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55

56 Seasonal activation of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis and gonadal 

57 development is initiated by gonadotropin-releasing hormone-I (GnRH) release from the hypothalamus. In 

58 photoperiodic species, the consistent annual change in photoperiod is the primary environmental signal 

59 affecting GnRH cell activity, including changes in the synthesis and secretion of this neuropeptide. Non-

60 photoperiodic environmental cues such as energy availability also influence HPG axis activity, but the 

61 mechanisms mediating this influence, in particular on the GnRH system, are unclear. Understanding how 

62 the neuroendocrine system integrates environmental information is critical in determining the plasticity 

63 and adaptability of physiological responses to changing environments. The primary objective of this study 

64 was to investigate GnRH-mediated changes in HPG axis activity and gonadal development in response to 

65 energy availability in a wild bird. We hypothesized that negative energy balance inhibits HPG axis activity 

66 by affecting GnRH secretion. Moderate food restriction for several weeks in male house finches, 

67 Haemorhous mexicanus, decreased body condition and inhibited photoinduced testicular growth 

68 compared to birds fed ad libitum. Food restriction did not affect plasma luteinizing hormone (LH; a 

69 correlate of GnRH release) or plasma testosterone, but it enhanced the plasma LH response to an 

70 injection of the glutamatergic agonist, N-methyl-D-aspartate (NMDA). Thus, food restriction may decrease 

71 photoinduced HPG axis activation by acting centrally, in particular by attenuating the release of 

72 accumulated GnRH stores. 
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97 1. Introduction
98

99 Seasonal reproductive development in vertebrates is controlled through activation of the 

100 hypothalamic-pituitary-gonadal (HPG) axis. Environmental signals (in birds, primarily long days) stimulate 

101 gonadotropin-releasing hormone-I (GnRH) secretion from the hypothalamus (Dawson et al., 2001; Follett 

102 et al., 1977). GnRH stimulates the anterior pituitary gland to secrete luteinizing hormone (LH) and follicle-

103 stimulating hormone (FSH; Hattori et al., 1986; Sharp et al., 1987), which then act on the gonads to 

104 increase steroid hormone production and secretion; this action results in gonadal growth and 

105 gametogenesis (Deviche et al., 2011; Kirby and Froman, 2000). Steroid hormones, in turn, modulate HPG 

106 axis activity via negative feedback on the hypothalamus and pituitary gland (e.g. Deviche et al., 2006). 

107 The stimulating effects of GnRH are opposed by gonadotropin-inhibitory hormone (GnIH), which 

108 decreases GnRH and/or gonadotropin release in response to photoperiod and other environmental 

109 signals (e.g., Tsutsui et al., 2012). 

110 The mechanisms by which photoperiod regulates the activity of the avian HPG axis have been 

111 extensively studied (Dawson, 2014; Yoshimura, 2013). In response to long days, many avian species that 

112 are strict seasonal breeders undergo a process of photostimulation during which the HPG axis is 

113 activated. Photostimulation is usually followed by photorefractoriness, during which continued long day 

114 exposure ultimately reduces HPG axis activity causing reproductive system regression (e.g., Hahn et al., 

115 2009). In these species, photosensitivity and, therefore, the ability of long days to again stimulate the 

116 HPG axis, is reinstated after sufficient exposure to short days (e.g., Stevenson et al., 2012). Each level of 

117 the HPG axis is under some degree of independent regulation (Schaper et al., 2012; Stevenson et al., 

118 2013; Williams, 2012), but photoperiod regulates HPG axis activity primarily by altering GnRH synthesis 

119 and secretion (Ball, 1993; Cho et al., 1998; Joseph et al., 2013; Nicholls et al., 1988). GnRH synthesis 

120 can be investigated by measuring the expression of its precursor peptide, proGnRH (Meddle et al., 

121 2006a&b; Parry et al., 1997) or GnRH gene expression (Stevenson et al., 2013; Ubuka et al., 2009). 

122 GnRH secretion is not easily measured directly, but plasma LH can be used as a proxy of this secretion 

123 (Ball, 1993). N-methyl-D-aspartate (NMDA) is a neuroexcitatory amino acid glutamate analog which 

124 stimulates GnRH release (Meddle et al., 1999; Deviche et al., 2008; Iremonger et al., 2010), and the 

125 plasma LH increase that occurs in response to a NMDA injection can be used as indicator of the amount 

126 of releasable GnRH (Meddle et al., 1999; Stevenson et al., 2012). Photostimulation is associated with 

127 elevated GnRH synthesis and release, photorefractoriness is associated with a decline in GnRH release 

128 followed by a decline in synthesis, and photosensitivity with renewed synthesis (Bentley et al., 2013; 

129 Dawson and Goldsmith, 1997; Foster et al., 1987; Stevenson et al., 2009, 2012). Photosensitivity and 

130 photostimulation, therefore, differ with respect to GnRH transport and secretion.

