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Compositional hierarchical structure evolves through cultural
transmission: an experimental study

Carmen Saldana, Simon Kirby, Rob Truswell and Kenny Smith
Centre for Language Evolution, School of Philosophy, Psychology and Language Sciences,

University of Edinburgh

Abstract
Compositional hierarchical structure is a prerequisite for productive languages; it
allows language learners to express and understand an infinity of meanings from
finite sources (i.e., a lexicon and a grammar). Understanding how such structure
evolved is central to evolutionary linguistics. Previous work combining artificial
language learning and iterated learning techniques has shown how basic composi-
tional structure can evolve from the trade-off between learnability and expressivity
pressures at play in language transmission. In the present study we show, across
two experiments, how the same mechanisms involved in the evolution of basic com-
positionality can also lead to the evolution of compositional hierarchical structure.
We thus provide experimental evidence showing that cultural transmission allows
advantages of compositional hierarchical structure in language learning and use to
permeate language as a system of behaviour.
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1 Introduction

Productive compositional structure is a unique and universal characteristic of human lan-
guage. This supports a remarkable capacity for generating an unbounded number of different lin-
guistic signals to communicate complex meanings, predictable from the meanings of their con-
stituent parts and the grammar according to which they are combined (Chomsky 1965; Hockett
1960; for reviews of compositionality, see Pagin and Westerståhl 2010; Szabó 2012).

How did this compositional structure evolve? Evolutionary linguists have effectively studied
it as a product of cultural evolution (Brighton, Smith, & Kirby 2005; Christiansen & Chater 2008).
Languages are culturally transmitted through a repeated cycle of learning and communicative in-
teraction. These two aspects of cultural transmission impose interacting pressures that shape the
evolution of linguistic structure: a pressure for learnability (for ease of acquisition) and a pressure
for expressivity (for communicative effectiveness). Compositional structure allows language to be
both expressive and learnable, allowing users to communicate potentially about anything “making
infinite use of finite means” (i.e., a lexicon and a grammar) (Chomsky 1965).

Several experimental models of iterated learning have shown that basic compositional struc-
ture emerges from the trade-off between learnability and expressivity pressures in cultural evolution
(Beckner, Pierrehumbert, & Hay 2017; Kirby, Cornish, & Smith 2008; Kirby, Tamariz, Cornish, &
Smith 2015; Theisen-White, Kirby, & Oberlander 2011; Winters, Kirby, & Smith 2015); in these ex-
periments, languages evolve in which simple forms (morphs), constructed by recombining reusable
meaningless units (phones), map to simple meanings, and these forms further combine to create
more complex meanings. However, these combinatorial processes can be reduced to simple concate-
nation. The resulting form-meaning mappings are therefore less rich than those in natural language,
in that they do not contain any hierarchical constituent structure or sensitivity to word order.

In this paper we show (by increasing the complexity of the meanings to be conveyed) that the
same mechanisms at play in previous iterated learning experiments can lead to richer morphosyn-
tactic structure, including both constituent structure and sensitivity to word order.

1.1 Compositional structure in natural languages

Sentences in natural language are organised into a hierarchy of constituents—known as con-
stituent structure (Chomsky 1957), where each constituent higher in the hierarchy is built by recur-
sively combining constituent units from lower levels. Sentences are built from other sentences
and/or phrases; phrases, from other phrases and/or words; and words from other words and/or
morphs. This hierarchical constituent structure provides systematicity in grammars: constituents
are grouped into different syntactic categories whose members compose in definite and predictable
ways with other linguistic material (Chomsky 1957; Pullum & Scholz 2007).

The structure of the sentence Laura says her colleague loved dogs in (1) illustrates these
different levels of constituency.
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In natural languages, compositionality is grounded in hierarchical constituent structure:
meaning is determined relative to a structure, rather than to simple concatentation of forms. Form
and meaning are isomorphic, that is, they have a structure-preserving one-to-one correspondence
(Montague 1970). Isomorphism thus requires structure in form (i.e., morphosyntax) as well as in
meaning (i.e., semantics). For example, in (1), the meaning of each non-terminal constituent node is
composed of the meaning of its daughter nodes, which might themselves be complex: for instance,
the meaning of loved is composed of the meaning of love and the past tense affix -ed, the meaning
of dogs is derived from dog and the plural affix -s, and the meaning of loved dogs is composed of
the meaning of dogs and loved. Further, the fact that (1) does not mean the same as Laura says dogs
loved her colleague is also due to compositionality: if the same component parts are combined in a
different structure, a different meaning results.

1.2 The cultural evolution of compositional structure

The intuition that language is compositional because compositionality facilitates language
learning and use in communication is widespread, and studies in the field of mathematical lin-
guistics ratify this intuition (Pagin 2012, 2013; Yang 2016). But how did compositional structure
evolve? In order to establish a causal link between the observed structure in natural languages and
its functional advantages, we need to explain how the advantages of compositional structure can
permeate language as a system of behaviour shared at the population level (Brighton et al. 2005;
Kirby 1999).

Various authors have argued that languages adapt over cultural time to maximise their learn-
ability without jeopardising their expressivity (Brighton et al. 2005; Christiansen & Chater 2008;
Regier, Kemp, & Kay 2015; Smith & Kirby 2012). Languages are learned from messy and rel-
atively limited input but are nevertheless robustly transmitted in spite of this learning bottleneck:
from limited data, language learners are able to acquire the necessary tools to generate novel in-
terpretable expressions (Chomsky 1980; Kirby 2001). Because the poverty of the input presents
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a challenge to the learner, language might adapt over time to maximise its learnability and reduce
the impact of the bottleneck (Brighton et al. 2005; Kirby 2001; Zuidema 2003). There are several
structural configurations that would solve this learnability problem (Kirby et al. 2008, 2015). A
degenerate language in which all possible meanings are encoded by the same expression would be
maximally learnable and could be transmitted intact; however, this learnability would be achieved
through complete sacrifice of expressivity, since a degenerate language would not allow its users to
discriminate between meanings. On the other extreme, a holistic language, in which each mean-
ing to be conveyed is expressed by a distinct, idiomatic, unrelated expression would potentially be
highly expressive. However, such a language could not survive transmission through a learning bot-
tleneck: unless learners are exposed to the full language and their memory resources allow them to
acquire it, a holistoc language cannot be transmitted intact from generation to generation. A com-
positional language resolves this tension between expressivity and learnability (Kirby et al. 2008,
2015). Provided that a learner’s input data is sufficiently rich to allow the grammar and lexicon to be
induced, compositional languages can be transmitted through a learning bottleneck but nonetheless
allow for the production and interpretation of meaningful expressions.

In the last decade, evolutionary linguists have developed experimental models to study the
emergence and evolution of linguistic structure in the laboratory (see Kirby, Griffiths, & Smith
2014; Scott-Phillips & Kirby 2010). Kirby et al. (2008) developed an Iterated Artificial Language
Learning (IALL) paradigm to explore whether the pressures for learnability and expressivity pre-
viously described in computational and mathematical models of iterated learning (e.g. Brighton et
al. 2005; Kirby & Hurford 2002) would have similar effects once idealised and rational learners
were replaced with human participants. Kirby et al. (2008) showed the emergence of linguistic
structure as languages were transmitted down generations of participants organised in transmission
chains; with the implementation of a bottleneck in transmission (a pressure for learnability) and a
filter to prevent ambiguous expressions from being transmitted to the next generation (a pressure for
expressivity), holistic languages evolved to become compositional, a result replicated with a more
adequate sample size by Beckner et al. (2017). Crucially, without this pressure for expressivity, lan-
guages only adapted to be learnable and evolved to be degenerate (see also Perfors & Navarro 2014;
Silvey, Kirby, & Smith 2015). Further studies have shown similar effects with the introduction of
communicative interaction (a natural promoter of expressivity) in transmission chains (Kirby et al.
2015; Theisen-White et al. 2011; Winters et al. 2015). These studies show that languages become
structured as they are culturally transmitted through iterated learning and communicative interac-
tion; critically, they also show that the same level of structure does not evolve from interaction
alone.

1.3 Simple meaning spaces, basic compositionality

The meaning spaces utilised in previous IALL studies are very simple. For example, Kirby et
al. (2008) used a meaning space that comprised 27 distinct meanings differentiated in three dimen-
sions (see Figure 1), while the meaning space in Kirby et al. (2015) is even simpler. Consequently,
the linguistic structure that emerged in these studies is correspondingly simple (see Figure 2). Al-
though the structure is compositional in that the meaning of the expressions is derived from the
meaning of the constituent parts, it lacks other aspects of compositional structure found in natu-
ral languages. For example, it lacks hierarchical constituent structure, which at a minimum would
require the presence of complex expressions composed of complex expressions themselves. More-
over, as Galantucci and Garrod (2011) pointed out, IALL experiments have not yet shown the emer-
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object 
features Shape Colour Motion Arrow

feature 
values

square circle triangle black blue red horizontal bouncing spiraling

Figure 1. The visual stimuli used in Kirby et al. (2008) consisted of 27 pictures of coloured ob-
jects with arrows indicating motion. Each object feature (Shape, Colour and Motion Arrow) varied
over three values: square, circle or triangle shape; black, blue or red colour; and arrows indicating
horizontal, bouncing or spiralling motions.

Figure 2. Example of a compositional language extracted from Kirby et al. (2008), Experiment 2.

gence of word order sensitivity, a type of compositionality the authors refer to as “positional”, in
which the same form takes on systematically different interpretations depending upon its position
in the sequence, as discussed in section 1.1.

