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Abstract

Multistate delinquency models model the probability that an credit account tran-

sits from one state of delinquency to another between any two points in the life

of the account. Using a large sample of credit card accounts we parametrise such

models with flexible baselines defined in terms of splines, and investigate whether

predictive accuracy is enhanced by the incorporation of account specific random

effects as well as the incorporation of macroeconomic variables. We conclude that

macroeconomic variables are statistically significant in such models, that the in-

clusion of random effects renders some fixed effects less statistically significant but

does not enhance predictive accuracy.

Keywords

OR in banking; credit scoring; multi-state models; intensity models; credit cards.

Introduction

Financial lenders use credit scoring models to help to assess whether to lend to

a new applicant (application scoring) and to predict the probability of default by

a borrower who already has a credit product (behavioural scoring). Traditional

cross section credit scoring models have a number of limitations that are addressed

by survival models. For example survival model give more information than cross

sectional models such as the probability that an event will occur in the next time

period conditional on it not having happened before whereas cross sectional models

give a prediction that an event will occur any time within a predefined time win-

dow. But a single event survival model predicts the probability of only that event

occurring. A lender may wish to have even more information, such as predictions

of the probability that an account will move from one specific state of delinquency

to another state (either towards further delinquency or towards being more up to

date - cure) between any two time periods in the life of the account. This would

enable more accurate assessments of risk and so more accurate assessments of the
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appropriate interest rate to charge. It would enable the lender to predict expected

cash flow in each month during a loan more accurately and so gain a more accurate

estimate of the expected profit from a loan. It would also enable a lender to predict

when different collections policies may be beneficially implemented. At the level of

a portfolio, one could simulate values of macroeconomic variables or use specified

scenarios to predict the number of accounts expected to transit between states

and so the liquidity and funding requirements for the portfolio. It will also enable

the lender to predict the amount of provisions more accurately. Such models are

known as multistate intensity (sometimes just intensity) models.

In this paper we make three contributions. First unlike previous literature we

show the parameterisations of such multistate intensity models for consumer loans

including macroeconomic covariates. Second, we show the results of including

highly flexible functional forms for the baseline intensities, specifically we model

them using B-spline functions. The use of highly flexible functional forms is im-

portant because the time dependent probabilities are largely, but not exclusively,

driven by the baseline intensities. Third, our paper is the first to account for

unobserved heterogeneity between accounts (account level random effects) in such

models. We find that many macroeconomic factors significantly affect predicted

transition probabilities and that the baseline intensities differ noticeably between

the types of transitions an account may experience. We also find that our models

give reasonably high levels of predictive accuracy but that the inclusion of account

specific random effects does not enhance the accuracy of the predictions.

There is quite a large literature on the parameterisation of survival distribu-

tions for consumer loan defaults (for example Banasik et al. 1999; Stepanova and

Thomas 2002, 2001; Bellotti and Crook 2009, 2012, 2013). There is relatively lit-

tle literature on multistate intensity models for any type of loans and most has

concentrated on modelling ratings grade transitions for corporate debt and bonds.

Two methodologies can be observed. First, the estimation of survival models for

time to transit for each possible combination of states, the subsequent estimation

of a generator matrix of integrated intensities and finally the estimation of the

probability of a transition between any two states between any two time periods
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for any case using the product integral (see Andersen et al 1993 and Aalen et al

2008). A second method is to estimate ordered polytomous models with each state

being observed in each time period or point in time; see Gagliardini and Gourier-

oux (2005). Examples of use of the first method include Jarrow et al. (1997)

who estimated a transitions matrix between corporate bond ratings without co-

variates. Lando and Skødeberg (2002) estimate time non-homogeneous transition

probabilities in continuous time in terms of a time varying covariates representing

whether the last transition was an upgrade. Figlewski et al. (2012) estimate three

ratings transitions between investment grade, speculative grade and default for

corporate bonds using bond specific time varying covariates and macroeconomic

variables. None of these papers attempts to make predictions and they omit any

unobserved heterogeneity either over time or between observations; they include

only observed covariates. Koopman et al. (2008) and Koopman et al. (2009) use

the same methodology but do include time varying random effects in the first pa-

per and indicate predictions but with no observables. In the second paper they

include observables but without making predictions. The second method was em-

ployed by Gagliardini and Gourieroux (2005) and Creal et al. (2014). Gagliardini

and Gourieroux also included unobserved heterogeneity and modelled corporate

transitions using an ordered probit model with three unobserved factors. They

indicated predictions though the accuracy of the predictions was not assessed.

Creal et al used ordered logits with frailty to predict corporate ratings transitions,

but these were not functions of duration time and predicitive accuracy was not

assessed.

