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Abstract 

Chemical and petrochemical companies are increasingly realizing that their sustainable development 

critically depends upon development of new innovative processes that use more efficiently materials 

and energy. As overall separation/purification processes account for 40-60% of capital and operating 

costs, their amelioration can significantly reduce costs, energy use and waste generation by increasing 

profits. Gas separation by adsorption technology is a well-established unit operation in chemical and 

petrochemical industries due to its efficiency for dealing with a large range of gas separations including 

impurity removal, gas purification and separation in recycle streams. The technology is far from being 

mature and opportunities to expand its domain of applicability and improve its efficiency are high in a 

context where better understanding of physical phenomena and technological progress in materials 

and engineering research are integrated. Major contribution for innovations in gas separation by 

adsorption technology relate to the discovery of new adsorbents with better separation characteristics 

coupled to process development and its optimization using multi-objective and multi-domain 

numerical approaches. This short review identifies technological gaps and drivers for accelerating the 

development of industrially important gas separations by adsorption.  

 

1. Introduction 

The nanoscale manipulation of porous materials [1–6] opens perspectives for their design with 

controlled structures and properties needed in many industrial gas separation processes [7]. A clear 

trend observed during the recent years is the synergy between the progresses made in this field and 

those in computational technologies such as evolutionary computational modelling, computational 

chemistry, molecular modelling and process design and optimization based on multi-objective multi-

domain paradigms. The coupling of experiment with modelling at various time and length scales based 

on advances in software technology (Knowledge Discovery in Databases [8,9], Artificial Intelligence 

[10,11], Multi-scale simulation [12–14], Structure-Activity[15] and Structure-Function relationships [3], 

Molecular Simulations [16–20], Process Simulation & Optimization [21–25]) and synthesis by design of 

novel Nano-structured materials allows identification of pathways for rapid progress in gas separation 

by adsorption technology. Another important aspect of adsorbent research is the shaping of adsorbent 

materials [6,26–29] into micron-length and macroscopic scale objects like pellets extrudes or 

monoliths. The shaping process responsible for mass transfer kinetics highly affects the performance 

of the separation unit.  The optimal shaping recipe carried out through an iterative shaping and 

consecutive experimental characterization approach before process evaluation in bench-scale pilots. 

The final validation of the newly developed process for a given gas phase separation is achieved in pilot 

plant-scale for commercial flow sheet confirmation. Several recent reports on gas separation 

applications using this technology indicate trends of improvement in this field. Due to space limitation, 

we primarily consider peer-reviewed literature, referring to patents only when the peer-reviewed 

literature lacks such information. 
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2. Gas separation by adsorption: accelerating innovation through numerical simulations 

The Separation/purification of industrial gases in the 5-200 t/day range by adsorption technologies, 

e.g., pressure swing adsorption(PSA) [21,24,25,30] and vacuum swing adsorption (VSA) [31,32] show 

a faster growing rate than the conventional cryogenic-based separation due to their up to 25% reduced 

cost of produced gas. The VSA/PSA is the gas separation process of choice for bulk gas production from 

feeds in which the produced gas presents above 10% v/v of the gas mixture.  The use of temperature 

swing adsorption (TSA) industrially relates mainly to front end purification applications like fluid drying 

or eliminating of CO2 and secondary trace compounds from air prior its cryogenic distillation. During 

the last years, several concepts based on TSA or hybrid PTSA cycle schemes have been proposed [33–

35] including applications such as direct CO2 capture from air [36–38] or CO2 capture from different 

feed gases[39–42]. The estimated cost for CO2 capture in these TSA-based purification processes 

concepts remains high for large-scale applications [43,44] and the difficulty of their implementation is 

mainly due to the low thermal conductivity of the adsorbent packed in an adsorbent bed and 

consequently to the very long cycle times. Although there is still considerable room for improvement 

in the design and operation of PSA/VSA and TSA processes, most gains in unit performance will likely 

come from the development of new and improved adsorbents. With increasing environmental and 

energetic concerns worldwide, porous materials [2,45–49] used as adsorbents in gas separation 

technologies are becoming even more important for the separation of polluting species, the recovery 

of useful ones and their use in sensor and catalyst developments. The Nano-porous materials fall into 

the category of large microporous and mesoporous materials with pore dimensions in the 0.3 to 30 

nm range. The design, synthesis and processing [6,26,28] of these materials into adsorbents is a far 

more challenging task than the obtaining of dense materials because they are metastable phases in 

the sense that are created by interrupting the kinetics of single-phase assemblies. [12] 

