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Abstract

Modifier adaptation (MA) methods are iterative model-based real-time optimiza-

tion (RTO) methods with the proven ability to reach, upon converge, the unknown

optimal steady-state operating conditions of a plant despite plant-model mismatch and

disturbances. So far, MA has been applied to small-scale but never – to the best of

the authors’ knowledge – to large-scale systems, the optimization of which being, in

practice, a very difficult engineering problem. While standard MA uses plant measure-

ments of the cost and constraints only, in this article, a new MA approach is proposed,

namely Internal Modifier Adaptation (IMA), which allows the use of all available plant

measurements leading to corrections at the level of the inner structure of the model.

This article also provides a mathematical proof that IMA preserves the property of MA

methods to reach the optimal inputs of the plant upon convergence. The application

and the benefits of the proposed method are illustrated through two large-scale simu-

lated case studies: (i) a steel-making plant, and (ii) the Tennessee Eastman challenge

problem.
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Introduction

Industrial processes are operated via the manipulation of input variables. A “driving force” is

required to take educated decisions and perform a systematic update of the inputs with the

potential to maximize performances and enforce the satisfaction of operational constraints.

Process optimization methods can be classified into two categories depending on the driv-

ing force. On the one hand, methods like evolutionary techniques such as steepest-decent

methods, heuristic search methods (e.g. Nelder-Mead1), or evolutionary optimization2, use

past and current plant measurements for choosing the next set of inputs. On the other hand

model-based methods make an explicit use of the available model of the plant. They are

thus more suited to complex and constrained optimization problems, e.g., when the number

of inputs grows large, provided the model is suitable for optimization, i.e., the optimiza-

tion problem can be solved efficiently, in a reasonable amount of time, with limited risks of

failure. However, the fact that the available models are often inaccurate generally leads to

suboptimal operation and constraints violation.

When it comes to large-scale systems, the available model is often available in the form of

a network of interconnected unit models, developed using dedicated software, that mimic the

structure of the plant. The trouble is that plant-model mismatch in any of the unit models

typically affects the whole network with the possibility of being amplified. This happens

when there is recycling, i.e., when the outputs of a unit model i have an impact on another

or several other unit models, which affect, in turn, the inputs of the unit model i. This

intuitive idea has been confirmed3 through a very simple example, whereby the aggregation

of unit models into a single model leads to the amplification of the uncertainty of each

unit model, making the overall model more uncertain than its sub-parts. The most obvious

way to avoid this is to use accurate models, but this indeed also goes with caveats and

can become inappropriate, even if accurate models are available, as it tends to increase the

complexity of the resulting large-scale non-linear program (NLP). As a result, the numerical

solver may not converge in a reasonable time, or fail to find a solution. Because real-time

2



optimization (RTO) methods are capable of using inaccurate models, one solution would be

the development of RTO tailored to large-scale interconnected systems, which would avoid

the amplification of uncertainties.

RTO methods combine the use of an inaccurate model and of plant measurements to im-

prove the performances of the plant, combining the pros of evolutionary and of model-based

optimization techniques. Modifier adaptation (MA4) is one such method with the proven

ability to reach, upon converge, the unknown plant optimal steady-state operating condi-

tions despite plant-model mismatch and disturbances. MA uses some plant measurements to

add input-affine corrections to the prediction of the cost and constraints, which corresponds

to the minimal modifications enabling optimality upon convergence, which are sufficient to

correct the way the modified model predicts the conditions of optimality of the plant. This

method is gaining interest in the RTO research community and many extensions has been

suggested to alleviate four of its most typical limitations (a-d).

Firstly, (a) ways to obtain accurate estimations of the steady-state plant gradients from

noisy measurements have been studied over the past few years. One option is to combine MA

with quadratic approximation approaches used in derivative-free optimization methods, as

suggested in Gao et al. (2016)5. Alternatively, Gaussian regression techniques6, trained with

plant measurements of the cost and constraints can be used to reduce plant-model mismatch.

Also, transient measurements can be used to infer steady-state plant gradients7–10. On the

other hand, Nested Modifier Adaptation (NMA11,12) avoids these estimations by using a

nested architecture with a gradient-free optimization algorithm to update the modifiers.

Next, (b) model adequacy13 is a condition the model must satisfy to enable convergence of

MA to the plant plant optimal inputs. But this condition must be met by the model at the

unknown plant optimal inputs. Methods to either enforce14, or increase the chances15–17,

that model adequacy holds have been recently developed. Next, (c) guarantees for safe, i.e.

with feasible plant iterates, convergence to the plant optimum have to been looked for. It

has been proposed either to add penalty terms to the cost and constraints functions of the
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model18, to limit the step size between iterates19, or to implement exponential filtering20.

Last, (d) the scalability of MA methods to large-scale non-linear plants remains an open

issue. A first attempt resulted into the so-called distributed MA framework (DMA21,22),

whereby it is proposed to apply MA to interconnected subsystems aiming at maintaining

their cost and constraints private, or to cases whereby centralized computing units are not

available. DMA uses some plant measurements, i.e., the interconnection variables between

the subsystems together with measurements of the cost and constraints of each subsystem,

to iteratively modify the available model and ultimately reach the optimal steady-state of

the interconnected plant.

In this article, it is proposed to merge the ideas behind both Output Modifier Adaptation

(MAy4) and DMA, into a new MA algorithm: Internal Modifier Adaptation (IMA). It is

shown that IMA enables to use all available plant measurements in the decision-making

process. Methods for computing the modifier terms are also provided and IMA is proven to

preserve the desired property of MA schemes, i.e., to reach a KKT point of the plant upon

convergence.

After a short review of some conceptual aspects of MA methods, a new way to interpret

RTO problems is proposed in Section 3. Next, in Section 4, two new MA algorithms are

proposed, analyzed and compared. Section 5 illustrates the concepts presented in Section 4

through two simulated case studies: (i) a steel-making plant and (ii) the Tennessee Eastman

challenge process. Finally, Section 6 concludes the paper. Supporting information provides

the reader with the mathematical proof of Theorem 1 and with details about the case studies

of Section 5.
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A Short Review of the State-of-the-Art in Modifier Adap-

tation Methods

In this section, once the optimization problem is formulated, the conceptual ideas behind

most MA methods are shortly reviewed. It is shown that each MA approach can indeed be

distinguished by the way the decision-making problem is formulated, i.e., the definitions of

the model, the plant, the cost, the constraints and the level at which measurements-based

corrections are performed. Block-oriented descriptions are proposed to illustrate how these

methods use plant measurements and implement corrections, as an attempt to improve the

insight of the reader.

Optimization problem

Hereafter, the subscript (.)p indicates that a quantity is related to the plant. The problem

of finding the optimal operating conditions of the plant can be formulated mathematically

as a nonlinear program (NLP):

u?
p := arg min

u
Φp(u) := φ(u, qp) (1)

s.t. Gp(u) := g(u, qp) ≤ 0,

yp = Fp(u),

where u ∈ Rnu are the input variables, yp ∈ Rny are the plant measured outputs, Fp(u)

is the mapping between u and yp, φ ∈ R is the cost function, g ∈ Rng is the vector of

constraint functions, and qp ∈ Rnq is the subset of the measured variables yp affecting the

cost and constraints functions*1.

In practice Fp(u) is not perfectly known, and only an approximate model F (u) of the

*1qp is introduced and used in this article in order to clearly highlight that not all measured variables
always affect the cost or constraints.
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input-output mapping is available. With F (u), the solution to Problem (1) can be ap-

proached by solving the following NLP:

u? := arg min
u

Φ(u) := φ(u, q) (2)

s.t. G(u) := g(u, q) ≤ 0,

y = F (u).

Due to plant-model mismatch, generally u? 6= u?
p, hence the need for RTO methods. This

stems from the fact that cost and constraints values and gradients, which are the KKT

elements23 of any optimization problem, are not the same for the model and the plant.