In the present study we aim to examine whether and how richer compositional structure
evolves through cultural transmission in the laboratory. The guiding intuition is that the complexity
of the compositional languages that evolve in IALL experiments is necessarily related to the com-
plexity of the meaning space (i.e., the set of meanings participants learn and produce descriptions
for), because a systematic mapping between semantic and morphosyntactic structure is a defining
feature of productive compositionality.

We predict that, by introducing a more complex meaning space for speakers to learn and
use, more complex linguistic structure will evolve in the same way basic compositionality has been
shown to evolve in previous IALL studies with simpler meaning spaces. Our meaning space cru-
cially includes motion events which involve two objects with different roles (focal and anchor),
where each object can play each of the different roles. Each object has two properties (shape and
number).

We predict that a meaning space with these characteristics will facilitate the emergence of
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complex nominal elements encoding both shape and number, which can be depicted as nodes in
constituent structure and thus comprise consistent syntactic categories. The emergence of complex
nominal constituents provides two levels of complex constituency, the minimum required to show
hierarchical constituent structure. Moreover, the need to distinguish objects according to their roles
in the motion event requires the encoding of semantic roles in the argument structure either by
means of morphology or word order rules. If word order rules emerge, we will be able to show
the “positional” aspect of compositionality. On the other hand, if case marking systems emerge, it
will also be the first time such functional morphology emerges in IALL studies (however, see van
Trijp 2012). Altogether, this more complex meaning space offers the possibility for the evolution of
complex nominal elements which are nodes in constituent structure and not mere object or property
labels.

2 Experiment 1: transmission and artificial pressure against ambiguity

2.1 Method

The experiment utilises an Iterated Artificial Language Learning paradigm (Kirby et al. 2008,
2015). In overview, each participant in a transmission chain is trained on an artificial language based
on some linguistic data, and then during testing produces a new set of linguistic data which will be
the input data for the next learner in the chain. We ran four transmission chains of eight generations
each. We implemented a strict artificial pressure against ambiguity during testing to block the
evolution of degenerate languages.

2.1.1 Participants. Thirty-two participants were recruited to participate in an artificial
language learning study through the University of Edinburgh’s Careers Service database of student
and graduate employment. All participants were native speakers of English (mean age 22 years, age
range 18–42). Participants received a payment of £9. The experiment was conducted in accordance
with the ethics procedures of Linguistics and English Language, The University of Edinburgh.

2.1.2 Stimuli. Participants were asked to learn, and then reproduce, an artificial language
which provided descriptions for scenes of motion events. Motion events were represented using
videos, descriptions were presented as text. We created 80 animated scenes to represent 80 motion
events. Each video was five seconds long and featured one or more objects performing a motion; in
some scenes this motion took place on a blank screen, in others the motion was relative to another
object or set of objects.

More precisely, each scene featured a focal object or objects and, optionally, an anchor object
or objects. There were two types of objects, squares and circles; each object could appear singly
or as part of a group of multiple (i.e., nine) objects of the same shape (e.g., a group of nine circles
or a group of nine squares). The focal object(s) in each scene performed one of two possible
motions: sliding across the screen, or bouncing across the screen. That movement could occur once
(resulting in a terminated motion event) or be continuously repeated for the entire duration of the
scene (producing an ongoing motion event). If the scene featured anchor objects, the focal objects
were initially on the opposite side of the screen from the anchor objects and moved towards the
anchor objects; in scenes lacking anchor objects, the focal objects simply started on one side of
the screen and moved to the other. The initial position of the focal objects (left or right side) was
randomised on each presentation of each scene.

More formally, each motion event differed on five binary features: Shape of focal object,
Number of focal objects, Motion, Aspect (terminated vs. ongoing), and Anchoring (whether the
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event comprises an anchor object or not). Events with anchor objects(s) differed along two further
binary features: Shape of the anchor object and Number of the anchor object—which contained
the same features as Shape and Number of focal objects. This yields the full set of 80 possible
motion events (16 events lacking anchor objects, 64 featuring anchor objects). Figure 3 provides a
visualisation of the meaning features and values described.

Shape Number Motion Aspect Anchoring

circle square one group slide bounce terminated ongoing no anchor anchor obj.

bubo pi dibo mofile lirugufo na mu nu

Figure 3. Features and values of the meaning space and example stimuli. The meaning space
in this experiment consists of events which are composed of 5–7 different features (depending on
the presence or absence of an anchor object respectively), each comprising two possible meaning
values. The table (lower) shows the different features (collapsing Shape and Number in focal and
anchor objects) and the different possible values for those features, with corresponding illustrations.
Above, we show two examples of stimuli (with the motion represented with arrows) as they appear
on screen during the learning phase: (left) a group of squares sliding towards a group of circles;
(right) a group of circles bouncing back and forth, without any anchor object.

2.1.3 Initial languages. The initial languages to be learned by the first participant in each
chain were a set of randomly generated holistic strings of lower-case letters, possibly including
spaces. For each initial language, we generated 80 unique strings: each string consisted of 2–8
CV syllables, divided by spaces into 1–8 chunks (the number of chunks was randomly selected).
These 80 strings were then paired randomly with the set of motion event scenes to create 80 scene-
description pairs. We generated a separate initial language for each initial participant in each chain
in order to eliminate any specific biases that might be imposed by the initial language.

2.1.4 Procedure.
Training and testing regime. Participants were asked to learn an artificial language made

up of written labels for visual stimuli. They carried out the experiment at a computer terminal in
isolated individual booths. All responses were entered using the keyboard. Participants received
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written and verbal instructions before starting the experiment, and on screen at the start. The exper-
iment was divided into two phases: a training phase and a testing phase.

During training, participants were taught a subset of 44 scene-description pairs from the total
80 pairs (randomly selected but always containing 3/4 of the non-anchored events and 1/2 of the
anchored events). Each pair was presented three times in randomised order, yielding a total of
132 training trials, for a training phase duration of approximately 30 minutes. In each training
trial, the description was shown in isolation for one second, then the associated scene was shown,
accompanied by the description, for five seconds. After each presentation, participants underwent
one of two recall tests (randomly chosen): retyping (50% of the time) or scene discrimination (other
50% of the time). In the retyping recall test, participants were presented with the motion event they
had just seen, and were asked to retype its description. In the discrimination recall test participants
were presented with two scenes side by side in randomised position, one of which they had just
seen and the other selected randomly from the remaining 79 scenes in the meaning space; they were
then asked to identify by button-press which of the two motion events matched the one they had
just seen. These recall tests were intended to ensure that participants attended both to the training
descriptions and their associated scenes.

During testing, participants were asked to describe all scenes twice in randomised order,
yielding a total of 160 testing trials (approximate duration of 40 min). Note that participants were
trained on 44 scenes of motion events but tested on all 80; this meant they were tested on events
they had not been trained on. On each testing trial, the participant was presented with a scene for
five seconds (this time without a description), and then asked to type its description in the artificial
language. Participants were prompted to produce a different description whenever they entered a
string which they had already used to describe a different scene during testing. This explicit demand
for unique descriptions is intended to introduce a pressure against ambiguity to prevent the language
from collapsing to a maximally-ambiguous single description, and is based on the method used by
Verhoef (2012).

Transmission. Participants were organised into independent transmission chains, such that
the language (set of scene-description pairs) produced by a participant at generation g is used as the
training language for another participant at generation g+1 in that chain of transmission. Languages
were formed by the set of descriptions participants last produced for each meaning. The initial
participant in each chain, the first generation, is trained on a random target language, generated as
described in section 2.1.3.

As mentioned in the description of the training and testing regime, we imposed a bottleneck
on transmission. A language (either constructed with random strings or produced by a participant)
consists of a set of 80 scene-description pairs. During transmission, we divide this into two subsets,
a trained set (44 scenes, selected randomly) and an untrained set (the remaining 36 scenes) as
described in section 2.1.4. This sub-setting procedure is implemented at each generation in a chain:
the first participant is trained on a subset of the initial target language, subsequent participants are
trained on a subset of the previous participant’s output language. Participants were not informed
of the source of the artificial language (i.e., that it was produced by another participant) until after
completing the experiment.

2.2 Measures

2.2.1 Compositional structure: isomorphism between semantic and syntactic struc-
ture. Following Kirby et al. (2008, 2015), we quantify compositional structure as the z-score of
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the Mantel Test between description similarities and scene similarities. Description similarity is
calculated using normalised Levenshtein distance, i.e. the the number of characters that need to be
changed, inserted or deleted to transform a description into another (Levenshtein 1966), divided by
the length of the longest description (such that the maximum distance is 1). Scene similarity is cal-
culated using Hamming distance (Hamming 1950), which is given by the number of feature values
that are different between two scenes. Thus to quantify structure in a language, we first calculate
the correlation coefficient between all pairs of edit distances in the set of descriptions and all pairs
of edit distances of the corresponding scenes. This veridical (i.e. observed) coefficient gives us an
indication of the extent to which similar meanings are associated with similar signals, as would be
expected in a compositional language. We then calculate how likely the veridical coefficient be-
tween the two distance matrices is to appear by chance, using the Monte Carlo method of random
sampling to produce a distribution of coefficients. For each language to be evaluated, we repeatedly
randomise the associations between meanings and signals and re-calculate the correlation. We ran
10,000 samples, and from the distribution obtained, we extract the z-score for the veridical coeffi-
cient. If the z-score is greater than 1.645 (one-tailed)1, we conclude that the veridical coefficient is
unlikely to arise by chance (p< 0.05). High z-scores thus indicate a high degree of compositionality
on this measure.