The development of new adsorbents with improved selectivity, stability, mass and heat transfer 

characteristics due favorable formulation and shaping has been the main factor of cost reduction and 

innovation in separation technologies by adsorption during the last decade. The introduction of a new 

adsorbent implies the redesign of the separation process configuration in order to optimize the 

performance of a separation unit. The experimental effort and the cost for the development of 

improved PSA, VSA or TSA separation units are relatively high if relying solely on costly experimental 

programs involving synthesis, structural characterization of porous material followed by their 

conversion in improved adsorbents and the final performance assessment in pilot-scale plants. In this 

context, the approach in which the modelling protocols are used for generating libraries of “virtual” 

[20,50,51] Nano-porous materials and the ability to predict their properties prior to experiment for 

pre-selecting new potential  adsorbent structures, followed by process optimization simulations can 

effectively reduce the cost and time of the research for novel adsorption-based separation processes.  

The ability to model, simulate and predict the behavior of Nano-porous materials at different length 

and time scales is a critical issue for the successful development of new adsorbents not only for the 

gas separation by adsorption or separation technology but also for a large number of industries that 

utilize these materials in their production cycles. The field of materials science and engineering is 

evolving very rapidly due to the computationally empowered materials discovery [52–54], 

development and deployment. In this context, the Materials Genome Initiative (MGI) [46,52,55] is 

aiming the enhancement of the fundamental understanding of materials science by providing the 

information needed for accelerating the development of new Nano-porous materials. It also allows 

connection into a much broader model-based engineering innovative process [21,22,56] that links 

manufacturing with design via advanced process-structure-property models [15,57] in an integrated 



computational environment. This process involves integration of information across different length 

and time scales [12],[34,58–61] for relevant materials phenomena and enables concurrent analysis of 

manufacturing [29], [47], [15], [51], [48], [52] process and material properties within a holistic 

framework.  

As PSA/VSA processes are relatively more complex than the TSA ones in the following, only the first 

ones are explicitly mentioned intending that the same reasoning apply also to TSA process. The main 

advantage of PSA/VSA technology [64], [22], [65] is their great flexibility that pays for the process 

complexity, which is still one of the major barriers for introducing the technology in new industrial 

applications. During last years, a continuous progress in process engineering has improved the 

productivity and recovery of PSA/VSA units [32,66], [67,68]. Between these advances, the most 

challenging one is the development of cyclic strategies based upon accurate knowledge of the dynamic 

behavior of adsorbent/gas systems [6,69,70][1,70] that can improve the performance indicators of the 

PSA/VSA units. In order to accelerate the design of improved PSA/VSA units for selected gas 

separations, the integration of model based, and concurrent numerical approaches of the process in 

numerical workflows together with the adsorbent discovery as schematically reported in Figure 1 is 

exceedingly important. The numerical workflow comports a number of “numerical filters” reported in 

the upper part of Figure 1 and used for rapid screening of potential solutions for a selected separation. 

The experimental phase reported in the lower part of Figure 1 composed of several steps focuses on 

the selected number of solutions only. 

This numerical approach allows not only to revisit existing well-established gas separation by 

adsorption technologies but also to develop novel PSA/VSA separation schemes for industrially 

important separations such as olefin-paraffin, diene/olefin, N2/CH4, CO2/CH4, CO2 removal from 

industrial gas streams and other difficult hydrocarbon separations. For example, the separation of light 

olefins from gases produced by pyrolysis of hydrocarbons is a major issue for the cost effectiveness of 

the olefins production plants. Another example related with ethylene production based on Oxidative 

Coupling of Methane (OCM) consists in gas separation and recycling from the OCM reactor using PSA 

technology. In the xylenes isomerization unit operating under a hydrogen partial pressure of 25 to 35 

bars in which the recycled gas contains many impurities, such as benzene, toluene and xylenes the PSA 

unit allows to recover the p-xylene and improve the overall performance of the unit. In the aniline 

synthesis process based on Nitrobenzene hydrogenation, the recycle loop containing hydrogen rich 

complex gas mixture that is hard to separate and therefore huge quantities of hydrogen are lost by 

purge of recycle gas a PSA separation unit improves the performance of the unit.  