Modifier Adaptation (MA)

The main idea behind MA is to use plant measurements to modify the cost and constraint

functions in such a way that the KKT elements of the model match those of the plant at

each iteration, and thus also upon convergence. Said differently: denoting X(u) := { Φ(u),

G1(u), . . . , Gng(u)}, then for each iteration k, the aim is to have:

{X(uk),∇uX(uk)} = {Xp(uk),∇uXp(uk)}, (3)

where ∇u(·) denotes the gradient operator w.r.t. u. To enforce (3) at each k, MA suggests

that the modeled cost and constraints functions are augmented by the addition of affine-in-

input functions, i.e., ∀X = {Φ, G1, . . . , Gng}:

Xm,k(u) = X(u) + αX,k(u),

where:

αX,k(u) := εX,k + λT
X,k(u− uk),
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with εX,k ∈ R and λX,k ∈ Rnu being the zeroth- and first-order cost and constraint modifiers,

respectively:

εX,k := Xp(uk)−X(uk),

λX,k := ∇uXp(uk)−∇uX(uk).

Thus, the following modified model-based optimization problem is solved:

u?
k+1 := arg min

u
Φm,k(u) (4)

s.t. Gm,k(u) ≤ 0,

and the next operating point uk+1 is generally determined by applying a first-order filter:

uk+1 = uk +K(u?
k+1 − uk), (5)

where K ∈ Rnu×nu is a gain matrix, typically diagonal, with diagonal elements Ki ∈

(0, 1], ∀i ∈ [1, ng]. uk+1 is uniformly applied to the plant until steady state is reached

and the whole procedure is repeated until convergence.

Figure 1a illustrates by means of a block-oriented description how these corrections are

performed . With MA, the decision-making process can be interpreted as follows:

• The plant is viewed as a set of mappings between the manipulated variables u ∈ Rnu

and the plant cost and constraints at steady state Xp(u).

• The model is an approximation of the plant mappings, providing estimates X(u) of

Xp(u).

• Iterative input-affine modifications are performed to correct the way the modified

model predicts the KKT elements of the plant, leading to plant inputs update.

Note that hereafter, gray boxes will be used for the model in order to distinguish it from
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the plant (white boxes), illustrating thus plant-model mismatch. Red arrows and fonts are

for uncertain or uncorrected variables, while black is used for accurate or corrected variables.

Clouds depict networks and double vertical lines concatenate or de-concatenate vectors.

𝑋

𝜶𝑋,𝑘

+

+𝒖 𝑋𝑚,𝑘

𝑋𝒖
ModelPlant

𝒖 𝑋𝑝

Plant Model

MA

Model

(a) MA.

Model
𝒒

Cost & 
Constraints

𝑥

𝜶𝑞,𝑘

++ 𝒒𝑚,𝑘𝒖

𝑥

𝒒𝒖

Cost & 
Constraints

Model

Model

MAy

Plant
𝒒𝑝

Cost & 
Constraints

𝑥𝑝

𝒖

Plant

(b) MAy.

Figure 1: Block-oriented description of MA and MAy.

This modification of the cost and constraints functions enforces the matching of the affine

properties of both the modified model-based and the plant optimization problem at uk. This

is how the conditions of optimality of the model and the plant are reconciled, since this leads

upon convergence to the equivalence of the (in)existence of feasible descent directions for

the modified model and for the plant. Hence, upon convergence of MA to u∞, no feasible

descent directions exist for the modified model and thus for the plant, which is how u∞ can

be easily shown to be a KKT point for the plant.

In summary, one key message of MA is that one way to guarantee plant optimality upon

convergence of a RTO method is by enforcing the affine properties of the (modified) model

to match those of the plant at uk,∀k, an observation that has been suggested4 but never

explicitly stated. Note that the generalization of this message is the topic of Theorem 2, as

will be seen later. From this viewpoint, it is clear that MA performs the minimal number of

corrections to enable optimality upon convergence, i.e., since only the values and gradients

of the cost and constraints are reconciled, which is sufficient to allow the matching of the

affine properties of the optimization problem. However, we argue next that performing more

corrections can be beneficial.
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Output Modifier Adaptation (MAy)

MAy differs from standard MA in that instead of directly correcting the way the KKT

elements are predicted by the augmented model, modifications are performed to correct the

predictions of qp. Before going further, the following assumption is required*2:

Assumption 1 The cost and constraints functions are known functions of the decision vari-

ables u and qp the measured outputs affecting them, i.e., respectively they can be written as

φ(u, qp) and g(u, qp).

As depicted in Figure 1b, provided Assumption 1 holds, with MAy the decision-making

process can be interpreted as follows:

• The plant is viewed as a mapping between the decision variables u and qp, the

latter being the measured variables used for the calculation of the cost and constraints

functions x(u, qp) := {φ(u, qp), g1(u, qp), . . . , gng(u, qp)}.

• The model is an approximation of the plant mapping providing q, i.e., the estimates

of qp.

• Iterative input-affine modifications are performed to correct the way the modified

model predicts qp.

MAy modifies the model predictions q(u), such that: qm,k(u) := q(u) + αq,k(u), with

αq,k(u) := εq,k + λT
q,k(u−uk), where {εq,k,λq,k} are respectively the zeroth- and first-order

modifiers. Since qm,k affects the way the values and gradients of the cost and constraints

are calculated, this leads to an indirect correction of the affine properties of the modified

model-based optimization problem, while providing additional improvements (e.g., better

convergence properties) compared to MA, thanks to deeper corrections of the model15.

*2This assumption does not imply that the model is assumed to be structurally correct, but that the
cost and constraints are correctly predicted when the values of qp are accurately predicted. Structural and
parametric plant-model mismatch are still present between F (u) 6= Fp(u) and generally q 6= qp.
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Figure 2: Block-oriented description of DMA.

Distributed Modifier Adaptation (DMA)

MA has been recently improved to account for the specificities of large-scale highly intercon-

nected plants, with the associated difficulties, such as high numbers of units or when units

cannot (or does not want to) share specific information (such as its own cost or constraints)

with the others. With the so-called Distributed Modifier Adaptation (DMA), the whole plant

is seen as a network of interconnected subsystems, which mimics the structure of the plant,

i.e., each element of the network is typically of one unit (or of a small set of units), connected

to the others via interconnection variables. This formulation can also be advantageous for

distributing the computational load21 of the model-based optimization problem (4), while

allowing the subsystems to keep their cost and constraints private22.

As depicted in Figure 2, with DMA the decision-making problem can be interpreted as

follows:

• The plant is viewed as a network N ss := {1, . . . , nss} of nss interconnected subsys-

tems, e.g., compressors stations interconnected with pipes24.

Each subsystem, indexed by i, can be seen as a mapping between its own inputs z(i)p
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and outputs, which are both cost and constraints X(i)
p (z

(i)
p ) := {Φ(i)

p (z
(i)
p ), G(i)

p,1(z
(i)
p )

, . . . , G(i)
p,ng,i

(z
(i)
p )}, and the aggregated (concatenated) output-interconnection variables[

w
(i,`)
p

]
`∈N ss , i.e. ∀` ∈ N ss:

[
w(i,`)

p

]
`∈N ss

:=
[
w(i,1)

p
T, . . . ,w(i,nss)

p
T] T. (6)

Note that this notation is used throughout this article for aggregated vectors. The

inputs of a subsystem i, z(i)p ∈ Rnz,i , are the manipulated variables, u(i)
p ∈ Rnu,i and the

aggregated input-interconnection variables,
[
w

(`,i)
p

]
`∈N ss , which are indeed the outputs

of the subsystems ` ∈ N sm affecting subsystem i. With DMA, the superscript (·)(`,i)

refers to as the interconnection variables from the subsystem ` to the subsystem i, also

a superscript (·)(i) refers to a variable, or function, of subsystem i.

• The models returns approximationsX(i)(z(i)) := {Φ(i)(z(i)), G
(i)
1 (z(i)), . . . , G(i)

ng,i
(z(i))}

and
[
w(i,`)

]
`∈N ss of the plant variables X(i)

p (z
(i)
p ) and

[
w

(i,`)
p

]
`∈N ss , respectively.