131 Dependency of most middle and high latitude birds on photoperiod presumably evolved because 

132 of its reliability to predict seasonal increases in food supply and other optimal environmental conditions 

133 (Dawson and Sharp, 2007; Hahn et al., 2009). Reproductive success, and ultimately fitness, is generally 



  

134 maximized by synchronizing breeding, and in particular, chick-rearing, with peaks in local food supply 

135 (Daan et al., 1990, Lack, 1968; Perrins, 1970). These peaks can vary inter-annually and in relation to the 

136 consistent annual photoperiodic cycle. Therefore, the ability to monitor and respond to factors associated 

137 with food availability and energy balance, by altering HPG axis activity, has the potential to enhance 

138 reproductive success (Visser et al., 1998). The use of food-related environmental cues in coordinating 

139 reproduction is evidenced in populations of free-living birds in which the timing of breeding varies inter-

140 annually and between territories in relation to food supply (Caro et al., 2006; Korpimaki, 1987; Nager and 

141 van Noordwijk, 1995; Pereyra et al., 2005; Perrins and McCleery, 1989; Solonen, 2014). Experimental 

142 food supplementation in free-living birds also positively impacts clutch size and breeding success across 

143 species (Derbyshire et al., 2015; Roper et al., 2018; Ruffino et al., 2014). In domestic birds, food 

144 deprivation can affect all levels of the HPG axis including the hypothalamus (Ciccone et al., 2007; 

145 Kobayashi et al., 2002; Tanabe et al., 1981), however, investigations involving moderate food restriction 

146 similar to what birds experience naturally remain rare and have produced inconsistent results (Davies et 

147 al., 2015; Dawson, 1986; Hahn, 1995).

148 The hypothalamic GnRH system responds to non-photoperiodic environmental signals, but 

149 whether changes in GnRH release and/or synthesis are involved in this response is not entirely clear. 

150 Brain GnRH-immunoreactivity (ir) changes independently of photoperiod in equatorial rufous-collared 

151 sparrows, Zonotrichia capensis (Moore et al., 2006), and in response to social signals in European 

152 starlings, Sturnus vulgaris (Stevenson and Ball, 2009) and ring-necked doves, Streptopelia capicola 

153 (Mantei et al., 2008). The significance of these findings is, however, ambiguous because an increase in 

154 brain GnRH-ir may reflect either an increase in synthesis that outpaces the rate of secretion or decreased 

155 secretion and/or transport of the peptide. Thus, a measure additional to GnRH-ir is useful to clarify the 

156 mechanisms regulating GnRH release. In the opportunistically breeding rufous-winged sparrow, Peucaea 

157 carpalis, for example, monsoon-related factors influence GnRH-ir and proGnRH-ir concurrently (Small et 

158 al., 2007), indicating changes in both synthesis and release of GnRH. In a previous study, we found that 

159 moderate food restriction inhibits photo-induced gonadal development in male house finches, 

160 Haemorhous mexicanus, and also increases GnRH-ir without affecting proGnRH-ir (Valle et al., 2015). 

161 These results suggest in this species that the inhibitory influence of food restriction on the HPG axis 

162 involves an inhibition of GnRH secretion (Foster et al., 1988; Lee et al., 1990). This mechanism may be 

163 adaptive: if HPG axis plasticity in response to local environmental conditions is important in the early 

164 stages of breeding, then altering GnRH secretion in response to these conditions without affecting GnRH 

165 synthesis may provide increased flexibility with respect to the onset of breeding. Elucidating how the 

166 neuroendocrine system integrates and responds to environmental information is crucial for understanding 

167 the capacity of organisms to cope with environmental changes through plasticity and/or adaptation of the 

168 HPG axis (Wingfield, 2015).

169 The primary objective of this study was to comprehensively investigate GnRH-mediated changes 

170 in HPG axis activity and gonadal development in response to food availability in captive wild birds. Based 



  

171 on previous work (Valle et al., 2015), we hypothesized that food availability affects HPG axis activity by 

172 regulating GnRH secretion. To test this hypothesis, we investigated hypothalamic GnRH release and the 

173 capacity of the hypothalamus to release stored GnRH in food-restricted male house finches. We used 

174 plasma LH as a correlate of GnRH release, and the plasma LH response to a NMDA injection as an 

175 indicator of the hypothalamus capacity to release GnRH. If food availability affects GnRH release without 

176 affecting its production, we predicted that initial plasma LH would be lower in food-restricted birds than in 

177 ad libitum-fed birds, and a NMDA injection to these birds would increase plasma LH to the same extent 

178 as in ad libitum-fed birds. Results of our previous work also led us to hypothesize that food restriction 

179 does not alter the pituitary gland responsiveness to GnRH (Valle et al., 2015). We tested this hypothesis 

180 in the present study by measuring the plasma LH response to a GnRH injection. If the hypothesis is 

181 correct, we predicted that this treatment would increase plasma LH similarly in ad libitum-fed and in food-

182 restricted finches.  