 
Figure 1: Schematic representation Nano-porous materials discovery coupled to PSA/VSA multi-
objective process optimization for reducing the time and effort of development of new solutions 
 
In the following, we report recent advances in a number of emerging technologies as part of the 

numerical workflow reported in Figure 1 that when integrated with the experimental developments in 

the field of gas separation by PSA/VSA technology could accelerate the improvement of several 

conventional gas separation by adsorption applications and accelerate the development of new ones. 

2.1.  Knowledge Discovery in Databases 

Massive amounts of data generated each year for Nano-porous materials as a small part of the MGI 

including almost any type of digital information, obtained whether from experiment or computation 

imply the development of dedicated approaches to cope with knowledge discovery in scientific data 

[8,11,71–73]. The natural evolution of MGI was towards data exploitation through a Materials Data 

Infrastructure [52,73–75] (MDI) giving rise to agreements from scientific communities for developing  

basic guidelines known as ‘’FAIR Principles’’ [11] for the data management that should be: Findable, 

Accessible, Interoperable, and Reusable. Dedicated tools embedded in MDI platform allow for the 

capture, processing, cleaning, dissemination and knowledge discovery in data[9,76–78], enabling their 

increased reuse by a wide research community going from materials scientists to chemical engineers 

that use the materials for improving their process technologies and final products. In this context, the 

numerical screening [12,13,46,48,72,79–82] of target properties of adsorbent materials for well-

defined gas mixtures as well as their potential improvement through the design rules for guiding the 

synthesis of new Nano-porous materials opens perspectives for rapid exploration of new classes of 

porous materials [3,5,46,47,49,83–87]. The generation of design rules for selecting the appropriate 

material is possible because of the digital description of both materials and processes and their 

combination in model-based reasoning in the conceptual stage of PSA/VSA process development for a 

selected gas separation application.  



 Another relevant activity for accelerating developments in PSA/VSA technology relates to the 

construction data warehouses [76,88–90] or data lakes containing structured information on gas 

separation properties of Nano-porous materials and adsorbents. The stored information relates to the 

intrinsic structural features and properties of the Nano-porous materials or adsorbent properties such 

as their specific heat capacity, as well as information related to pure gas adsorption and 

multicomponent gas adsorption of selected gases and gas mixtures on Nano-porous materials or 

adsorbents including thermodynamic and kinetic information. The classification of data extracted from 

experiments and their organization into thematic groups known as data marts obtained through data 

mining algorithms and several existing data analytics techniques [75,78,91,92]. These include beside 

classical analysis tools, statistical methods, deep learning (DL), artificial neural networks (ANN), data 

mining (DM) and heuristic techniques, expert systems (ES) [71], case-based reasoning [93] (CBR) and 

inductive logic programming (ILP) [85].  Knowledge extraction from data intends their visualization, 

classification, prediction, generalization, correlation and decision validation rules together with the 

possibility to estimate data quality as an essential element in the context of prediction quality and its 

reusability [80,94]. Quantitative estimation of data quality includes data validation (for 

computationally derived data), verification, uncertainty, accuracy and sensitivity [90,95].  

2.2.  Multi-scale Modeling and Simulation Tools 

In the recent literature, the concept of multi–scale modelling and simulation [12–15,40,96] appears as 

a general trend for improving the understanding and the performance of several materials-based 

technologies. In the case of gas separation by adsorption, multi-scale modelling represents a 

combination of several computational approaches. These range from the materials design [59], 

[85,97–104], synthesis and shaping [6,26,27,29] in desired geometries (pellets, extrudes or monoliths) 

by coupling modelling to experiment at various length and time scales in studies of complex Nano-

porous materials like zeolites or other inorganic or hybrid Nano-porous materials. In this field, 

experimental studies have preceded by far the theoretical ones. During the last decade, however, 

computational chemistry has had a favorable impact almost in all branches of crystalline microporous 

materials research ranging from phase determination to structural characterization and property 

prediction [59,79,105–107]. An important effort consisted in developing simulation tools for describing 

thermodynamic and transport properties of confined fluids in the nanometer-scale pores together 

with a realistic representation of adsorption phenomena [5], [78], [91],[95][98-111].  

