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Discrete Element Method (DEM) simulations coupled with shear cell experimental results have been used to
investigate the flow behaviour of a dry particle assembly of glass beads in the quasi-static regime. Experimental
studies have been undertaken using an FT4 powder shear cell apparatus, in parallel with extensive DEM simula-
tions of both homogeneous simple shear and the FT4 shear cell itself. The findings show that it is not possible to
accurately predict the bulk friction coefficient with homogeneous simple shear simulations unless both rolling
and sliding friction are considered. There are, however, multiple pairs of sliding and rolling friction coefficients
which can reproduce the experimental bulk friction coefficient. Sliding test experiments were conducted to
yield the coefficient of sliding friction, and hence minimise the set of potentially correct pairs. Simulations of
the full FT4 shear cell with two different calibration pairs, along with a pair without rolling friction, were then
undertaken to understand the effect of their selection on realistic wall-bounded shearing conditions. Discrepan-
cies weremainly found in the obtained radial contact number and velocity profiles, with increasing friction coef-
ficients - particularly sliding friction - found to inhibit packing and particle velocity in the shear deformation zone.
Comparison between homogeneous simple shear and shear cell simulation results showed a significant effect of
the wall on the obtained force network, with almost a complete absence of the weakest structures which were
seen supporting the strong structures in the simple shear scenario.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Assemblies of granular particles such as sand or metal powders are
ubiquitous in both nature and a wide range of engineering processes.
The particles which make up these assemblies exhibit a broad range of
intricate interactive behaviours that dictate the bulk behaviour of the
granular media. These behaviours are dependent not only on the mate-
rial, but also on the size and shape of the particles, and the presence of
moisture. There is therefore a need for better understanding of complex
particle-particle interactions at the particle-scale which will allow for
accurate prediction of bulk behaviour. For granular materials there are
two well-established regimes, inertial and quasi-static [5,44]. In the
inertial regime, particle-particle collisions are instantaneous and binary,
with flowanalogous to amolecular gas [11,21]. Conversely, in the quasi-
static regime - the focus of this study - flow is dense, and macro-
scopic deformation of granular material is slower compared with
re-arrangement of particles at the microscopic scale. Movement of the
particles in this regime is mainly driven by formation, rotation, and
.V. This is an open access article und
breakage of force chains. The flow behaviour of granular materials in
the quasi-static regime has been extensively studied through experi-
mental and computational means. Earlier experimental studies are
focused on bulk behaviour (e.g. Schwedes [47]; Leturia et al. [38]), pri-
marily using a shear cell with fixed lid and a base rotating around the
vertical axis. Bridgwater et al. [9] showed that the velocity profile across
the height of a narrow, densely packed powder bed (<20 particle diam-
eters) is approximately linear, with slight deviation at the boundaries of
the shear band and the neighbouring regions of unsheared powder
above and below the band. Hsiau and Jang [27] employed particle track-
ing in a shear cell operating at higher strain rate and found a high shear
region near the stationary cell wall, accompanied by a neighbouring low
shear region near the moving wall which exhibited greater and more
uniform velocity. Using the same cell arrangement, Hsiau and Yang
[29] showed the velocity fluctuations in the direction of the flow to be
much greater than in the transverse (vertical) direction, with an in-
crease in solid fraction resulting in an increase in velocity fluctuation
and a decrease in diffusion coefficients, whilst Hsiau et al. [28] showed
that a reduction in friction coefficient results in an increase in shear
rates and fluctuation velocities. More recent studies have used X-ray
micro-tomography [4,7,8] and magnetic resonance imaging (MRI)
[10,48] to provide experimental data at the particle-scale.
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

[L,01] C Number of contacts per particle
[L,02] <C> Time-averaged local contact number
[L,03] Ctot Total number of contacts
[L,04] Cμ Damping coefficient for the EPSD model
[L,05] Cμ

crit Rolling critical viscous damping coefficient
[L,06] c Cohesion coefficient
[L,07] dp Particle diameter
[L,08] Fc Contact force
[L,09] <Fc> Mean contact force
[L,10] Fc, n Normal component of contact force
[L,11] Fz

b Force exerted on the base of the shear cell, z compo-
nent, simulations

[L,12] Fz, expb Force exerted on the base of the shear cell, z com-
ponent, experiments

[L,13] Hγ Height of the shear deformation zone
[L,14] I Inertial number
[L,15] Ii Moment of inertia related to particle i
[L,16] Ir Equivalent moment of inertia for two particles in

contact
[L,17] K Proportional controller constant for the

compression phase
[L,18] kμ

EPSD Spring constant for the EPSD model
[L,19] kμ

EPSD2 Spring constant for the EPSD2 model
[L,20] kn Normal spring constant
[L,21] ktTangential spring constant
[L,22] Mr Rolling friction torque
[L,23] Mμ

d Rolling friction torque related to the dashpot in the
EPSD model

[L,24] Mμ
s Rolling friction torque related to the spring in the

EPSD model
[L,25] mp Mass of a particle
[L,26]
[L,27] P Pressure
[L,28] P(ψ) PDF of the branch unit vector angles
[L,29] P(Fc) PDF of the contact force modulus
[L,30] Pobjective Objective Pressure
[L,31] R Radius of the shear cell
[L,32] Rc Shear head radius
[L,33] Re Cylindrical vessel radius
[L,34] Ri Radius of the no-shearing zone in the shear cell
[L,35] Rr Ratio between kμ