• Iterative input-affine modifications are performed to correct the way the modified

model predicts the KKT elements and the interconnection variables of the plant.

To implement input-affine corrections to a DMA-network, two main methods – hereafter

referred to as DMA-A21 and DMA-B22 – have been proposed, which imply the iterative

identification of virtual affine functions {α(i)
X,k(u), α

(i)
w,k(u)} or {α(i)

X,k(z
(i)
m ), α

(i)
w,k(z

(i)
m )}, respec-

tively. Figure 2 illustrates the way these two methods are implemented. The main difference

between the two is that with DMA-A, affine functions of u are used to implement correc-

tions at the level of the subsystems, while affine functions of z(i) are considered with DMA-B

instead. The latter allows DMA-B to compute modifiers locally, and potentially to keep the

costs and constraints of each subsystem private22.

The representation of the plant as a network of physical units is indeed what enables

DMA to use the plant measured interconnection variables in the optimization framework, in
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addition to the measurements or estimates of the KKT elements that standard MA uses. No-

tice that the use of interconnection variables has also been reported to lead to improvements

in terms of convergence speed21, although investigations have not been pushed further.

An alternative to mimicking the plant structure

As seen, the affine-in-input corrections of the cost and constraints prevents MA to converge

anywhere else than to KKT point of the plant. Also, it has been seen that (i) input-affine

corrections of the measured outputs (MAy) and (ii) input-affine corrections of the intercon-

nection variables (DMA) also leads to a correction of the prediction of the KKT elements.

In addition, both MAy and DMA often result in better (i.e., faster and safer) convergence

properties. Additionally, DMA allows the distribution (and potentially reduction) of the

computational load while providing the different agents of the plant with privacy whenever

necessary or compulsory.

To combine the pros of (i) and (ii), we propose to merge DMA and MAy into a single ap-

proach, namely Internal Modifier Adaptation (IMA). This merging impacts how the problem

is interpreted since DMA treats the plant as a network of subsystems, while MAy considers

the plant as as single system and implement corrections at the level of the measured outputs.

With IMA, the plant is seen as two interconnected networks. The first is the network

of interconnected sub-models that are mappings between, on one hand, their input inter-

connection and manipulated variables, and, on the other hand, their output interconnection

and output variables affecting the cost and constraints. The second network consists of

sub-costs and sub-constraints that are mappings from the output variables that affect cost

and constraints of the sub-models to the corresponding costs and constraints.

By doing so, the structure (to be built) of the model is at the core of the definition of the

structure of the problem. In other words, instead of mimicking the organization of the plant

like with DMA, the specificities of the model structure and of its contributing equations are

12



exploited, together with the list of available plant measurements when representing the plant

and dividing it into smaller interconnected subsystems.

Model pre-processing

To obtain the aforementioned representation – with two interconnected networks – of the

plant, the following model pre-processing procedure is proposed and illustrated by means of

the following mathematical example.

Example 1 (The Un-Processed Model) Consider the steady-state model of a single unit

plant with seven process variables {v1, . . . , v7}. The manipulated variables are {v3, v4} and

{v1, v5, v7} are measured on the plant. All variables are connected by the five equations (a)-

(e), and (f) provides the cost. Since this is a single physical unit, one can state without

further analysis that DMA and MA are identical for this problem, with all equations (a-f)

taken as a whole.

0 = v1 + v2 + v5, (a)

0 = v2 + v3, (b)

0 = v4 + v6, (c)

0 = v5 + v6, (d)

0 = v5 + v6 + v7, (e)

φ = v21 + v27. (f)

This model approximates the single-unit plant that is defined by the following steady-state

equations (unknown a priori):

0 = vp,2 + v3 + vp,5, (ap)

0 = vp,2 + v3, (bp)

13



0 = v3 + vp,5 + vp,7, (cp)

0 = vp,1 + v4 + vp,6, (dp)

0 = v4 + vp,6, . (ep)

Assumption 1 holds, thus the cost φp = v2p,1 + v2p,7 is computed as for the model, i.e. with

equation (f).

Pre-processing procedure

The model pre-processing is done in three steps:

Step 1: (Variables Classification) Model variables are classically classified as either

manipulated variables u ∈ Rnu , measured output variables y ∈ Rny , or states.

Step 2: (Network Clustering) The network generated by the equations linking these vari-

ables is analyzed and clustered into sub-models, sub-costs, and sub-constraints. Sub-models

are defined as the equations which connect states (only) to measured and/or manipulated

variables. Similarly, sub-costs and sub-constraints correspond to equations allowing the cal-

culation of costs or constraints.

Step 3: (Building the Directed Network) The variables that are not part of any sub-

model are defined as interconnection variables since they connect sub-models. Each of these

variables must be computed from one, and only one, sub-model. Therefore, these variables

are denoted as output-interconnection variables of the sub-model that computes them. For

the other sub-models impacted by these variables, they are input-interconnection variables.

Doing this for each interconnection variables results in a directed network (or directed graph,

or digraph25).

The application of this procedure to Example 1 is given hereafter:

Example 2 (Model Pre-Processing) The application of the model pre-processing to the model

of Example 1 is illustrated in Figure 3. Step 1 is illustrated by the colors that are given to the

different variables, green for the manipulated variables u = [v3, v4]
T, red for the measured
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variables y = [v1, v5, v7]
T, and blue for the states [v2, v6]

T. The equations (a-e) are depicted

using black squares. The cost function (f) is depicted with a yellow square to highlight that

it is a known function of measured and manipulated variables. Step 2 is represented in

Figure 3a with dashed boxes (“sub-model 1”, “sub-model 2”, and “sub-cost 1”). The dotted box

“subsystem” illustrates here that DMA would have treated the problem as a single subsystem

since, as mentioned before, all equations represent the behavior of a single unit. Finally, by

applying step 3 to Figure 3a, Figure 3b is obtained, where v1 and {v5, v7} are computed with

sub-models 1 and 2, respectively, illustrating the flow of information through the network of

sub-systems, -costs and -constraints. This flow of information is also represented in Figure 3a

with the arrows on the connection links.

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟓 𝒗𝟔

𝜙

𝒗𝟕

Sub-model 1 Sub-model 2

Sub-cost 1 Subsystem

(𝑏) (𝑐)

(𝑒)

(𝑑)
(𝑎)

(𝑓)

𝒗𝟒

(a) Steps 1-2 (3 with the arrows on the links).

𝒗𝟏𝒗𝟑

𝒗𝟓
𝜙

𝒗𝟕

Sub-model 1

Sub-model 2

Sub-cost 1

Sub-models 
Sub-costs and  
-constraints

𝒗𝟒

(b) Step 3.

Figure 3: Application of the model pre-processing to Example 1.

Definitions and Notations

The model structure resulting from the application of the model pre-processing procedure

leads to a network N sm := {1, . . . , nsm} of nsm sub-models interconnected with a network

N sc := {1, . . . , nsc} of nsc sub-costs or sub-constraints.

For the sub-models, a similar notation to DMA is used. The inputs z(i) of a sub-model

i ∈ N sm result from the concatenation of u(i) ∈ Rnu,i (the manipulated variables affecting

i), and
[
w(`,i)

]
`∈N sm (the aggregated input-interconnection variables w(`,i) connecting the

sub-models ` ∈ N sm to i). The superscript (·)(i) is introduced to refer to as sub-model i,

and (·)(`,i), to refer to as the directed interconnection from sub-model ` ∈ N sm to sub-model
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i ∈ N sm. The outputs of sub-model i are denoted y(i) ∈ Rny,i . The outputs in y(i) that are

used in the network N sc by a sub-cost or -constraint j are denoted q[i,j], and the outputs in

y(i) that are used in N sm by a sub-model ` are denoted w(i,`), the output-interconnection

variables of i. The superscript (·)[i,j] refers to the directed interconnection from a sub-model

i ∈ N sm to a sub-cost, or -constrain, j ∈ N sc. The mapping between z(i) and y(i) is denoted

f (i), i.e., y(i) = f (i)(z(i)). These notations are summarized in Figure 4 and Table 1. Finally,

the two following assumptions are performed:

Assumption 2 (Sub-models) Each sub-model i ∈ N sm is such that ∀z(i), the input-

output mapping f (i)(z(i)) is injective, i.e., for any z(i) there is only one y(i) such that

y(i) = f (i)(z(i)).