183

184 2. Methods
185

186 All procedures were approved by the Arizona State University Institutional Animal Care and Use 

187 Committee. All necessary permits to capture animals were obtained from the US Fish and Wildlife Service 

188 and the Arizona Game and Fish Department.

189

190 2.1. Capture and initial conditions

191

192  Adult male house finches (N=20) were caught in Tempe, AZ, USA (33.410 N, 111.910 W; 

193 elevation: 360 m a.s.l.) between 31 January and 8 February 2015, at which time they were naturally 

194 exposed to a non-photostimulatory (11L: 13D) light: dark cycle (www.timeanddate.com) and had 

195 regressed testes (Hamner, 1966). Birds were caught using food-baited traps, sexed based on plumage 

196 coloration, and aged based on plumage characteristics (Pyle, 1997). Only after-second year (i.e., hatched 

197 in 2013 or earlier) males were selected. Birds were transported to Arizona State University Animal Care 

198 Facilities, placed in visually isolated, individual cages at 25° C, and kept on a semi-natural photoperiod 

199 (11L:13D; lights on at 7:30 AM). Birds initially received sunflower seeds ad libitum but the diet was 

200 gradually changed over 10 days to Mazuri small bird breeding diet (PMI Nutrition International, Richmond, 

201 IN, USA) for the rest of the study.

202

203 2.2. Food Restriction and Photostimulation

204

205 The daily food consumption of each bird was measured over the course of 1 week. For this, each 

206 bird was given 10 g of Mazuri pellet diet each morning, and the amount remaining after 24 hours was 

207 measured. Food was placed in bowls that had only a small opening for the bird’s head so that spillage 

http://www.timeanddate.com


  

208 was minimized. We found previously that individual daily food intake is relatively constant and can be 

209 adequately estimated using the average intake over 7 days (Valle et al., 2015). On 28 February 2018 

210 (day 1), birds were randomly divided into 2 groups (N = 10): (1) ad libitum food availability (AL; = controls) 

211 and (2) food-restricted (FR). Food-restricted birds received a daily ration of food equal to 70% of their 

212 individual ad libitum food intake (Valle et al., 2015) until the end of the study whereas control birds 

213 continued to receive food ad libitum. At this time (day 1), all birds were transferred to a moderately 

214 stimulatory day length (13L: 11D; lights on at 6:00 AM) for the remainder of the study (6 weeks). House 

215 finches regain photosensitivity by the end of October (Hamner, 1966) and were thus photosensitive at the 

216 time of the transfer.

217

218 2.3. Morphology

219

220 We weighed all birds daily (+ 0.1 g) beginning on the day prior to photostimulation and dietary 

221 manipulation (27 February 2018: day 0) and continuing for the remainder of the study. Body fat reserves, 

222 muscle stores, and cloacal protuberance width were determined on day 0 and at the middle (3 weeks) 

223 and end (6 weeks) of the study. The amount of furcular fat was visually estimated using a scale of 0–5 

224 according to Helms and Drury (1960). As the pectoral muscles contain the largest store of proteins in 

225 birds, their size was estimated using a scale of 0–3, with 0 for concave pectoral muscles and a prominent 

226 keel and 3 for convex pectoral muscles that protrude above the keel (Salvante et al., 2007). Cloacal 

227 protuberance width (± 0.1 mm) was measured using digital calipers.

228

229 2.4. Blood Sampling and Hormone Challenges

230

231 The effect of food restriction on the plasma LH response to a NMDA or a GnRH injection was 

232 investigated after 3-4 weeks of photostimulation. An initial blood sample (100 µl; time 0: T0) was taken 

233 from the jugular vein of each finch into a heparinized microsyringe and immediately placed on ice. Each 

234 bird then received an intramuscular injection (i.m.) of either 1.2 mg NMDA (Sigma Chemical Co., MO, 

235 USA) or 1.25 µg GnRH-I (Sigma Chemical Co., MO, USA) dissolved in 50 µl sterile saline solution. After 

236 an injection, finches were returned to their cage and they were bled again (100 µl) 20 minutes later (time 

237 20: T20). The dose and sampling time for the NMDA injection are based on previous studies that found a 