EPSD and kμ
EPSD2

[L,36] r ∗ Equivalent radius
[L,37] Tz

t Torque exerted on the shear head, simulations
[L,38] Tz, exp

t Torque exerted on the shear head, experiments
[L,39] tcompression Duration of the compression phase during a

HSS simulation
[L,40] tshear Duration of the shearing phase during a HSS

simulation
[L,41] <Us> Time averaged local solid velocity
[L,42] wi

J Weight factor for the averaging procedure
[L,43] z Axial co-ordinate
[L,44] z Direction of the axial axes
[L,45] z∗ Dimensionless axial co-ordinate
[G,01]
[G,02] γ

:
Shear rate

[G,03] Δ Radial gap between the shear head and the cylindrical
vessel

[G,04] Φ Solid volume fraction
[G,05] εpp Particle-particle restitution coefficient
[G,06] ηr Damping parameter for the EPSD model
[G,07] θ Azimuthal co-ordinate in cylindrical frame of

reference

[G,08] eθ Direction of the azimuthal axes in the cylindrical frame
of reference

[G,09] θμ Relative rolling angle between two particles in
contact

[G,10] θ
:

μ Relative rolling velocity between two particles in
contact

[G,11] μ Particle-particle friction
[G,12] <μ ∗> Time-averaged local coefficient of internal

friction
[G,13] μ ∗ Internal friction coefficient
[G,14] μexp∗ Internal friction coefficient observed

experimentally
[G,15] μr Rolling friction
[G,16] μw Wall friction
[G,17] ν Poisson's ratio
[G,18] ρRadial co-ordinate in cylindrical frame of reference
[G,19] eρ Direction of the radial axes in the cylindrical frame of

reference
[G,20] ρ ∗ Dimensionless radial co-ordinate
[G,21] ρp Particle density
[G,22] σij ij component of the stress tensor, HSS simulations
[G,23] σzz Normal stress, shear cell, simulations
[G,24] σzz, ∗ Dimensionless axial stress
[G,25] σexp

zz Normal stress, shear cell, experimental
[G,26] σzexp, pre−shear

zz Normal stress during pre-shear, shear
cell, experimental

[G,27] σexp, shear
zz Normal stress during shear, shear cell,

experimental
[G,28] τ12 Major shear stress for HSS simulations
[G,29] τρθ Shear stress on plane perpendicular to ρ, directed to-

wards θ, simulations
[G,30] τexpρθ Shear stress on plane perpendicular to ρ, directed

towards θ, experimental
[G,31] τzθ Shear stress on plane perpendicular to z, directed to-

wards θ, simulations
[G,32] <ΦJ> A macroscopic averaged property belonging to

the mesh element J
[G,33] ϕi A macroscopic discrete property belonging to

particle i
[G,34] ψn Direction of the branch vector
[G,35] Ω Shear head rotation velocity, simulations
[G,36] Ω0 Shear head rotation velocity, test, simulations
[G,37] Ωexp Shear head rotation velocity, experimental
[G,38] ω

 
μ Relative rotational velocity.
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In terms of mathematical modelling, the Discrete Element Method
(DEM) with a soft-sphere collision model [16] has been commonly
used to investigate interaction between individual particles and predict
bulk behaviour of granular materials in the quasi-static regime. For the
soft-sphere collision model, particle-particle and particle-wall contact
and damping forces are computed by either a linear (Hookean) or
non-linear (Hertzian) spring-dashpot model, while sliding and rolling
frictions are modelled with an additional torque and tangential force
to resist rolling and sliding motions. In these models, particle-particle
and particle-wall restitution coefficients, as well as sliding and rolling
friction coefficients, need to be defined based on prior knowledge.
Such knowledge has been historically difficult to determine experimen-
tally. Restitution coefficients are commonly obtained via drop tests [14],
while sliding inclined plane [18,36] and rolling resistance apparatus
[25,26] have been used to provide limited insight into sliding and rolling
friction respectively. Both these techniques are limited as they require a
surface to bemade of the particle material with identical roughness and
composition to be sufficiently representative of particle-particle



Fig. 1. (a) Schematic diagram of the sliding friction apparatus. (b) Time evolution of the sliding force F with a sliding speed equal to 5 mm/s and a weightW equal to 1.1 N.
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interaction. A further technique which has been used is pile formation
[24,54], with the angle of repose heavily dependent on rolling friction.
Another techniquewhichmakes use of the angle of repose has been de-
veloped which analyses granular material in a continuously rotating
drum [32]. Additionally, it is possible to study individual particles in
contact at the molecular level using atomic force spectroscopy [39,52].
This technique, although accurate, is often prohibitively expensive. It
is also limited to a maximum scanning area of 20 × 150 × 150μm,
withmultiple probes in parallel required if particle contact area exceeds
this, raising both cost and complexity.

