008). A systematic comparison of the four different risk
hedging procedures against the corresponding risk-neutral solutions is vis-a-vis performed through
several problem tests, thus constituting a contribution as well. We provided comprehensive nu-
merical tests based on (i) 160 random generated instances based on the lot-sizing literature; and
(ii) 10 larger instances inspired by a practical case-study in a soft-drink company. Interestingly,
both sets of problems lead to rather similar implications regarding the risk performance of the
four approaches. Our overall managerial insights suggest that all the methodologies hedge against
uncertainty and risk similarly, but the tradeoffs may be quite different even for the same degree of
protection. Moreover, we can have distinct choices for controlling the risk depending on how much
the decision-maker accepts to pay to avoid potential losses. In particular, it is noteworthy that
CVaR is the one that reduces most dramatically the cost in worst-case scenarios, but the corre-
sponding price of risk-aversion is not necessarily negligible. On the other hand, semideviation and
first-order stochastic dominance formulations are appealing to reduce the cost-standard deviation
at a minor increase in the overall costs.

The remainder of the paper is structured as follows. Section 2 presents a two-stage stochastic
version for the capacitated lot-sizing problem with lost sales under demand uncertainty. Section
3 develops the risk-averse extensions. Section 4 presents computational experiments and analyzes
the risk-averse solutions. Concluding remarks and opportunities for future research are highlighted
in Section 5.

2. Two-Stage CLSP with Lost Sales

We consider a two-stage version of the deterministic capacitated lot-sizing problem (CLSP) with
lost sales and stochastic demands in which the main goal is deciding how producing k = 1, · · · ,K
products over t = 1, · · · , T time periods to fulfill stochastic demands at a minimum cost. Stochastic
demand is represented by a finite number W of possible realizations on some probability space
(Ξ,F ,P), where Ξ is a set of possible states of nature with a generic realization denoted by ω
equipped with a σ-algebra of events F with a probability measure P that belongs to a linear space
X of F-measurable functions Z : Ξ 7→ R. We say that πω is the probability associated with scenario
ω, such that

∑
ω πω = 1 and πω > 0, ∀ω. The complete list of mathematical notation is given in

the Appendix A.
According to the two-stage with recourse philosophy, the decision variables are partitioned into

first-stage scenario-independent variables (production xkt) and second-stage scenario-dependent
decision variables (inventory sktω and lost sales `ktω). The unit production cost ck, while inventory
holding cost and lost sale penalty are given by hk and pk, respectively. Product k requires ukt units
of the total capacity capt to be manufactured. Finally, dktω is the demand of product k in period
t in scenario ω. The risk-neutral two-stage stochastic programming for the CLSP (RN) is posed as
follows:

4
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(RN)

minimize

K∑
k=1

T∑
t=1

ck · xkt +

K∑
k=1

T∑
t=1

W∑
ω=1

πω · (hk · sktω + pk · `ktω) (1)

subject to:

xkt + sk(t−1)ω − sktω + `kt ω = dkt ω, ∀k = 1, · · · ,K ∧ t = 1, · · · , T ∧ ω = 1, · · · ,W (2)

`kt ω ≤ dkt ω, ∀k = 1, · · · ,K ∧ t = 1, · · · , T ∧ ω = 1, · · · ,W (3)

K∑
k=1

ukt · xkt ≤ capt, ∀t = 1, · · · , T (4)

xkt, skt ω, `kt ω ≥ 0, ∀k = 1, · · · ,K ∧ t = 1, · · · , T ∧ ω = 1, · · ·W . (5)

The objective function (1) consists of minimizing the expected total cost incurred in the first-
stage production, and in the second-stage inventory and lost sales costs. The inventory balance
constraints (2) define the stochastic constraint regarding demand, production, inventory, and lost
sales for each product k, time period t, and scenario ω. Without loss of generality, we assume
sk0 ω = 0. Constraints (3) state upper bounds for the lost sales. The capacity constraints (4) take
into account only production times. The remaining constraints (5) are the domain of the decisions
variables.

Notice that the RN model is a special case of the classical (deterministic) multi-item capacitated
lot-sizing problem with lost sales for W = 1. From the stochastic programming viewpoint, CLSP-
RN is a special case of full recourse − a so-called simple recourse − in which the recourse matrix,
say W , is partitioned into identity matrices W = [−I, I] associated with the recourse decisions [s, `]
simply evaluated according to the sign of dω −x for each scenario ω. Simple recourse formulations
are especially appealing in production planning problems as we can ensure a feasible second-stage
completion regardless the random variables realizations.

3. Risk-Averse Two-Stage CLSP with Lost Sales

In the following, we propose four alternate formulations to mitigate the risk associated with the
variation of the recourse costs while capturing the decision maker’s preferences towards risk. The
first two models are built according to a mean-risk framework in which risk is either represented
by the semideviation or the conditional value-at-risk measure. The last two models are based on
first/second order stochastic dominance constraints.

3.1 Mean-Risk Risk-Averse Models

Mean-risk models are very popular in numerous real-world applications as they can conveniently
compromise variability and cost satisfying risk-averse preferences. The “mean” term (E) describes
the expected outcome, whereas the risk term (D) measures the variability of the outcome. Both
objectives are thus combined as (1− φ)E[Z] + φ · D[Z], where φ∈ [0, 1] is the risk level. By para-
metrically varying φ, the efficient cost-risk frontier is generated and one can choose an optimum
solution according to her/his risk attitude. We say that risk-aversion increases as φ increases.

Here, D[Z] is either the semideviation or the CVaR risk measure. Both encompass dispersion and
conditional expectation for the recourse cost, respectively. The motivation for adopting semidevia-

5
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tion and CVaR as risk measures are their consistency with stochastic dominance principles − thus
allowing us to search for stochastically non-dominated solutions (Ogryczak and Ruszczyński 2001)
− and the computational tractability of the corresponding optimization problems.

The semideviation risk term D is defined as follows:

D = E[max {ZX(ω),E(ZX(ω))}], (6)

in which ZX(ω) =

K∑
k=1

T∑
t=1

(ck · xkt + hk · sktω + pk · `ktω) is the (random) cost for scenario ω and

X = [x, s, `] is the decision vector. The corresponding semideviation-based mean-risk CLSP is
written as:

(SD)

minimize

(1− φ) ·
W∑
ω=1

πω · λω + φ ·
W∑
ω=1

πω · δω (7)

subject to:

constraints (2)− (5)

K∑
k=1

T∑
t=1

(ck · xkt + hk · sktω + pk · `ktω) ≤ λω, ∀ω = 1, · · · ,W (8)

W∑
ω′=1

πω′λω′ ≤ δω, ∀ω = 1, · · · ,W (9)

λω ≤ δω, ∀ω = 1, · · · ,W (10)

λω, δω ≥ 0, ∀ω = 1, · · · ,W . (11)

The objective function (7) is composed of the weighted combination between mean and risk
terms. Constraints (8) capture the realized cost for scenario ω via the auxiliary variables λω.
Constraints (9) and (10) imply that the auxiliary variable δω is defined as

δω = max

{
W∑
ω

K∑
k=1

T∑
t=1

πω · (ck · xkt + hk · sktω + pk · `ktω) ,

K∑
k=1

T∑
t=1

(ck · xkt + hk · sktω + pk · `ktω)

}
,∀ω = 1, · · · ,W , (12)

which becomes equivalent to (6) when considered as in the second term in (7). The risk term
accumulates the average positive deviations for the second-stage cost (δω), which is evaluated by∑W

ω=1 πω · δω. Constraints (11) state the domains of the new decision variables.
CVaR measures the expected cost exceeding a target η so-called Value-at-Risk (VaR) at the

confidence level α, i.e., CVaRα = E[ZX|ZX ≥ VaRα(ZX)]. More precisely, CVaR can be defined as

6
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CVaRα(Z) = infη∈R

{
η +

1

1− α
Emax[0, ZX − η]