Assumption 3 (Uniqueness of the Network Solution) For one uk, there is only one

y solving the model, i.e., only one y := [y(1)T, . . . ,y(nsm)T]T such that y(i) = f (i)(z(i)),

∀i ∈ N sm.

For sub-costs and -constraints: a sub-cost or -constraint j ∈ N sc, has two sets of

inputs: u[i], the subset of u affecting j, and
[
q[i,j]

]
i∈N sm , the aggregated vector of all sub-

models outputs affecting j. The notation (·)[j] is used to refer to the sub-cost or -constraint j.

The output of a sub-cost or -constraint is either a cost or a constraint. Figure 5 and Table 1

summarize these notations. Generalizing to all j ∈ N sc leads to the following definitions:

φ[j]
(
u[j],

[
q[i,j]

]
i∈N sm

)
:=

 x[j], if j is a sub-cost,

0, otherwise.

g[j]
(
u[j],

[
q[i,j]

]
i∈N sm

)
:=

 x[j], if j is a sub-constraint,

∅, otherwise.
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The aggregated cost and constraints are defined as:

φ(u) :=
∑
j∈N sc

φ[j]
(
u[j],

[
q[i,j]

]
i∈N sm

)
, (7)

g(u) :=
[
g[j]
(
u[j],

[
q[i,j]

]
i∈N sm

)]
j∈N sc

, (8)

respectively. Finally, the following assumption is performed:

Assumption 4 The functions x[j], ∀j ∈ N sc, are twice continuously differentiable (C2)

w.r.t. their inputs u[j] and
[
q[i,j]

]
i∈N sm.

𝓝𝒔𝒄

𝒙[𝑗],
∀𝑗 ∈ 𝒩𝑠𝑐

𝓝𝒔𝒎\𝒊
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𝒖(𝑖)

𝒘 𝑖,ℓ
ℓ∈𝒩𝑠𝑚

𝒛(𝑖)

𝒖

𝒒 𝑖,𝑗
𝑗∈𝒩𝑠𝑐

Sub-model 𝒊
𝒘 ℓ,𝑖

ℓ∈𝒩𝑠𝑚

𝒒 ℓ,𝑗
𝑗∈𝒩𝑠𝑐 ∀ℓ ∈ 𝒩𝑠𝑚\𝑖

𝒖

𝒒 ℓ,𝑗
ℓ∈𝒩𝑠𝑚 ∀𝑗 ∈ 𝒩𝑠𝑐

Figure 4: Interactions of a sub-model i with the networks N sm and N sc.
𝒙[𝑗]

𝒙[ℓ]

∀ℓ ∈ 𝒩𝑠𝑐\j

Sub-cost or 
sub-constraint 𝒋

𝒒 𝑖,𝑗
𝑖∈𝒩𝑠𝑚

𝒖[𝑗]

𝓝𝒔𝒄\j

𝓝𝒔𝒎

𝒖

𝒒 𝑖,ℓ
𝑖∈𝒩𝑠𝑚 ∀ℓ ∈ 𝒩𝑠𝑐 \𝑗

𝒖

Figure 5: Interactions of a sub-cost, or sub-constraint, j with the network N sm.

To illustrate the definitions of these notations example is continued next.

Example 3 (Notations) According to Figure 3b, the outputs the two sub-models are y(1) :=

v1 and y(2) := [v5, v7]
T. The interconnection variables are w(2,1) = v5, and w(2,2) = v5. The

output variables affecting the cost are q[1,1] = v1 and q[2,1] = v7. The manipulated variables

affecting the sub-models 1 and 2 are u(1) = v3, and u(2) = v4, respectively. The inputs of

sub-models 1 and 2 are z(1) = [u(1), w(2,1)]T and z(2) = [u(2), w(2,2)]T, respectively. Finally,

the mappings f (1) and f (2) are the model equations {(a), (b)} and {(c), (d), (e)}, respectively.
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Symbols

nsm number of sub-models
N sm network of nsm sub-models
nsc number of sub-costs and -constraints
N sc network of nsc sub-costs and -constraints
u manipulated variables
u(i) manipulated variables affecting sub-model i
u[j] manipulated variables affecting sub-cost j
w(`,i) interconnection variables linking sub-model ` to sub-model i
z(i) inputs of sub-model i (composed of u(i) and w(`,i))
q[i,j] outputs of sub-model i affecting sub-cost j
y(i) outputs of sub-model i
f (i) inputs-outputs mapping of sub-model i
g[j] sub-constraint j
g aggregated constraint (see Equation (8))
φ[j] sub-cost j
φ aggregated cost (see Equation (7))
x[j] sub-cost or sub-constraint j
ε
(i)
y,k zeroth-order modifier for IMA
λ

(i)
y,k first-order modifier for IMA
α

(i)
y,k affine function correcting sub-model i at the k-th iteration (see Equa-

tion (14))
Ay,k set of all affine corrections α(i)

y,k, i.e, Ay,k := {α(1)
y,k, . . . , α

(nsm)
y,k }

Subscripts and superscripts

(·)(i) variables or functions related to sub-model i
(·)(`,i) variables connecting sub-model ` to sub-model i
(·)[j] variables or functions related to sub-cost or -constraint j
(·)[i,j] variables connecting sub-model i to sub-cost or -constraint j
(·)p variables or functions related to the plant
(·)m,k variables or functions modified at iteration k
[(·)]i∈N sm concatenation (according to Equation (6))
(·)|uk

variables or functions evaluated at uk

Table 1: Summary of the notations used for IMA.
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Representation of the Plant

Now that the pre-processed model and its notations have been introduced, we consider a

plant represented, without loss of generality (when Assumption 1 holds), as in Figure 6:

here, the plant is seen as a mapping Fp between its inputs u and its outputs yp, which can

easily be reformulated to match the structure of the pre-processed model as nsm mappings

F
(i)
p ,∀i ∈ N sm, from u to the corresponding sub-plant outputs y(i)

p . These outputs, like those

of the model, are composed of interconnection variables w(i,`)
p , ∀` ∈ N sm, and variables

affecting the sub-costs and constraints q[i,j]p , ∀i ∈ N sc. Going further and representing

the plant as in Figure 7 implicitly relies on the fact that the modeled network N sm is a

“consistent” representation of the plant, which is unfortunately not always possible.

As illustrated in Figure 8 and in the following Example, the existence of the plant

mappings F (i)
p ,∀i ∈ N sm, does not always imply the existence of correlations (mappings)

f̃
(i)
p ,∀i ∈ N sm between z(i)p and y(i)

p , hence the introduction of f̃ (i)
p .

Example 4 (Model Consistency) We now assume that the single unit plant is known, i.e.

the equations (ap)-(ep) are known, and apply the pre-processing procedure to the equations

(ap)-(ep). This would lead to the three sub-plants illustrated in Figure 9a. As shown before,

the model (a)-(e) predicts the correlation (mapping) v1 = f (1)(v3, v5). But this correlation

does not hold for the plant, as shown in Figure 9a since v1 is independent of both v3 and v5

for the plant. So, the corresponding correlation (mapping) f̃ (1)
p does not exist for the plant,

i.e., variations of v3 or v5 do not imply variations of v1, and v1 can vary when v3 and v5

are constant. Notice that the plant mismatch in this illustrative example is quite extreme

since the model correlation v1 = f (1)(v3, v5) does not even include a sub-set of the plant

correlations. Such plant-model mismatch should rarely occur in practice, since it is expected

that the available model predicts, at least, a sub-set of the plant correlations between known

process variables. But, plant-model inconsistency (according to the definition of Assumption

5) could indeed happen more often in practice. A simple example is when the plant has more

inputs than its model. When it happens, a variation of the plant outputs could be observed

19



𝒚𝑝
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Figure 6: Block-oriented representation of the plant.
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Figure 7: Block-oriented representation of the plant if the model consistency criterion holds.
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Figure 8: The mappings F (i)
p between u and y(i)

p , ∀i ∈ N sm, for the plant are based on
obvious correlation relationships. However, the correlation mappings f̃ (i)

p , ∀i ∈ N sm, do not
necessarily exist on the plant since based on the pre-processed model structure.
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without any corresponding variation of the modeled inputs, if, e.g. this variation is due to

the unmodeled inputs.