In this study, shear cell experiment results for internal friction of
glass beads have been combined and compared with DEM simulations
to measure bulk behaviour and determine possible rolling and sliding
friction coefficient values. Measurement of the bulk friction coefficient
in this way is well-established and highly accurate. Simultaneous cali-
bration of both sliding and rolling friction is complex but it has been
shown that, for spherical particles, DEM simulations accounting for
only sliding friction are unable to predict the experimental bulk friction
coefficient [34,42,50]. Coetzee and Els [15] conducted a similar calibra-
tion procedure to that of this work but accounted for only sliding fric-
tion, which was sufficient as non-spherical particles were used. Grima
and Wypych [24] carried out the DEM calibration procedure using pile
formation apparatus, and theorised that in the quasi-static regime the
shape of non-spherical particles is sufficient to inhibit rolling without
an additional resistant force being added to the model. For spherical
particles, where the rolling friction is required, the calibration proce-
dure can yield theoretically infinite possible correct combinations of
sliding and rolling friction coefficients, and selection of the correct pair
is the focus of discussion in thiswork. To reduce the number of potential
pairs, a further sliding test experimental investigationwas conducted to
determine the sliding friction coefficient. In addition, the effect of
selectingdifferent potential calibration pairs on the results of simulating
a realistic application has also been investigated.

The shear cell experiment subjects the granular material to a given
applied normal pressure, and the stress needed to generate shear is
evaluated. The shear cell apparatus of an automated powder rheometer
is used in order to generate experimental shear test data (normal stress
vs. shear stress and bulk internal friction coefficient). In addition, two
Table 1
Sliding test results.

Weight W[N] Force F[N] Sliding friction coefficient μexp

1.1 0.25 ± 0.079 0.23 ± 0.071
3.06 0.63 ± 0.19 0.21 ± 0.063
types of DEM simulation have been performed: one with periodic do-
main Lees-Edwards (LE) boundary conditions, for the purpose of cali-
bration; and one simulating the same shear cell geometry as the
experimental apparatus. The shear cell simulations, while computation-
ally expensive, allow a more detailed analysis on the effect of inter-
particle friction coefficients on phenomena within a shear cell.
2. Experimental setup

2.1. Sliding test

The particles considered in this study are dry spherical glass beads
with a diameter, dp, of 500 μm. To determine the sliding friction coeffi-
cient, a mechanical sliding test was conducted using monolayers of
these particles, which were glued onto a fixed bottom rectangular
plate with dimensions of 40 mm by 150 mm and a top plate with di-
mensions of 40 mm by 40 mm. The glass particles were placed to
form a tightly packed single layer that spans over plates. The two layers
of particles were then brought into contact by applying a weight on the
top plate as shown in Fig. 1a.
Fig. 2. FT4 shear cell: A - Shear head; B - Cylindrical cup. The direction of shear and normal
stress are shown by τ and σ respectively.



Fig. 3. Experimental procedure of FT4 shear cell, evolution of: (a) shear stress τexpρθ during pre-shearing and shearing phases. Normal stress σexp
zz and shear stress τexpρθ are evaluated by

Eqs. (1) and (2), respectively; (b) normal stress σexp
zz .
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A linear displacement-controlled drive moves the top plate in the
horizontal direction and shears it against the bottom fixed plate at a
controlled sliding speed. A 10 N load cell with a force resolution of
0.001 N is attached between the linear drive and the top plate to
measure the force resulting from the sliding. The coefficient of sliding
friction can then be evaluated as the ratio of sliding force F to the
weight W.

Experiments were performed using two weights (1.1 and 3.06 N)
and the sliding speed was fixed at 5 mm/s. Fig. 1-b shows the time evo-
lution of themeasured force F under aweight of 1.1N. The presented re-
sults were averaged over 9 different measurements. The figure shows a
steady evolution of the force in timewith slight oscillations attributed to
the small size of the particles. The forces were then averaged over time
to compute the sliding friction coefficients μexp. The time-averaged
force, weight and the corresponding sliding friction coefficients are
given in Table 1.

2.2. FT4 rheometer shear cell

The flow behaviour of the glass bead assembly was evaluated using
the shear cell test of the automated FT4 powder rheometer [20] (devel-
oped by Freeman Technology Ltd. Tewkesbury, Gloucestershire, UK). An
image of the shear cell apparatus is presented in Fig. 2.
Fig. 4. Flow configuration of homogeneous simple shear: (a) - 2D rendering of a simulation show

xz-plane; (b) - 3D rendering with dimensions [x y z] of 15 × 15 × 15 dp.
The shear head is a stainless steel cylinder (see Fig. 2, element
A) with a radius, Rc, of 24 mm and equipped with 18 blades. These
blades ensure that shearing occurs only between particles, without
the influence of any wall effect related to shear-head–particle friction.
The blades extend from the outer edge of the shear head to a point
just outside the centre, leaving a central zone of radius, Ri= 3 mm in
which particles do not shear. The cylindrical cup which holds the pow-
der bed has an internal radius, Re, of 25 mm. This system is capable of
building the entire yield locus diagram of the analysed powder sample,
andmakes it possible to obtain several important properties such as the
bulk friction coefficient μexp∗ .