The only published multistate model parameterisations for retail loans is for

credit cards by Leow and Crook (2014). They use the first methodology. This

work however omits unobserved heterogeneity between borrowers and also omits

macroeconomic variables yet in survival models there is ample evidence that for

corporates transition probabilities depend on such variables (Figlewski et al., 2012;

Lando and Skødeberg, 2002; Koopman et al., 2009) and papers using survival

models for consumer loans also have the same finding (Bellotti and Crook 2009,

2012, 2013). The inclusion of random effects is important because if there are
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omitted variables that affect the hazard function, the estimated parameters of

that function may be biased (see Cameron and Trevedi 2005).

The paper is organised as follows. Section 1 describes the modelling framework.

Section 2 explores the output from the model based on a large dataset of individual

card accounts from a major UK bank. Some discussion and concluding remark

follow in Section 3.

1 Methodology

There exists a substantial literature on the incorporation of random effects into

survival models and general competing risk models. See for example Andersen

et al. (1993, Chap 9) or Parner (1997) on how to extend intensity models with

random effects based on the theory of counting process. One characteristic of

most credit risk datasets is that they are discrete in time (accounts are observed

monthly), and this allows the possibility to model transitions between states us-

ing multinomial-type regressions (Enberg et al., 1990; Steele et al., 1996, 2004;

Goldstein et al., 2004).

However, these models are often problematic, (especially in complex scenarios

involving repeated episodes within individuals where there are multiple types of

events which may vary across states over time which is the case here). A ma-

jor obstacle lies in the implementation due to the intractability of the likelihood

function. In practice, various approximations are used, but the Bayesian Markov

Chain Monte Carlo (MCMC) approach has become a prominent method for im-

plementing these models especially in the presence of random effects and recurrent

events; see for example Gasbarra and Karia (2000), Steele et al. (2004), Kyung et

al. (2010), Sen et al. (2010) among others.

One challenge of the MCMC method is its computational cost, especially for

complex models involving a substantial number of parameters in the presence of

a large training dataset. For example, the dataset that motivated this work gives

rise to more that three millions months-exposure. An early investigation of fitting

some competing risk models with random effects to this dataset using a MCMC
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method turned out to be very time-consuming to run, making such an approach

impractical. This computational challenge worsens when one tries to allow for

more flexibility by incorporating spline bases into the model. In this paper, we

use a pragmatic approach that permits flexibility and allows one to account for

heterogeneity. Our method is based on the marginal Bernoulli processes associated

with the transition types.

Consider a portfolio of n credit card accounts. A number of states are defined

and transition from a given state h at time point t to state j at time (t + 1) are

driven by the characteristics of each individual account. We will denote by S the

set of all permissible pairs (h, j).

To these transitions, let us associate the individual random processes, Yihj,

i ∈ {1, ..., n}, (h, j) ∈ S, h 6= j, defined by

Yihj(t) =

{
1 if account i is in state j at time t, given that it was at h at (t− 1)

0 if account i is in state h at time t, given that it was at h at (t− 1)

(1)

That is, the random variables Yihj(t) take value 1 if account i moves from

state h at time (t − 1) to state j at time t, and 0 if account i remains at state

h at time t. Note that if there are no directional constraints, account i in state

h at time (t − 1) can move into state j′ 6= j. In this case Yihj(t) is undefined;

that is, when computing the marginal likelihood associated with the process Yihj,

account i is interval-censored from time (t − 1) to t; we assume that censoring is

non-informative.

These individual random processes are associated with individual transition

probabilities which we denote by qihj such that{
Pr{Yihj(t) = 1} = qihj(t)

Pr{Yihj(t) = 0} = 1− qihj(t),
(2)

with i ∈ {1, ..., n}, (h, j) ∈ S, h 6= j.

In other words, qihj(t) represents the probability that account i in state h at

time (t − 1) will move into state j at time t, assuming that only transition to

state j can be undertaken by this account at this time. Thus, these probabilities

assumes that each transition type operates in isolation and therefore ignore the
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competing impact of other transition types. We shall describe how to derive the

competing transition probabilities in Section 1.3.

The magnitude of these probabilities varies from account to account depending

on the characteristics of each account holder as well as the state of the economy.

We will denote by Xihj(t) the vector of covariates on subjects i at time t; the

type and number of covariates can differ between transition types. This comprises

time-independent covariates (ie application variables) as well as those that change

with time such as behavioural variables and macroeconomic variables. Credit risk

models are designed with prediction in mind and therefore, the time-dependant

covariates are often lagged.