𝒗𝒑,𝟏

𝒗𝟑

𝒗𝒑,𝟕

𝜙𝑝

Sub-cost 1

(𝑎𝑝)

(𝑓)

𝒗𝟒
Sub-plant 1

𝒗𝒑,𝟓

(𝑐𝑝)
(𝑑𝑝)

Sub-plant 3

Sub-plant 2

𝒗𝒑,𝟐 (𝑏𝑝) 𝒗𝒑,𝟔(𝑒𝑝)

(a) Steps 1-2 (3 with the arrows on the links).

𝒗𝒑,𝟏

𝒗𝟑

𝒗𝒑,𝟓
𝜙𝑝𝒗𝒑,𝟕

Sub-plant 1

Sub-plant 2 Sub-cost 1

Sub-plants 
Sub-costs and  
-constraints

𝒗4
Sub-plant 3

(b) Step 3.

Figure 9: Application of the model pre-processing to the plant of Example 4.

To avoid this situation, in this article, the following model consistency assumption is

performed.

Assumption 5 (Model Consistency) The mappings f̃ (i)
p , ∀i ∈ N sm, exist, i.e., all z(i)p

and y(i)
p are correlated (at steady-state).

Finally, one also assume the uniqueness of the plant solution:

Assumption 6 (Uniqueness of the plant solution) For any uk, there is only one y(i)
p

for the plant, ∀i, that satisfies y(i)
p = F

(i)
p (uk).

Summary

In summary, with IMA:

• The model is a network of sub-models connected by variables that are known (i.e.

modeled with certainty) or measured on the plant. Sub-model inputs are denoted z(i),

and contain both manipulated variables and interconnection variables. Their outputs

y(i) are measured on the plant and they either affect the sub-costs and -constraints, or

are interconnection variables, or both. Assumptions 2 and 3 are satisfied.
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• The plant is a mapping between the decision variables u and all the measured variables

yp. Assumptions 5*3 and 6 are satisfied.

• The cost and constraints functions are viewed as a network of sub-costs and -

constraints that are known C2 functions of measured or manipulated variables, i.e.,

they satisfy Assumptions 1 and 4.

Remark 1 The IMA model pre-processing procedure allows the automatic construction of

the “best” possible model representation, i.e., allowing the use of all the plant measurements.

As a result, the higher the number of available plant measurements, the larger the expected

number of potential sub-models. Also, it must be kept in mind that the sub-models intercon-

nection variables are not necessarily the process variables that connect the “physical” units

in the plant. As illustrated with Example 1, a single-unit-plant model can be represented as

two or more interconnected sub-models where the interconnection variables are the measured

variables on the plant. In fact, the “worst” case would be when the number of plant mea-

surements is reduced to its minimum value for MA. When it happens, IMA reduces to MAy.

Generally speaking, one could expect, at the very least, to obtain sub-models corresponding to

groups of physical units, i.e., to get as much sub-models as subsystems that would be obtained

by applying DMA. For the latter, since the model is separated into sub-models, -costs, and

-constraints but not into subsystems, one can still expect a better use of the measurements.
*3As it will be seen later, two different implementations of IMA are proposed in this article and assump-

tion 5 is indeed only required for one.
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Optimization Problem

With the introduced notations summarized in Table 1, the plant optimization Problem (1)

can be reformulated, without loss of generality, as the following NLP*4:

u?
p := arg min

u

∑
j∈N sc

φ[j]
(
u[j],

[
q[i,j]p

]
i∈N sm

)
(9)

s.t.
[
g[j]
(
u[j],

[
q[i,j]p

]
i∈N sm

)]
j∈N sc

≤ 0,

y(i)
p = F (i)

p (u), ∀i ∈ N sm,

where u?
p is the plant optimum. Since the mappings F (i)

p ,∀i ∈ N sm, are unknown but

approximated by f (i), ∀i ∈ N sm, u?
p can be approached by solving the following model-based

optimization problem:

u? := arg min
u

∑
j∈N sc

φ[j]
(
u[j],

[
q[i,j]

]
i∈N sm

)
(10)

s.t.
[
g[j]
(
u[j],

[
q[i,j]

]
i∈N sm

)]
j∈N sc

≤ 0,

y(i) = f (i)(z(i)), ∀i ∈ N sm.

Modifier Adaptation with all available real-time plant mea-

surements

This section is organized as follows: two new RTO methods (IMA-A and -B) that combine

elements of MAy and DMA are introduced first. Because these methods are MA methods,

modifiers are required and methods for their determination are presented next. Then, the

IMA-A and -B algorithms are detailed and analyzed.

*4For the sake of space, it is not explicitly specified in (9) that q[i,j]p , ∀i ∈ N sm, ∀j ∈ N sc, are composed
of elements of y(i)

p , ∀i ∈ N sm. The same simplification is made for Problems (10) and (17) where q[i,j] and
z(i) are composed of elements of y(i), ∀i ∈ N sm, ∀j ∈ N sc.
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Internal Modifier Adaptation (IMA)
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Figure 10: Block-oriented description of IMA-A and -B. The corrections are shown in green.

The main idea behind IMA is to simultaneously correct the measured variables affecting

the cost and constraints q[i,j], ∀i ∈ N sm, ∀j ∈ N sc, and the interconnection variables w(i,`),

∀i, ` ∈ N sm, by augmenting all the modeled and measured variables y(i),∀i ∈ N sm, with

the following input-affine correction terms α(i)
y,k, ∀i ∈ N sm, ∀k ∈ N to iteratively modify the

mapping functions f (i) such that:

y
(i)
m,k := f

(i)
m,k

(
z
(i)
m,k(u,Ay,k)

)
,

with

f
(i)
m,k

(
z
(i)
m,k(u,Ay,k)

)
:= f (i)

(
z
(i)
m,k(u,Ay,k)

)
+α

(i)
y,k, (11)
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so that:

f (i)
m,k

∣∣
uk

= F (i)
p

∣∣
uk
, (12)

∇uf
(i)
m,k

∣∣
uk

= ∇uF
(i)
p

∣∣
uk
, (13)

whereα(i)
y,k, ∀i ∈ N sm, are either (i) affine functions of u, or (ii) affine functions of z(i)m,k(u,Ay,k),

and Ay,k := {α(1)
y,k, . . . ,α

(nsm)
y,k }. Case (i) corresponds to IMA-A, while case (ii) is IMA-B, as

illustrated in Figures 10a and 10b, respectively. This distinction follows the same logics as for

DMA, which has been classified into DMA-A or -B depending on whether affine corrections

are in u or z(i)m,k (see Figure 2).

Finally, the functions α(i)
y,k, ∀i ∈ N sm, read:

α
(i)
y,k :=

 ε
(i)
y,k + (λ

(i)
y,k)T(u− uk) if IMA-A,

ε
(i)
y,k + (λ

(i)
y,k)T(z

(i)
m,k − z

(i)
m,k

∣∣
uk

) if IMA-B,
(14)

where ε(i)y,k and λ(i)
y,k are respectively the zeroth- and first-order modifiers for the sub-model

i, with the following simplifications of the notations:

z
(i)
m,k , z

(i)
m,k(u,Ay,k),

z
(i)
m,k

∣∣
uk
, z(i)m,k(uk,Ay,k

∣∣
uk

).