Angular velocity of the shear head is set toΩexp = 0.05RPM and the
experimental procedure begins with a pre-shear process. During the
first pre-shear, the bladed shear head moves downward in order to
apply a vertical consolidation stress (normal stress σexp

zz ) on the powder
bed (Fig. 2, element B). Once the desired normal stress is reached, the
shear head starts to rotate and the resulting torque,Mz, expt , is measured.
The shear stress, τexpρθ , and the consolidation stress are evaluated from
the torque and the normal force applied by the shear head Fz, exp

b respec-
tively using the following relations:

τρθexp ¼
3
2

Mt
z, exp

πR3
c

 !
ð1Þ
ing normalised instantaneous particle velocity v ¼ ∣up ∣
γ
:
dp
, where shearing takes place on the



Fig. 5.Compression-shearing scheme for thehomogeneous simple shear simulations tomaintain the ratio of the desired pressure Pobjective and the evaluated applied pressure P at a value of
one. The strain rate ε

:
is dependent on the controller gain K, which defines the compression time tcompression.

294 A. Angus et al. / Powder Technology 372 (2020) 290–304
σ zz
exp ¼

Fbz, exp
πR2

c

 !
ð2Þ

During the first pre-shear, the shear strength results and the shape
of the curve (Fig. 3-a) are highly affected by the initial condition of
the powder bed. This pre-shearing procedure is repeated until the
maximum shear stress of two consecutive pre-shear steps show a
difference of less than 1%. During every pre-shear, the normal pressure
σexp, pre−shear
zz is maintained constant (see Fig. 3-b) through a controller

acting on the head of the shear cell. Once the powder reaches its critical
state, the first shearing test is performed, normal pressure is set to the
desired value and the shear strength of the material is evaluated using
eq. (1). During a shearing test, the axial position of the shearing head
is kept constant and the shear strength is considered as the peak of
the shear stress curve. After every shear, another pre-shear step is exe-
cuted to re-establish critical conditions. Shearing can then be repeated
for several normal pressures to build the complete yield locus diagram.

For a conventional powder in the quasi-static regime, it is possible to
represent the powder through the Mohr-Coulomb failure criterion. The
shear stress τexpρθ is given by:

τρθexp ¼ μ∗
expσ

zz
exp þ c, ð3Þ

where c is the coefficient of cohesion. In this study, since particle size is
sufficiently large, cohesive forces such as van der Waals are not signifi-
cant and only the bulk friction coefficient μexp∗ will be used for compari-
son with simulations.

3. Mathematical modelling

3.1. Contact model

For the simulations conducted in this study, the discrete element
method (DEM) has been used. In the DEM approach [16], particles are
tracked by solving Newton's equations of motion:

mi
dvi
dt
¼∑

j
f nc,ij þ f tc,ij
� �

ð4Þ

Ii
dωi

dt
¼∑

j
Mij þMr ð5Þ

In the equations, particle i is spherical and has mass mi, moment of
inertia Ii, translational and angular velocities vi and ωi. The normal and
tangential contact forces between two particles i and j or particle i and
wall j are represented by fc, ijn and fc, ijt respectively. The torque acting
on particle i due to particle j is Mij and Mr is the clipped torque due to
rolling friction.Mij is calculated as:
Mij ¼ Rij � f tc,ij, ð6Þ

where Rij is the vector from the centre of particle i to the contact
point.

The particle contact forces fc, ijn
and fc, ij

t are calculated by following
Johnson and Johnson [31] and Di Renzo and Di Maio [17] as:

f nc,ij ¼ knδ3=2n nij þ 2

ffiffiffi
5
6

r
β

ffiffiffiffiffiffiffiffiffiffiffi
Snm∗

p
vnij ð7Þ

f tc,ij ¼
−8G∗

ffiffiffiffiffiffiffiffiffi
r∗δn

p
tij þ 2

ffiffiffi
5
6

r
β

ffiffiffiffiffiffiffiffiffiffi
Stm∗

p
vtij for f tc,ij

��� ���<μ f nc,ij
��� ���

−μ f nc,ij
��� ��� tij

tij
�� �� for f tc,ij

��� ���≥μ f nc,ij
��� ���,

8>>><>>>: ð8Þ

where;