}
, (13)

Within the mean-risk framework in which D = CVaRα(ZX), the corresponding optimization
problem is posed as follows:

(CVaR)

minimize

(1− φ)

[
K∑
k=1

T∑
t=1

ck · xkt +

K∑
k=1

T∑
t=1

W∑
ω=1

πω · (hk · sktω + pk · `ktω)

]
+

+ φ · (η +
1

1− α

W∑
ω=1

πωϑω) (14)

subject to :

constraints (2)− (5)

ϑω ≥
K∑
k=1

T∑
t=1

(ck · xkt + hk · sktω + pk · `ktω)− η, ∀ω = 1, · · · ,W (15)

ϑω ≥ 0, ∀ω = 1, · · · ,W (16)

η ∈ R. (17)

Constraints (15) and (17) imply that ϑω is defined as

ϑω = max

{
K∑
k=1

T∑
t=1

(ck · xkt + hk · sktω + pk · `ktω)− η, 0

}
, ∀ω = 1, · · · ,W , (18)

that is, variable ϑω is 0 if scenario ω has a cost lower than η. Otherwise, ϑω assumes the difference
between η and the corresponding cost, for all ω. Decision variables η and ϑω can be interpreted as
first- and second-stage decisions, respectively; see Schultz and Tiedemann (2006). The confidence
level α serves to reflect risk preferences: larger values of α indicate more risk aversion, as the
corresponding value-at-risk increases and CVaR controls more relative deviations.

3.2 Stochastic Dominance Constraints

The first- and second-order dominance models compare the random outcome with preselected
benchmarks to determine “acceptable” solutions and optimize the resulting problem over them.
An acceptable solution is feasible and dominates another one when it is “smaller” in some sense,
assuming that smaller is better. Let Z1 and Z2 be two random outcomes or solutions. We say
that Z1 dominates Z2 to first order , i.e. Z1 �1 Z2, iff Ef(Z1) ≤ Ef(Z2) for all nondecreasing
functions f for which both expectations exist. In second order, Z1 �2 Z2, iff Ef(Z1) ≤ Ef(Z2) for
all nondecreasing and convex functions f for which both expectations exist (Märkert 2004).

Equivalent conditions for first- and second-order can be devised by comparing the probability
functions of the random outcomes. For first-order, FZ1

(η) = P(Z1 ≤ η) ≥ FZ2
(η) = P(Z2 ≤ η), or

P(Z1 ≥ η) ≤ P(Z2 ≥ η) using the complement probability. The latter inequality clearly shows that
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The risk-averse CLSP under first-order stochastic dominance constraints can be posed as follows:

(FOSD-O)

minimize

K∑
k=1

T∑
t=1

ckt · xkt +

K∑
k=1

T∑
t=1

W∑
ω=1

πω · (hk · sktω + pk · `ktω) +

P∑
p=1

M · δp (19)

subject to:

constraints (2)− (5)

K∑
k=1

T∑
t=1

(ck · xkt + hk · sktω + pk · `ktω)− ρp ≤M ′ · θωp, ∀ω = 1, · · · ,W ∧ p = 1, · · · ,P (20)

W∑
ω=1

πω · θωp ≤ βp − δp, ∀p = 1, · · · ,P (21)

θωp ∈ {0, 1}, δp ∈ [0, 1], ∀ω = 1, · · · ,W ∧ p = 1, · · · ,P, (22)

in which M and M ′ are sufficiently large numbers. This formulation is the most often seen in the
literature (see, for example Alonso-Ayuso et al. (2014)). In (20), the binary variables θωp serve as
indicators (i.e., assume value θωp = 1) whenever the cost associated with scenario ω is greater than
the cost threshold ρp. The total probability of observing a scenario above a given cost threshold
ρp is then calculated in (21) and compared against the cumulative probability βp of benchmark
point p, thus enforcing the first-order condition. One underlying premise of this formulation is
that ρp ≤ ρp+1, ∀p = 1, . . . ,W − 1, which is trivially obtained by sorting the cost thresholds in
ascending order. To guarantee a relatively-complete recourse, we included the slack variable δp that
is penalized in the objective function by a sufficient large number M .

Preliminary experiments have shown that this formulation poses significant computational chal-
lenges, even for the small instances considered in this paper. Using this formulation, the solver
was not able to return feasible solutions within 3600 seconds in nearly all cases tested. This com-
putational setback has motivated us to consider an alternative formulation that is based on the
developments presented in Luedtke (2008).
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(FOSD)

minimize

K∑
k=1

T∑
t=1

ckt · xkt +

K∑
k=1

T∑
t=1

W∑
ω=1

πω · (hk · sktω + pk · `ktω) +

P∑
p=1

M · δp (23)

subject to:

constraints (2)− (5)

K∑
k=1

T∑
t=1

(ck · xkt + hk · sktω + pk · `ktω) ≤
P∑
p=1

ρp · θωp, ∀ω = 1, · · · ,W (24)

P∑
p=1

θωp = 1, ∀ω = 1, · · · ,W (25)

ϕp =

W∑
ω=1

πω · θωp, ∀p = 1, · · · ,P (26)

p∑
p′=1

ϕp′ ≥ βp − δp, ∀p = 1, · · · ,P (27)

θωp ∈ {0, 1}, ϕp, δp ∈ [0, 1], ∀ω = 1, · · · ,W ∧ p = 1, · · · ,P. (28)

In formulation (23)–(28), the auxiliary binary variables θωp are used to compute the cumula-
tive probability of all scenarios w with a cost smaller than the benchmark point p by means of
constraints (24)−(26). The first-order dominance of the cost distribution over the benchmark is
enforced by constraints (27). Notice that formulation (23)–(28) precludes the use of the parameter
M ′ in constraints (24), which significantly improves the linear relaxations obtained in the solution
process, thereby improving computational performance. An important difference between formula-
tion (FOSD) and that presented in Luedtke (2008) is the presence of auxiliary variables ϕp whose
role is solely to further strengthen the formulation. Notice that constraints (26) and (27) could
be merged by substituting the former in the latter; however, we observed significant performance
improvement by employing the auxiliary variables ϕp. The interested reader is referred to Luedtke
(2008) for the theoretical background concerning the equivalence of both formulations.

For the second-order stochastic dominance, we also need to define the benchmark profile, which
is now composed by (ρp, εp), for p = 1, · · · ,P. In this case, ρp has the same meaning as in the
FOSD (that is, target value or cost threshold) while εp represents the target for the expected cost
shortfall (i.e., εp is the target for the expected value of those scenarios exceeding ρp). The CLSP
under second-order stochastic dominance constraints reads:

10
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(SOSD)

minimize

K∑
k=1

T∑
t=1

ck · xkt +

K∑
k=1

T∑
t=1

W∑
ω=1

πω · (hk · sktω + pk · `ktω) +

P∑
p=1

M · δ′p (29)

subject to:

constraints (2)− (5)

K∑
k=1

T∑
t=1

(ck · xkt + hk · sktω + pk · `ktω)− ρp ≤ γωp, ∀ω = 1, · · · ,W ∧ p = 1, · · · ,P (30)

W∑
ω=1

πω · γωp ≤ εp + δ′p, ∀p = 1, · · · ,P (31)

γωp, δ
′
p ≥ 0, ∀ω = 1, · · · ,W ∧ p = 1, · · · ,P. (32)

Constraint (30) defines the cost shortfall for each benchmark p and scenario ω, γωp, as the
difference between the random cost ZX(ω) and the cost threshold ρp, i.e.,

γωp = max

{
K∑
k=1

T∑
t=1

(ck · xkt + hk · sktω + pk · `ktω)− ρp, 0

}
,∀ω = 1, · · · ,W ∧ p = 1, · · · ,P,

(33)

while constraint (31) enforces that the second-order stochastic dominance holds. Once again, we
included the slack variable δ′p that is penalized in the objective function by a large number to
guarantee relatively-complete recourse.