As depicted in Figure 10a and 10b, modifying the outputs of a sub-model i affects its out-

put interconnection variables
[
w(i,`)

m,k

]
`∈N sm , and, in turn, its input interconnection variables[

w(`,i)
m,k

]
`∈N sm . So, affine corrections on any sub-model i affect all the other sub-models, and

vice-versa. Thus, all input-affine corrections α(i)
y,k must be computed simultaneously, as seen

in Equation (11), where z(i)m,k (with subscript (·)m) appears in the unmodified function f (i).

In practice, this could require the solving of a large system of nonlinear equations, which

can be computationally expensive, especially for large-scale plants. In the next subsection,
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efficient methods are proposed to mitigate this issue.

Modifiers computation for IMA-A and IMA-B

Theorem 1 (Efficient method for computing the modifiers): Assume that Assumptions 1-

6*5 hold and that the modified model does not have multiple solutions. The set of modifiers

{ε(i)y,k,λ
(i)
y,k} enabling (12)-(13) is unique and satisfies the following equations:

ε
(i)
y,k = F (i)

p

∣∣
uk
− f (i)(z(i)p )

∣∣
uk
, (15)

λ
(i)
y,k =


∇uF

(i)
p

∣∣
uk
−∇z(i)f

(i)
∣∣
z
(i)
p |uk

∇uz
(i)
p

∣∣
uk
, if IMA-A,

∇z(i)f̃
(i)
p

∣∣
z
(i)
p |uk

−∇z(i)f
(i)
∣∣
z
(i)
p |uk

·∇uz
(i)
p

∣∣
uk
·
(
∇uz

(i)
p

∣∣
uk

)+
, if IMA-B.

(16)

Proof. The proof can be found in the supporting information. �

Theorem 1 shows that the computation of the modifiers associated to a sub-model i uses

only measurements of the virtual sub-plant i of the real plant. Therefore, they can be

computed in a distributed manner at the level of the virtual sub-models, and, ultimately,

the modified model-based optimization Problem (17), discussed in the next subsection, could

be distributed, similarly to what is suggested in Milosavljevic et al. (2017)22 for DMA-B.

IMA algorithms are now summarized.

IMA Algorithms

Internal Modifier Adaptation, versions A and B (IMA-A and IMA-B)

Initialization. Provide u0. Choose K = KInu with K ∈ (0, 1], and opt for IMA-A or

IMA-B.
*5Note that Assumption 5 is only required for IMA-B. On the other hand, IMA-A remains applicable even

if Assumption 5 is not met using the first line of Equation (16).
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for k = 0→∞

1. Apply the inputs uk to the plant and wait until steady state.

2. Use all plant measurements to estimate, ∀i ∈ N sm:

• F (i)
p |uk

, ∇uF
(i)
p |uk

, and ∇uz
(i)
p |uk

, for IMA-A,

• or F (i)
p |uk

, ∇uf̃
(i)
p |uk

, and ∇uz
(i)
p |uk

, for IMA-B,

using, e.g., data from perturbed operating points in the neighborhood of uk.

3. Evaluate the modifiers (15)-(16).

4. Compute u?
k+1 by solving the following modified model-based optimization problem:

u?
k+1 := arg min

u

∑
j∈N sc

φ[j]
(
u[j],

[
q
[i,j]
m,k

]
i∈N sm

)
(17)

s.t.
[
g[j]
(
u[j],

[
q
[i,j]
m,k

]
i∈N sm

)]
j∈N sc

≤ 0,

y
(i)
m,k = f

(i)
m,k(z

(i)
m,k), ∀i ∈ N sm.

5. Determine the next operating point uk+1 by applying a first order filter:

uk+1 := uk +K(u?
k+1 − uk). (18)

end

In practice, plant measurements are corrupted with measurement noise and oscillations

around steady state can be observed. For the sake of simplicity and because this article is

mainly methodological, the following assumption is performed.
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Assumption 7 The output values and gradients are perfectly known for the plant at each

RTO iteration*6.

Remark 2 As mentioned in introduction, it might be difficult in practice to estimate the

plant gradients from plant measurements. Solutions exist to mitigate this issue5–12 and most

could be adapted to match the IMA framework. However, this is beyond the scope of this

study.

Optimality Upon Convergence

Now that the algorithms and the way they can be implemented in practice have been pre-

sented, it remains to prove that IMA-A and -B can only converge to the true plant optimum

just like other MA approaches. To do so, we start first by stating a necessary condition for

any RTO method to guarantee convergence to the plant optimum:

Theorem 2 (RTO convergence ⇒ KKT matching)

If a given RTO algorithm iteratively modifies the cost and constraint functions of a model

such that, at uk, for each iteration k, the values and gradients of the cost and constraints of

the modified model match the values and gradients of the plant at uk, i.e., if:

φm,k

∣∣
uk

= φp

∣∣
uk
, gm,k

∣∣
uk

= gp
∣∣
uk
, (19)

∇uφm,k

∣∣
uk

= ∇uφp

∣∣
uk
, ∇ugm,k

∣∣
uk

= ∇ugp
∣∣
uk
, (20)

then, the only fixed point of this RTO algorithm is a KKT point for the plant.

Proof. This proof is straightforward and is indeed a generalization of Theorem 1 in

Marchetti et al. (2009)4, Proposition 1 in Milosavljevic et al. (2017)22, and Theorem 2 in

Papasavvas et al. (2018)15. �

*6Note that perfect gradients of the cost and constraints for the plant are also required with MA or MAy
for similar methodological analyses.

28



Next, with the following Lemma, we state and prove that the modification of the model

of IMA leads to affine corrections of the sub-cost and -constraint functions, i.e., that IMA-A

and -B satisfy the conditions (19)-(20) of Theorem 2:

Lemma 1 Consider x[j], ∀j ∈ N sc, known functions of u[j] and of the modified functions

f
(i)
m,k ∈ C2, that approximate the functions F (i)

p , ∀i ∈ N sm. If, ∀k ∈ N and ∀i ∈ N sm the

equalities:

f
(i)
m,k

∣∣
uk

= F (i)
p

∣∣
uk
, ∀i ∈ N sm, (21)

∇uf
(i)
m,k

∣∣
uk

= ∇uF
(i)
p

∣∣
uk
, ∀i ∈ N sm, (22)

hold, then, ∀j ∈ N sc, the following equalities hold:

x[j](u[j],f
(1)
m,k, . . . ,f

(nsm)
m,k )

∣∣
uk

= x[j](u[j],F (1)
p , . . . ,F (nsm)

p )
∣∣
uk
, (23)

∇ux
[j](u[j],f

(1)
m,k, . . . ,f

(nsm)
m,k )

∣∣
uk

= ∇ux
[j](u[j],F (1)

p , . . . ,F (nsm)
p )

∣∣
uk
. (24)

Proof. The proof is straightforward, and is indeed a generalization of Lemma 1 in

Papasavvas et al. (2018)15. �

Finally, by combining Theorem 2 and Lemma 1, the following Theorem can be stated:

Theorem 3 (IMA convergence ⇒ KKT matching) If assumptions 1-7 hold*7 and if

the input sequence {uk,∀k ∈ N} generated by IMA converges to u∞ := lim
k→∞

uk with u∞ a

KKT point of the modified optimization Problem (17), then u∞ is also a KKT point for the

plant Problem (9).

