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Abstract

We consider a supercritical branching Lévy process on the real line. Under

mild moment assumptions on the number of offspring and their displacements,

we prove a second-order limit theorem on the empirical mean position.
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1. Introduction

A branching Lévy process describes a population of particles undergoing spatial

movement, death, and reproduction. It can be defined informally as follows (for a

formal definition, see Section 2). Initially there is one particle located at the origin

of the real line. The particle lives for an exponentially-distributed time. During this

time it moves according to a Lévy process. At the time of death, the particle is

replaced by a random number of new particles, displaced from the parent particle’s

death position according to a point process. All particles move, die, and reproduce

in a statistically identical manner, independently of every other particle. We are only

concerned with the supercritical case. That is, each particle gives birth to more than

one particle on average, and thus the total number of particles grows to infinity with

∗ Postal address: Program for Evolutionary Dynamics, Harvard University, Cambridge, Mas-

sachusetts, USA, dmcheek@g.harvard.edu
∗∗ Postal address: School of MACS, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom;

v.shneer@hw.ac.uk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/323961351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 David Cheek and Seva Shneer

positive probability.

The particle positions’ empirical distribution has received much attention, especially

for branching random walks and branching Brownian motion, which are special cases

of the model. There are many results on the empirical distribution’s maximum [5, 4,

10], as well as on large deviations [12] and on the almost-sure weak convergence to a

Gaussian distribution [3, 11].

The empirical mean position, which is simple and important for applications, has

received relatively little attention. For specific branching random walks, [13] shows

that the empirical mean position almost surely grows asymptotically linearly with

time, while [7] shows that the empirical mean position’s variance converges. These

results combined raise the question of characterising a second-order limit term.

For branching Lévy processes, under some mild moment assumptions on the number

of offspring and their displacements, we prove a second-order limit theorem for the

empirical mean position. Namely, we show that the difference between the empirical

mean position at time t and rt, for some constant r, converges almost surely to a

random variable.

Before proceeding with the remainder of the paper, we discuss some special cases of

the model and applications.

First, consider that particles do not move during their lifetime and that each particle

is displaced by +1 from its parent. A particle’s position is its generation. Our result

describes the average generation, complementing results of [13, 6]. Second, consider

instead that displacement sizes are Poisson distributed. This is a popular model for

cancer evolution [8]. Here particles are cells, and a cells’ position is its number of

mutations. Our result gives the average number of mutations per cell. Third, consider

that particles are not displaced from their parent but move as a random walk during

their lifetime. This model is seen in phylogenetics. The branching process represents

speciation [1], while the positions are lengths of a particular DNA segment [9].

The remainder of the paper is organised as follows. We introduce the model in

Section 2, formulate our main result in Section 3 and prove it in Section 4.
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2. Model

Initially there is a single particle named ∅ which moves according to a Lévy process

(Z∅,s)s≥0, with Z∅,0 = 0 and E[Z2
∅,1] <∞. After an exponentially distributed waiting

time A∅, the particle dies and is replaced by a random number N∅ of new particles with

E[N∅] > 1 and E[N2
∅ ] < ∞. The new particles are born at positions (Z∅,A∅ + Di)

N∅
i=1.

The Di are R-valued random variables with

E

( N∅∑
i=1

Di

)2
 <∞ and E

[
N∅∑
i=1

D2
i

]
<∞.

Independence is assumed between (Z∅,s)s≥0 and A∅ and (Di)
N∅
i=1 (but the Di need not

be independent of each other nor of N∅). All particles independently follow the initial

particle’s behaviour.

To denote particles we follow standard notation. Let

T =
⋃

n∈N∪{0}

Nn.

Here N0 = {∅} contains the initial particle. For v = (v1, .., vn) ∈ T and i ∈ N write

vi = (v1, .., vn, i), where v is the parent of vi. To describe genealogical relationships,

the set T is endowed with a partial ordering ≺, defined by

(ui)
m
i=1 ≺ (vi)

n
i=1 ⇐⇒ m < n and (ui)

m
i=1 = (vi)

m
i=1.

Write � for ≺ or =.

Now let [
(Zv,s)s≥0, Av, (Dvi)

Nv
i=1

]
for v ∈ T be i.i.d. copies of [

(Z∅,s)s≥0, A∅, (Di)
N∅
i=1

]
.

The set of all particles to ever exist is

T ∗ =
{

(vi)
n
i=1 ∈ T : vm+1 ≤ N(vi)mi=1

, for m = 0, 1, .., n− 1
}
.