1
E∗
¼ 1−ν2

i

Ei
þ 1−ν2

j

Ej
ð9Þ

1
r∗
¼ 1

ri
þ 1
rj
, ð10Þ

β ¼ ln eð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2 eð Þ þ π2

q ð11Þ

Sn ¼ 2E∗
ffiffiffiffiffiffiffiffiffi
r∗δn

p
ð12Þ

1
G∗ ¼

2 2þ νið Þ 1−νið Þ
Ei

þ 2 2þ νj
� �

1−νj
� �

Ej
ð13Þ

St ¼ 8G∗
ffiffiffiffiffiffiffiffiffi
r∗δn

p
ð14Þ

m∗ ¼ mimj

mi þmj
ð15Þ

kn ¼ 4
3
E∗

ffiffiffiffi
r∗
p ð16Þ

The subscripts i and j denote spherical particle i and j respectively,
and the superscript ∗ denotes the effective particle property of those
two particles. Particle mass is denoted bym; E is Youngs modulus; G is
the shear modulus; ν is Poissons ratio; r is particle radius; δn is normal
overlap distance; nij represents the unit normal vector pointing from
particle j to particle i; kn is the normal spring constant; vijn represents
the normal velocity of particle j relative to particle i; tij represents the
tangential displacement obtained from the integration of the relative
tangential velocity during the contact, vijt ; and μ is the particle sliding



Fig. 6. Shear Cellflow configuration: (a) -Wallmesh showing key radii of the shear head aswell as axis labels [xyz] for ready comparisonwith Lees Edwards simulations; (b) - Rendering of
a shear cell simulation with particles coloured white to highlight the shear deformation zone. The vectors (eρ,eθ,ez) represent the directions of the cylindrical frame of reference.
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friction coefficient. The model developed by Ai et al. [3] is used to ac-
count for rolling friction (often called the Elasto-Plastic Spring Dashpot
(EPSD) model):

Mr ¼Mk
r þMd

r ð17Þ

This model consists of spring torque, Mr
k, and viscous damping

torque, Mr
d, components, analogous with the contact force model. The

spring torque is evaluated with an incremental approach:

ΔMk
r ¼−kEPSDr Δθr ð18Þ

kEPSDμ ¼ 2:25knμ2
r r

∗2 ð19Þ

Mk
r,tþΔt ¼

Mk
r,tþΔt ¼ Mk

r,t þ ΔMk
r

∣Mk
r,tþΔt ∣≤μrr

∗f nc,ij,

 
ð20Þ

where θr and kr
EPSD are the relative rotation and the rolling stiffness re-

spectively. With regards to the dashpot component:

Md
r,tþΔt ¼

−Crθ: r if ∣Mk
r,tþΔt ∣<μrr

∗f nc,ij

−fCrθ: r if ∣Mk
r,tþΔt ∣ ¼ μrr

∗f nc,ij,

0@ ð21Þ

where f is a tuneable parameter between 0 and 1whichdefines the frac-
tion of energy dissipation due to viscous damping (in this case set to 1).θ: is the relative rolling velocity and the rolling viscous damping con-
stant, Cr, is evaluated through the set of equations:

Cr ¼−ηrC
crit
μ ð22Þ

Ccrit
r ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Irk

EPSD
r

q
ð23Þ

Ir ¼ 1
Ii þmir2i

þ 1
Ij þmjr2j

" #−1

, ð24Þ
Table 2
Particle properties and DEM model parameters for homogeneous simple
shear reference case.

Parameter Value

Restitution coefficient εpp 0.9
Radius rp 250 μm
Density ρp 2500 kg/m3

Poisson's ratio ν 0.3
Sliding friction coefficient μ 0.25
Rolling friction coefficient μr 0.0
where ηr, Cμcrit and Ir are the rolling viscous damping ratio, critical
damping constant, and the equivalent moment of inertia for two parti-
cles in contact, respectively. I,m and r, with both subscript i and j, are the
moment of inertia, the mass, and the radius of particle i and j, respec-
tively. In this study, the value of ηr is considered to be 0.3 as given by
Ai et al. [3], unless otherwise stated. The given equations are numeri-
cally solved with an open source software, LIGGGHTS (LAMMPS for Im-
proved General Granular and Granular Heat Transfer Simulations)
[23,35].

4. Flow configurations

4.1. Homogeneous simple shear simulations

Homogeneous simple shearing (HSS) of granular material in a peri-
odic cuboid box with Lees-Edwards (LE) boundary conditions [37] was
the first flow configuration studied in this work. The shearing plane (xz)
is shown in Fig. 4-a, while 4-b illustrates the cubic domain of dimen-
sions 15 × 15 × 15 dp. Both figures show normalised particle velocity
and it can clearly be seen that shearing is imposed on the top and bot-
tom of the domain, uniformly across the xy-plane.

For these simulations, the pressure P is maintained constant by
adjusting the simulation box dimensions while shearing. The particle
stress tensor, σ, in the domain is computed as:

σ ¼ 1
V
∑
i
∑
j≠i

1
2
rij⊗f c,ij, ð25Þ

where rij is the centre-to-centre contact vector from particle j to particle
i, fc, ij is the total contact force between the two particles and V is the do-
main volume. Since the kinetic part of the stress tensor is very small
compared with the collisional part in this study, it is neglected in eq.
(25). The pressure is then evaluated by:

P ¼ 1
3
Trσ: ð26Þ

To maintain constant pressure in the domain, a control loop is de-
fined with successive shearing and compression phases as shown in
Fig. 5. In the shearing phase, the granular material is sheared with a
Table 3
Bulk friction coefficient μ ∗ as a function of shear rate γ

:
and inertial number I with simple

shear simulations. Particle properties are given in Table 2. Number of particles is equal
6000 and Young's modulus is equal to 0.025 GPa.