4. Computational Experience

Next, we discuss the computational experiments designed to analyze and compare the perfor-
mance of the proposed models. We present a comprehensive analysis of the performance of all the
risk-averse approaches in comparison to the standard risk-neutral model for several input data
configurations and for two types of instances. The first set of 160 random generated instances are
based on the lot-sizing literature. The second set of 10 instances are based on a real small-size
soft-drink company. All the instances have been solved under five different settings (risk neutral
plus four risk averse models) to allow for meaningful comparisons between the models. In total, 850
experiments have been performed with the aim to derive well-founded conclusions of the practical
applicability of the proposed models.

Nevertheless, it is worth noting that the size and order of magnitude of the input data parameters
of the test problems solved in this paper are similar to those encountered in other practical case
studies consulted in the existing literature on lot-sizing problems; see, for example, Karagul et al.
(2017); Güngör et al. (2018); Doostmohammadi and Akartunalı (2018). Moreover, the indicators
used to assess the performance of the formulation, as described in Section 4.2, are also standard in
the stochastic programming literature (see, for example, Alem and Morabito (2013)).

More specifically, we will attempt to answer the following questions:

Q1. How do the proposed approaches perceive a less risky solution?

11
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Q2. How do the risk-averse approaches trade-off overall risk and performance?
Q3. What are the main advantages and disadvantages of each approach?
Q4. Are the risk-averse approaches sensitive to the characteristics of the problem?

All the models were coded in AIMMS 3.14 and solved using the optimization system ILOG-
CPLEX 12.5 under default settings on an Intel i7 with 8GB RAM machine. A time limit of 3600
seconds and an optimality gap of 0.01% were set for all numerical experiments.

4.1 Instance settings

4.1.1 Overall data and parameters

Our test instances were generated according to existing literature on lot-sizing problems (Trigeiro
et al. 1989; Maes et al. 1991; Zhou and Guan 2013; Wu et al. 2013). We built 16 classes of instances
with 10 instances each, totaling 160 random test problems. The instances consider 7 or 15 periods,
10 or 20 products, time-wise dependent or time-wise independent demands with 100 equiprobable
scenarios, and low or normal capacity utilization, in which the cumulative deterministic demand
represents 85% (low) or 100% (normal) of the production capacity, respectively. The highlights of
these instances are summarized in Table 1; notice that costs are per unit, periods are uniform-sized
time intervals (e.g., days or weeks) and the capacity is measured in units of time (e.g. hours), while
production times are considered per unit. The description and identification of each instance is
detailed in Table 2.

Table 1.: Overview of the instance settings.

Parameter Symbol Levels

Number of periods T 7 or 15

Number of products K 10 or 20

Production cost ck U [10, 30]

Inventory cost hk 0.25 · ck

Lost sales cost pk 10 · hk

Average deterministic demand d̄t U [50, 100]

Deterministic demand dkt U [d̄t − k
100 · d̄t, d̄t + k

100 · d̄t]

Capacity capt
∑

k dkt

0.85 or
∑

k dkt

1.00

Production time ukt U [0.5, 1.5]

Using the deterministic demands dkt (which can be understood as an available forecast for the
demand of product k for periods t = 1, . . . , T ) as a reference, the time-wise independent and
dependent demands (referred hereinafter as independent or dependent) were obtained by means
of Monte Carlo sampling. The samples were drawn from the stochastic processes d̃kt given by the
expressions (34) and (35). In both cases, 100 samples dktω (each sample containing K ×T demand
values) were drawn from d̃kt.
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The independent demand (ID) was assumed to follow

d̃kt = max

{
N(dkt,

0.5 · k
K

· dkt), 0
}
, (34)

in which N(µ, σ) is the normal distribution with average µ and standard deviation σ. Notice that
there is no dependence between time periods t, being the demand values only influenced by dkt.
Also, notice that products represented by higher value of k are subject to higher variability.

The dependent demand (DD) was modeled using

d̃kt = max

{
d̃k(t−1) + ε · 0.5 · k

K
· dkt, 0

}
, (35)

in which ε ∼ N(0, 1) follows a normal distribution and d̃k0 = dk1. In this, the process presents
autocorrelation, since demands d̃kt depend on d̃kt−1. Similarly to the independent case, products
represented by higher value of k are subject to higher variability.

Figure 2 presents an example of demand scenarios generated for the 10th product (i.e., k = 10)
ID and DD series, respectively.

Table 2.: Description of the proposed instances.

Instance Products Periods Demand Capacity Identificationa

1 10 7 Independent Low utilization 1-p10-t7-c0.85-ID
2 10 14 Independent Low utilization 2-p10-t14-c0.85-ID
3 10 7 Independent Normal 3-p10-t7-c1-ID
4 10 14 Independent Normal 4-p10-t14-c1-ID
5 20 7 Independent Low utilization 5-p20-t7-c0.85-ID
6 20 14 Independent Low utilization 6-p20-t14-c0.85-ID
7 20 7 Independent Normal 7-p20-t7-c1-ID
8 20 14 Independent Normal 8-p20-t14-c1-ID
9 10 7 Dependent Low utilization 9-p10-t7-c0.85-DD
10 10 14 Dependent Low utilization 10-p10-t14-c0.85-DD
11 10 7 Dependent Normal 11-p10-t7-c1-DD
12 10 14 Dependent Normal 12-p10-t14-c1-DD
13 20 7 Dependent Low utilization 13-p20-t7-c0.85-DD
14 20 14 Dependent Low utilization 14-p20-t14-c0.85-DD
15 20 7 Dependent Normal 15-p20-t7-c1-DD
16 20 14 Dependent Normal 16-p20-t14-c1-DD

a(Instance number)-k(# of products)-t(# of periods)-(capacity factor)-(demand type).
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Figure 2.: Example of independent (above) and dependent (below) demand processes for product
20 in instances 8 and 16, respectively. The plots consider the first 50 scenarios only.

4.1.2 Risk-averse parameters

The parameters associated with each risk measure were set such that they could be meaningfully
compared. For CVaR, we set α = 95%, which is usually the value used in the corresponding
literature. Based on preliminary experiments in which we tried to balance the scale of the risk
measures and the risk neutral parcels in the objective functions, we adopted φ = 0.99 for both SD
and CVaR. We stress that our focus is to enforce risk-averseness, which justifies our choice for the
risk-averse parameter being in favor of risk-averse solutions. In spite of this rather overconservative
φ value, our results clearly show that the price of risk-aversion is rather low and, on average,
competitive with the stochastic dominance constraints that do not rely on a mean-risk objective
function to limit the dispersion of the second-stage costs. Further analysis on distinct values of φ
and the tradeoffs regarding expectation and risk for φ from 0.1 to 1 are discussed in the Appendix
B.

The most challenging aspect associated with the use of FOSD and SOSD relates to the definition
of the benchmark profiles to which the cost distribution should present the dominance relation. In
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the literature we could only find illustrative examples for toy cases, typically used for pedagogical
purposes. In these examples, one can easily visualize the cost distribution and propose benchmark
profiles, which is not the case for our study. Therefore, we decided to devise guidelines such that
the benchmark profiles could be defined according to the information for the scenarios in each
experiment and the solution obtained from the risk neutral model. For FOSD, we set two benchmark
points. The first was obtained by calculating the 95% percentile of the cost distribution for the risk
neutral model and reducing this value in 5% (ρ1) and setting β1 = 0.95%. The second benchmark
point was defined as the cost of the worst scenario increased by 50% (ρ2), associated with cumulative
probability of 100% (i.e., β2 = 100%). For the SOSD, we considered a single benchmark point, also
set using the information obtained from the risk neutral model. In this case, we again used the
95% percentile of the cost distribution for the risk neutral model, reduced by 5% (i.e., ρ1, as set
for FOSD), and calculated the expected value of the 5% worst-case scenarios, which is also reduced
in 5% (ε1).