2.2.2 Reference. In order to minimise the influence of human biases in the linguistic anal-
ysis of the descriptions produced by participants, we extract form-meaning mappings automatically.
We identify the referents of the lexical items2 in the artificial languages by calculating the associ-
ation strength between lexical items and the meaning feature values of scenes. We use Kendall’s
Tau-b rank correlation coefficient (Kendall 1938, 1945), which allows us to measure the strength
and direction of the correlation between occurrences of a given lexical item and those of a given
meaning feature value3. Values of Tau-b range from −1 to +1, indicating 100% negative or positive
association respectively. A value of 0 indicates the absence of association, and the more distant
Tau-b is from 0, the stronger the referential association. Thus the more a lexical item co-occurs
with a specific feature value (e.g. a particular shape or movement), the higher Tau-b is.

2.2.3 Nominal syntactic categories. The emergence of complex nominal constituents
(including at least two morphs encoding shape and number) is crucial to our study because they will
provide the evidence required for hierarchical structure as well as for positional compositionality.
We therefore need to evaluate whether morphs encoding shape appear adjacent to morphs encoding
number and crucially, whether they constitute a syntactic category (i.e. have similar distributions).

1We use one-tail critical z-score values because we do not predict large negative z-scores; i.e., we do not expect
significant negative correlations between description-similarities and scene-similarities. Moreover, as seen in the results
section later on, z-scores obtained are very large and thus the use of one-tail instead of two-tail critical values does not
alter the results.

2We consider lexical items those strings separated by spaces within a description.
3Before calculating Tau-b coefficients, we ran a diagnostic test to provide a more robust threshold for the significance

of the dependence between lexical items and meaning feature values: we compute the mutual information of all pairs
of lexical items and meaning feature values in a language. For each pair, we use the Monte Carlo method of random
sampling to calculate how likely this veridical mutual information is to appear by chance. At each sample we randomise
the mapping between scenes and descriptions and re-calculate the mutual information between the lexical item and the
feature value. We run 10,000 samples, and from the resulting distribution, we calculate the probability to obtain by chance
a mutual information equal or higher than the veridical; only if p < 0.05 we conclude a significant mutual dependency
between a given pair (i.e., between a lexical item and meaning feature value) and proceed to calculate its Tau-b coefficient.
Mutual information provides us with non-spurious correlations but not with a normalised value for the strength of the
correlation or its direction (either positive or negative). Both strength and direction are thus obtained with Tau-b.
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The syntactic category of a given grammatical unit can be inferred from the distributions in which
it appears within sentences. The Taub-b measure described above allows us to identify morphs
that refer to shape-objects. To determine whether these morphs form a syntactic category in the
artificial languages, we evaluate their distributional similarity, on the assumption that members of
a category will have similar distributions. We quantify the distributional properties of these con-
stituents in a language (which we call nominals henceforth) as their set of backward transitional
probabilities (BTP) (following McCauley & Christiansen 2011; Perruchet & Desaulty 2008) (i.e.,
the probabilities that each nominal has of being preceded by each of the lexical items in a lan-
guage’s lexicon). The BTPs for a given morph characterise its distributional properties; we then
use the Jensen-Shannon distance metric (JSD) to measure the distances between all pairs of BTP
distributions; the lower the distance between a pair of distributions, the more similar they are. The
average JSD between all pairs then gives us an indication of the distributional similarity between
all nominals. We then calculate how likely this veridical average JSD is to appear by chance using
the Monte Carlo method of random sampling. At each sample, we randomly select a set of lexical
tokens of the same cardinality of the set of nominals in the language and calculate the average JSD
between all pairs of BTP distributions. We run 10,000 samples, and from the distribution obtained,
we extract the z-score for the veridical average JSD. Low z-scores indicate short distances between
BTP distributions of nominals and specifically, z-scores below −1.645 (p < 0.05, one tailed)4 sug-
gest that nominals within a language share similar distributions within sentences and thus constitute
a syntactic category.

2.2.4 Order of nominal arguments. The same object or group of objects can appear
in the focal or anchor roles. There are different ways in which a language describing the stimuli
could mark nominal arguments for the semantic roles they perform: this could be morphologically
encoded (e.g., via affixation, suppletive forms or functional particles), and/or cued by the order in
which nominals appear within a sentence. For example, nominals appearing in first and second
position in a sentence might systematically have focal and anchor semantic roles respectively; in
this case, the position in which nominals appear could determine their meaning. We assess the
systematicity of the order of nominal arguments by calculating the Shannon entropy of the different
orders in a language.5 A language without any defined pattern of the order of nominal arguments
obtains the maximum possible entropy of 1 bit (i.e., a language with 50% anchor-focal and 50%
focal-anchor orders, or a language with all undefined patterns), and a language with a consistent

4We use one-tail critical values because we do not predict large positive values. Large positive z-scores could only
be obtained if the distribution between nominals were more dissimilar than obtained by chance. Given the conservative-
ness of the random sampling method (i.e, selection from tokens and not types, and descriptions are kept intact at each
randomisation), we do not expect to obtain dissimilarity scores significantly distant from the mean of the random sample.

5Entropy measures how variable the order of nominal arguments is between sentences in a language. In an unambigu-
ous compositional language there are only two possible nominal orders, either focal arguments precede anchor arguments
(focal-anchor orders) or vice versa (anchor-focal orders). However, as linguistic structure emerges, the order of nominals
may be undefined: participants will produce underspecified descriptions either because they might not have the lexicon
to refer to objects and/or the number they appear in, or because they simply do not use the lexicon consistently. In order
to measure the entropy of the system of nominal argument orders, we first exclude from the language those descriptions
that refer to motion events which do not have an anchor object (16 descriptions) and those whose focal and anchor ob-
ject are the same (a further 16 descriptions)—as the order of nominals there is not informative. We then calculate the
frequency of focal-anchor, anchor-focal and undefined orders within the reduced language of 48 descriptions. Undefined
orders introduce randomness into the system; in order to implement such randomness in the entropy measure, we split
the frequency of undefined orders between focal-anchor and anchor-focal patterns equally. We then calculate the entropy
of the resulting vector of frequencies.
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order of nominal arguments would result in the minimum possible entropy, that is, 0 bits (i.e., a
language with 100% anchor-focal or 100% focal-anchor orders).

2.3 Analysis and results

2.3.1 Qualitative analysis. For each language produced in Experiment 1, we extracted a
matrix of associations between lexical items and their referents in the scenes as explained in section
2.2.2. With this matrix we were able to automatically gloss the meanings of the descriptions pro-
vided in the experiment and analyse their structure minimising any potentially biased interpretation
of the semantics of a language. The induced dictionary for the final language A3 (where 3 indicates
the chain number, and A indicates an Artificial pressure against ambiguity, differentiating these lan-
guages from those presented for Experiment 2) is shown as a matrix of associations in Figure 4 as
an example. Examples of descriptions in the same language A3 with the corresponding glosses are
provided in (2). In these descriptions, we observe that lexical items associated with shape-objects,
which we call nominals, precede the lexical items associated with motion or aspect features in the
scenes, which we refer to as verbal elements. Moreover, Language A3 uses word order as a mor-
phosyntactic cue to interpret the different semantic roles of the nominal arguments in a sentence;
the roles of focal and anchor object are consistently assigned to the first and second position in a
description respectively. The correct interpretation of the semantic roles of each of the nominal
arguments is crucial, as the same nominals can refer to focal and anchor objects. Language A3 also
makes use of redundant functional markers of semantic roles and anchoring (i.e., the presence of
an anchor object in the event) (see sentences 2a–b). One marker, pifli, systematically follows focal
nominal arguments only in sentences that refer to scenes with more than one object; another marker,
trink/-i san/-s, follows anchor nominal arguments. In addition, the form of the latter is conditioned
by the number of the nominals: if one or more nominals are marked as plural, these anchoring
markers will appear as trinki sans rather than trink san (see 2a-b).

(2) a. rons pifli mons trinki sans hula bu
square.group ANC 6 circle.group ANC.group slide terminated
‘A group of squares slid towards a group of circles’

b. mon pifli ron trink san hula
square ANC circle ANC.one slide
‘A circle slides towards a square back and forth’

c. mons hulai ai
circle.group bounce terminated
‘A group of circles bounced’

Language A3 comprises two main categories: a nominal category that consists of complex
constituents formed by morphs associated with Shape and Number features (the latter always suf-
fixed to the former), and a verbal category formed by morphs associated with Motion, followed by
a marker of Aspect in terminated events. Nominals are thus morphological complex lexical con-
stituents with strict internal structure. Any linear word order rule has to respect the integrity of

6ANC stands for anchoring marker, particles that appear only with events that contain both a focal object and an
anchor object.
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Figure 4. Heatmap illustrating the different semantic categories of lexical items (x axis) found in
language A3 (chain 3) in relation to the meaning features they refer to (y axis). The heatmap scale
represents the strength of the positive association between lexical items and meaning feature values
(Tau-b coefficient, see section 2.2). We can distinguish three salient patterns in A3’s lexicon which
correspond to three different categories that we will call nominal, functional and verbal elements.
Moving from left to right along the x axis in Figure 4 we find: lexical items associated with Shape
(circle or square) and Number (one or group) which form a nominal category, a set of lexical
items associated with Anchoring (presence or absence of an anchor object) as well as Number
which form a functional category, and lexical items associated with Motion (slide or bounce) and/or
Aspect (terminated or ongoing), which constitute a verbal category. In the nominal category we
have mon(s) and ron(s), which are the only items that refer to the shapes in the scenes. The affix
-s acts as a plural marker and its absence marks singularity. Verbal elements are huilai, hula and
ai and bu. Both huilai and hula are free morphs associated with Motion alone, and ai and bu act
as their respective aspect morphemes (i.e., although separated by spaces, they cannot stand on their
own), whose presence marks the events as terminated.
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A1 A2 A3 A4
circle one sunyan piona/pijone mon cica/(cicaa)

group sanyan piondr-a/e mons lumuse
square one vunyan fiona ron demi/(dmei)

group vanyan fiondr-a/e rons demi-toda/tofa/fora

Table 1
Nominals in the final languages: at generation 8 for languages A1–A3 and generation 7 for lan-
guage A4. The elements in bold signal category markers, recurrent patterns across members of a
lexical category. The parenthetical alternative items in A4 occur only as focal objects and only with
sliding events.