1.1 Model specification

A common way to express the dependence of the transition probabilities on the

covariates can be formulated as follows

qihj(t) = Fhj(αhj(t) + βThjXihj(t) ) (3)

where αhj is a baseline function corresponding to transitions from stage h to

stage j, βhj are unknown vectors of coefficients, Fhj are one-to-one link functions.

When fitting the models, we use logit links, ie Fhj(x) = 1/(1 + e−x).

However, formulation (3) assumes that two accounts with the same values of

the covariates would have identical transition probabilities. This is a strong as-

sumption because accounts’ holders differ in so many ways that no set of measured

covariates can fully capture all the variations among them (Collett, 1993; Allison,

2010). Additionally, it is very likely that some factors influencing transition in-

tensities cannot be measured. Ignoring the impact of such unobserved factors can

attenuate the estimates of the observed covariate effects; see for example Therneau

and Grambsch (2000). Furthermore, in the present paper where each account can

experience more than one transition of the same type, assuming model (3) ig-

nores some dependence among the observations and can lead to biased estimates

of standard errors and hypothesis tests.
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To circumvent the impact of hidden variations and dependence on the transition

probabilities, Vaupel et al. (1979) introduced the so-called frailty or random effects

into standard survival models. Thus, we extend model (3) to

qihj(t) = Fhj(αhj(t) + βThjXihj(t) + uihj ) (4)

where uihj represents the random effect associated with accounts i during tran-

sitions from state h to state j. These uihj allow one to account for dependence

between jumps undertaken by the same account and help to attenuate the impact

of unobserved covariates.

Our formulation in (4) is flexible in the sense that it allows different random

effects between and within transition types (although it can be extended further

by allowing the random effects to be a function of time). For identifiability reasons

however, some constraints must be placed on these random effects (Hoem, 1990).

Hence, setting ui = (uihj), (h, j) ∈ S, we assume that the ui are i.i.d. according

to the multivariate normal distribution with mean 0 and covariance matrix Φ:

ui ∼ N (0, Φ) (5)

This choice is consistent with what is widely used in the literature; see for example

Ripatti and Palmgren (2000) or Hougaard (2000) among others. For computational

reasons we consider a diagonal covariance matrix in our application; some benefits

of this simplification are discussed in Section 1.2.

In models (3) and (4), the baseline functions αhj(t) are yet to be specified. One

possibility is to assume some parametric form; see for example Bellotti and Crook

(2013) or Leow and Crook (2015). However, parametric functions are usually not

flexible enough to capture unanticipated or hidden patterns in the data (Ruppert

et al., 2009; Djeundje, 2016). A flexible alternative is to model the baselines using

spline functions.

Many types of splines are available in the literature including truncated polyno-

mial, radial basis, B-splines, etc. In this work, we use B-splines, one reason being

that they have compact supports and these yield better numerical properties com-

pared to other spline bases. Additional benefits arising from using B-splines can
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be found in Eilers and Marx (2010) or Djeundje (2011). Thus, we express the

baselines as

αhj(t) =
c∑

r=1

Br(t) ahj,r (6)

where Bl(t) are B-spline basis functions at points t, and ahj = (ahj,1, ..., ahj,c) is a

vector of unknown coefficients to be estimated.

1.2 Parameter estimation

We now turn to the estimation. We want to estimate the regression parameters βhj,

the baseline spline coefficients ahj = (ahj,1, ..., ahj,c), and the covariance matrix Φ.

A standard way to perform this estimation is marginal likelihoods (Pinheiro and

Bates, 1995; Searle et al., 2006).

Let us consider the multivariate Bernoulli process Y = {Yihj, (h, j) ∈ S, i =

1, ..., n}, and the joint vector of random effects u = {ui,hj, (h, j) ∈ S, i = 1, ..., n}.
Also, denote by β the joint vector of parameters βhj, and by a the joint vector of

spline coefficients ahj. The joint likelihood of (Y ,u) which we denote by L(Y ,u),

can be expressed as

L(Y ,u) (β,a,Φ) = LY |u (β,a)× gu(Φ) (7)

where gu denotes the multivariate normal density given by

gu(Φ) ∝ |Φ|−0.5n exp

(
−1

2

∑
i

u′i Φ
−1 ui

)
, (8)

and LY |u represents the likelihood of Y conditional on the random effects u:

LY |u (β,a,Φ) =
∏

(h,j)∈S

∏
t

∏
i∈Rhj(t)

[qihj(t)]
yihj(t) × [1− qihj(t)]1−yihj(t) . (9)