238 stimulatory effect of NMDA on plasma LH. In white-crowned sparrows, Zonotrichia leucophrys gambelii, 

239 the LH response to subcutaneous NMDA injection was measured at 2, 8, and 20 minutes and the 

240 response was found to be highest at 20 minutes (Meddle et al., 1999). An i.m. NMDA injection, as used in 

241 this study, raised plasma LH in cassin’s sparrows, Peucaea cassinii, after 15 minutes (Deviche et al., 

242 2008). The dose and sampling time for the GnRH injection is based on our previous experiment in house 

243 finches, which found a stimulatory effect of i.m. GnRH injection on plasma T 30 minutes after injection 

244 (Valle et al., 2015). In zebra finches, Taeniopygia guttata, plasma LH levels were elevated 10 minutes 



  

245 after intravenous GnRH injection in nonbreeding males (Perfito et al., 2011).  We chose an intermediate 

246 sampling time (20 minutes) because GnRH was administered i.m. and samples were used to measure 

247 plasma LH and not T. 

248 Each bird received both injections, 1 week apart, with the weekly sequence of injections divided 

249 equally between the treatment groups and the daily sequence randomized across all birds. All samples 

250 were collected between 9:00 and 11:00 AM. Samples were centrifuged within 3 hours of collection, and 

251 plasma was collected and stored at -80°C until assayed. 

252 Additional blood samples for plasma LH and T determination were collected on day 0 and after 6 

253 weeks of the treatment. At each time, blood (150 µl) was taken and plasma was stored as described 

254 above. Samples obtained during weeks 3 and 4 of treatment and before injection (T0) were also used to 

255 analyze unstimulated plasma LH throughout the study. 

256

257 2.5. Euthanasia and Testis Measurement

258

259 After 6 weeks of photostimulation and dietary manipulation, and 2 weeks after the last injection, 

260 birds received an i.m. injection of 400 µl anesthetic solution (0.9% NaCl containing 20 mg/ml xylacine and 

261 100 mg/ml ketamine). To preserve the brain for potential future immunohistochemical analysis, birds were 

262 perfused transcardially with 35 ml wash solution (0.9% NaCl and 0.1% NaNO2 in 0.1 M phosphate buffer, 

263 PB) followed by 35 ml of fixative (4% paraformaldehyde and 0.1% NaNO2 in 0.1 M PB). The testes were 

264 removed, rinsed in saline, and weighed to the nearest 0.1 mg. The individual gonadosomatic index (GSI) 

265 was calculated as testis mass as a percentage of the body mass.

266

267 2.6. Plasma LH and T Assays

268

269 2.6.1. Luteinizing Hormone (LH)

270

271 We used a validated radioimmunoassay (Sharp et al., 1987, with slight modifications) to measure 

272 plasma LH. This radioimmunoassay has been used to quantify plasma LH in many avian species 

273 (Ciccone et al., 2007; Davies et al., 2015; Deviche et al., 2012; Fraley et al., 2013; Meddle et al., 2002), 

274 including house finches (Salvante et al., 2013). Briefly, the assay reaction volume was 60 µl, comprised of 

275 20 µl of plasma sample or standard, 20 µl of primary rabbit LH antibody and 20 µl of I125-labelled LH. The 

276 primary antibody was precipitated to separate free and bound I125 label using 20 µl of donkey anti-rabbit 

277 precipitating serum and 20 µl of non-immune rabbit serum. All samples were assayed in duplicate in a 

278 single assay. The intra-assay coefficient of variation was 4.89% and the minimum detectable 

279 concentration was 0.15 ng/ml.

280

281 2.6.2. Testosterone (T)



  

282

283 A validated (Deviche and Cortez, 2005) commercial enzyme-linked immunoassay (Enzo Life 

284 Sciences, Farmingdale, NY, USA) was used to measure plasma T following the manufacturer’s 

285 instructions. Plasma was diluted 15x in assay buffer containing 1 µl displacement reagent per 99 µl 

286 plasma. Samples were assayed in duplicate with all samples from each bird on a single assay plate. Each 

287 assay plate included a complete standard curve. The assay sensitivity was 4.81 pg/ml and the intra-assay 

288 coefficient of variation was 2.9% (N=39 samples).