A critical challenge in developing successful nanoscale-controlled materials is the development of 

reliable simulation tools to guide the design, synthesis, including in operando monitoring of adsorption 

phenomena using X-ray tomographic imaging techniques combined with computed tomography (CT) 

methods allowing for multi-dimensional spatial information referred also as digital adsorption [112] 

and testing of the Nano-porous materials [2,83,85,99,101]. In recent years important progress has 

been reached in building fast computational software that reliably predicts the chemistry and physics 

(structures and properties) as a function of conditions (temperature, pressure, concentrations) and 

time. In addition, approaches that allow the application of “de-novo” design procedures for 

synthesizing crystalline porous materials as zeolites, Metal-Organic Framework Materials (MOF) and 

other Nano-porous materials for specific separation processes [69], [13,53,83,113,114]. In order to 

respond to the engineering demand for new concepts for PSA/VSA technology improvement, it is 

necessary to extend numerical approaches from Quantum Mechanics (QM) scale to engineering design 

and process simulation by a succession of scales, where at each scale; the parameters are determined 

by averaging over the lower scale [13,58–60,71]. This will allow the use of first-principles simulations 

to contribute to solving engineering problems. Despite the progress in first principles electronic 

structure theory, these calculations remain far too slow for studying the overall phenomena in Nano-



porous materials applications to gas separation by adsorption [5,40,80,97,115–117]. For this reason, 

during the last years have been developed and used specialized adsorption Force Fields (FF) that 

faithfully represent the structures and adsorption properties of porous materials [107,118–122]. 

Molecular simulations allow the generation or complementing of experimental multi component 

adsorption data in crystalline and amorphous Nano-porous materials [20,70,123].   

The capability to model materials shaping in adsorbents and their manufacturing process will further 

enhance the design capacities of improved adsorbents [1,6,26–29]. In addition, the 3D reconstruction 

of adsorbers filled with adsorbent beads or monoliths made of Nano porous materials with realistic 

representation of the different porosities and their distribution is essential for improving models used 

for the prediction of mass and heat transfer [4,70,124,125] over a variety of time and length scales 

used in separation process design [114].  

2.3. Process Design and Multi-Objective Optimization 

The introduction of concurrent engineering has led not only to reduced time to market but also to an 

integrated approach of product and process development. This last aspect supported by multi-

objective optimization approaches [126–130] has a strong potential for achieving better design 

solutions taking into account all relevant parameters from both adsorbent and process simulation 

domains that contribute directly or indirectly to globally optimal solutions. It is important to emphasize 

that the use of figures of merit to select adsorbent materials for specific separations has limitations 

and the complexity of VSA/PSA processes requires process optimization to rank properly novel 

materials[131]. The development such approaches [30,132–135] based on numerical simulations and 

knowledge extraction from data implies the systematic validation of the parameters used for 

characterizing adsorbents and the detailed process simulation [97,136–139]. In this context, the 

accuracy and data consistency check of primary data, from experimental or simulation 

sources[3,63,72,85] before their transformation through simulation protocols and combination with 

other data sources is of principal importance. The introduction of uncertainties in the process design 

offers a significant potential for a higher level of reliability and safety margin in the optimization of the 

production process as robust optimization [128] approaches recently have gained attention within the 

engineering and scientific communities since many real-world optimization problems in numerous 

disciplines and application areas, contain uncertainty. This uncertainty is due to errors in 

measurements simulated properties, or difficulties in sampling. 

The optimization of cyclic adsorption processes is inherently complex due to the dynamic and transient 

behavior of cyclic mass and heat transfer as well as the tight relation between adsorbent 

characteristics adsorber configuration, operational conditions such as cycle time steps and their 

scheduling [21,24,138,140–142]. The prediction of the adsorption bed dynamics behavior requires the 

simultaneous solution of a set of coupled partial differential equations (PDEs) representing material, 

energy, and momentum balances over the adsorber with the appropriate boundary conditions. The 

simultaneous solution of a system of PDEs is tedious and time consuming due to the need for reaching 

the cyclic steady state before estimating the performance indicators of the separation unit. The 

simulation of a PSA/VSA process implies the definition of a cycle structure followed by the estimation 

of the performance indicators. For the selected cycle, the entire step times, blowdown pressure, and 

flowrates of rinse and purge steps should be determined. In most cases, the definition of the cycle has 

to be done under certain constrains like combining it in a multiple column configuration. Other 

constraints can result from the availability of gas to the purge step, the continuous utilization of 

vacuum pump for blowdown. The availability of gas to the purge step can also proceed from a 

depressurization step (provide purge) or from a pre-stored amount in a tank. The estimation of 

performance [30,132,143] indicators of PSA/VSA separation unit show a strong coupling between the 



process design and adsorbent selection with an increasing complexity of the PDEs resolution by the 

Cyclic Steady State (CSS) condition that should be met. The multi-objective optimization of a PSA/VSA 

system [132] represents a clear advantage over single objective optimization approach for the 

identification of process configurations on the Pareto frontier of which have equivalent unit 

performances but differing on the adsorbent properties, adsorber design and operational conditions. 