In this representation, Rhj(t) represents the risk set for transitions from state h

to state j at time t. At each time point t, accounts that transit from state h to

states k 6= j are censored and therefore excluded from the risk set Rhj(t).
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The marginal likelihood, LY , is obtained by averaging out the random effects

from the joint likelihood (7):

LY (β,a,Φ) =

∫
L(Y ,u)(β,a,Φ) du· (10)

The estimates of the parameter vectors β and a, as well as the covariance ma-

trix Φ, are found by maximising the marginal likelihood (10). However it is impor-

tant to point out that the integral defining this marginal likelihood is usually not

available in a closed form. In practice, some restrictions are often placed on the

structure of the covariance matrix Φ, and the integral is then approximated using

a numerical method. One of the best known approximation methods in this con-

text being the so-called Adaptive Gaussian Quadrature described by Pinheiro and

Bates (1995). This method is available in many Statistical packages including R,

Matlab and SAS.

The model presented in this paper has been fitted by maximising the marginal

likelihood (10). In particular, when Φ is a diagonal matrix, this marginal likelihood

factors into a product of marginal likelihoods, one for each transition type. In such

a case, the parameters are estimated separately for each transition type thereby

by maximising the relevant component of marginal likelihood.

1.3 Deriving competing transition probabilities

The transition probabilities qihj in equation (2) and Section 1.1 are non-competing

probabilities in the sense that they represent the probability that account i in

state h at time (t−1) will move into state j at time t assuming that only transition

to state j can be undertaken by that account at this time. In other words, by

assuming that each transition type operates in isolation, these probabilities ignore

the competing aspect of other transition types.

Let us now denote by q̃ihj the competing probabilities; that is q̃ihj(t) represents

probability that account i in state h at time (t−1) will move into state j at time t, in

the presence of all other transition types (i.e. while competing with other transition

types). One way to obtain the competing transition probabilities q̃ihj(t) is to first

estimate the underlying transition intensities, to form a generator matrix, and then
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compute the competing transition probabilities via the product integral (Leow and

Crook, 2014; Lando and Skødeberg, 2002).

Alternatively, the competing transition probabilities q̃ihj can be derived directly

from the transition probabilities qihj. Such a derivation is common in Actuarial

Mathematics for life contingent risks. Specifically, if we assume that the non-

competitive transitions occur uniformly over each month, it can be shown (see

for example Luptakova and Bilikova (2014), Promislow (2006) and Dickson et al.

(2009) among others) that the relationship between competing and non-competing

transition probabilities is as follows:

q̃ihj(t) = qihj(t)×

(
1 − 1

2

∑
k 6=j;
where
(h,k)∈S

qihk(t)

+
1

3

∑
k 6=j 6=r
where
(h,k)∈S
(h,r)∈S

qihk(t) qihr(t)

− 1

4

∑
k 6=r 6=s 6=j
where
(h,k)∈S
(h,r)∈S
(h,s)∈S

qihk(t) qihr(t) qihs(t)

+ · · · · · · · · · · · ·

)

(11)

In particular for the credit data and states defined in Section 2.1 below, for-

mula (11) implies that the competing transition probabilities between states from
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time points (t− 1) to the next time point t are given by

q̃i01(t) = qi01(t)

q̃i10(t) = qi10(t)

(
1− 1

2
qi12(t)

)
q̃i12(t) = qi12(t)

(
1− 1

2
qi10(t)

)
q̃i20(t) = qi20(t)

(
1− 1

2
(qi21(t) + qi23(t)) +

1

3
qi21(t) qi23(t)

)
q̃i21(t) = qi21(t)

(
1− 1

2
(qi20(t) + qi23(t)) +

1

3
qi20(t) qi23(t)

)
q̃i23(t) = qi23(t)

(
1− 1

2
(qi20(t) + qi21(t)) +

1

3
qi20(t) qi21(t)

)
(12)

Thus, the predicted transition probability matrices, P̃i(t), are constructed as fol-

lows:

P̃i(t) =


(1− q̃i01(t)) q̃i01(t) 0 0

q̃i10(t) (1− q̃i10(t)− q̃i12(t)) q̃i12(t) 0

q̃i20(t) q̃i21(t) (1− q̃i20(t)− q̃i21(t)− q̃i23(t)) q̃i23(t)

0 0 0 1

 (13)

These probability matrices can be used to explore various scenarios. For instance,

the probabilities that account i in a given state δi(t1) at time point t1, will find

itself in state 0, 1, 2, or 3 (respectively) at a latter time t2, are given by the

elements of the vector µi(t2) defined by the following matrix product

µi(t2) = [1{δi(t1)=0}, 1{δi(t1)=1}, 1{δi(t1)=2}, 1{δi(t1)=3}] P̃i(t1, t2) (14)

where 1 denotes the standard indicator operator, and P̃i(t1, t2) represents the

cumulative transition probability matrix defined by

P̃i(t1, t2) =

t2∏
t=t1+1

P̃i(t) (15)

2 Application

2.1 Data and states definition

The data used for illustration is from a portfolio of credit card loans supplied by a

major UK bank. This dataset of more than 35000 individual accounts is a random
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sample of credit card accounts which were accepted onto the books between 2005

and 2010, and observed monthly up to the first quarter of 2011. Some of the data

have already been used by Leow and Crook (2014).