289

290 2.7. Statistical Analyses

291

292 Effects of the dietary manipulation on body mass, morphological characteristics, and plasma 

293 hormones were analyzed using two-way repeated measures analysis of variance (ANOVA), with time 

294 (number of days) as the within-subject factor and food availability as the between-subjects factor. Effect 

295 of the dietary manipulation on testis mass and GSI was analyzed using Student’s t-tests. Effects of GnRH 

296 or NMDA injection on plasma LH were analyzed using two-way repeated measures ANOVA with time (T0 

297 vs. T20) as the within-subject factor and food availability as the between-subjects factor. For ordinal scale 

298 data (fat and muscle scores), data were ranked before proceeding with analyses. Data sets that were not 

299 normally distributed or homoscedastic (Shapiro-Wilk test and Levene’s test, respectively) were either 

300 natural log- (plasma LH) or square root- (plasma T) transformed prior to analysis. The transformed 

301 datasets displayed normality and homoscedasticity. For data sets that did not display sphericity (body 

302 mass, baseline plasma LH), according to Mauchly’s sphericity test, degrees of freedom were deflated 

303 using a ε-derived Greenhouse-Geiser correction. When a statistically significant treatment x time 

304 interaction was detected using ANOVA, pair-wise comparisons were performed using Bonferroni post hoc 

305 tests. Data were analyzed using SPSS (version 24; IBM, Armonk, NY, USA). Graphs were made using 

306 Graphpad Prism 8 (La Jolla, CA, USA) and present untransformed data.  

307 Three birds (1 FR and 2 AL) died during the experiment, resulting in the absence of data for 2 

308 birds after 3 weeks and 3 birds after 4 weeks. Additionally, we were unable to collect a T20 blood sample 

309 after NMDA injection from one bird, and to obtain enough blood to measure baseline LH from one bird at 

310 day 0 and another at the end of the study. We estimated missing values using multiple imputation (MI) 

311 and the NORM program (http://sites.stat.psu.edu/~jls/misoftwa.html; Schafer, 1999). Multiple imputation 

312 relies on more plausible assumptions than other approaches to coping with missing data (e.g., case 

313 deletion or replacement with group means), properly accounts for uncertainty about missing values 

314 (leading to appropriate standard errors), and retains original sample sizes (Little and Rubin, 2002). 

315

316 3. Results
317 3.1. Body Condition

318



  

319 Body mass was affected by food availability (F1,15 = 11.37, P = 0.004) and time (F3,47 = 14.08, P < 

320 0.001), and there was an interaction between these factors (F3,47 = 23.67, P < 0.001; Fig. 1A). Ad libitum-

321 fed and food-restricted birds had similar body mass at the start of the dietary manipulation (P = 0.82) and 

322 AL birds experienced minor fluctuations in body mass. FR birds lost mass within the first week of food 

323 restriction and maintained lower body mass than AL birds for the duration of the study (P < 0.002).

324 Furcular fat scores were affected by food availability (F1,18 = 15.60, P = 0.001) and there was a 

325 food availability x time interaction (F2,36 = 15.49, P < 0.001; Fig. B), with no effect of time alone (F2,36 = 

326 2.00, P = 0.15). Ad libitum-fed birds had more furcular fat 6 weeks into the experiment than at the start (P 

327 < 0.001), whereas FR birds lost fat stores after 6 weeks of food restriction and had less fat than AL birds 

328 3 and 6 weeks after treatment onset (P < 0.008).

329 Pectoral muscle size was affected by food availability (F1,18 = 18.49, P < 0.001) and there was a 

330 food availability x time interaction (F2,36 = 22.90, P < 0.001; Fig. 1C), with no effect of time alone (F2,36 = 

331 2.65, P = 0.08). Pectoral muscle size increased in AL birds after 6 weeks of dietary manipulation (P < 

332 0.008) but decreased after 3 weeks of treatment in FR birds (P = 0.01), with smaller pectoral muscles in 

333 these birds compared with AL birds at 3 and 6 weeks (P < 0.001). 

334

335 3.2. Cloacal Protuberance

336

337 Cloacal protuberance (CP) width differed between food treatment groups over the course of the 

338 study (F2,36 = 5.55, P = 0.008; Fig. 1D). It increased in AL birds after 3 weeks of exposure to long days, 

339 remaining at this size after 6 weeks (P < 0.005). In FR birds, CP width was not affected by long day 

340 exposure (P > 0.38), and was lower in FR than AL birds after 3 weeks of dietary manipulation (P = 0.04). 

341 There was a main effect of time (F2,36 = 12.69, P < 0.001) and no effect of food availability alone (F1,18 = 

342 1.47, P = 0.076).

343

344 3.3. Testis Mass and Plasma T

345

346 Food-restricted birds had lower paired testis mass (T15 = -4.7, P < 0.001) and GSI (T13.4 = 4.58, P 

347 < 0.001; Fig. 2) than AL birds. 

348 Baseline plasma T decreased during the period of dietary manipulation (F1,18 = 8.50, P = 0.009), 

349 but was unaffected by food availability (F1,18 = 0.96, P = 0.34), and there was no food availability x time 

350 interaction (F1,18 = 0.43, P = 0.52; Fig. 3B). 