4.2 Numerical Results and Discussion

Figure 3 plots the average cost with the average values of the three performance indicators, i.e.,
standard deviation, worst-case, and CVaR at 95%. Costs are given in logarithmic scale to ease
the visual representation. Table 3 presents the average results in terms of objective value (Expec),
and related performance measures, such as standard deviation of the cost (StDev), worst-case
scenario cost (Wc), and CVaR at 95% (CVaR0.95). The risk-neutral results are given in absolute
values for comparison purposes, e.g., for the first class of instances, expected cost of 261656 is
given in monetary units, as well as the remaining performance measures. The risk-averse results
are presented in terms of their relative difference (in percentage) with the risk-neutral values, with
the exception of the elapsed times. Observations in Figure 3 and Table 3 are summarized as follows.

In general, all the remaining risk-averse models clearly outperform the risk-neutral in mitigating
either the dispersion of the random cost or the right tail of the costs distribution given by the worst-
case or CVaR0.95 scenario. As expected, this improvement is achieved by means of a deterioration
in the expected cost and it often leads to an increase computational burden. The tradeoff curves
in Figure 3 indeed highlight that great risk mitigations might deteriorate up to 10% overall costs.
Notice that the bottom left corner is the best quadrant, as it has minimum cost and maximum
efficacy for all performance indicators, but the results are mainly concentrated in the quadrants to
the right.

In particular, CVaR seems to dominate the other risk-averse approaches regarding the proposed
performance indicators, except for the “price” of risk-aversion. The cost standard deviation was
reduced 29.30% on average, at least 17.21% in instance 1-p10-t7-c0.85-ID, and up to 52.43% in
instance 11-p10-t7-c1-DD. Surprisingly, such remarkable reductions were not followed by a similar
increase in the expected cost. For example, in the most pessimistic situation given by instance
1-p10-t7-c0.85-ID, we found that decision-maker would be willing to pay an additional cost of
6.69% to have a much less risky production plan in terms of standard deviation (−17.21%), worst-
case cost (−4.32%) and CVaR0.95 (−0.86%). In some instances, though, good tradeoffs between risk
and performance are possible with increases of the expected costs smaller than 2%.
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Figure 3.: Tradeoff curves between expected costs and the three performance indicators for all class
of instances considered in this paper.

Table 3.: Summary of results for the proposed classes of instances and approaches in terms of
expected value (Expec), standard deviation (StDev), worst-case scenario (Wc), and CVaR0.95.
All values refer to the average over ten instances.

Benchmark CVaR FOSD SOSD SD Benchmark CVaR FOSD SOSD SD
(RN) (%) (%) (%) (%) (RN) (%) (%) (%) (%)

1-p10-t7-c0.85-ID 5-p20-t7-c0.85-ID

Expec 261656 6.686 0.583 0.214 1.137 457457 3.851 0.959 0.106 0.283

StDev 29158 −17.211 −2.756 −1.137 −5.107 36513 −19.207 −6.641 −1.656 −4.955
Wc 347364 −4.318 −0.323 −0.262 0.107 570754 −4.877 0.098 −0.220 −0.219

CVaR0.95 326929 −0.863 −0.106 −0.263 −0.035 539319 −1.928 0.266 −0.300 −0.350

2-p10-t14-c0.85-ID 6-p20-t14-c0.85-ID

Expec 402212 4.626 0.744 0.100 0.374 910224 3.011 0.806 0.056 0.376
StDev 33724 −22.814 −5.558 −1.889 −6.989 50542 −24.121 −7.835 −2.475 −7.884

Wc 505754 −5.724 0.640 −0.232 −0.264 1065654 −5.046 0.375 −0.386 −0.647

CVaR0.95 481024 −2.769 0.014 −0.423 −0.573 1021469 −1.982 0.439 −0.341 −0.423

3-p10-t7-c1-ID 7-p20-t7-c1-ID

Expec 179270 5.568 0.282 0.071 0.330 362690 4.839 0.451 0.095 0.569

StDev 21924 −21.984 −4.335 −1.773 −7.646 26215 −21.348 −4.222 −1.507 −7.751

Wc 244949 −7.246 −0.873 −0.804 −1.090 440133 −3.558 −0.187 −0.385 −0.679
CVaR0.95 231297 −3.797 −0.741 −0.565 −1.051 422965 −1.321 0.058 −0.262 −0.311

4-p10-t14-c1-ID 8-p20-t14-c1-ID

Expec 324640 3.749 0.464 0.068 0.497 750043 2.847 0.997 0.024 0.292

StDev 22714 −27.620 −5.828 −2.101 −9.155 42288 −32.752 −11.703 −2.775 −12.329
Wc 394244 −5.001 −0.203 −0.326 −0.629 870314 −4.931 0.944 −0.497 −1.102

CVaR0.95 378701 −3.228 −0.342 −0.383 −0.761 845156 −3.154 1.072 −0.335 −0.860

9-p10-t7-c0.85-DD 13-p20-t7-c0.85-DD

Expec 251835 4.838 0.8801 0.0869 0.3589 504780 2.373 0.7075 0.1535 0.1719
StDev 18166 −31.68 −9.010 −2.355 −8.305 21338 −27.73 −8.123 −4.306 −6.870

Wc 308635 −3.395 0.2600 −0.3631 −0.9146 565068 −1.889 −0.0757 −0.2946 −0.4461

CVaR0.95 296349 −1.495 −0.2949 −0.2971 −0.8068 552525 −0.7662 0.2715 −0.2374 −0.3655

10-p10-t14-c0.85-DD 14-p20-t14-c0.85-DD

Expec 464938 6.620 0.8531 0.1297 0.4529 966932 2.883 0.7565 0.0469 0.1812

StDev 43074 −33.54 −9.420 −2.635 −7.742 56341 −25.63 −8.893 −2.722 −6.662

Wc 616249 −4.581 −0.0537 −0.2575 −0.8311 1129253 −3.754 −0.1108 −0.3447 −0.6197
CVaR0.95 574219 −2.371 −0.6824 −0.3622 −0.9725 1095644 −2.045 −0.0893 −0.2990 −0.4657

11-p10-t7-c1-DD 15-p20-t7-c1-DD

Expec 140915 5.523 0.3246 0.0301 0.2608 358627 1.955 0.5850 0.0768 0.0932

StDev 10704 −52.43 −11.86 −3.310 −14.83 17705 −38.25 −13.40 −5.232 −11.32
Wc 181467 −9.037 −0.9912 −0.5671 −2.091 422344 −5.141 −1.064 −0.5754 −1.160

CVaR0.95 171652 −6.341 −1.816 −0.5599 −2.095 403191 −3.166 −0.5276 −0.4120 −0.9266

12-p10-t14-c1-DD 16-p20-t14-c1-DD

Expec 324235 6.481 0.6513 0.0670 0.3406 782809 3.866 0.9332 0.1263 0.2836
StDev 30013 −40.93 −4.503 −2.206 −10.31 50261 −31.53 −5.655 −2.666 −9.590

Wc 450403 −10.88 −0.2105 −0.3773 −1.981 947275 −4.878 −0.3663 −0.4047 −1.383

CVaR0.95 407800 −4.976 −0.1276 −0.4254 −1.539 906371 −2.130 0.3317 −0.1950 −0.6960
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Despite the fact that there is not a clear winner amongst the remaining approaches, both SD
and FOSD generate good and similar tradeoffs between risk and performance, as we can confirm
in the overlapped solutions depicted in Figure 3. In fact, SD (FOSD) achieves reductions up to
14.83% (13.40%) concerning the standard deviation with a corresponding increase of 0.26% (0.58%)
in the objective function. In general, FOSD presents slightly higher expected costs than SD for
similar levels of protection; e.g., instance 6-p20-t14-c0.85-ID. The plots also evidence that SD
solutions are more to the bottom/left than FOSD’ solutions, indicating the superiority of the former
in compromising costs and risk, which is expected due to its insensitiveness towards the actual
magnitude of values above the set threshold. On the other hand, FOSD only captures whether
costs are above the set threshold, but not by how much they exceed the threshold. However, notice
that FOSD can be more effective than SD to reduce standard deviation in some class of instances,
as in class 15-p20-t7-c1-DD. All in all, risk-averse decision-makers who do not want to invest
much in risk management strategies in exchange for a more reliable solution might certainly adopt
the solution provided by either these two approaches.