γ
:
[s−1] I μ ∗

0.00252 9.11×10−7 0.335 ± 0.012
0.0126 4.56×10−6 0.337 ± 0.011
0.0252 9.12×10−6 0.336 ± 0.009



Table 4
Solid volume fraction ϕ, coefficient of internal friction μ ∗, and contact number C, as a func-
tion of number of particles N with simple shear simulations. Young's modulus is equal to
0.025 GPa and shear rate is equal to 0.0252 s−1.

N μ ∗ ϕ C

2000 0.3369 ± 0.0147 0.6080 ± 0.0014 5.3791 ± 0.0311
4000 0.3361 ± 0.0115 0.6082 ± 0.0009 5.3719 ± 0.0247
6000 0.3363 ± 0.0092 0.6084 ± 0.0009 5.3780 ± 0.0196
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constant shear rate γ
:
for time tshearwhile system pressure is monitored.

Following this phase is the compression phase, where pressure is re-
adjusted to the objective value Pobjective using a proportional controller,
and the cycle is repeated. The compression time tcompression is dependent
on the strain rate, ε

:
, which is adjusted according to the controller gain,K.

This procedure ensures that P is accurately maintained throughout the
shearing process, with the dimensionless pressure P/Pobjective equal to
1 ± 0.002. There is the potential, however, that high shear rates could
affect pressure stability and compression times. The duration of the sim-
ulation is set to 11= γ

:
which is sufficient to let the system attain steady

state and to obtain statistically converged data.
Since it is desired to operate in the quasi-static regime, the shear rate

needs to be chosen accordingly through the inertial number, I [33]:

I ¼γ:
ffiffiffiffiffiffiffiffi
mp

dpP

s
, ð27Þ

wheremp represents the mass of a single particle. For I < 1 × 10−3, the
granular system is in the so-called quasi-static regime [2,6,33,43], in
which the bulk friction coefficient, μ ∗, becomes independent of shear
rate and is calculated as:

μ∗ ¼ τzx

P
: ð28Þ

4.2. FT4 shear cell simulations

DEM simulations of the glass beads in the FT4 shear cell have also
been performed at exact geometric scale as the experiment. Fig. 6-a
shows the computational domain, with the DEM geometry for the ex-
perimental apparatus (shear cell walls are omitted for the sake of clar-
ity). A difference of note between the experimental and simulated
shear cells is in the application of normal and shear stress, with the
base being used to apply normal stress and the shear head used to
apply shear stress in the simulations.

In Fig. 6-b, a rendering of particles in a shear cell simulation is pre-
sented, showing the key dimensions and axis direction labels. To let
the particle bed expand without building up pressure inside the shear
cell, there is a small radial gap between the shear head and the cylindri-
cal cup ΔR= Re− Rc=1mm. The shear deformation zone is limited to
only a small band of height, Hγ (~10dp), beneath the shear head blades,
with the rest of the particle bed contributing little to the simulation
environment.
Table 5
Solid volume fraction ϕ, coefficient of internal friction μ ∗, contact number C, and binary
collision time tbc as a function of Young'smodulus E for simple shear simulations. Number
of particles equals 4000, and shear rate is equal to 0.0252 s−1.

E [GPa] ϕ μ ∗ C tbc [s]

2.5 0.599 ± 0.001 0.337 ± 0.015 4.611 ± 0.027 5.35×10−5

0.25 0.600 ± 0.001 0.334 ± 0.012 4.872 ± 0.026 1.34×10−4

0.025 0.608 ± 0.001 0.336 ± 0.012 5.372 ± 0.025 3.37×10−4
The shear cell simulations are divided into an initial compression
phase and a shearing phase. In the compression phase, particles are ar-
bitrarily located in the shear cell and the base moves upward along the
cylinder axis until the objective normal stress is attained. This is done
while maintaining the wall friction coefficient between the particles
and the cylindrical vessel, μw, equal to zero, ensuring particles in the
shearing zone attain the desired pressure without any losses to the sur-
roundingwalls. During the shearing phase, wall friction is activated and
the shear head rotates at a constant rate,Ω, while the pressure is main-
tained at Pobjective via compression applied by the base. The shear rate, γ

:
,

is evaluated as:

γ
:
≈

ΩRc

2Hγ
, ð29Þ

The normal stress, σzz, parallel to the cylinder axis, the shear stress,
τρθ, and the bulk friction coefficient are evaluatedwith the following re-
lationships:

σ zz ¼ Fbz
πR2

c

ð30Þ

τρθ ¼ 3
2
Mt

z

πR3
c

ð31Þ

μ∗ ¼ τρθ

σ zz ð32Þ

where Fz
b is the force in the z direction recorded at the bottom of the

shear cell, and Mz
t is the torque applied by the shear head on the glass

beads. Fzb andMz
t are evaluated by integrating the force applied on each

mesh element of the wall. Due to the high computational expense of
these simulations they were only run until statistically converged data
was obtained, which equated to 7 s of real time, with the first 2 s
neglected for analysis.