351

352 3.4. Plasma LH

353

354 Baseline plasma LH changed over time in both AL and FR birds (F2,34 = 9.39, P = 0.001), 

355 increasing above initial levels after 3 and 4 weeks before declining after 6 weeks (P < 0.02). There was a 



  

356 marginal effect of treatment, with baseline plasma LH lower overall in FR as compared to AL birds, but 

357 this difference did not reach significance (F1,18 = 4.02, P = 0.06). There was no interaction between time 

358 and food availability on baseline plasma LH (F2,34 = 0.73, P = 0.48; Fig. 3A).

359 Plasma LH increased in response to GnRH challenge (F1,18 = 199.50, P < 0.001), but this 

360 increase was unaffected by food availability (F1,18 = 0.18, P = 0.68), and there was no interaction between 

361 the effect of GnRH challenge and food availability on plasma LH (F1,18 = 1.55, P = 0.23; Fig. 4A). This 

362 conclusion is supported by examination of the fold increase in LH following GnRH challenge, as this 

363 increase did not differ in AL and FR finches (T18 = -1.24, P = 0.23; Fig. 4C).

364 Plasma LH increased in response to NMDA challenge (F1,18 = 131.63, P < 0.001). There was a 

365 significant interaction between the effects of food availability and NMDA challenge on plasma LH (F1,18 = 

366 4.69, P = 0.044; Fig. 4B). Plasma LH in FR birds did not differ significantly from plasma LH in AL birds 

367 prior to (P = 0.093) or after NMDA-challenge (P = 0.97). However, the fold increase in plasma LH after 

368 NMDA injection was approximately twice as large in FR (6X) compared to AL birds (3X; T18 = 2.17, P = 

369 0.04; Fig. 4D).

370

371 4. Discussion
372

373 We tested the hypothesis that food availability affects photoinduced HPG axis activity and 

374 gonadal growth by regulating GnRH secretion. Baseline GnRH secretion was estimated by measuring 

375 plasma LH in intact birds and we predicted that initial plasma LH would be lower in FR than in AL birds. 

376 We determined the potential to secrete GnRH by measuring the plasma LH response to a NMDA 

377 challenge and predicted that in response to this challenge, plasma LH would increase to a similar level in 

378 AL and FR birds, i.e., that in relative terms it would increase more in FR than in AL finches. Food 

379 restriction decreased body condition and resulted in smaller testes and diminished CP growth, but had no 

380 effect on baseline plasma T or LH. However, plasma LH increased more in FR than AL birds in response 

381 to a NMDA challenge. These results are consistent with the hypothesis that food restriction did not alter 

382 basal GnRH secretion but enhanced the capacity to secrete GnRH, thereby suggesting that a main effect 

383 of this manipulation is to inhibit GnRH release from the hypothalamus.

384

385 4.1. Testis development and function under food restriction

386

387 The inhibition of photoinduced testicular development under food restriction is consistent with our 

388 previous findings (Valle et al., 2015). Smaller testes in FR than AL birds likely were associated with lower 

389 levels of spermatogenesis, as we found smaller seminiferous tubules in FR house finches previously 

390 (Valle et al., 2015). Seasonal testicular growth is stimulated primarily by FSH, but additionally by LH and 

391 T (Deviche et al., 2011). We found no effect, however, of 6 weeks of food restriction on plasma T. 

392 Testosterone was lowered by 3-4 weeks of food restriction in our previous study, but only transiently 



  

393 during photostimulation, with differences disappearing after 6 weeks (Valle et al., 2015). Several studies 

394 on other avian species found a negative effect of food restriction on plasma T (Lynn et al., 2010; Lynn et 

395 al., 2015; Perez-Rodriguez et al., 2006) and body condition is positively related to plasma T in free-living 

396 house finches (Duckworth et al., 2001). It is, therefore, possible in the present study that food restriction 

397 decreased plasma T, but not at the times that blood samples were collected to measure plasma levels of 

398 the steroid. Supporting the hypothesis that plasma T was transiently lowered in FR birds, we found that 

399 CP growth, a T-dependent trait (Deviche and Cortez, 2005), occurred in AL birds in response to 

400 photostimulation, but did not occur in FR birds. 

401

402 4.2. Baseline plasma LH under food restriction

403

404 Baseline plasma LH increased in response to photostimulation, but this increase was unaffected 

405 by food restriction. If food availability controls gonadal development by affecting GnRH and subsequently 

406 gonadotropin release and gonadal stimulation, we predicted that smaller testes in FR than AL birds would 

407 be associated with a parallel difference in plasma LH. Food-restricted birds did have smaller testes, but 

408 this did not co-occur with lower plasma LH. In the few studies that have measured both plasma LH and 

409 gonadal growth in wild birds under food restriction, that parallel changes actually do not appear common. 