A1 A2 A3 A4

slide ongoing F tolo A (vale)
watashe, zu,
yu, mebe

F A hula F fumuse A

terminated F vero/velo A (re/te)
watashe, zu,
yu, mebe

F A hula bu F sahime A

bounce ongoing F galamete A (vale)
watashe, zu,
yu, mebe

F A huilai F fumuse A

terminated F vero/velo/galamete A te/re
watashe, zu,
yu, mebe

F A huilai ai F sahime A

Table 2
Verbal elements in the final languages: at generation 8 for languages A1–A3 and generation 7 for
language A4. Elements in brackets are optional. The most frequent position of anchor nominal
arguments is represented by A, and that of focal nominal arguments, by F. In language A2 there is
system of verbal elements: the four lexical items listed appear randomly in sentences.

the nominals and cannot break them up, that is, number is always realised as (al least) a suffix in
nominals.

Tables 1 and 2 below display the different lexical items under the nominal and verbal cat-
egories evolved in all languages (respectively). Languages A1–A3 are extracted from the final
generations and language A4, from the penultimate generation—the participant in the last genera-
tion of chain 4 failed to learn the lexical items of the input language causing a drastic decrease in
the language’s structure (see section 2.3.2 to follow). Sentences mostly comply with the structures
described in the two tables and therefore can be reconstructed from them. The order of nominal
arguments is mainly fixed in A1, A3 and A4: focal nominal arguments precede anchors.

All languages encode Shape and Number within nominals. Moreover, we observe further
sublexical structure in the morphs encoding Shape within nominals: most languages (A1–A3) con-
tain a nominal category marker, signaled in bold in Table 1. Number is almost exclusively marked
via affixation (simulfixation in A1 and suffixation in the rest) with the exception of the suppletive
forms found in language A4 to mark the plurality of circle objects (see Table 1).

Whilst the encoding of Shape and Number is fairly systematic in the final generations across
chains, the encoding of Motion and Aspect is not entirely (or at all) established in languages A1 and
A2. Moreover, it is only in the last two generations that Motion starts to be encoded in language A4
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Figure 5. (a) Linguistic structure over generations for each of the four transmission chains. Lin-
guistic structure increases as languages are transmitted through generations of learners. (b) Fitted
values from the mixed-effects regression Model 1 for the four transmission chains and their aver-
age (in black). Coloured lines represent the random slopes estimates (for generation) depending
on random intercepts (individual chains), whereas their average in black represents the fixed ef-
fects estimates. In both plots, the dotted horizontal line represents the chance level (z-score 95%CI
=±1.645, one-tailed).

but it is not fully systematic either7.
2.3.2 Compositional structure. We hypothesised that, by introducing a more complex

meaning space for speakers to learn and communicate about, more complex linguistic structure
would culturally evolve in the same way structure has been shown to evolve in previous IALL
studies with simpler meaning spaces (Kirby et al. 2008, 2015). As discussed in section 2.3.1, lin-
guistic structure indeed emerges to convey this complex meaning space through cultural evolution.
Languages shift from holistic to compositional systems. Figure 5a shows the structure scores ob-
tained in the experimental data (see measures in section 2.2.1). We observe that structure gradually
increases as languages are transmitted through generations of participants; all languages are signif-
icantly structured from generation 4 onwards (chance level is represented by a dotted line in Figure
5a).

We used R (R Core Team 2000) and the package lme4 (Bates, Mächler, Bolker, & Walker
2015) to perform a segmented linear mixed-effects model (SLMM) to explore the effect of gener-
ation on linguistic structure (measured as explained in section 2.2.1). We will call this Model 1.
We ran a SLMM because it allows to easily quantify an abrupt change of the response function
of a varying influential factor and we expect the influence of generation to be more distinct in the
first generations and significantly less so in the latter generations as languages become structured.
Unlike other types of growth curve modelling, SLMMs allow the identification of a specific point
of change in an otherwise linear relation between generation and the dependent variable (structure),
and most importantly, the direct effect of that point of change. In Model 1, Generation is partitioned
into two intervals with one breakpoint at generation 4, and a separate line segment is fit to each inter-

7This late and sudden encoding of a previously underspecified meaning feature suggests that the participants might
be employing a conscious strategy to increase expressivity.
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Generation
1 2 3 4 5 6 7 8

chain A1 NA NA 1 1 1 1 1 1
chain A2 NA 1 NA 1 1 0.9 NA 1
chain A3 NA NA 1 1 0.96 0.96 0.93 0.76
chain A4 NA 0.97 1 1 1 1 1 1

Table 3
Proportion of adjacent Shape and Number morphology for a specific object, either focal or anchor.
Shape and Number are always encoded adjacent to each other in most languages from generation
2 onwards. The only case where we observe a notably lower proportion of adjacency is in the final
generation of chain A3, where on top of Shape and Number morphology, case-like markers evolve
which can agree in number with non-adjacent lexical items. Non-applicability (NA) in a given
generation signals that adjacency cannot be measured due to the lack of Shape and/or Number
morphology.

val8. In order to extract the best breakpoint we followed the procedure described in Baayen (2008,
pp. 238–239): we fitted a series of models, one for each possible breakpoint in the range of gener-
ations, including breakpoints at generation 0 and 8, which equate to no breakpoint9, then selected
the breakpoint of the model with the lowest deviance, which was at generation 4.10 As fixed effects,
we entered Generation and an interaction between Generation and Indicator. As random effects,
we introduced intercepts for Chain as well as by-Chain slopes for the effect of Generation. Figure
5b shows the predicted values based on the fixed and random parameter estimates obtained. We
found a significant11 effect of Generation (β = 3.32,SE = 1.08, p = 0.005), suggesting that struc-
ture increased as languages were transmitted down generations of learners. There was no significant
interaction between Generation and Indicator (β =−1.222,SE = 1.831, p = 0.509), indicating that
structure increased at approximately the same rate in the first and last four generations.

2.3.3 Compositional hierarchical structure: the emergence of complex (nominal) con-
stituents within sentences. We hypothesised that complex constituents would evolve. In particu-
lar, we hypothesised that morphologically complex nominals which constitute a node in constituent
structure could emerge, comprising at least morphs that refer to Shape and Number meaning fea-
tures. Table 3 shows the relative frequency in which morphs referring to the Shape and Number
features of a specific object (either focal or anchor) appear adjacent to each other within descrip-

8In order to introduce a breakpoint at generation 4, we first shifted the value of Generation so the intercept at 0 is in
generation 4. We then introduce an Indicator variable that specifies whether or not each of the shifted values is greater
than 0, that is, whether a generation belongs to the first or second segment.

9It is worth noting that this automatic procedure developed in Baayen (2008) yields a higher-than-nominal Type-I
error rate of finding non-linearity. In order to check that multiple comparisons were not too problematic, we followed the
simulation-based approach described in Vanhove (2014) to calibrate the p-values.

10Note that the breakpoint was extracted from the model comprising the data from experiments 1 and 2; we include
it in this model for Experiment 1 alone even though it is not significant to assure consistency with Model 4, where the
breakpoint is non-trivial.

11As in all models to follow, p-values were calculated using lmerTest (Kuznetsova, Brockhoff, & Christensen 2014).
The library lmerTest calculates p-values of fixed effects from F statistics based on Satterthwate’s approximation for
denominator degrees of freedom, and it tests random effects using likelihood ratio.
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Figure 6. (a) Distributional distance between a language’s nominals through generations for each
of the four chains. The dotted line represents the lower bound of chance (z-score 95%CI =±1.645,
one-tailed); z-scores below it indicate that the distributional similarity between nominals is unlikely
to arise by chance. Distributional distance between nominals decreases with generation as languages
become more structured, suggesting the emergence of a nominal syntactic category. Nonetheless,
only two languages stay consistently below chance from generation 6 onwards and only three end up
below chance at the final generation 8. (b) Fitted values from the mixed-effects regression Model
2. Coloured lines represent the random slopes estimates (for generation) depending on random
intercepts (individual chains), whereas their average in black represents the fixed effects estimates.

tions. We find that they consistently appear adjacent to each other in most languages once morphs
to encode Shape and Number evolve. Number morphs across languages are bound to Shape morphs
via affixation. The only case where we find a notably lower proportion of adjacency is in the final
generation of chain A3, where, as described in section 2.3.1, on top of the number morphology
adjacent to shape morphology, long-distance number agreement evolves (i.e., encoded in redundant
functional markers).