The dataset comprises both application variables (e.g. length of time at ad-

dress, income and employment code) as well as behavioural variables collected at

monthly time points (credit limit, repayment amount). In addition, macroeco-

nomic variables (e.g. unemployment rate, credit card interest rate) were appended

to the dataset. The variables used in this paper are listed in Table 1.

As in Leow and Crook (2014), we define 4 states: up-to-date (state 0), one

month in arrears (state 1), two months in arrears (state 2) and default (state 3),

where movements between the states depend on whether the borrower makes the

minimum repayment for that month. The rules for transition between states re-

main as in Leow and Crook. These are as follows. All accounts start in state 0 that

is up to date with repayments. If at any time during the observation period the

repayment amount made is less than the minimum required the borrower advances

to the next immediate state. A borrower who has missed a repayment before and

is in states 1 or 2 but makes a repayment of some amount in the following month(s)

will (a) remain in that state if the repayment made is greater than the minimum

required but less than the sum of the amounts required in the current and previous

month or (b) be moved to a one lower state if the repayment made exceeds the

sum of the minimum required in the current and previous months but is less than

the outstanding amount.

We fit the model using accounts that were opened before 2009; there are

about 30000 such accounts. Accounts that were opened from January 2009 make

up the independent subset with about 10000 unique accounts, and this subset

would be used to explore predictions.

2.2 Parameter estimates

The baseline spline coefficients were jointly estimated together with the regression

parameters as described in the Section 1.2. These estimated spline coefficients

were then used to compute the baseline for each transition type via formula (6).
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Figure 1: Fitted smooth baselines using B-splines.
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In this section, we discuss the parameter estimates, baselines and random effects

from the fitted model.

Baselines

The resulting baselines are displayed on Figure 1. The scale of the vertical axis

is indexed for commercial confidentiality reasons. We note that the shapes of the

baselines are quite versatile and vary from one transition type to another. The

extraction of such flexible patterns has been made possible by the use of spline

basis functions.

Focussing on the transitions from state 0 to state 1, its baseline indicates a

higher chance of transition toward delinquency in the few early months after the

account has been opened. However this chance decreases sharply and gradually

tends to stabilise. Conversely, the graphic indicates that accounts in state 1 are

more likely to recover than to move further toward delinquency except perhaps in

the very early few months. It can also been noticed that accounts in state 2 are

more likely to move toward recovery for the first part of the lifespan but become

equally or more likely to default in latter years.

However, it is important to bear in mind that any isolated interpretation of the
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baselines must be undertaken with caution because such interpretation assumes

that all covariates in the model are set to 0 (for continues covariates) and to the

reference category (for categorical variables).

Regression coefficients

We now look at the relevance of the covariates. For comparison purposes, the same

set of covariates was fed into each of the six sub-models. The fitted regression

coefficients together with their relative significance are displayed in Table 1 for

models including random effects and Table 2 for models without random effects.

Starting with the first, most of the variables have the expected signs. For example

older applicants have a lower probability of transiting from state 0 to state 1

whilst those with a higher credit limit or a higher proportion of credit limit drawn

have a higher probability, and in most cases the opposite sign is observed for the

reverse transition from state 1 to state 0. Older borrowers, those who had been

with the bank longer, those with a higher credit limit and those with less history of

improvement have a lower probability of transiting from one behind to two behind.

On the other hand, those with a higher repayment amount and lower proportion

of their limit drawn are more likely to recover from two behind to being up to

date. The longer the applicant was at their address or with the bank the lower

the chance of moving from two behind into default. Interestingly, the higher the

credit limit and the proportion of the limit drawn, the lower the chance of moving

into default.

Turning to the macroeconomic factors the higher the retail price index and the

mortgage interest rate the higher the probability of transition from up to date to

one payment behind and the lower the probability of recovery. The higher are

house prices, the lower are retail prices and the lower are credit card interest rates

the greater the chance of recovery from two behind to being up to date.