The particles alive at time t ≥ 0 are

Tt =

v ∈ T ∗ :
∑
u≺v

Au ≤ t <
∑
u�v

Au

 .
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Particle v at time t, if it is alive, has position

Xv,t =
∑
∅≺u�v

Du +
∑
∅�u≺v

Zu,Au
+ Zv,t−

∑
∅�u≺v Au

.

For further notation, the branching rate is

λ = E[A∅]
−1,

the effective branching rate is

λ̂ = λE[N∅ − 1],

and the movement rate is

r = E[Z∅,1] + λE

[
N∅∑
i=1

Di

]
.

3. Main result

Theorem 1. Conditional on the event {limt→∞ |Tt| =∞}, the limit

lim
t→∞

1

|Tt|

(∑
v∈Tt

Xv,t − rt

)

exists and is finite almost surely.

4. Proof of Theorem 1

Our proof will involve conditioning on whether branching occurs during the time

interval [0, h] for some small h > 0. Write

J0,h = {A∅ > h}

for the event that the first branching occurs after time h. Write

J1,h =

{
A∅ ≤ h < A∅ + min

i=1,..,N∅
Ai

}
for the event that the first branching occurs before time h and the second branching

occurs after time h. Write

J2,h =

{
A∅ + min

i=1,..,N∅
Ai ≤ h

}
.
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for the event that the second branching occurs before time h. Note the probabilities
P[J0,h] = 1− hλ+ o(h)

P[J1,h] = hλ+ o(h)

P[J2,h] = o(h),

as h ↓ 0. Observe the conditional distribution ∑
v∈Tt+h

(Xv,t+h − r(t+ h))
∣∣J0,h

 d
=
∑
v∈T ′t

(Z∅,h +X ′v,t − r(t+ h)), (1)

where (X ′v,t)v∈T ′t
d
= (Xv,t)v∈Tt , and (X ′v,t)v∈T ′t is independent of Z∅,h. Meanwhile ∑

v∈Tt+h

(Xv,t+h − r(t+ h))
∣∣J1,h

 d
=

N∅∑
i=1

∑
v∈T i

t

(Di +Xi
v,t − rt) + ηh, (2)

where (Xi
v,t)v∈T i

t

d
= (Xv,t)v∈Tt for i = 1, .., N∅; the (Xi

v,t)v∈T i
t

are independent of each

other and of (Di)
N∅
i=1; and

ηh =

(
N∅∑
i=1

|T it |(Z∅,A∅ + Zi,h−A∅ − rh)|J1,h

)
.

Straightforward calculations show that the first and second moments of ηh converge to

0 as h ↓ 0.

Lemma 4.1. For t ≥ 0,

E

[∑
v∈Tt

(Xv,t − rt)

]
= 0.

Proof. From (1),

E

 ∑
v∈Tt+h

(Xv,t+h − r(t+ h)) |J0,h

 = E

[∑
v∈Tt

(Xv,t − rt)

]
+ h

(
E[Z∅,1]− r

)
E|Tt|.

From (2),

E

 ∑
v∈Tt+h

(Xv,t+h − r(t+ h)) |J1,h

 =E[N∅]E

[∑
v∈Tt

(Xv,t − rt)

]

+ E

[
N∅∑
i=1

Di

]
E|Tt|+ o(1).
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Taking the unconditional expectation,

E

 ∑
v∈Tt+h

(Xv,t+h − r(t+ h))

 =(1− hλ)E

 ∑
v∈Tt+h

(Xv,t+h − r(t+ h)) |J0,h


+ hλE

 ∑
v∈Tt+h

(Xv,t+h − r(t+ h)) |J1,h

+ o(h)

=E

[∑
v∈Tt

(Xv,t − rt)

]
(1 + hλ̂) + o(h).

Rearranging and taking h ↓ 0,

d

dt
E

[∑
v∈Tt

(Xv,t − rt)

]
= λ̂E

[∑
v∈Tt

(Xv,t − rt)

]
.

The statement of the lemma for any t now follows from the above and the fact that it

clearly holds for t = 0. �

Next we determine second moments.

Lemma 4.2. For t ≥ 0,

E

(∑
v∈Tt

(Xv,t − rt)

)2
 = c1e

2λ̂t − c2teλ̂t − c1eλ̂t,

where

c1 =
E[(N∅ − 1)2]

E[N∅ − 1]2
E

[
N∅∑
i=1

D2
i

]
+

1

E[N∅ − 1]
E

( N∅∑
i=1

Di

)2


and

c2 = λ̂
E[(N∅ − 1)2]

E[N∅ − 1]2
E

[
N∅∑
i=1

D2
i

]
.