We now turn to test whether these complex nominal constituents can be syntactically cate-
gorised as nodes in the structure of yet more complex linguistic expressions (sentences). Syntactic
categories are formed by constituents which arrange with other linguistic material in a similar way
and thus share the same distributions in a sentence. We assessed the significance of the distributional
distance between nominal constituents as explained in section 2.2.3. Figure 6a shows the z-scores
of the average distance between the distribution of nominals in the descriptions of language. We
observe the emergence of nominal syntactic categories across chains: the different nominals share
similar distributions in the descriptions of a given language. Nevertheless, only two languages
(chains A1 and A3) stay consistently below chance from generation 6 onwards, the other two lan-
guages (chains A2 and A4) are less stable and are distributed around the lower bound of chance
(z = −1.645) by the final generation. Note that given the conservative nature of the analysis of
distributional distance, which is carried out on un-annotated raw languages, if we obtain z-scores
significantly below chance we should assume that the order of verbal elements in relation to nom-
inals is mostly fixed. However, we cannot infer anything else about the order of nominals as this
measure is blind to semantic roles (i.e., whether nominals refer to focal or anchor objects); we
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Figure 7. Proportion of word order types for nominal arguments by chain and generation. The
proportion of undefined word orders decreases as languages become more systematic and in chains
A1 and A3 we observe the evolution of a fixed Focal-Anchor word order towards the final languages.
In chain A4, word order becomes systematically anchor-focal at generation 7 but de-systematises in
the next generation as the participant fails to learn the vocabulary of the language. In the remaining
chain A2, word order rules never evolve.

discuss the order of nominals within descriptions in relation to their semantic roles in section 2.3.4.
We performed a linear mixed-effects model, which we will call Model 2, to explore the

relationship between the distributional distance of nominals and generation. We do not report a seg-
mented model because the absence of a breakpoint constituted the best fit to the experimental data.
We entered Generation as the only fixed effect (centred). As random effects, we introduced inter-
cepts for Chain and by-Chain random slopes for the effect of Generation. Figure 6b shows the fitted
values of Model 2 for fixed and random effects. Results showed a significant effect of Generation
(β =−0.367,SE = 0.120, p = 0.036), suggesting that the distributions in which complex nominals
appear do become more similar as languages are transmitted down generations of participants.

2.3.4 Word order rules for nominal arguments. We have previously mentioned that
languages have various ways of encoding the semantic roles of the arguments in a sentence. Seman-
tic roles can be encoded morphologically or can be cued by the position they occupy in a sentence.
In section 2.3.1 we observed that all nominals could occupy both focal and anchor semantic roles,
and only one language (i.e., A3) developed a morphological marker for the different semantic roles.
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Figure 8. (a) Variability of nominal argument orders by generation and chain. (b) Fitted values from
the mixed-effects regression Model 3 for the four transmission chains and their average (in black).
Because Model 3 does not include random slopes, both coloured and black lines represent the fixed
effects estimates.

The stacked area graphs in Figure 7 show the proportions of focal-anchor, anchor-focal and unde-
fined orders at each generation for each of the four transmission chains in the experiment. A visual
inspection of Figure 7 suggests that the proportion of undefined order decreases as languages are
transmitted through generations. Moreover, we observe the evolution of a fixed order of nominal
arguments in at least three out of the four chains (A1, A3 and A4).

We ran a linear mixed-effects model (Model 3) to test the effect of generation on the vari-
ability of nominal argument orders in a language—measured by the entropy of the system of or-
ders as described in section 2.2.4. We entered Generation (centred) into the model as the only
fixed effect; as random effects we enter intercepts for Chain12. Figure 8 shows the nominal or-
der variability scores of the experimental data (Figure 8a) as well as the fitted values of Model
3 for fixed and random effects (Figure 8b). Results show a significant effect of Generation
(β =−0.06,SE = 0.017, p < 0.001), suggesting that the order of nominal arguments becomes more
consistent as languages are transmitted through generations of learners. Therefore, along with an
increase of overall structure, the order of nominal arguments becomes more consistent suggesting
the emergence of what Galantucci and Garrod (2011) called “positional" compositionality: the same
exact nominal constituent can acquire different semantic roles (either focal or anchor) depending on
its position.

3 Interim Discussion

In Experiment 1 we examined whether complex compositional structure would evolve in the
same way basic compositionality has been shown to evolve in previous IALL studies (Kirby et al.
2008, 2015). We wanted to provide evidence for two properties of compositional structure found in
natural languages that had not yet been shown in IALL studies: hierarchical constituent structure

12This was the maximum random effects structure allowed without convergence warnings. Moreover, the model with
the inclusion of by-Chain random slopes for the effect of Generation was not significantly better (χ2(2) = 0.597, p =
0.742).
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(i.e., complex constituents are built from further complex constituents), and argument structure
whose semantic roles are marked via word order rules evidencing “positional" compositionality.

We showed that compositional structure evolved from holistic languages as they were trans-
mitted through generations of participants. Languages developed morphology to match existing
feature values in the meaning space establishing isomorphism between semantics and morphosyn-
tax. These results replicate the results found in previous IALL studies (Kirby et al. 2008, 2015;
Silvey et al. 2015) but with a more complex meaning space.

Our results further suggest the evolution of morphologically complex constituents which
constitute a nominal syntactic category; they all share the same distribution within sentences and
thus can be interchanged with each other to derive grammatical structures. Moreover, all nominal
constituents within a given language share a morphological category marker and thus high string-
similarity (for similar results, see Carr, Smith, Cornish, & Kirby 2016; Nowak & Baggio 2016).
These nominal constituents combine with each other and verbal elements to form more complex
linguistic expressions. Compared to previous IALL studies, this is the most productive structure
hitherto shown to evolve. Here we show at least two levels of the hierarchy of constituent types
in natural languages: morphs combine to form word-like forms and these further combine to form
sentence-like structures. We can thus describe the nominal elements that evolved as nodes within
hierarchical constituent structure and not just isolated referring expressions or labels which combine
via concatenation. Additionally, we show the evolution of word order rules in argument structure
to encode the semantic roles in motion events. As languages become more structured, the order of
nominal constituents in a sentence also becomes more systematic: the position in which the same
nominal constituents appear determines the argument they refer to. Nowak and Baggio (2016) simi-
larly show the emergence of word order regularity in a multigenerational signalling game, but given
that their objects can only appear either in subject or object position but not both, “positional” com-
positionality cannot be evidenced; our study further supports the emergence of word order regularity
through cultural evolution and provides evidence for positional compositionality.

Nevertheless, linguistic structure only fully evolved in two of our four chains: whilst nominal
constituents encoding the shape and the number of the objects evolved in all languages, verbal con-
stituents that systematically mapped to the motion and aspect features of scenes (which occur less
frequently) only evolved in two. It is possible that the restrictiveness of the pressure for expressivity
might hinder the evolution of structure. We introduced a pressure for expressivity into the experi-
mental model via a highly restrictive filter against ambiguity, which prevented languages to become
degenerate (i.e., it guaranteed that each sentence corresponded to a single scene): every time a
participant used the same description for more than one meaning (thus introducing homonymous
descriptions), they were warned and asked to provide an alternative description. This and similar
artificial filters against ambiguity (Carr et al. 2016; Kirby et al. 2008; Silvey et al. 2015; Verhoef
2012) have been previously used as an analogue of a pressure to be expressive which comes from
the need to communicate accurately in natural language use. Nonetheless, with a complex meaning
space where the discriminating features of meanings might not be clear to the participant and in the
absence of a goal to communicate meanings successfully, participants who do not discriminate all
meaning features systematically do not have any natural reason to do so in production. The artificial
pressure might then force participants to add or delete elements in linguistic expressions which do
not necessarily map to any semantics, thereby injecting problematic unconditioned variation into
the input for learners at the next generation.

In Experiment 2, we explore whether replacing the artificial pressure against ambiguity with
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a more naturalistic mechanism — communicative interaction — facilitates the evolution of complex
compositional structure.

4 Experiment 2: transmission and communication

In Experiment 2 we utilise the methodology used in Kirby et al. (2015) and Winters et al.
(2015) and introduce a more naturalistic pressure for expressivity through the implementation of
communicative interaction at each generation in the transmission chains. We run four transmission
chains of eight generations each. Each generation of a chain consists of a pair of participants who
are trained on an artificial language based on some linguistic data, and then use that language to
communicate with each other, producing a set of linguistic data which provides the input for the
next pair of participants in the chain.

4.1 Method

4.1.1 Participants. Sixty-four participants were recruited as per Experiment 1. All par-
ticipants were native speakers of English (mean age 22 years, age range 18–35); each received a
payment of £9. The experiment was conducted in accordance with the ethics procedures of Linguis-
tics and English Language, The University of Edinburgh.

4.1.2 Procedure.
Training and communication regime. In Experiment 2, pairs of participants were asked

to individually learn an artificial language which later they would use to communicate with each
other. We used the same stimuli as in Experiment 1 and initial languages were generated as per
Experiment 113.