SOSD was the least effective risk-averse approach, with a less prominent performance when com-
pared to the others in terms of reducing the standard deviation. However, this measure presented
often better performance in terms or reducing the magnitude of the worst-case and/or CVaR0.95

when compared with FOSD. In some cases, we observe that FOSD worsens the worst-case values
because of the sub-optimality of some solutions, which in turn, increase the slack variable ηp. In
fact, ηp > 0 means that the benchmark was modified to accommodate more scenarios above the
95% percentile (benchmark ρ = 1) or the worst-case benchmark (benchmark ρ = 2, which is equiv-
alent to a 100% percentile). In these situations, no improvement at all it is expected. In Table 4, we
present statistics of the slack variable and optimality gaps values observed for FOSD. For SOSD,
all slack variables where zero at the optimum.

Table 4.: Average optimality gaps and slacks for FOSD.

Average gap (%) Average slacka (%) # Non-optimal

1-p10-t7-c0.85-ID 0.00 0.00 −
2-p10-t14-c0.85-ID 0.00 0.00 −
3-p10-t7-c1-ID 0.00 0.00 −
4-p10-t14-c1-ID 0.00 0.00 −
5-p20-t7-c0.85-ID 2.00 0.14 3

6-p20-t14-c0.85-ID 6.40 3.56 5
7-p20-t7-c1-ID 1.00 0.00 1

8-p20-t14-c1-ID 4.00 0.62 1

9-p10-t7-c0.85-DD 4.00 0.00 3
10-p10-t14-c0.85-DD 3.50 0.00 2

11-p10-t7-c1-DD 5.00 0.00 1
12-p10-t14-c1-DD 1.00 0.00 1

13-p20-t7-c0.85-DD 9.00 3.83 9

14-p20-t14-c0.85-DD 6.75 1.81 4
15-p20-t7-c1-DD 8.50 2.42 6

16-p20-t14-c1-DD 7.00 2.78 4

a Average total reduction in the probabilities (1− βρ), for ρ = 1, 2.

Figure 4 plots the cost distribution curve for 3-p10-t7-c1-ID (tenth run) as an illustrative
example of the effect of each of the risk measures. The x-axis presents the scenarios and the
y-axis present the cost observed for each scenario. The plots present the costs ordered by magni-
tude, showing an approximation for their cumulative distribution. Notice that all the scenarios are
equiprobable with probability 1

|W | . This figure illustrates some of the effects previously discussed,

in particular, the increase of the expected cost caused by CVaR and the prominent worst-case costs
observed for FOSD.
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Figure 4.: Cost distribution for 4-p10-t7-c1-ID (run number 10).

Finally, Figure 5 depicts the histograms of the first-stage production costs over the sample com-
posed of 10 runs for each class of instance (totaling 160 costs) for all approaches. The relative
frequency refers to the number of times that each cost value is observed within the sample. The
descriptive statistics also show the mean value; the standard deviation (St dev); the coefficient
of variation, evaluated as (St dev/mean)%, the minimum production cost, the median, and the
maximum production cost. The behavior of the costs suggests that production lot-sizing policies
are only marginally affected by enforcing risk-aversion via stochastic dominance constraints. On
the other hand, the mean-risk models exhibit the highest production rates, suggesting that those
approaches achieve substantial risks reductions by increasing production, which may increase in-
ventory costs, but decrease lost sales. Clearly, this behavior is more pronounced for CVaR whose
probability of yielding a production cost greater than the average value 1552, for example, is 13.1%,
against up to 3.6% for the remaining approaches.
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RN CVaR SD FOSD SOSD

Mean 1552 1590 1561 1560 1554

St dev 185.6 182.4 184.7 186.5 185.7

Coef var 11.95 11.47 11.83 11.95 11.95

Minimum 1143 1184 1156 1149 1145

Median 1559 1590 1566 1563 1561

Maximum 1972 2014 1981 1979 1976 

Production cost

Figure 5.: Histograms of the first-stage production costs over the sample composed of 10 runs for
each class of instance (totaling 160 costs) for all approaches.

Table 5 shows the average values for eight classes of instances, named: independent or dependent
demands; 10 or 20 products; 7 or 14 time periods; tight or normal capacity. It is clear that most
risk-averse models have achieved better risk reductions for dependent demand and normal capacity
instances. This result was particularly evident in CVaR, whose risk reductions are up to 32% better
under normal capacity, which is expected given that less risk solutions present higher production
rates in general. Interestingly, it seems that FOSD is more effective than SD to reduce the standard
deviation under tighter capacity instances. There is not a clear trend between the number of
products/periods and risk mitigation strategies. Apparently, though, mean-risk approaches are
more effective in instances with 10 products, while the remaining models are slightly better to
reduce overall risk under 20 products.
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Table 5.: Average values over the 8 classes of independent (ID) or dependent demands (DD); 10
(p10) or 20 (p10) products; 7 (t7) or 14 (t14) time periods; tight (c0.85) or normal (c1) capacity
in terms of expected value (Expec), standard deviation (StDev), worst-case scenario (Wc), and
CVaR0.95. All values are given in percentage with reference to the RN results

CVaR SD

Expec StDev Wc CVaR0.95 Expec StDev Wc CVaR0.95

DD 4.317 −35.21 −5.444 −2.911 0.2608 −9.454 −1.178 −0.9835
ID 4.397 −23.38 −5.088 −2.380 0.4822 −7.727 −0.5653 −0.5455

p10 5.511 −31.03 −6.272 −3.230 0.4618 −8.761 −0.9616 −0.9793

p20 3.203 −27.57 −4.259 −2.062 0.2811 −8.420 −0.7819 −0.5497
t7 4.454 −28.73 −4.933 −2.460 0.4004 −8.348 −0.8115 −0.7426

t14 4.260 −29.87 −5.599 −2.832 0.3425 −8.833 −0.9320 −0.7864

c0.85 4.361 −25.24 −4.198 −1.777 0.4169 −6.814 −0.4793 −0.4990
c1 4.353 −33.35 −6.333 −3.514 0.3260 −10.37 −1.264 −1.030

Average 4.357 −29.30 −5.266 −2.646 0.3715 −8.590 −0.8718 −0.7645

FOSD SOSD

Expec StDev Wc CVaR0.95 Expec StDev Wc CVaR0.95

DD 0.7114 −8.858 −0.3266 −0.3668 0.0896 −3.179 −0.3980 −0.3485

ID 0.6608 −6.110 0.0589 0.0825 0.0919 −1.914 −0.3891 −0.3590

p10 0.5978 −6.659 −0.2193 −0.5119 0.0959 −2.176 −0.3987 −0.4099
p20 0.7744 −8.309 −0.0483 0.2275 0.0857 −2.917 −0.3884 −0.2976

t7 0.5966 −7.544 −0.3945 −0.3612 0.1043 −2.660 −0.4339 −0.3620

t14 0.7756 −7.424 0.1269 0.0769 0.0772 −2.434 −0.3532 −0.3455
c0.85 0.7862 −7.279 0.1012 −0.0227 0.1117 −2.397 −0.2951 −0.3154

c1 0.5860 −7.689 −0.3689 −0.2616 0.0699 −2.696 −0.4920 −0.3922

Average 0.6861 −7.484 −0.1338 −0.1422 0.0908 −2.547 −0.3936 −0.3538

In terms of computational effort, Table 6 shows that CVaR and SD have similar elapsed times
than those provided by the RN model, while SOSD presented a non-negligible increase, ranging from
2 to 17 times. While RN, CVaR, and SD are all linear programming problems, the FOSD model
requires the inclusion of W · P integer variables, which makes the problems more challenging
computationally. This becomes clear when we compare the average elapsed time for FOSD and
the remaining models. Also, FOSD was the only approach that failed to provide the optimality
certificate (which in MIP means reaching an optimality gap less or equal than the tolerance of
0.01%) within the time limit of 3,600 seconds, as depicted in Table 4. The characteristics of the
proposed classes of instances also have interesting implications into the computational effort of the
models. For example, the worse performances of the RN model are found for longer time horizons,
but increasing the number of products causes the worst elapsed times for the risk-averse models,
particularly for the FOSD model. One can notice that the FOSD strategy struggles more to solve
demand-dependent instances, as these are typically more challenging due to larger cumulative
demand in high demand levels in scenarios throughout the planning horizon, and thus presenting
the highest costs for these worst-case scenarios.