Proof. According to Theorem 1, (12) and (13) hold for the modified model at uk. Since

the sub-costs and -constraints are known functions of the functions f (i)
m,k, ∀i ∈ N sm, which

are corrected in an input-affine manner, Lemma 1 allows to state that {x[j]m,k

∣∣
uk
, ∇ux

[j]
m,k

∣∣
uk
}

= {x[j]p

∣∣
uk
, ∇ux

[j]
p

∣∣
uk
}, ∀j ∈ N sc. The aggregate constraints of the modified model gm,k being

*7Note that Assumption 5 is not required for IMA-A.
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the concatenation of x[j]m,k, with j ∈ N sc (see Problem (9)), they are therefore also corrected

in an input-affine manner, at uk. The same observation can be made for the aggregated cost

of the modified model φm,k. Theorem 2 can thus be used to finalize the proof that only KKT

points of the plant can be fixed points for both IMA algorithms. �

Remark 3 So far, we have shown that zeroth- and first-order corrections are performed

for MA (and MAy), DMA and IMA. Yet, one of the main advantages of IMA is that it

also implement higher-order corrections that are inherited from MAy15 and DMA21. IMA

shares the same higher-order correction than MAy mainly because the outputs affecting the

sub-costs and -constraints are corrected similarly. For DMA, the observed – yet not studied

– higher-order corrections21 are prone to stem from the attenuation of the propagation of

uncertainty through the aggregated model, thanks to the correction of the interconnection

variables. Because this is also the case with IMA, the same improvements are expected. For

instance, when all sub-models are linear – which does not imply that the aggregated model is

linear (it will typically not be linear, e.g., in the presence of recycling)–, then IMA-B corrects

the model perfectly in a single RTO iteration. IMA-B being the only approach where sub-

models are corrected locally, it is clear than only IMA-B will enable a one-step convergence

in this case. This property is straightforward to prove (similarly to the equivalent theorem for

MAy in Papasavvas et al. (2018)15), but this analysis is omitted here for the sake of space.

Illustrative Examples

IMA-A and -B have been applied in simulation to two different case studies of growing

complexity. The first sub-section deals with a steel-making process of moderate scale, which

still incorporates enough units to be more challenging than a small-scale plant. Because

several units are linear, this first case study will mainly highlight the advantages of IMA-

B over IMA-A discussed in Remark 3, while allowing the reader to better understand the

proposed approach to modeling and to the clustering of model equations. The second case
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study is of bigger scale and corresponds indeed to the Tennessee Eastman challenge problem.

Steel-making process

HUB 2

HUB 1
𝑥4

Coke Sinter Pellets

BOFSiC

BF-1 BF-2

Bought 
scrap

Home
scrap

OH

𝑥3 𝑥1

𝑥2

𝑥7 𝑥5
𝑥6

𝑥8

𝑥9 𝑥9 𝑥14𝑥16𝑥11
𝑥10

𝑥13 𝑥17

𝑥18

𝑥12

Figure 11: A unit based description of the steel plant.

We consider the steel-making plant depicted in Figure 11 taken from Ray et al. (1973)26.

There are two blast furnaces (BF-1 and BF-2), one oxygen furnace (BOF), one open hearth

shop (OH) and a storage tank for scraps. Also, in the description of the plant, two virtual

hubs (Hub-1 and Hub-2) have been introduced for the distribution of material between the

different equipments (see Figure 12). BF-1 and BF-2 consume sinter, pellets and coke to

produce hot metal, which is distributed between the BOF and the OH through the Hub-1.

The BOF uses hot metal with silicon carbide (SiC) and home and bought scrap to produce

crude steel. Similarly, OH converts hot metal and scraps into crude steel. Finally, crude

steel produced by both the BOF and the OH is either sold or stored via Hub-2.

The ten manipulated variables for the plant are u = [u1, . . . , u10]
T, which are in order:

u1: sinter consumption in BF-1 (t/y); u2 pellets consumption in BF-1 (t/y); u3: sinter

consumption in BF-2 (t/y); u4: pellets consumption in BF-2 (t/y); u5: the ratio of produced

hot metal sent to BOF; u6, bought scraps consumption in BOF (t/y); u7: SiC consumption

in BOF (t/y); u8: bought scrap consumption (t/y); u9: ratio of crude steel sent to the

reserve (t/y); u10: ratio of reserve scrap for BOF. These manipulated variables are indicated

in green in Figure 12.
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Twelve mass flow rates [t/y] are measured and are denoted in red in Figure 12 that are:

(i to iv) the coke consumptions (y(1)1 , y
(2)
1 ) and the hot metal production (y(1)2 , y

(2)
2 ) of the

two BF; (v) hot metal sent to the BOF (y(3)1 ), and (vi) hot metal sent to OH (y(3)2 ); (vii and

viii) the crude steel produced by the BOF (y(4)1 ) and by the OH (y(5)1 ); (ix) the sold crude

steel (y(6)1 ), (x) the crude steel stored in the reserve (y(6)2 ); (xi-xii) the crude steel extracted

from the reserve and sent to the BOF (y(7)1 ) and to the OH (y(7)2 ).

The available model is such that plant-model mismatch is of parametric nature and plant

and model parameters are listed at the bottom left of Figure 12.

The pre-processing procedure has been applied to the available model, the corresponding

results being depicted in Figure 12. The resulting network of sub-models is similar to the

plant structure, with sub-models being mostly the models of the physical units, and so to the

network that would be obtained with DMA. The difference with DMA lies here in the further

separation between sub-models and the sub-costs and -constraints obtained with IMA.

There are four sub-costs and six sub-constraints, detailed Figure 12, which correspond

to operating costs, minimum and maximum production capacities, fixed ratios between ma-

terials, and to the production target, respectively.

Figure 13 summarizes the simulation results for MA, IMA-A, and IMA-B. All methods

have been initialized at the conservative inputs u0 = [1.7, 0.3, 0.5, 0.2, 1, 1, 0.06, 0.1, 0.3,

0]T. For the sake of clarity, only the aggregated cost, the five sub-constraints, u9, and u10

are plotted.

As seen, the three methods converge to the true plant optimum. While it takes two

iterations for MA and IMA-A to converge, IMA-B leads to convergence in a single iteration,

which is a direct illustration of Remark 3. For this case study, it turns out that all sub-models

are linear, and that the only nonlinearity stems from the recycling between the reserve, the

BOF, and the OH, which is only related to the inputs u9, and u10. This is indeed the reason

why the other inputs have not been plotted, since all methods lead to exactly the same

profiles for {u1, . . . , u8}.
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Figure 12: Sub-plants and sub-models used for the steel-making process.
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Figure 13: Steel-making process: Simulation results.

Although one iteration seems to be a marginal difference, it has to be kept in mind that

not only one iteration means one steady-state to steady-state iteration, i.e., as much time

as it takes to the slowest unit to reach steady state, but also, because plant gradients might

have to be estimated using, e.g., finite differences, as many additional iterations to steady-

state that are required to estimate plant gradients, here with an input vector of dimension

10.

Also, MA and IMA-A lead to a violation of the constraint g[5], which is the reason why

the costs (top left of Figure 13) of MA and IMA-A achieve a lower value than the plant

optimal cost, at the infeasible iteration. This violation being much larger with MA than

with IMA-A, it is clear that IMA-A outperforms MA thanks to the additional corrections

discussed by the end of the previous section. Since IMA-B prevents constraint violations, it

clearly outperforms both MA and IMA-A.

The Tennessee Eastman Challenge Problem

The Tennessee Eastman plant (TE) is simulated using a benchmark FORTRAN code27.

The plant is known to be open-loop unstable and is equipped with a decentralized control28
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More details about notations are available in the supporting information.
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Figure 15: TE: Simulation results.
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scheme.

The model at hand is a simplified version of a model available in the literature29 sharing

the same inputs as the plant of Bathelt et al. (2015)27. Nothing more than the plant informa-

tion that was considered available in the Tennessee Eastman challenge problem statement30,

is considered available in this article, e.g. for modeling purposes, that is:

• Physical properties of the different components A, B, C, D, E, F , G, H, at 100 oC.

• An intentionnaly simplified set of reactions (as in Ricker et al. (1995)29) to serve as the

model and to implement structural plant-model mismatch (i.e., the simulated reality

of the FORTRAN code considers more reactions):

A(g) + C(g) +D(g) → G(`),

A(g) + C(g) + E(g) → H(`),

1/3A(g) +D(g) + 1/3E(g) → F(`).

• The compositions and temperatures of the inlet streams to the plant (i.e., streams 1,

2, 3, and 4 in Figure 14).

• The sub-costs and -constraints of the plant,

• The measured variables. Densities ρ9 and ρ11 of the flows 9 and 11 are also known*8.