Experiment 2 was divided into two phases: a training phase and a communication phase.
During training, the participants were trained in parallel but separately on a set of 40 out of the 80
scene-description pairings contained in the full language. The two participants in each dyad were
trained on the same set of 40 pairings, balanced to contain at least one instance of all meaning
features and feature values. They saw each item in the training set three times (order randomised
for each participant), giving a total of 120 training trials. After each training trial, participants
underwent the same type of recall tests described for Experiment 1: participants were either asked
to type in the descriptions they were just presented with, or to select the scene they just saw in the
trial.

During communication, the pairs of participants were asked to communicate with each other
using the language they had just learned. Pairs communicated the whole set of 80 stimuli during the
testing phase, each participant communicating a subset of 40 (again balanced to contain instances
of all the different possible values of each feature).There were two roles participants played in this
stage, director and matcher. Participants swapped roles at every trial. The director was presented
with a scene for 5s (without a description) and then was asked to type in a description for that scene.
The description was then sent to their partner, the matcher. The matcher had to identify the scene
the director described by selecting a scene out of an array of four displayed in a two by two grid
(the target scene and three randomly chosen foils from the remaining 79 scenes in the meaning

13We added a few restrictions to the initial languages generated in Experiment 2 that were not present in Experiment
1: we excluded the character < s > in order to avoid its use as a plural marker (as seen in language A3 in Experiment 1)
and < k,q,w,x,y,z > were further excluded in order to avoid that participants noticed the restriction. Characters absent
in the initial languages were blocked in the keyboard and participants could not enter them in their responses.
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space). Full feedback was provided after each trial: participants saw a screen with a red or green
background—depending on the communicative success (green for success and red for failure)—
which displayed the description the director typed in alongside the meaning the director was trying
to convey and the meaning the matcher selected.

Transmission. Pairs of participants were organised into independent transmission chains
and the transmission procedure was implemented as per Experiment 1. At each generation, we ran-
domly selected one participant’s set of productions out of the pair (composed of 40 scene-description
pairings) and used it as the training language for the next generation. Note that the composition of
the language transmitted from generation to generation, and therefore the composition of the train-
ing set for each participant, differs slightly from Experiment 1: rather than having both participants
produce descriptions for all 80 scenes (which would double the duration of the experiment to around
80 2 hours) each participant produces for half of the scenes; we avoid mixing data from multiple
participants during transmission since other studies (e.g. Atkinson, Smith, & Kirby in press; Smith
et al. 2017) suggest that mixing data in this way at least slows the emergence of regularity.

4.2 Analyses and results

4.2.1 Qualitative analysis. As for languages in Experiment 1, we extracted a matrix of
associations between lexical items and their referents in the scenes as explained in section 2.2.2.
Figure 9 shows the different lexical items that form the lexicon of the example language C2 (where
the C stands for Communication, contrasting with the Artificial pressure used in Experiment 1, and
2 indicates the chain number). Examples showing the arrangement of morphs within descriptions
are provided in (3).

(3) a. roji ref tube evoto ref
square group slide circle.group group
‘A group of squares slid towards a group of circles’

b. evoto ref tube tube roji
circle.group group slide.ongoing square
‘A group of circles slide towards a square back and forth’

c. roji babatube babatube evo
square bounce.ongoing circle
‘A square bounces towards a circle back and forth’

In Tables 4 and 5 we show the nominal and verbal morphology from all final languages in
Experiment 2. As in Experiment 1, Shape and Number are encoded within a complex nominal
(see Table 4). Plurality is expressed via full reduplication (C1), free morphs (C2), and suffixation
(C2, C3 and C4). All of the languages except for C4 mark ongoing Aspect of an event via full
reduplication. In C1 and C3 it is the marker for a terminated event that is reduplicated, whereas
in C2 we observe the full reduplication of the forms encoding Motion. Word order is fixed across
languages: focal arguments precede anchor arguments consistently (see section 4.2.4).

Unexpectedly, we observe that half of the languages are underspecified: languages C1 and
C4 are underspecified for Motion —i.e., they do not distinguish between bounce and slide. Al-
though underspecified, the languages are highly systematic and participants’ communicative accu-
racy scores are high: for the languages shown in Tables 4 and 5, dyads communicate successfully
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Figure 9. Heatmap showing lexical items in language C2. From left to right, we find that there
are two nominal lexical items associated with Shape: roji (‘square’) and evo (‘circle’). Plurality
is generally marked by the morph refatata or its clipped equivalent ref after nominals to form a
complex nominal (e.g., roji ref or roji refatata, ‘a group of squares’). Nevertheless, evo takes also a
bound morph -to as well as the marker ref to form the plural ‘a group of circles’ (i.e., evoto ref ). We
also observe two verbal elements associated with Motion: babatube (‘bounce’) and tube (‘slide’).
Their default Aspect is terminated if they appear on their own, and ongoing aspect is marked by
full reduplication of the verbal elements: babatube babatube (‘ongoing bouncing’) and tube tube
(‘ongoing sliding’).

C1 C2 C3 C4
circle one po evo to/ce- domo

group popo evoto ref cecede/ceci- domoge
square one vahu roji me/me- pira

group vahuvahu roji ref mecede/meci- pirage

Table 4
Nominals within final languages in Experiment 2. Nominals in Language C3 can be expressed
through free morphs as well as bound roots, separated by a slash in this table, which take on suffixes
marking Aspect. Only free morphs can appear as anchor arguments, whereas both free morphs and
bound roots can appear in focal arguments.
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C1 C2 C3 C4
slide ongo. jiji-F A F tube A F-jijiju mu A F refugo A

term. ji-F A F tube tube A F-jiju mu A F lefugo A
bounce ongo. jiji-F A F babatube A F-jijiju ju A F refugo A

term. ji-F A F babatube babatube A F-jiju ju A F lefugo A

Table 5
Verbal elements of the final languages in Experiment 2. Focal (F) and Anchor (A) indicate the most
frequent position of the nominal arguments in a description.

≥ 95% of the time (see supplementary materials B). Participants thus communicate successfully
without encoding all meaning features linguistically; since the foils in discrimination arrays were
selected randomly in all matching trials, in most cases, only specifying the shape and number of
focal and anchor objects would have been sufficient to disambiguate. Our natural pressure for ex-
pressivity is therefore in practice less strict than the artificial pressure used in Experiment 1.

4.2.2 Compositional structure. Figure 10a shows the structure scores obtained in Ex-
periment 2. We performed a segmented linear mixed-effects model with a breakpoint at gen-
eration 4 (obtained as per Experiment 1) to explore the effect of generation on linguistic struc-
ture, but this time across Experiments 1 and 2. We will call this Model 4. As fixed effects we
entered Experiment (Experiment 1 and Experiment 2), Generation, the interaction between Gen-
eration and Indicator, and the interaction between Generation, Indicator and Experiment. For
all models reported hereafter, we use simple contrast coding for the fixed effect Experiment be-
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Figure 10. (a) Linguistic structure over generations for each of the four transmission chains in
Experiment 2. Linguistic structure increases as languages are transmitted through generations of
learners. (b) Fitted values from the mixed-effects regression Model 4 for the four transmission
chains in Experiment 1 (red) and the four transmission chains in Experiment 2 (blue). Coloured lines
represent the random slopes estimates (for generation) depending on random intercepts (individual
chains), whereas the black lines represent the fixed effects estimates for each experiment. In both
plots, the dotted horizontal line represents the lower bound on chance level (z-score 95%CI =
±1.645, one-tailed).
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Generation
1 2 3 4 5 6 7 8

chain C1 1 1 1 1 1 1 1 1
chain C2 1 1 0.99 1 1 1 0.96 0.99
chain C3 1 1 1 1 1 1 1 1
chain C4 1 1 1 1 1 1 1 1

Table 6
Proportion of adjacent Shape and Number morphology for a specific object, either focal or an-
chor. Shape and Number are always encoded adjacent to each other in all languages from the first
generation onwards.

cause we are interested in testing main effects (i.e., consider all levels of our categorical predic-
tor Experiment in testing Generation) as well as in comparing levels directly to each other. The
intercept in Model 4 is then the grand mean of Experiment 1 and Experiment 2, and we com-
pare Experiment 2 to Experiment 1. As random effects, we introduced intercepts for Chain as
well as by-Chain slopes for the effect of Generation. Figure 10b shows the fixed and random
estimates obtained in Model 4. The model intercept indicates that languages were highly struc-
tured by generation 4 (β = 19.689,SE = 1.931, p < 0.001). A significant effect of Experiment
(β = 6.850,SE = 1.931, p = 0.014) suggests that languages in Experiment 2 were significantly
more structured at generation 4 than languages in Experiment 1. We found a significant effect of
Generation (β = 4.763,SE = 0.727, p < 0.001) and a marginally significant effect of the interaction
between Generation and Experiment (β = 1.431,SE = 0.727, p = 0.053), suggesting that although
structure increased in the first four generations across experiments, the increase over generations
was marginally greater in Experiment 2. We also found a significant interaction between Genera-
tion and Indicator (β = −3.216,SE = 1.275, p = 0.014) and no effect of the interaction between
Generation, Indicator and Experiment (β =−1.994,SE = 1.275, p = 0.123), suggesting that struc-
ture increased more slowly in the second half of transmission chains (i.e. generations 4–8) in both
experiments14. This suggests a scenario where languages become more stable as a result of the
cumulative increase in structure, which facilitates language learning and slows the further develop-
ment of structure, which is confirmed by an analysis of learning error (see supplementary material
A). Altogether, these results suggest that structure increases by generation across experiments, and
that it increases more in the first half of the transmission chains. They also suggest that languages
in Experiment 2 become more structured faster.