4.3 Larger Instances from a Soft-Drink Company

In this section, we analyse a realistic case-study based on a real small-size company that produces
carbonated soft-drinks in the countryside of São Paulo State, in Brazil. This company produces
more than 22.5 millions of units per year. The objective of this case-study is to test the performance
of the four risk averse approaches described in Section 3 in a real-life case-study.
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Table 6.: Average elapsed times in seconds of the proposed approaches.

Class RN CVaR FOSD SOSD SD

1-p10-t7-c0.85-ID 0.8063 0.8907 5.783 2.859 1.261

2-p10-t14-c0.85-ID 3.089 4.205 52.48 7.788 4.897
3-p10-t7-c1-ID 0.6297 0.7843 6.797 0.9499 0.9968

4-p10-t14-c1-ID 2.003 3.477 31.86 5.462 2.905
5-p20-t7-c0.85-ID 1.841 3.716 449.4 22.31 5.497

6-p20-t14-c0.85-ID 7.498 19.97 2030 30.25 24.01

7-p20-t7-c1-ID 1.302 2.955 114.7 19.64 5.076
8-p20-t14-c1-ID 5.567 17.12 1389 21.40 16.81

9-p10-t7-c0.85-DD 0.9796 0.7937 1.296 38.44 2.305

10-p10-t14-c0.85-DD 3.497 3.739 3.728 37.20 8.286
11-p10-t7-c1-DD 0.7268 0.6813 0.9375 25.31 4.188

12-p10-t14-c1-DD 2.617 2.809 4.438 20.03 13.15

13-p20-t7-c0.85-DD 2.741 3.9391 6.548 1547 17.63
14-p20-t14-c0.85-DD 8.956 13.26 29.36 1374 118.2

15-p20-t7-c1-DD 1.636 2.747 5.347 991.0 20.19

16-p20-t14-c1-DD 7.737 15.83 31.10 966.7 118.1

Averagea 3.227 6.057 567.5 25.79 9.013

Averageb ID 2.842 6.640 510.2 13.83 7.681

Averageb DD 3.611 5.475 624.9 37.74 10.34
Averageb p10 1.794 2.172 27.24 5.624 2.557

Averageb p20 4.660 9.942 1107 45.95 15.47

Averageb t7 1.333 2.063 397.3 11.26 3.370
Averageb t14 5.121 10.05 737.7 40.32 14.66

Averageb c0.85 3.676 6.314 691.7 26.197 9.575
Averageb c1 2.777 5.801 443.3 25.379 8.451

a Average over the 16 classes of instances.
b Average over the 8 classes of independent (ID) or dependent demands (DD); 10 (p10) or 20 (p10) products; 7 (t7) or 14

(t14) time periods; tight (c0.85) or normal (c1) capacity.

4.3.1 Input data

We consider the 37 most important products (those with the largest cumulative demand) that this
company weekly manufactures within a planning horizon of 6 months composed of 26 production
weeks. The company has provided the observed demand for all the products over the considered
planning horizon. Notice that a weekly time resolution has been adopted in this case-study, where
each time period t refers to a single week composed of 5 working days. Figure 6 represents the
annual demand of each considered product in descending order. The maximum and minimum
annual demands in this set of products are 7.5 and 0.04 million units, respectively. As an example,
Figure 7 provides the actual historical demands of four representative products during the 26-week
planning horizon. Note that there exists a significant correlation between the demand of these four
products.

Considering the absence of historical data concerning the realised demands, we followed our
developed methodology to generate the scenarios based on the real deterministic demands. This
way, the demand scenarios in period t are assumed to be governed by a uniform distribution with
a mean equal to dt, U [d̄t − x

100 · d̄t, d̄t + x
100 · d̄t], in which dt is the historical demand in week t.

By means of Monte Carlo sampling, ten different instances of 100 scenarios have been randomly
generated. It is worth mentioning that the same procedure was used to generate the scenarios due
to the absence of historical data. It is worth mentioning that overall costs are given in Brazilian
Reais (BRL) per unit of product manufactured, per unit of product kept in inventory, and per unit
of product that is not produced. The capacities are given in liters of soft-drink. These figures will
be omitted for reasons of confidentiality.

Finally, the benchmark profiles used in this case study for FOSD and SOSD consist of two points
that have been generated based on the cost distribution resulting from solving the risk-neutral
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problem, as explained in Section 4.1.2.
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Figure 6.: Cumulative demand for all the 37 products over 26 production weeks and corresponding
percentages.

Figure 7.: Example of demand data for 4 products.

4.3.2 Results

Table 7 presents the average results in terms of objective value (Expec), and related performance
measures, such as standard deviation of the cost (StDev), worst-case scenario cost (Wc), and
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CVaR at 95% (CVaR0.95). Again, the risk-neutral results are given in absolute values for comparison
purposes, e.g., the expected cost of 294,423,718 is given in monetary units, as well as the remaining
performance measures. Table 7 and Figure 8 confirm that CVaR was the most efficient measure in
terms of overall risk mitigation, at the expense of an average increase of 8.155% in expected costs.
The other risk measures also presented a similar qualitative behaviour as the instances analysed
before, with milder effects on the performance measures observed. For example, SD provided a
reduction of 12.934% in StDev, which is higher than almost all classes considered in Section 4.2,
with the exception of a 14.83% reduction for Class 11. It is also observed that FOSD and SOSD
are less efficient than CVaR and SD to reduce the cost in terms of the standard deviation, worst-
case cost and CVaR0.95. Nevertheless, less conservative managers might benefit from the stochastic
dominance solutions. For example, implementing the FOSD risk-averse approach means having a
6.2% more assertive production plan at expenses of a negligible price. Moreover, the histograms
reveal that the ranged spanned by the production cost given by the FOSD approach is narrower than
in the risk-neutral model, indicating that the probability of more pessimistic (undesirable) scenarios
in slightly lower in the former. These findings sound particularly relevant for small-size soft-drink
companies that might not be able to invest much in their facilities, thus focusing on cheaper risk
management actions can be an alternative to cope with demand fluctuation. These conclusions are
similar to those that can be drawn from analyzing the random generated instances presented in
Table 3. Further results obtained from solving this case-study are presented in Appendix C.

Table 7.: Summary of results for the larger instances and for all and approaches in terms of expected
value (Expec), standard deviation (StDev), worst-case scenario (Wc), and CVaR0.95. All values
refer to the average over ten instances.

Benchmark CVaR FOSD SOSD SD
(RN) (%) (%) (%) (%)

Expec 294,423,718 8.155 0.190 0.041 0.344
StDev 34,999,684 −44.623 −6.257 −2.689 −12.934

Wc 434,435,449 −9.570 −0.215 −0.433 −1.388

CVaR0.95 396,330,462 −8.190 −1.291 −0.653 −2.584
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Figure 8.: Histograms of the expected total costs for the ten larger instances inspired by the case-
study, which are composed of 100 scenarios each (totaling 1,000 costs) for all approaches.