5. Results and discussion

In this section, we first report a parametric study of simple shear
simulations. In these simulations, we varied DEM parameters, the ap-
plied pressures and shear rates and investigated if they had any signifi-
cant effect on the flow field. Then, the chosen parameters were used to
study the effect of inter-particle friction coefficient pairs on homoge-
neous simple shear and shear cell simulations.

5.1. DEM parameters of reference case

Before proceeding with the objectives of this work, a parametric
study was conducted in which shear rate, number of particles N, and
Young's modulus E were varied for LE simulations. This was done to
see the effect on predictions of bulk friction coefficient, and in the case
of number of particles and Young's modulus, also on contact number,
C, and solid volume fraction,ϕ. The particle properties used for the para-
metric study are presented in Table 2, and the pressure, Pobjective, was set
to 5 kPa. This pressure was chosen following simulations using pres-
sures of 5 and 8 kPa, where no difference was found in bulk friction co-
efficient results.

To make sure the numerical simulations belong to the quasi-static
regime, three simulations with different shear rates were chosen: γ

:
=

0.00252 s−1, γ
:
= 0.0126 s−1, and γ

:
= 0.0252 s−1. These correspond

to inertial numbers of 9.11 × 10−7, 4.55 × 10−6, and 9.11 × 10−6

respectively.
Table 3 reports the predicted μ ∗ for the three different shear rates.

One can see that the bulk friction coefficients differ less than the statis-
tical uncertainty, and the property is therefore independent of shear
rate and inertial number, as is expected for the quasi-static regime. A



Fig. 7.Bulk friction coefficient μ ∗ as a function of the sliding friction μ and rolling friction μr,
plotted against the experimentally obtained coefficient of internal friction μexp∗ . The star
symbols show the friction coefficient pairs (μ, μr = 0.25,0.2; 0.25,0; 0.45,0.15) that are
used for the rest of the study.
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value of γ
:
= 0.0252 s−1 was selected for all subsequent simulations in

this work. This shear rate value could be further increased - reducing
computational time - since the inertial number is low, however γ

:
also

has an important effect on the stability of the LE algorithm as described
in Section 4.

As investigated by Peyneau and Roux [43], the number of particles
can also have an effect on the simulation results. Too small a system
could interfere with the applicability of periodic boundary conditions,
and too large a system becomes computationally expensive. Hence,
the behaviour of the systemwith three numbers of particles was inves-
tigated: N = 2000, N = 4000, and N = 6000. The results for the bulk
friction coefficient as a function of number of particles in the system,
along with the solid volume fraction and the contact number are pre-
sented in Table 4.

It was found that differences in obtained results for all the aforemen-
tioned variables variedmuch less than the experimental uncertainty for
Fig. 8. Polar diagrams of the probability density function of the branch vector directions on th
simple shear simulations for two friction coefficient pairs: (a) - μ = 0.25 and μr = 0.20; (b) - μ
each number of particles used. No significant impact on mean result is
therefore exhibited, however the standard deviations of obtained re-
sults decreased slightly with increasing particle number. To give good
balance between statistical certainty and computational cost, a particle
number of N = 4000 was therefore chosen for all subsequent
simulations.

The Young's modulus, E, determines the particle overlapping dis-
tance and collision duration. Consequently, the force network, co-
ordination number, and solid volume fraction can be altered. The results
showing these effects are available in Table 5. Selection of a time-step
for DEM simulationswhich allows correct integration of contact interac-
tions is important, and good choice of this parameter can increase the
efficiency of the simulation significantly. A time-step equal to 2% of
the binary collision time, tbc, is recommended [1], which is calculated
for the Hertzian collision model as [51]:

tbc ¼ 2:943
5
ffiffiffi
2
p

πρ 1−ν2
� �
4E

 !2=5
rp
v1=50

, ð33Þ

where v0 is the characteristic velocity:

v0 ¼γ
:
dp ð34Þ

It can be seen that only contact number and collision time vary sig-
nificantly with Young's modulus. These artificial effects are given by
the high overlaps attained with a small Young's modulus. The real
Young's modulus of glass is significantly higher than all values tested,
but would be too computationally expensive to use. It should also be
noted that a higher Young's modulus with a stiffer response slightly de-
creases the stability of the result for μ ∗.

Inertial number is not the only variable which defines the boundary
of the quasi-static regime. Critical solid volume fraction, ϕc, and critical
contact number, Cc, are also given as boundary conditions [13,49]. The
values for this case (μ = 0.25) are ϕc ≈ 0.598 and Cc ≈ 4.69. While all
values of E satisfy the first condition, the high Young's modulus case
fails to meet the contact number criterion. A value of E = 0.25 GPa
was chosen to retain reasonable accuracywhile reducing computational
expense and erring on the side of cautionwith respect to critical contact
number.
e xz-plane, for the strong network (SN) and the weak network (WN) with homogeneous
= 0.25 and μr = 0.00. The shaded area represents an isotropic distribution.