4.2.3 Hierarchical constituent structure: the emergence of complex nominal con-
stituents. Table 6 shows the relative frequency with which morphs encoding Shape and Number
appear next to each other in a language. In all four chains, we consistently find complex nomi-
nal constituents already by the first generations. As described in section 4.2.1, either Number was
marked via reduplication, or morphs encoding Number followed morphs encoding Shape. As in
Experiment 1, we tested whether these complex nominals in fact constitute a syntactic category.
Figure 11a shows the distributional distance of nominal constituents. All final languages in Exper-
iment 2 obtain z-scores below chance level (−1.645) and thus we conclude that nominal syntactic

14Note that although Model 1 did not suggest a steeper slope for structure in the first half of chains in Experiment 1,
Model 4 suggests that, looking across both experiments, the increase in structure is more rapid in the first half of the
chains.
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Figure 11. (a) Distributional distance between a language’s nominals through generations for each
of the four chains in Experiment 2. The dotted line represents the chance level (z-score 95%CI
=±1.645, one-tailed); z-scores below it indicate that the distributional similarity between nominals
is unlikely to arise by chance. Distributional distance between nominals decreases with generation
as languages become more structured, suggesting the emergence of a nominal syntactic category.
We observe that all the average distance between nominals are below chance level in the last two
generations. (b) Fitted values from Model 5 for the four transmission chains in Experiment 1 (red)
and the four transmission chains in Experiment 2 (blue). Coloured lines represent the random slopes
estimates (for generation) depending on random intercepts (individual chains), whereas the black
lines represent the fixed effects estimates for each experiment.

categories evolve via cultural transmission. We also performed a linear mixed-effects model, which
we will call Model 5, to test the effect of generation on the distributional distance across Exper-
iments 1 and 2. As fixed effects, we entered Generation (centred) and Experiment (Experiment
2 vs. Experiment 1) as well as their interaction. As random effects, we introduced an intercept
for Chain and a by-Chain random slope for the effect of Generation. Figure 11b shows the fitted
values of Model 5 for fixed and random effects. Results showed a significant effect of Generation
(β = −0.327,SE = 0.061, p < 0.001) and no significant interaction between Generation and Ex-
periment (β = 0.040,SE = 0.061, p = 0.5371) , suggesting that the distributions in which nominals
appear became more similar by generation to a comparable degree across experiments. There was
no effect of Experiment (β = −0.027,SE = 0.115, p = 0.819), suggesting that both experiments
obtained similar estimates at the intercept15.There is a clear difference between experiments in the
amount of languages in which we observe the evolution of a nominal syntactic categories: only
in two in Experiment 1 and in all four in Experiment 2. Nevertheless, we observe that distance
between nominals diminishes by generation across all languages in both experiments.

15It is worth noting that larger z-scores can be obtained from languages with larger lexicons because the probability of
selecting morphs that are nominals during repeated random sampling is lower (see section 2.2.3). Because languages in
Experiment 1 have larger lexicons (primarily because they are not as structured and systematic as languages in Experiment
2), z-scores obtained in the two languages that evolved nominal syntactic categories are lower (see section 2.3.3), leading
to an average z-score similar to that in Experiment 2.
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Figure 12. Proportion of word order types for nominal arguments by chain and generation. A fixed
focal-anchor word order evolves across chains.

4.2.4 Word order rules for nominal arguments. The stacked area graphs in Figure 12
show the proportions of focal-anchor, anchor-focal and undefined orders at each generation for
each of the four transmission chains in Experiment 2. We observe that the proportion of undefined
order decreases as languages are transmitted through generations, and the proportion of focal-anchor
orders increases rapidly. Moreover, we observe that the order of nominal arguments is mostly fixed
in the last few generations. Word order regularity shows yet another aspect in which the languages
that evolved in Experiment 2 are more systematic than those in Experiment 1.

We ran a linear mixed-effects model, which we will call Model 6, to test the effect of genera-
tion on the variability of nominal argument orders in languages in Experiments 1 and 2 —calculated
by the entropy of the system of orders as described in section 2.2.4. We entered Generation (cen-
tred), Experiment (Experiment 2 vs. Experiment 1) and their interaction as fixed effects; as random
effects we entered intercepts for Chain as well as by-Chain slopes for the effect of Generation. Fig-
ure 13 shows the nominal order variability scores of the experimental data (Figure 13a) as well as
the fitted values of Model 6 for fixed and random effects (Figure 13b). Results show a significant
effect of Generation (β = −0.073,SE = 0.014, p < 0.001) and no significant interaction between
Generation and Experiment (β=−0.005,SE = 0.014, p = 0.744), suggesting that entropy decreases
by generation to a similar degree across experiments, and therefore that the order of nominal argu-
ments becomes more consistent as languages are transmitted through generations of learners. We
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Figure 13. (a) Variability of nominal argument orders by generation and chain in Experiment 2.
(b) Fitted values from the mixed-effects regression Model 6 for the four transmission chains in Ex-
periment 1 (red) and the four transmission chains in Experiment 2 (blue). Coloured lines represent
the random slopes estimates (for generation) depending on random intercepts (individual chains),
whereas the black lines represent the fixed effects estimates for each experiment.

also found a significant effect of Experiment (β = −0.090,SE = 0.034, p = 0.022) indicating that
the order of nominals is less consistent in the languages in Experiment 1 at the intercept.

5 Discussion

5.1 The evolution of complex compositional structure

In the present study we explored whether and how complex compositional structure evolves
through cultural transmission. We ran two experiments in which we manipulated the nature of a
pressure for expressivity (artificial vs. communication) whilst keeping constant a learning bottle-
neck in transmission, which promotes the need for generalisation and thus for the learnability of the
language. We showed that compositional structure evolved from the trade-off between these two
pressures across experiments thus replicating the results found in previous IALL studies (Beckner
et al. 2017; Kirby et al. 2008, 2015) but with a more complex meaning space. Initial unstructured
languages, where each scene in the meaning space was mapped to a randomly generated string of
characters, became structured as they were transmitted down generations of participants: languages
developed one-to-one form-meaning mappings as well as an isomorphic relation between syntactic
and semantic structure. The effect of generation on linguistic structure was not equally pronounced
across generations: structure developed more rapidly initially and more slowly later in the chains,
as languages became more stable as a result of the cumulative increase in structure, which facilitates
language learning. These non-linear evolutionary trajectories are reminiscent of the (more or less
pronounced) logarithmic curves shown in many models of cultural evolution (Boyd & Richerson
1988; Claidière & Sperber 2007; Griffiths, Kalish, & Lewandowsky 2008; Henrich & Boyd 2002;
Mesoudi 2011).

The main contribution of the present study is the evidence for the cultural evolution of the
complexity in linguistic structure: the emergent morphosyntactic properties across these languages
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mimic the processes and properties of natural languages more closely than previously attested in
IALL studies. This study has demonstrated that, in combination with a sufficiently complex mean-
ing space, compositional hierarchical constituent structure (i.e., where complex meaningful units
composed of meaningful units which are complex themselves) can evolve from the trade-off be-
tween the (sometimes) competing pressures at play in cultural transmission, learnability and expres-
sivity. Moreover, the experimental results suggest that the same trade-off can lead to the emergence
of “positional" compositionality (Galantucci & Garrod 2011). We showed the emergence of word
order rules by which the position in which nominal constituents appear determines the semantic
role they perform in the motion event. In comparison to other strategies such case-marking, word
order rules also help language users to minimise the number of morphs that need to be memorized
to unambiguously convey a given meaning. The emergence of compositional hierarchical structure
and word order rules relaxes the constraints on productivity of basic compositionality (e.g. Kirby et
al. 2008, 2015) mirroring the type of structure found in natural languages more closely, and provid-
ing an experimental deomstration of the second part of the definition of compositionality (i.e,“the
meaning of the whole is determined by the meaning of its parts and the way they are combined”).

The languages that evolved structure comply with the characteristics of configurational lan-
guages where word order is fairly fixed and sentences are mainly composed of morphosyntactically
continuous expressions (i.e., continuous constituents, without long-distance dependencies). More-
over, more frequent and salient meaning features such as Shape (Gentner 1982; Landau, Smith, &
Jones 1988) and its associated feature Number were always encoded, unlike Motion and Aspect
which were not always both encoded. Although the strategy for marking number varied across the
evolved languages in this study (e.g., simulfixation, suffixation, reduplication, suppletion or plural
word), morphs encoding Shape and Number always appeared adjacently, forming continuous nom-
inal constituents. This is consistent with the universal tendency (seen in English) to mark nominal
number in the noun or in its immediate periphery (Dryer 2013a). A systematic nominal category
also emerged relatively early on in the chains. Although this might be due to type frequency, it con-
forms to a noun bias parallel to that suggested in language acquisition in many languages (Dhillon
2010). Moreover, it is also worth noting that where fixed word order evolved, regardless of the
position of verbal elements within the system (i.e., whether it appeared sentence medial or final),
focal objects always precede anchor objects, consistent with the universal Agent-first tendency in
natural languages (including English) (Dryer 2013b; Greenberg 1966), and a universal processing
bias (Gibson 2000; Hawkins 2004; Marantz 2005).