4.4 Managerial Implications

All the analyzed approaches mitigates risk by reducing the standard deviation of the second-stage
costs, whilst worst-case values were not much reduced in general. Thus, a less risky solution presents
a less dispersed recourse cost. CVaR is the only approach that reduces fairly the right-tail of the
recourse costs. In this sense, whether the dispersion of the outcomes is not critical, but avoiding
overly expensive production costs is, the decision-maker should consider to increase the flexibility
of this solutions employing CVaR as the risk mitigation procedure.

Also, a more stable solution is generally achieved at the expense of increasing the expected
total costs. The resulting price of risk-aversion, though, varies significantly from one strategy for
another, ranging from 4.35% for CVaR to less than 1% in the remaining approaches, on average.
All in all, it seems that there is a typical trend of increasing production rates to avoid overly
expensive lost sales solutions. This is particularly true for CVaR. However, whether high inventory
levels are not an option, less conservative decision-makers should adopt the first-order stochastic
dominance approach, thus avoiding the need of increasing substantially inventory levels to obtain
a less risky-solution.

CVaR is especially relevant for minimizing the cost standard deviation, but the price of risk
aversion is not necessarily low. Both FOSD and SD have presented attractive features, in the sense
that both are capable of lowering the cost standard deviation reasonably for a rather low price.
Certainly, less conservative managers would be even more willing to adopt SD and FOSD solutions
over CVaR to ensure major risk reductions at a negligible price. However, FOSD is the most time-
consuming strategy. Apparently, SOSD has provided less encouraging results for mitigating overall
risks.

Interestingly, there is not a substantial difference in the risk indicators when we analyze the av-
erage values for each type of problem, i.e., independent or dependent demands; 10 or 20 products;
7 or 14 time periods; loose or normal capacity. However, most risk-averse models have achieved
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better risk reductions for dependent demand and normal capacity instances. There was no clear
trend between the other characteristics of the instances and the risk mitigation strategies, suggest-
ing that the qualitative behavior of the proposed approaches is rather similar regardless specific
characteristics of the problems under study.

One can notice that the effect that CVaR has exhibited is more evident than that observed
for SD, FOSD, and SOSD. This effect could possibly be further tuned in all strategies by setting
different values for α (CVaR), benchmarks (FOSD and SOSD), and φ for both risk-averse models. A
stronger effect, though, could hardly be obtained for SD, as the single control parameter (φ) that
can be employed has been already considered at a high level (0.99). From a managerial perspective,
finding effective benchmarks can be done for specific applications when real data is available and
the decision-maker is able to include tighter thresholds for the overall costs, which may improve
both FOSD and SOSD models and, as a consequence, stochastic dominance can be more competitive
with mean-risk models, mainly if more efficient solution methods are available.

The idea of jointly reducing the variability of the expected costs and hedging against the occur-
rence of undesired (pessimistic) scenarios can be part of the strategy for enhancing the production
planning in small soft-drink companies under demand uncertainty. In this respect, the results for
the case-study helped us to identify potential effective risk management strategies to handle de-
mand uncertainty/fluctuation for different risk attitudes. Whereas (CVaR) is especially endorsed
by more conservative decision-makers who prefer implementing much less risky solutions, all the
remaining solution approaches have the advantage of producing slightly less risky solutions at
rather low prices. In this sense, stochastic dominance methods decidedly suit less conservative
decision-makers.

5. Summary and Concluding Remarks

The results presented in this study concern the risk-averse two-stage production lot-sizing problem
with stochastic demands. The idea of incorporating mathematical measures to reflect the attitude
of the decision-makers towards risk is avoiding over costly solutions and controlling the dispersion of
the recourse decisions in attempt to devise assertive production planning decisions. The importance
of empirically showing how risk can be mitigated, and its corresponding tradeoffs, is motivated by
the absence of a unrestrictedly recommended risk management approach, or a systematic com-
parisons amongst popular methods that evidence the benefits and drawbacks of the existing ones.
Thus, we have explored four state-of-the-art risk-averse approaches to deal with production lot-
sizing problems under stochastic demands within a risk management perspective. Semi-deviation
and Conditional-Value-at-Risk measures were analyzed within a mean-risk framework that com-
promised expected costs and risk, whereas first- and second-order stochastic dominance constraints
have enforced risk-aversion by directly satisfying target values or benchmarks. For the first time,
the production lot-sizing problem was analyzed from the point of view of first- and second-order
stochastic dominance constraints. In particular, the first-order stochastic dominance principle was
modeled in a more tractable way based on the ideas presented in Luedtke (2008).

Our overall findings indicate that all analyzed risk-averse models are able to mitigate effectively
the probability of experiencing undesirable cost outcomes. For this purpose, production rates are
often increased, which not rarely implies in higher inventory levels. In particular, the numerical
results prove that, from all analyzed models, CVaR is the one that reduces most dramatically the
cost in worst scenarios. However, this result is achieved at expenses of a non-negligible increase
of the expected cost. On the contrary, SD and FOSD have demonstrated numerically that they
are suitable models for those decision-makers who desire to reduce risk at a low price. We would
like also to highlight that our preliminary results indicate that the performance of the models
based on stochastic dominance constraints is highly governed by the particular selection of the
benchmark profile. For this reason, we are currently investigating a practical procedure for deriv-
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ing benchmarks profiles to be used in decision-making problems including stochastic dominance
constraints. Another interesting avenue of research is the development of a general approach to
help decision-makers to select an adequate value of parameter φ in mean-risk models according
to the their risk preferences. It is worth noting that all the results were supported by the case-
study presented, which also confirmed the observed behaviour in a more specific setting related
to a soft-drink company. From a factory standpoint, our findings bring to light ways to improve
typical production planning decisions using risk management strategies that are able to provide
more stable and accurate plans, avoiding unrealistically expenditures.

The problem we have studied is quite general. In practice settings, there might be several ad-
ditional factors that could be considered in the model, such as scheduling decisions, sequence-
dependent setups, among others, which inevitably increase its complexity. However, there is no
empirical or theoretical evidence that leads us to believe that the behavior of the approaches would
change completely amongst themselves even though other practical characteristics were included
in the model, at least considering similar simple recourse structures for the recourse matrix.
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Dentcheva, D., Ruszczyński, A., 2009. Optimization with multivariate stochastic dominance constraints.
Mathematical Programming 117 (1-2), 111–127.

Doostmohammadi, M., Akartunalı, K., 2018. Valid inequalities for two-period relaxations of big-bucket lot-
sizing problems: Zero setup case. European Journal of Operational Research 267 (1), 86–95.

Eigel, M., Neumann, J., Schneider, R., Wolf, S., 2018. Risk averse stochastic structural topology optimization.
Computer Methods in Applied Mechanics and Engineering 334, 470 – 482.
URL http://www.sciencedirect.com/science/article/pii/S0045782518300744
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Appendix A. Mathematical notation

We present a summarized list of the symbols used to formulate the mathematical models present
in this paper. The symbols are listed in alphabetical order, with Latin characters presented first
followed by Greek characters.
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A.1 Indices and Sets

k = 1, . . . ,K Products.
p = 1, . . . ,P Discrete benchmark points.
t = 1, . . . , T Time periods.
ω = 1, . . . ,W Scenarios.

A.2 Parameters

ck Unit production cost of product k.
capt Total capacity available in period t.
d̄t Average (deterministic) demand in period t for all products.
dkt Deterministic demand for product k in period t.

d̃kt Stochastic demand for product k in period t.
dktω Demand of product k in period t in scenario ω.
hk Holding cost per period for product k.
M, M ′ Sufficiently large numbers.
pk Lost sale penalty cost for product k.
ukt Units of capacity required to manufacture product k in period t.
α Confidence level in the definition of CVaR.
βp Cumulative probability of benchmark point p.
εp Expected cost target of benchmark point p.
πω Probability associated with scenario ω.
ρp Target value (cost threshold) of benchmark point p.
φ Weight (φ ∈ [0, 1]) trading of mean and risk terms in mean-risk models.