The only marginal differences with Ricker et al. (1995)29 are in order:

• The compositions of the streams 1, 2, 3, 4 of Downs et al. (1993)30 are used,

• The temperature T6 is not fixed. Instead, F6 F9, ṁsteam, Pm, Tstr, and cE,6 are fixed*9,

*8These measurements are assumed to be available so that costs are functions of manipulated and measured
variables only, for the reasons discussed in Section 3. Unlike in Ricker et al. (1995)31, actual cost and
constraints values are used. Also, the steady-state concentrations and volumetric flowrates of Stream 5, even
though not directly measured, can be easily inferred from the other steady-state measurements at the mixer.

*9Details about these variables are available in the supporting information.
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• The stripper is assumed to be ideal, i.e., it perfectly separates G and H from the other

species,

• The quantity of each component in each equipment is not modeled to infer the liquid

volumes Vr, Vsep and Vstr. Instead, these volumes are directly manipulated through

appropriate controller set-points.

The degrees of freedom for the controlled TE plant are indeed the set-points of the

controllers, which are in order: u1 := ṁsp
11 (mass flowrate of Stream 11 (kg/h)); u2 := c%,sp

G,11

(molar concentration of G in Stream 11 (%)); u3 := cspA (amount of A relative the amount

of A + C in stream 6 (%)); u4 := cspAC (amount of A + C in stream 6 (%)); u5 := T sp
r

(reactor temperature (oC)) u6 := P sp
r (reactor pressure (kPa)); u7 := V %,sp

r (reactor level

(%)); u8 := V %,sp
sep (separator level (%)); u9 := V %,sp

str (stripper level (%)); u10 := vsteam (steam

valve position (%)); u11 := ωr (reactor agitation speed (%)).

According to Ricker et al. (1995)31, u6 to u11 can be fixed, and so are they in this article.

More precisely, the optimal reactor liquid level and pressure are kept at their lower and upper

bounds, respectively. To avoid constraint violations during the transients to steady state -

something that has been observed during dynamical simulations -, the values of P sp
r and

V %,sp
r are set to 2800 kPa and 65%, slightly backed-off from their “real” limit values of 2895

kPa and 50%. Also, V %,sp
sep and V %,sp

str having negligible effects on the operating conditions of

the plant, they are fixed to 50%, again far enough from their bounds. The energy consumed

for stirring being not taken into account, the agitator speed is set to 100%. Finally, the

steam valve position is set at 1%, since it has been proved31 that steam has not effect on

the steady state and costs money.

The model pre-processing procedure has been applied and the resulting networks (N sm

and N sc), with detailed equations, are given in the supporting information. Notice that,

contrary to the first case study, the structure ofN sm does not mimic the structure of the plant

because not all the process variables that connect the reactor, the condenser, the separator,

the compressor, and the stripper are measured. Hence the difference between Figure 14
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(which is a units-based description of the open-loop TE) and Figure S1 (in supporting

information), which depicts N sm, and in turn between the clustering obtained with IMA

and the unit-based description that DMA would have led to.

Only the first of the six operating modes30 is considered. No disturbances are considered,

since the purpose of this case study is to illustrate the implementation of IMA. Therefore,

the model-based optimization problem considers four sub-costs and twelve sub-constraints,

detailed in the supporting information. Basically, the liquid levels in the reactor, the separa-

tor and in the striper are bounded. The pressure and temperature of the reactor are upper

bounded. The ratio between the flowrates of G and H in stream 11 is 50/50 to satisfy quality

requirements. There is an equality constraint on the production rate, i.e., the mass flowrate

of G and H in stream 11 has to be equal to 14076 kg/h. The aggregated cost is composed of

(i) the cost related to the power consumption of the compressor, (ii) the steam consumed by

the stripper, (iii) the flowrate in the purge, and (iv) the flowrate in the production stream 11.

Figure 15 depicts the simulation results for 30 RTO iterations with MA, IMA-A and -B

starting from conservative initial inputs u0 = [10, 30, 60, 50, 120]T. The filter gain used is

K = 0.9*10. One can see that MA does not converge to the plant optimum and, instead,

oscillates around an infeasible point. On the other hand, IMA-A and -B lead to similar

results and reach the plant optimum in about 5 iterations. Notice that the optimal steady-

state reached here over performs slightly the one from Ricker et al. (1995)31. This is due

to the fact exact cost and constraint values are considered here (see footnote *8). Results

are also different from Golshan et al. (2000)32, whereby the two step approach, i.e., online

identification of the models parameters followed by re-optimization of the updated model,

has been applied leading to convergence to a sub-optimal point, which happens to be quite

luckily close from the true plant optimum. IMA converges to the true plant optimum, i.e.

msp
11 = 22.797 kg/h, %Gsp = 53.83, cspA = 63.22, cspAC = 50.92, and Tr = 122.84◦C for an

operating cost of 113.53$/h, while satisfying all operating constraints.

*10With K = 1, results are very similar, although more oscillations are observed before convergence for
IMA-A and -B.
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Remark 4 Better results are obtained with MA when the model parameters are closer to

the corresponding plant values. This seems to show that MA is more sensitive to the model

parameters than IMA-A and -B.

Conclusions

In this article, MAy and DMA have been combined and improved to maximize the use of

available plant measurements, and the resulting method, IMA, has been successfully applied

to two large-scale simulated case studies, among which the Tennessee Eastman process.

Instead of mimicking the structure of the plant for modeling, it is argued that clustering

the model into a network of sub-models on one hand, and a network of sub-costs and sub-

constraints on the other, all sub-elements being connected by modeled outputs that are also

measured on the plant, allows to use all plant measurements in the optimization framework.

Doing so brings back the model at the core of the definition of the optimization problem and

choice of the solution method, but also exploits the whole set of available plant measurements.

The list of plant measurements (and not the list of units, neither of states – which do not need

to be measured) is used, and, clearly, different sets of measurements would lead to different

IMA-clusterings, but all would enable the use of all the corresponding plant measurements.

The properties of IMA have been analyzed and it has been proven that the plant-

optimality-upon-convergence property, common to all MA methods, is preserved. Also,

the problem of correcting simultaneously all sub-models, which corresponds to the solving of

a potentially large system of nonlinear equations, has been treated and a practical method

proposed. Despite these results, which make of IMA a promising route to the optimization

of large-scale processes, many research directions and questions remain open, among which

the three following:

1. Firstly, the fact that the sub-models, -costs, and -constraints are separated into the

networks N sm and N sc enables to investigate the application of IMA to cases where
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different agents want to keep some knowledge private (e.g., with distributed plant,

or when RTO is outsourced to a consulting company reluctant to share its process

models).

2. Secondly, research is required to compare in more details MA, MAy, DMA, and IMA,

and, if possible, identify which method is best suited to which application. Also, future

work should consider mixing IMA-A and -B, i.e., modifying some measured variables

with affine functions of u and others with affine functions of z(i)m,k, which could be a

way to enforce the satisfaction of the Model Consistency Assumption 5, in some cases.

3. Finally, another direction for future research would be to combine IMA framework with

all the extensions of standard MA enumerated in the fourth paragraph of the introduc-

tion. The authors believe that such combinations could reduce, or even remove, some

assumptions – e.g., the availability of accurate estimates of the plant gradients. Also,

the use of nonlinear modifying structures, still satisfying the conditions of Theorem 2,

should be investigated. Indeed, as discussed in Remark S1 (in the supporting informa-

tion), some of the interconnection variables may have physical bounds (e.g., a molar

fraction must be within the set [0, 1]) that are not compatible with the affine correc-

tions of MA, as such, leading e.g. corrected molar fractions to be outside [0, 1]. Hence

the need to investigate the introduction of nonlinear corrections that are locally linear

and meet the conditions of Theorem 2, while enforcing the satisfaction of additional

physical properties on the corrected variables.

Supporting Information Available

The Supporting Information is available free of charge on the ACS Publications website at

DOI: xxx

• Theorem 1 proof;
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• Detailed description of the Tennessee Eastman challenge process;

• Remark S1 (An alternative to affine corrections).

This material is available free of charge via the Internet at http://pubs.acs.org/.
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