410 For example, the food restriction-induced decline in plasma LH in Abert’s towhees was not associated 

411 with a decrease in gonadal growth (Davies et al., 2015) and in the red crossbill, Loxia curvirostra, held on 

412 long days, testis growth, but not LH, was inhibited by food restriction (Hahn, 1995). Baseline plasma LH in 

413 the present study was marginally lower overall in FR than AL finches, and it cannot be discounted that a 

414 small reduction in plasma LH (and potentially FSH) under food restriction suffices to inhibit testicular 

415 development significantly.

416

417 4.3. LH responsiveness under GnRH and NMDA challenge

418

419 Our previous study found no differential responsiveness of the pituitary gland to GnRH under food 

420 restriction, as measured by plasma T, and also no effect of this treatment on LH-induced plasma T (Valle 

421 et al., 2015). The present findings, showing that GnRH stimulated LH release and this stimulation was not 

422 treatment-related, confirm that food restriction does not attenuate the LH responsiveness to GnRH. 

423 Consistent with previous studies, baseline plasma LH in the present study, therefore, can serve as an 

424 indicator of GnRH release, and the LH response to NMDA reveals the potential of hypothalamic GnRH 

425 neurons to secrete this neuropeptide. In this context, we can conclude that food restriction resulted in a 

426 marginal reduction in basal GnRH release. It should be noted that the plasma LH response to GnRH 

427 injection may not have been measured when this response was greatest. Furthermore, birds were 

428 sampled once after GnRH injection and so the experimental design could not inform on potential 

429 differences between groups in the time course of GnRH effects on plasma LH.



  

430 Administration of NMDA increased plasma LH across all birds. Food restriction resulted in an 

431 enhanced response to NMDA injection, with a greater increase in plasma LH from initial levels in FR than 

432 AL finches. The LH response to NMDA in seasonally breeding birds varies as a function of the 

433 photoperiodic state, with the largest response occurring during photosensitivity, a moderate response 

434 under photostimulation, and barely any response during photorefractoriness (Dawson, 2005; Deviche et 

435 al., 2008). In photosensitive birds, photostimulation stimulates the release of GnRH synthesized under 

436 short days (Stevenson et al., 2012). It is possible that the photostimulatory conditions in the present study 

437 were not sufficient to override the inhibitory effect of food restriction on basal GnRH release, in which 

438 case FR birds would have had larger stores of GnRH that they could release in response to NMDA 

439 stimulation than AL birds. Greater GnRH-ir indicates larger stores of GnRH (Foster et al., 1988). We did 

440 not measure these stores in the present study, but found previously that GnRH-ir was higher in FR house 

441 finches exposed to nearly identical conditions as in the present study than in AL finches (Valle et al., 

442 2015). Taken together, these studies support the conclusion that a negative energetic state, as induced 

443 here by food restriction, results in elevated store of releasable GnRH.

444 The LH response to both peripheral and central injections of NMDA has been used extensively in 

445 birds and other vertebrates as an indirect measure of GnRH responsiveness (Cicero et al., 1988; de 

446 Tassigny et al., 2010; Dawson et al., 2005; Deviche et al., 2008; Meddle et al., 1999; Iremonger et al., 

447 2010). Glutamatergic activation is not specific to GnRH neurons and the peripheral NMDA administration 

448 used here may have stimulated LH release through mechanisms not involving GnRH. Available evidence, 

449 however, indicates that GnRH neurons mediate the secretion of LH that follows NMDA administration. In 

450 particular, the LH response to peripherally administered NMDA in rats is prevented by treatment with a 

451 GnRH receptor antagonist (Cicero et al., 1988). Furthermore, in mice a similar increase in LH secretion 

452 occurs in response to either central or peripheral administration of NMDA, with both administration routes 

453 apparently affecting GnRH release, albeit through different pathways (de Tassigny et al., 2010). 

454 Peripheral administration of NMDA, as used in the present study, has been demonstrated in both 

455 mammals and birds, to primarily affect GnRH release through enhancing activity in the region of GnRH 

456 nerve terminals, as determined by the quantification of c-Fos-ir, (de Tassigny et al., 2010; Deviche et al., 

457 2008; Meddle et al., 1999). 