5.2 The effect of communicative interaction in the evolution of complex compositional struc-
ture

Although similar linguistic structure evolved across experiments, it did so to varying degrees
determined by the nature of the pressure for expressivity, that is, either an artificial pressure against
ambiguity in production or communicative interaction. Results show that the substitution of an
artificial pressure for communicative interaction eases the evolution of linguistic structure (for a
similar conclusion, see Carr et al. 2016). With the inclusion of communicative interaction, struc-
ture emerged more rapidly, and languages become significantly structured by the first generation.
Moreover, all languages in Experiment 2 evolve to be significantly structured and systematic: un-
like in Experiment 1, descriptions only contain morphology which has a semantic mapping to the
constituent parts of the meaning they describe and word order is fixed across all four languages.
The only aspect in which languages that evolved in Experiment 1 are more systematic than those in
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Experiment 2 is in the sublexical structure within morphology encoding Shape: languages in Ex-
periment 2 did not evolve nominal category markers and thus, string-similarity between nominals is
lower within languages in Experiment 1 (e.g., between ron and mon).

These differences observed between conditions suggest that the expressivity that communi-
cation promotes is not analogous to an artificial pressure against ambiguity—at least given the pres-
ence of a complex meaning space and the highly restrictive artificial pressure we implemented. Half
of the languages that evolved in Experiment 2 were underspecified for one meaning feature (either
Motion or Aspect, but never Shape or Number). This suggests that provided that not all meaning
features are required to be discriminated at every communicative event, communicative interaction
does not impose as strong a pressure for expressivity as assumed in Experiment 1. Contrary to what
we assumed in constructing our artificial pressure against ambiguity, participants were often not
required to discriminate all features of the meanings for communication to be successful. It is not
necessary (or logically possible) to specify all aspects of a meaning in a concrete communicative
event—be it because they are provided by the context or they are simply not required; therefore, it
is more economical or at least sufficient to encode the minimum meaning features, minimising the
effort of unambiguously conveying a message (Brochhagen, Franke, & van Rooij 2016; Winters et
al. 2015; Winters, Kirby, & Smith 2018). The differences between the underspecification found in
Experiment 2 compared to the full expressivity found with a similar design in Kirby et al. (2015)
is most probably due to the differing complexity of the meaning space and the size of the context
array the matcher has to select meanings from during communication. Whilst in Kirby et al. (2015)
participants are asked to select an object out of a context array of 6 with a much simpler meaning
space (i.e., 12 objects in total, only differing in shape and fill-pattern), participants in Experiment 2
are only asked to discriminate the scene conveyed by the partner out of an array of four (randomly
selected) at each communication trial and with a substantially more complex meaning space (i.e., 80
meanings, with 5–7 features each). The probability of having to discriminate every single meaning
feature value of a scene is lower in our design than it is in Kirby et al. (2015).

Altogether, these results suggest that a coordination pressure in communicative interaction
contributes significantly to the emergence of linguistic structure. The possibility of coordination
between participants leads to a very early emergence of structure in Experiment 2 (see also Raviv,
Meyer, & Lev-Ari 2018; Winters et al. 2018). With a shared goal to communicate accurately, partic-
ipants might prioritise the establishment of conventions with partners to bootstrap communication—
even at the expense of faithful reproduction of the learned language. It is probable that the inclusion
of communication and thus of the explicit goal of arriving at a shared system for communication
results in conscious design by language users more than in Experiment 1. Nevertheless, the degree
of structure increases as languages are transmitted through a learning bottleneck and thus, similarly
to Theisen, Oberlander, and Kirby (2010) and Theisen-White et al. (2011) in the graphic modality,
results show that a certain degree of structure can emerge during communicative interaction but it
is through iterated learning that it accumulates (see also Raviv et al. 2018 for a similar cumulative
effect with an expanding lexicon and a turnover of communicative partners) .

In sum, the addition of communicative interaction to transmission facilitates the evolution of
linguistic structure. The effect of communication in this study is thus not reducible to a pressure
against ambiguity in production. The coordination pressure at play during communication facil-
itates the conventionalisation of lexical items and grammatical rules (Garrod & Anderson 1987;
Lewis 1968). Moreover, communicative interaction (i.e., without a requirement of full discrim-
ination at each communicative event) does not impose such a hard constraint on expressivity as
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assumed in our artificial pressure against ambiguity: most languages are underspecified for one
meaning feature. This can be explained in terms of effort minimisation in communication given
that underspecification minimises effort in production, and communicative effectiveness was not
compromised under the communicative context provided.

6 Conclusion

Human communication systems across the world posses a remarkably productive linguis-
tic structure. This productivity is facilitated by (at least) two properties: hierarchical constituency
and compositionality. One explanation for the existence of these properties appeals to the idea that
linguistic structure evolved to adapt to the selective pressures present in cultural transmission: learn-
ability and expressivity. Our study has explored the hypothesis that, with a complex enough world
to communicate about, the behavioural product of the mechanisms operating in individuals during
language learning and production can lead to the evolution of hierarchical compositional structure
over cultural time, as suggested in simulations by Kirby (2002) and Batali (2002). Our findings
reveal that when pressures to generalise and to be expressive are both present, languages become
hierarchically compositional, which maximises the language’s learnability without jeopardising its
expressivity. Moreover, our study suggests that the trade-off between lernability and expressivity
pressures is not only present intergenerationally in cultural transmission but also within a single gen-
eration during communicative interaction (Raviv et al. 2018; Winters et al. 2018). In comparison to
an artificial pressure against ambiguity during individual production, the inclusion of communica-
tive interaction facilitates the evolution of linguistic structure. More generally, this study provides
support for the claim that cultural transmission is a linking mechanism by which the advantages
provided by compositional hierarchical structure in solving the immediate problems confronting
individual learner/user lead to such structures permeating language.
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Supplementary material A
Learning error
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Experimental Data (b)

 marginal R² = 0.776
 conditional R² = 0.828
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Figure A1. (a) Learning error over generations across experiments for each of the transmission
chains. Whilst in Experiment 1 (Artificial) and Experiment 2 (Communication) learning error de-
creases consistently as languages are transmitted through generations of learners. (b) Fitted values
from the mixed-effects for Experiments 1 and 2. Coloured lines represent the random slopes esti-
mates (for generation) depending on random intercepts (individual chains), whereas the black lines
represent the fixed effects estimates for each experiment.

In order to show that the increase in the compositional structure shown in the experiments
above is shaped by the need for language to be learnable and thus favours the learnability of the
languages, in this section we show that languages’ learnability does indeed increase by generation.

Following the measures used in Kirby et al. (2008, 2015) to evaluate learnability, we define
and increase in learnability by the decrease of learning error from the learned system to the pro-
duced system. In order to quantify the learning error at each generation, we computed the average
normalised Levenshtein edit-distance (LD) (Levenshtein 1966) between the descriptions produced
at generation g and those produced at generation g-1 to refer to the same scenes; we normalised the
distances such that the maximum error is 1. Figure A1a shows the learning error in Experiments 1
and 2. We observe a decrease in learning error across generations; however, in Experiment 2, this
decrease is greater in the first generations and learning error is lower by the final generation.

We performed a segmented linear mixed-effects model with a breakpoint at generation 5 to
explore the effect of generation on learning error across experiments. As fixed effects we entered
Generation with an Indicator variable nested and Experiment, as well as their interaction. We used
simple contrast coding for Experiment so the intercept is the grand mean across experiments, and we
compared Experiment 1 to Experiment 2. As random effects we entered intercepts for Chain as well
as by-Chain random slopes for the effect of Generation. We found a significant effect of Generation
(β = −0.104,SE = 0.010, p < 0.001) as well as a significant interaction between Generation and
Indicator (β=0.069, SE = 0.021, p=0.002), suggesting that learning error decreased significantly
by generation but less in the second half of the chain as languages become more learnable and
thus stable. We also found a significant effect of Experiment (β = 0.149,SE = 0.030, p < 0.001),
suggesting that learning error at generation 5 was significantly higher in Experiment 1 compared
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to Experiment 2. Moreover, we obtained significant interactions between Generation and Exper-
iment (β = 0.030,SE = 0.010, p = 0.004) and between Generation, Experiment and Indicator
(β = −0.047,SE = 0.021, p = 0.033), suggesting that, compared to Experiment 2, the decrease
in learning error in Experiment 1 was lower in the first half of the transmission chains but it did not
abate after generation 5, which at the same time indicated that languages in Experiment 1 were not
established in the last generations as languages in Experiment 2 were.
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Supplementary material B
Underspecification and communicative accuracy in Experiment 2
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Figure B1. Number of distinct descriptions and their occurrences in a language. A fully expressive
language would have 80 distinct descriptions, one per scene. Any description that occurs more than
once in a language introduces ambiguity into the system. Languages C2 and C3 at the final gener-
ations are fairly expressive, most of their descriptions only occur once and thus are only associated
with one scene. By contrast, the final languages C1 and C4 are underspecified and thus less ex-
pressive: most of the descriptions are homonyms often corresponding to two different scenes (i.e.,
corresponding to the observed underspecification of either Motion or Aspect meaning features).
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Figure B2. This graph shows the communicative accuracy as a proportion of the successes during
communication (80 trials) between pairs of participants in Experiment 2. We observe an increase
in communicative accuracy in the first five generations, where it is on average p̂ > 0.8. It later
continues on increasing and it is p̂ > 0.9 in all languages by the final generations. Exceptionally,
communicative accuracy drops to p̂ = 0.775 in the last generation of chain C4, where we also
observed a drop in linguistic structure.