However, from the point of view of the computational power, multi-objective optimization is 

significantly more computational demanding. In order to reduce the simulation time a key idea is to 

replace the process simulators used in the multi-objective approach codes by fast emulators that 

mimic their behavior but run hundreds or thousands of times faster.  

2.4.  Adsorbent Materials Characterization 

Adsorbent materials characterization [6,46,99,144] consists in several experimental techniques 

classified as static or dynamic ones used to extract information on adsorption thermodynamic 

properties of pure and gas mixtures in well-characterized porous materials for feeding theoretical and 

simulation approaches used for rapid data generation for gas adsorption in crystalline adsorbent 

materials. A major methodological development has been the introduction of fast DFT based 

methodology [99,144] for describing fluid properties in microporous heterogeneous adsorbents 

generalized to regular as well as amorphous nanomaterials and also to mixtures of regular and 

amorphous structures. The results of this approach are comparable to the recently developed 

simulation methods such as histogram reweighting Monte Carlo sampling allowing a significantly more 

accurate determination of phase coexistence properties than previously available techniques. These 

methods enable the location of critical points for strongly interacting fluids in confined pores.  

Rapid experimental characterization techniques are necessary for screening large libraries of Nano-

porous materials to identify potential adsorbents for PSA/VSA separations. Often the synthesis of novel 

materials carried out in small batches of approximately 100-200 mg is followed by a series of structural     

porosity, morphology and materials stability characterizations using several techniques including 

spectroscopic and diffraction methods before the synthesis scale-up. In order to rapidly asses the 

performance of new adsorbent materials for a PSA/VSA application the Zero Length Column (ZLC) 

technique [59], [132]–[134] allows for the estimation of mass transfer kinetic properties under low 

flow conditions, as well as the measure the full adsorption isotherm and Henry law constants in a single 

experiment using less than 10 mg. The great flexibility of the technique, involves some limitations 

related to the quality of data for given systems. The results obtained with the ZLC technique are very 

useful for rapid screening of adsorbent materials and for selecting the most promising ones for further 

investigation. Gravimetric measurements of adsorption isotherms of pure gases as well as Volume-

Gravimetric, and Volumetric-Chromatographic for mixed gases measurements on newly developed 

Nano porous materials in the range of conditions relevant for the separation of interest are used for 

the final section of new adsorbent materials. 

An important aspect of adsorbent material characterization is the combination of experimental 

characterization techniques with the ability to predict accurate and consistent data over a wide range 

of temperatures and loadings starting from few experimental data through coupling to molecular 

simulations. Methods for rapid prediction of gas adsorption on different classes of Nano porous 

materials represented by realistic details of pore structure and Pore size Distribution are essential for 

the design of optimal adsorbents. The description of the experimental data by a validated approach 

for predicting multi-component adsorption [123] in newly developed adsorbents will enable realistic 

simulations of PSA/VSA processes and efficient optimization of their performances.  

 



2.5.  Synthesis Scale-Up and Materials Processing  

The synthesis [6], [27] and processing [135], [136] of selected adsorbent (nanostructured porous) 

materials of macroscale shapes (pellets, extrudes, monoliths or supported structures) 

[1,4,6,26,28,29,115,147,148] that can be used in industrial applications respecting detailed requests in 

line with the characteristics of the separation process are very challenging and offer important 

opportunities for radical innovations in gas separation by adsorption technology. The synthesis space 

is vast and is mainly controlled by mass transfer and reaction kinetics resulting in self-assembled 

structures whose stability depends on the presence of structuring agents as well as the stabilizing 

interaction of the solvent. The experimental exploration of the configurational space of possible 

porous materials is practically impossible due to the large number of parameters and their 

combination. Numerical generation of virtual porous materials [46,51,82] constructed through 

numerical assembling protocols defined at atomistic and cluster level becomes simple and can lead to 

the definition of design rules to guide experimental synthesis. This approach can be further extended 

to the estimation of processing parameters by simultaneous independent synthetic methodologies of 

hierarchical structure on different length scales. 