Proof. From (1),

E


 ∑
v∈Tt+h

(Xv,t+h − r(t+ h))

2 ∣∣∣J0,h
 =E

(∑
v∈Tt

(Xv,t − rt)

)2


+ 2h
(
E[Z∅,1]− r

)
E

[
|Tt|

∑
v∈Tt

(Xv,t − rt)

]

+ h
(
E[Z2

∅,1]− E[Z∅,1]2
)
E[|Tt|2]

+ o(h).



Mean position of a branching Lévy process 7

From (2) and Lemma 4.1,

E


 ∑
v∈Tt+h

(Xv,t+h − r(t+ h))

2 ∣∣∣J1,h
 =E


 N∅∑
i=1

∑
v∈T i

t

(Xv,t − rt)

2


+ 2E

 N∅∑
i=1

Di|T it |
∑
v∈T i

t

(Xv,t − rt)



+ 2E

 N∅∑
i,j=1
i 6=j

Di|T it |
∑
v∈T j

t

(Xv,t − rt)


+ E

( N∅∑
i=1

Di|T it |

)2
+ o(1)

=E[N∅]E

(∑
v∈Tt

(Xv,t − rt)

)2


+ 2E

[
N∅∑
i=1

Di

]
E

[
|Tt|

∑
v∈Tt

(Xv,t − rt)

]

+ E

[
N∅∑
i=1

D2
i

](
E
[
|Tt|2

]
− (E|Tt|)2

)

+ E

( N∅∑
i=1

Di

)2
 (E|Tt|)2 + o(1).

But E|Tt| and E[|Tt|2] are standard knowledge [2]:

E|Tt| = eλ̂t

and

E[|Tt|2] =

(
1 +

E[(N∅ − 1)2]

E[N∅ − 1]

)
e2λ̂t − E[(N∅ − 1)2]

E[N∅ − 1]
eλ̂t.

Therefore

E


 ∑
v∈Tt+h

(Xv,t+h − r(t+ h))

2


= (1− λh)E


 ∑
v∈Tt+h

(Xv,t+h − r(t+ h))

2 ∣∣∣J0,h
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+ hλE


 ∑
v∈Tt+h

(Xv,t+h − r(t+ h))

2 ∣∣∣J1,h
+ o(h)

= 1 + hλ̂E


∑
v∈T i

t

(Xv,t − rt)

2


+ hae2λ̂t + hbeλ̂t + o(h),

where

a = λ

E[(N∅ − 1)2]

E[N∅ − 1]
E

[
N∅∑
i=1

D2
i

]
+ E

( N∅∑
i=1

Di

)2


and

b = −λE[(N∅ − 1)2]

E[N∅ − 1]
E

[
N∅∑
i=1

D2
i

]
Rearranging and taking h ↓ 0,

d

dt
E


∑
v∈T i

t

(Xv,t − rt)

2
 = λ̂E


∑
v∈T i

t

(Xv,t − rt)

2
+ ae2λ̂t + beλ̂t.

The statement of Lemma 4.2 now follows directly from the differential equation above.

�

Next we present a martingale result for which a filtration (Ft)t≥0 needs to be defined:

Ft = σ ((Xv,s)v∈Ts : 0 ≤ s ≤ t) .

Lemma 4.3. (
e−λ̂t

∑
v∈Tt

(Xv,t − rt)

)
t≥0

is a martingale with respect to (Ft)t≥0.

Proof. Write

Tu,t = {v ∈ Tt : u � v}

for the particles alive at time t which are descendants of u ∈ T . Let 0 ≤ s ≤ t. Then

e−λ̂t
∑
v∈Tt

(Xv,t − rt) =e−λ̂t
∑
u∈Ts

∑
v∈Tu,t

(Xv,t −Xu,s − r(t− s))
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+ e−λ̂t
∑
u∈Ts

|Tu,t| (Xu,s − rs) .

Taking conditional expectations,

E

[
e−λ̂t

∑
v∈Tt

(Xv,t − rt)
∣∣Fs]

= e−λ̂t|Ts|E

 ∑
v∈Tt−s

(Xv,t−s − r(t− s))

+ e−λ̂t
∑
u∈Ts

eλ̂(t−s)(Xu,s − rs)

= e−λ̂s
∑
u∈Ts

(Xu,s − rs),

where the last equality is due to Lemma 4.1. �

Proof of Theorem 1. By Lemmas 4.2 and 4.3 and the martingale convergence theo-

rem, there is a R-valued random variable V with

lim
t→∞

e−λ̂t
∑
v∈Tt

(Xv,t − rt) = V (3)

almost surely. But conditioned on the event {limt→∞ |Tt| = ∞}, there is a positive

random variable W with

lim
t→∞

e−λ̂t|Tt| = W (4)

almost surely [2]. Combine (3) and (4) to conclude the proof. �
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