The estimates of the same parameter in the models excluding random effects

are generally more significant than those in the models with random effects. Those

covariates that are significant in the random effects models almost always have the

same sign in the models without random effects.
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Random effects

The random effects allow us to account for the correlation between different spells

as well as the unobserved variations. When fitting the model, the covariance

matrix Φ was assumed to be diagonal. Table 3 displays the estimates of the

variance of the random effects for each of the six transition types, together with

their relative significance. The result in this Table indicates that the random

effects are strongly significant.

Table 3: Variance of the random effects

0 − − − > 1 1 − − − > 0 1 − − − > 2 2 − − − > 0 2 − − − > 1 2 − − − > 3

Est. p-val Est. p-val Est. p-val Est. p-val Est. p-val Est. p-val

σ2
hj 1.14203 0.00000 1.59006 0.00000 0.97514 0.00000 2.35814 0.00000 1.77609 0.00000 1.93967 0.00000

2.3 Goodness of fit

A standard means of checking a model’s fit is to look at the residuals, i.e. the

standardised discrepancy between the actual data and what the model predicts.

There are several types of residuals in the literature. In this work, we can take

advantage of the discrete nature of the data and compute aggregate deviance

residuals monthly.

For a given transition type (h, j) ∈ S, we compute the monthly deviance

residuals arising from model (1)-(2) as follows:

Dhj(t) = ± 2

[
Ohj(t)× log

(
Ohj(t)

Ehj(t)

)
+ (Nhj(t)−Ohj(t))× log

(
Nhj(t)−Ohj(t)

Nhj(t)− Ehj(t)

)]
· (16)

In this expression, Nhj(t) is the number of accounts in the risk set Rhj(t); Ohj(t)

represents the total number of transitions from state h at time (t − 1) to state j

at time t; Ehj(t) denotes the predicted number of jumps from state h into state j,

i.e. Ehj(t) =
∑

i∈Rhj(t) q̂ihj where hat (ˆ) refers to the estimate.

A graphical illustration of these residuals is displayed in Figure 2. This shows

that the residuals from each sub-model are broadly centred, with no discernible

pattern (except perhaps for transitions from state 2 to state 0); in addition, more
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Figure 2: Aggregate deviance residuals.
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than 95% of the points lie between −2 and 2. These indicate that the sub-models

fit the actual data well.

2.4 Predictions

The model described in Section 1 can be used to predict time-dependent transition

probabilities for each account in the test set. These predicted probabilities encap-

sulate the baselines via the estimated spline coefficients and spline functions, as

well as the predicted effects of each covariate based on the regression coefficients

together with the values of the covariates in the test set.

Insight from aggregated one-step prediction

In practice, rather than calculating probabilities for each individual account, there

are situations where one often wants to explore predictions corresponding to spe-

cific values of a given covariate. This can be done in different ways.

One way is to set the unobservable random effects uihj to their expected

value (i.e. to 0) for each account in the test set, and then average the individual

predictions for accounts at each level of the targeted covariate at each time point.

An illustration of such aggregated predictions by employment type in time is dis-

played in Figure 3. A number of conclusions can be drawn from these graphics.

First, there is a high and increasing chance for accounts to remain at state

0 for all employment types, with employment types C and D having the highest

chance to remain. However, once an account has transited into state 1, there is

a lower chance to recover if that account is from employment type D compared

to types B, C and E. But overall, as the time the card is held advances there is

a slightly increasing chance to recover from state 1, a decreasing chance to move

from state 1 further into delinquency, and a broadly constant risk to remain at

state 1 (with those in employment type E having the highest chance to remain in

state 1). Also, there is an increasing chance of direct recovery from state 2, and a

decreasing chance to remain in state 2. However, this chance of direct recovery is

low compared to the chance of remaining in state 2, as well as that of defaulting

or that of moving into state 1.
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Figure 3: Aggregated predicted transition probabilities by employment type.
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A similar graphic for aggregated prediction by age bands in shown in Figure 4.

The overall patterns are broadly similar to those found in Figure 3. The increasing

volatility as one moves from the right to the left of each panel is due to the

decreasing number of accounts at risk in the test set.

The second (and more realistic) approach to estimate aggregated predictions

is to incorporate a reasonable amount of randomness into the process. For each

account i and each transition type (h, j) ∈ S, we generate a random deviate uihj

from N (0, σ̂2
hj) where the estimated variances σ̂2

hj are those displayed in Table 3.

We then add these simulated random effects to the linear predictor of each account.