Hierarchical structure design [45,146,149] based on a nanoscale molecular assembly achieved by a 

multi-dimensional control of function and properties has important implications in materials synthesis 

and related application technologies. Three-dimensional patterning and periodicity give the best 

surface area/volume dimensionality, optimum useful access space, and nanoscale control of structure 

and properties. Reported high surface area materials (up to 5,000 m2/g) are metastable phases. Similar 

to zeolite structures, Metal Organic Frameworks (MOFs) [48,53,107,150] built from either tetrahedral 

or octahedral building blocks contain 3D Nano-scale porous channels and ultra-high specific surface 

areas, with potentially wide applications in asymmetric catalysis and chemical selective separation. 

Large libraries [53,72] of these materials obtained by building extended analogues of metal clusters 

with multi-dentate linkers such as carboxylate or poly-pyridine, according to a strategy that allows the 

realization of the most porous and thermally stable frameworks yet reported. Measurement of gas 

adsorption isotherm on evacuated derivatives of porous MOFs evidence the existence of accessible 

channels having a structural integrity and organization. The crystal engineering of coordination 

polymers enables the gain of control of the topology and geometry of the networks formed through a 

judicious choice of ligand and metal precursors and numerical simulations can estimate their chemical 

stabilities.  

Activated alumina, silica gel and activated carbon are amorphous porous materials [28,145,151–154] 

shaped in beaded form that are used as adsorbents in industrially important gas separations. The 

possibility to adjust of the adsorption properties of these materials by modification of their pore size 

distribution (PSD) [151,155–157] or the nature of the active sites in the pores by specific post 

treatment or functionalization protocols allows their use in a wide range of gas separation by 

adsorption applications. In addition, these materials are being developed as basis of hybrid 

(amorphous-crystalline) porous materials. The incorporation of available crystalline Nano-porous 

materials in silica-gel matrix with controlled PSD allow the modification of their adsorption properties 

and their further assembling in beaded forms. The shaping protocol has a strong effect on the 

performances of adsorption-based separations by affecting the mass transfer rate of gases from and 

to adsorbent particles, particularly those used in PSA and VPSA separation units. By increasing mass 

transfer rate, the cycle time becomes shorter and the power consumption lower with consequently 

higher productivities and process efficiencies for PSA/VPSA processes [125,158,159]. This is particular 

relevant in Carbon Capture applications [160]. The shaping protocol directly affects the pellet porosity 

and its distribution by influencing macropore diffusion of gases within the adsorbent bead or pellet. 



Lowering of the binder content may result in increased porosity and improved mass transfer rate. 

However, as it is also desirable to use adsorbents with high attrition resistance it may also result in 

fragile adsorbent particles that will collapse during cyclic operations. On the other hand, increasing the 

binder content will strengthen the adsorbent particle, but may create a particle that is too dense 

resulting in a poor mass transfer rate. Revisiting of the shaping process used to fabricate adsorbents 

with improved mass transfer properties by combining in a Design of Experiments (DOE) the shaping 

and characterizing protocols with the numerical simulation ones is opening perspectives for 

accelerating adsorbent optimization [31]. The numerical protocols consist in generating virtual pellets 

made of adsorbent materials and appropriate binders having controlled porosity and pore connectivity 

with final estimation of the mass transfer properties by numerical simulations. The numerical 

optimization of the virtual pellet “structure” allows for generation of design rules that can orient the 

experimentalist to shorten the time and apply rational approach for adsorbent mass transfer 

characteristics improvement [4].  

 

3. Final remarks 

Advances in computational power, computing infrastructures, new storage hierarchies and improved 

algorithms for dealing with more realistic complex multi-scale models supported by modern data 

science techniques, including machine learning and artificial intelligence, provide new opportunities 

for rapid progress in gas separation by adsorption technology. The use of physics-based understanding 

of Nano porous material adsorption properties combined with data-driven techniques have already 

demonstrated the ability for a rapid and efficient means to augment materials discovery, design, and 

deployment for adsorbent manufacturing.  

The capability to model materials processing and manufacturing process and integrate these models 

in a numerical workflow with PSA/VSA process simulations using a multi-objective optimization 

approach will enhance the design capacities for selected gas separations and accelerate the 

development of new gas separations applications based on the paradigm of model-based engineering. 
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