458 Multiple types of evidence, primarily from mammals, demonstrate how food availability might 

459 modify GnRH release. Food availability appears to primarily affect GnRH activity in the median eminence, 

460 the region of its release (Temple and Rissman, 2000). It affects both thyroid hormones (Costa-e-Sousa, 

461 2012; Darras et al., 1995; Herwig et al., 2009) and hypothalamic deiodinase expression (Herwig et al., 

462 2009), both of which influence photoinduced morphological changes in glial cells that surround GnRH 

463 terminals in the median eminence and regulate its release (Yamamura et al., 2004; Yoshimura et al., 

464 2003). Recent evidence actually links regulation of gonadal growth by food availability to altered glial cell 

465 activity in proximity to GnRH nerve terminals (Steinman et al., 2012). Gonadotropin-inhibitory hormone 

466 (GnIH) activity may also play a role in regulating GnRH release under food restriction. Indeed, GnIH 



  

467 activity under some circumstances relates to feeding (Clarke et al., 2012; Davies et al., 2015; Fraley et al. 

468 2013) and in European starlings, GnIH can modulate the effect of other non-photic factors to GnRH cells 

469 (Calisi et al., 2011). We did, however, find no change in GnIH-ir in FR house finches (Valle et al., 2015). 

470 As NMDA acts primarily to stimulate GnRH nerve terminals (Deviche et al., 2008; Meddle and Follett, 

471 1997; Meddle at al., 1999), its stimulatory effect on plasma LH, and presumably GnRH release, may 

472 consist in overriding these mechanisms inhibiting GnRH release under food restriction. 

473

474 4.4. Conclusion

475

476 This study is among the first to investigate the regulation of GnRH release by food availability in a 

477 wild, although captive, bird. Food restriction inhibited photoinduced gonadal development and this 

478 inhibition may involve attenuated photoinduced GnRH release. We propose that a lower energetic state 

479 under food restriction decreases basal GnRH release, thereby elevating neuronal GnRH stores and 

480 resulting in enhanced GnRH and, therefore, LH secretion during pharmacological stimulation. In birds that 

481 naturally experience fluctuating and unpredictable environmental conditions, such plasticity in HPG axis 

482 activity is crucial for making decisions about allocating energy towards reproduction or survival. 

483 Continued investigation into the central and peripheral mechanisms by which animals integrate energetic 

484 information will help to better understand the plasticity of breeding responses and ultimately how 

485 populations succeed or fail in adjusting to environmental changes.

486
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736 Figure Legends 
737

738 Figure 1. Effects of food restriction on body condition and cloacal protuberance width in male house 

739 finches, Haemorhous mexicanus. Body mass (A) was reduced by food restriction after 1 week and 

740 remained lower than ad libitum-fed birds. Both furcular fat score (B) and pectoral muscle score (C) were 

741 reduced by 6 weeks of food restriction to a smaller size than control birds. Cloacal protuberance width (D) 
742 increased in response to long day exposure (beginning at day 0), but did not increase in size in food-

743 restricted birds, resulting in a smaller CP after 3 weeks in food-restricted birds than in ad libitum-fed birds. 

744 Data are plotted as means ± SEM. An asterisk (*) indicates a significant difference between treatment 

745 groups (P < 0.05; Bonferroni post-hoc tests). For visual clarity, some points have been separated along 

746 the horizontal axis. 

747 Figure 2. Food restriction for 6 weeks reduces paired testis mass (A) in photostimulated male house 

748 finches. Gonadosomatic index (testis mass as a percentage of body mass) was also lower (B) in food-

749 restricted birds as compared to birds fed ad libitum. Data is plotted as means ± SEM, and the asterisk 

750 denotes a significant difference between the groups (P < 0.05; Student’s t-test).

751 Figure 3. Baseline plasma luteinizing hormone (LH) and testosterone (T) are unaffected by food 

752 restriction in male house finches. Plasma LH (A) changed over the duration of the study, initially 

753 increasing in response to photostimulation. This response was similar between food-restricted and ad 

754 libitum-fed birds, being marginally lower in food-restricted birds compared to control birds (P = 0.06; 

755 ANOVA). Plasma T (B) was lower after 6 weeks, but similar in both food-restricted and ad libitum-fed 

756 birds. Data are plotted as means ± SEM.

757 Figure 4. Food restriction differentially affects the increase in plasma luteinizing hormone (LH) that occurs 

758 in response to a gonadotropin-releasing hormone (GnRH) or N-methyl-D-aspartate (NMDA) challenge in 

759 male house finches. GnRH challenge (A) increased plasma LH similarly in food-restricted birds as 

760 compared to ad libitum-fed birds, with the percent change in LH (C) being similar between groups. Food 

761 restriction enhanced (B) the increase in plasma LH that occurred in response to a NMDA challenge (P = 

762 0.04; ANOVA) with food-restricted birds having a greater percent change (D) than ad libitum-fed birds. 

763 Data are shown as means ± SEM, and the asterisk denotes a significant difference between the groups 

764 (P < 0.05; Student’s t-test).
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