We next compute the competing transition probability at each time point, and then

average these individual probabilities in each level of the targeted covariate at each

time point. The overall conclusion drawn from this second procedure was broadly

similar to that drawn from Figures 3 and 4, although the aggregated transition

probabilities were slightly more spread than those seen in these Figures (due to

the incorporation of random effects).

Insight from cumulative transition probabilities for typical accounts.

In the previous subsection, we looked at transition probabilities over a one month

horizon. However, as described in Section 1.3, we can equally explore the likelihood

of being in a given state at time t2 given the state occupied by the account at an

earlier time t1. For illustration, we create a typical account for each employment

type based on the test set as follows.

Each time-independent variable is set to the average (for continuous variables)

or modes (for categorical variables) over the accounts in each employment category.

Each behavioural variable at each time point is set to the mean or mode over

the accounts at risk at that time. For macroeconomic variables, we consider two

scenarios. Scenario 1 assumes that the account was open in January 2009, whereas

Scenario 2 set the open date to January 2010. The macroeconomy was more

bouyant in the latter period than the first with the index of production, the FTSE

and average wage earnings all higher and the mortage rate and credit card rate

lower.
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Figure 4: Aggregated predicted transition probabilities by age group.
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Tables 4 and 5 show the probabilities of transiting or staying in a given state

in month 12, given the state occupied by the account at time 6. The differ-

ence between the two Tables is an indication of the impact of the change in the

macroeconomic conditions under the two scenarios. Comparing the corresponding

probabilities we can see that the effect of the change in the economy was rela-

tively small across all states and employment types. In general, the probability of

transiting from state 1 to 0 increases for all employment types, and that from

state 1 to state 2 decreases as does that from state 2 to state 3. The probability of

transiting from state 2 to state 1 increases and from state 2 to 3 decreases.These

are all as expected as the economy improves. But those from state 0 to 1 or 2 or 3

all increase and those from state 2 to state 0 decrease, which are all contrary to

expectations.

Accuracy of Predictions

In this section, we assess the ability of the model to predict future states. Since

the outputs from the model are not the predicted states themselves, we will first

describe how to derive predicted states from the predicted transition probabilities.

We propose to compute the predicted states based on the distance between

the predicted probabilities and some pre-specified cut points. Let us denote

by ck0, ck1, ck2 and ck3 the values of some pre-specified cut points corresponding to

transitions from state k at time t1 to states j ∈ {0, 1, 2, 3} at a latter time t2.

Consider a test account i, and let us denote by p̂ik0, p̂ik1, p̂ik2 and p̂i3 the pre-

dicted competing probabilities that the account will be in state 0, 1, 2 and 3 at

time t2, given that the account was in state k at time t1. These probabilities

correspond to the kth row of the cumulative probability matrix (15).

At time t2 we predict that account i will be in state j such that

p̂kj − ckj = max {p̂k0 − ck0, p̂k1 − ck1, p̂k2 − ck2, p̂k3 − ck3} (17)

In other words, we predict that account i will find itself in the state corresponding

to the largest discrepancy between the transition probability and the corresponding

cut point.
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Table 4: Cumulative transition probability matrix, P̃ (6, 12), by employment type

for typical account opened in January 2009.

To state

0 1 2 3

Employment A From state

0 0.9020 0.0634 0.0167 0.0179

1 0.7703 0.0591 0.0242 0.1463

2 0.3361 0.0333 0.0256 0.6051

3 0 0 0 1

Employment B From state

0 0.9040 0.0595 0.0198 0.0167

1 0.7569 0.0572 0.0357 0.1501

2 0.3207 0.0365 0.0470 0.5958

3 0 0 0 1

Employment C From state

0 0.8960 0.0561 0.0207 0.0272

1 0.7080 0.0497 0.0290 0.2133

2 0.2489 0.0242 0.0260 0.7009

3 0 0 0 1

Employment D From state

0 0.9698 0.0235 0.0034 0.0032

1 0.8983 0.0246 0.0123 0.0648

2 0.3529 0.0213 0.0424 0.5834

3 0 0 0 1

Employment E From state

0 0.9351 0.0287 0.0110 0.0252

1 0.7021 0.0241 0.0113 0.2625

2 0.3099 0.0123 0.0071 0.6708

3 0 0 0 1

Table 5: Cumulative transition probability matrices, P̃ (6, 12), by employment

type for typical account opened in January 2010.