A.3 Decision Variables

lktω Total of lost sales of product k in period t for scenario ω.
sktω Inventory level of product k in period t for scenario ω.
xkt total Production of product k in period t.
γωp Auxiliary variable; captures the amount by which the cost of scenario ω exceeds the

threshold ρp of benchmark point p in scenario ω in SOSD.
δω Auxiliary variable; captures the maximum between the expected cost and the cost of

scenario ω in SD.
η Value-at-Risk (VaR) threshold in the definition of CVaR.
δp Auxiliary variable; slack variable for benchmark point p probability in FOSD-O and FOSD.
δ′p Auxiliary variable; slack variable for benchmark point p expected cost shortfall in SOSD.
θω,p Auxiliary variable; indicates if the cost of scenario ω exceeds the threshold ρp of benchmark

point p in FOSD-O and FOSD.
ϑω Auxiliary variable; captures a cost deviation greater than VaR in scenario ω.
λω Auxiliary variable; captures the cost of scenario ω in SD.
ϕp Auxiliary variable; accumulates the probability of scenarios exceeding the threshold ρp of

benchmark point p in FOSD.

Appendix B. Sensitivity to parameter φ

This appendix shows the sensitivity of the obtained results relative to parameter φ used in the
mean-risk models analyzed in this paper (SD and CVaR). Note that parameter φ is a weighting
factor that is used to model the tradeoff between expected cost and risk, which depends on the
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preferences on the decision-maker. A conservative decision-maker focusing on minimizing the risk,
would choose a value of φ close to 1 to increase the weight of the risk-measure in the objective
functions (7) and (14). On the other hand, another decision-maker might be willing to assume a
higher risk in the hope of obtaining a lower cost, so that its selected value for φ would be close to
0.

In order to quantify the effect of φ on the obtained results, instance 1-p10-t7-c0.85-ID has
been solved considering 10 values of φ ranging between 0.1 and 1. We would like to emphasize that
it has been observed that the impact of φ on the results of this particular instance is qualitatively
equivalent to those obtained in the rest of instances considered in this paper.

Figure B1 depicts the resulting expected costs using the semideviation (Figure B1a) and the
CVaR at 95% (Figure B1b) as risk metrics for different values of φ. As expected, expected costs
grow as the decision maker becomes more conservative (larger values of φ). It is observed that the
expected costs in SD and CVaR increase 0.2% and 8.7%, respectively, when φ grows from 0.1 to 1.
These results indicate that the expected costs in CVaR are much more sensitive to the value of φ
than those in SD.

(a) SD (b) CVaR

Figure B1.: Effect of φ on the expected cost.

Figure B2 represents the value of the risk metric, the cost semideviation in SD (Figure B2a) and
the CVaR0.95 in CVaR (Figure B2b), for different values of φ. Opposite to the expected cost, the
quantification of risk decreases as φ grows. Again, we observe that, in risk terms, CVaR is much
more sensitive to the value of φ than SD. In particular we observe that in the interval φ ∈ [0.1, 1],
the semideviation of the cost decreases 0.1% in SD, whereas the CVaR0.95 is reduced 2.7% in the
CVaR approach. These results confirm that, tunning the value of parameter φ, CVaR is able to
carry out a risk management in a much more effective manner than SD.
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(a) SD (b) CVaR

Figure B2.: Effect of φ on the risk measure.

Appendix C. Results for the Case-Study

Table C1 provides the results obtained from the soft-drink company case study for all 10 instances.
In general, the results provided for each instance are qualitatively similar to those observed in
average. The most striking case happens in instance 1, which has associated the one of the smallest
expected costs. In this instance, CVaR decreases significantly the standard deviation of the cost,
35.884%. However, the cost associated with the worst-case scenario is marginally increased 0.234%,
being this the only instance in which this is observed. This amount is much worse than the average
reduction of 9.57%. In the same manner, FOSD and SOSD are also unable to efficiently decrease
the worst-case cost in this instance, but SD shows a small reduction.
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Table C1.: Summary of results for the larger instances inspired by the case-study in terms of
expected value (Expec), standard deviation (StDev), worst-case scenario (Wc), and CVaR0.95.

Instance Expec StDev

Benchmark SD CVaR FOSD SOSD Benchmark SD CVaR FOSD SOSD
(%) (%) (%) (%) (%) (%) (%) (%)

1 287,164,822 0.207 7.419 0.097 0.033 41,907,403 − 7.669 − 35.884 − 3.400 − 1.456
2 294,034,124 0.456 6.997 0.205 0.018 37,651,624 − 18.525 − 52.070 − 7.771 − 2.112

3 287,875,623 0.353 8.289 0.230 0.057 32,012,487 − 11.864 − 40.080 − 4.608 − 2.815

4 288,547,018 0.083 5.069 0.109 0.060 30,130,224 − 12.909 − 41.520 − 9.858 − 2.119
5 311,099,540 0.562 9.877 0.058 0.006 44,604,237 − 15.679 − 48.671 − 5.939 − 1.975

6 292,807,821 0.207 7.308 0.372 0.033 27,092,785 − 11.199 − 38.029 − 7.225 − 2.133
7 299,829,859 0.331 7.146 0.172 0.050 33,543,944 − 14.547 − 47.613 − 6.947 − 3.264

8 297,664,985 0.352 7.957 0.162 0.020 34,718,220 − 13.728 − 43.291 − 4.612 − 3.343

9 298,922,726 0.530 11.070 0.198 0.055 34,807,775 − 11.998 − 46.960 − 5.315 − 2.927
10 286,290,668 0.359 10.416 0.300 0.079 33,528,143 − 11.219 − 52.111 − 6.896 − 4.834

Average 294,423,718 0.344 8.155 0.190 0.041 34,999,684 − 12.934 − 44.623 − 6.257 − 2.698

Instance Wc CVaR0.95

Benchmark SD CVaR FOSD SOSD Benchmark SD CVaR FOSD SOSD
(%) (%) (%) (%) (%) (%) (%) (%)

1 457,396,294 − 0.508 0.234 0.531 0.201 413,225,095 − 2.12 − 6.37 − 1.25 − 0.53

2 405,909,516 − 5.094 − 11.702 − 1.505 − 0.600 390,453,070 − 4.19 − 9.57 − 1.51 − 0.60
3 413,387,682 0.137 − 1.126 2.187 0.333 386,153,661 − 2.61 − 5.83 − 1.42 − 0.68

4 428,554,298 − 2.698 − 14.255 − 1.701 − 0.777 369,788,307 − 3.07 − 8.08 − 2.62 − 0.86

5 511,540,786 0.861 − 6.573 0.149 0.252 446,596,569 − 3.71 − 9.21 − 1.66 − 0.50
6 389,643,660 − 0.686 − 6.454 − 2.076 − 0.610 364,109,929 − 1.56 − 3.49 − 0.75 − 0.26

7 436,492,442 − 3.795 − 16.489 − 1.228 − 1.107 400,632,638 − 2.84 − 10.65 − 1.57 − 0.49

8 438,365,554 − 2.049 − 11.548 0.928 − 0.150 395,163,327 − 2.53 − 7.89 − 0.85 − 0.73
9 422,976,526 1.114 − 12.888 0.044 − 0.463 409,486,599 − 2.14 − 10.80 − 1.09 − 0.69

10 440,087,733 − 1.159 − 14.899 0.518 − 1.410 387,695,429 − 1.07 − 10.00 − 0.19 − 1.19

Average 434,435,449 − 1.388 − 9.570 − 0.215 − 0.433 396,330,462 − 2.584 − 8.190 − 1.291 − 0.653
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