To state

0 1 2 3

Employment A From state

0 0.8868 0.0730 0.0174 0.0227

1 0.7722 0.0683 0.0233 0.1362

2 0.2818 0.0340 0.0243 0.6599

3 0 0 0 1

Employment B From state

0 0.8891 0.0687 0.0206 0.0216

1 0.7606 0.0655 0.0327 0.1412

2 0.2727 0.0378 0.0441 0.6455

3 0 0 0 1

Employment C From state

0 0.8799 0.0645 0.0212 0.0343

1 0.7145 0.0572 0.0268 0.2015

2 0.2123 0.0241 0.0223 0.7413

3 0 0 0 1

Employment D From state

0 0.9650 0.0276 0.0035 0.0039

1 0.9096 0.0284 0.0097 0.0523

2 0.2887 0.0231 0.0424 0.6458

3 0 0 0 1

Employment E From state

0 0.9240 0.0332 0.0117 0.0310

1 0.7157 0.0277 0.0111 0.2455

2 0.2686 0.0121 0.0061 0.7133

3 0 0 0 1
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The cut point vectors (ck0, ck1, ck2, ck3) are estimated (based on the accounts in

the training set) as the multi-dimensional maximisers of the objective functions fk

defined by

fk(a0, a1, a2, a3) =
1

Nk(t1)

∑
i,

with
δi(t1)=k

1{δ̂i(t2|a0,a1,a2,a3)=δi(t2)} (18)

In this expression, Nk(t1) represents the number of accounts in state k at time t1,

δi(t) denotes the true state occupied by account i at time t, and δ̂i(t|a0, a1, a2, a3)
denotes the predicted state corresponding to the generic cut point vector (a0, a1, a2, a3).

Thus, fk(a0, a1, a2, a3) is the proportion of accurate predictions corresponding to

the cut point vector (a0, a1, a2, a3).

In some extreme scenarios, the discrepancy measure (17) above might tend to

favour jumps toward transition types with larger predicted probabilities; this can

lead to classification bias. One way to avoid this is to incorporate suitable scale

factors. Thus, we consider two additional measures: the standardised discrepancy

and the relative discrepancy.

Under the standardised discrepancy, the predicted state at time t2 is the state j

such that

p̂kj − ckj
ŝkj

= max

{
p̂k0 − ck0
ŝk0

,
p̂k1 − ck1
ŝk1

,
p̂k2 − ck2
ŝk2

,
p̂k3 − ck3
ŝk3

}
(19)

where the ŝkj denote the empirical standard deviations of the predicted probabil-

ities.

Under the relative discrepancy measure, the predicted state at time t2 is the

state j such that

p̂kj − ckj
ckj

= max

{
p̂k0 − ck0
ck0

,
p̂k1 − ck1
ck1

,
p̂k2 − ck2
ck2

,
p̂k3 − ck3
ck3

}
(20)

We note that this classification framework is different to that found elsewhere.

For example the cut points used by Leow and Crook (2014) were computed such

that the proportion of accounts predicted to undergo transition is equal to the

proportion that underwent transition in the training set, irrespective of whether

the predicted states were correct or not. In addition, their classification algorithm
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Table 6: Prediction performance at time 12, given state at time 6.

Model without random effects Model with random effects

State at time 6 Discrepancy (17) Discrepacy (19) Discrepancy (20) Discrepancy (17) Discrepacy (19) Discrepancy (20)

0 89% 90% 89% 90% 90% 90%

1 72% 73% 72% 72% 72% 72%

2 63% 62% 62% 63% 63% 63%

discarded the competing spirit of multi-state models. These concerns have been

addressed in the framework described above.

A comparative illustration of the predictive performance at time t2 = 12, given

the state occupied at time t1 = 6, is shown in Table 6 under our three discrepancy

measures (17) (19) and (20). We notice first that the predictive accuracy is the

same ragardless of the measure used. Second the predictive accuracy decreases at

higher initial delinquency states. Third the model with random effects has almost

identical predictive accuracy as the model without random effects, but is never

less than 63%.

3 Conclusion

We have parameterised multistate models that predict the probability that a credit

card account will transit between two delinquency states in the next time period

and have used the estimated parameters to predict competing risk probabilities

that an account will transit between states between two, not necessarily adjacent,

time periods. For each possible transition, we have compared these probabilities

to cut points to derive predicted jumps for an account and compared the predicted

number of jumps with the observed number for the portfolio as a whole. We have

made three contributions to the literature. We have included random effects in

multistate models to account for unobserved heterogeneity and have observed the

change in predictive accuracy this affords and the significance of macroeconomic

variables that have been included in the models. We conclude first that the use of

B-splines allows the detection of noticeably different baseline hazards between the

jump processes. Second the inclusion of the random effects is supported by the
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highly significant variances of these effects for all models. Third the inclusion of

random effects generally reduces the significance of the covariates. Fourth when

a very flexible baseline function is used the inclusion of random effects does not

enhance predictive accuracy.
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