Fig. 9. Comparison between the contact force PDFs obtained with the HSS approach and
the contact forces PDFs obtained with the shear cell approach in the shear deformation
zone for relevant inter-particle friction coefficient pairs.
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5.2. Rolling friction effect on homogeneous simple shear simulations

In order to improve the computational efficiency of DEM simula-
tions, the interaction models are simplified. This is why DEMmodel pa-
rameters are often calibrated to match the response of an experimental
system [12]. In this case the calibration will consist of tuning inter-
particle friction coefficients (μ, μr) to reproduce the coefficient of inter-
nal friction μexp∗ measured with the experimental apparatus illustrated
in section 2. The particle properties and simulation parameters used re-
main the same as in the reference case, with only the coefficients of slid-
ing friction and rolling friction varied.

A total of 30 simulations with the EPSD model have been run using
different friction coefficients pairs. Other rolling friction models com-
monly used in DEM simulations have also been tested, with the results
available in appendix 7.1. Fig. 7 shows the internal friction coefficient,
μ ∗, given by LE simulations as a function of the sliding friction, μ, and
rolling friction, μr. The experimental coefficient of internal friction (μexp∗

= 0.46 ± 0.02) obtained with the shear cell measurements is also
shown in the graph, together with the experimental mean sliding fric-
tion coefficient (μexp = 0.23).

For each value of μr, the coefficient of internal friction μ ∗ increases as
a function of μ at an exponentially decreasing rate. It can also be seen
that the stability of the internal friction result decreases with increasing
μ. When the effects of rolling friction are neglected, μ ∗ approaches a pla-
teau [6,19,40,53] at a value far from the one measured experimentally
for the glass beads (μexp∗ =0.46±0.02). Rolling, as can be seen in several
other works [3,19,30,34], is important in increasing the shear strength
of the granularmaterial and its inclusion is necessary to reach μexp∗ . Con-
sidering the sliding test results (μexp = 0.23), the rolling friction coeffi-
cient must have a value of ~0.20 to accurately predict the coefficient of
internal friction, assuming that sliding friction alone is responsible for
the measured shear force in the sliding tests. Since the simulated parti-
cles are perfectly smooth then if this setup were to be simulated using
the determined sliding friction coefficient based on these highly spher-
ical particles, then the simulated sliding force is likely to be slightly less
than that of the experiment. There will also be a slight discrepancy due
to the very narrow size distribution of the real material, which is not
simulated. Nevertheless, we consider these effects to be minor and so
equate μexp to μs.

It is worth noting that there is a large set of rolling and sliding fric-
tion pairs capable of reproducing μexp∗ . If one of these coefficients is un-
known, the calibration procedure is not univocal anymore. To
investigate how these coefficients alter flowdynamics in detail, another
calibration pair (μ, μr) = (0.45, 0.15) which produces the same coeffi-
cient of internal friction was used, along with a pair excluding rolling
friction (μ, μr) = (0.25, 0.00), for further analyses discussed below.
The inclusion of a rolling frictionmodel does not only have an impact
on results for bulk friction coefficient. In shearing granular media it is
well known that is possible to distinguish between two types of force
network [19,53,45]: a strong force network formed by particles
experiencing forces above the average; and a weak force network,
formed by particles experiencing forces below the average. These two
networks are known to have very different roles in the particle system,
with the strong network (SN) almost completely oriented in the major
stress direction. The weak network (WN) is then almost isotropic and
has the function of stabilising the strong network while mainly contrib-
uting to themean pressure [46]. The rolling friction greatly affects these
stress transmission patterns in granular media as observed by Estrada
et al. [19] for the shearing of 2D disks.

It is possible to extrapolate the main direction of the contact vectors
to discover the orientation of theprincipal networks. This has been done
by evaluating the probability density function (PDF) P(ψn) of the branch
unit vector angles ψn ∈ [−π,π] on the xz-plane during the shearing
phase at steady state. Branch vectors were categorised into WN and
SN based on the normalised contact force ∣Fc ∣ / ∣ Fc, mean∣, which if ≤1 sig-
nified a WN contact, and if >1 signified a SN contact. The PDF was con-
structed using 150 time-steps and >1 million contacts, with contact
vectors larger than dp ignored. Contact vectors larger than dp are an ar-
tificial effect of using a reduced Young's modulus, with unrealistic weak
contacts created by particle deformations.

The results are shown in Fig. 8-a and8-b for (μ, μr)= (0.25, 0.00) and
for (μ, μr) = (0.25, 0.20) respectively. It should also be noted that the
pair (μ, μr) = (0.45, 0.15) showed identical branch vector distributions
to (μ, μr) = (0.25, 0.20).

One can see that the SN tends to orient in the direction of the major
stress, while the WN main directions are parallel to the main axes of
compression. These results further demonstrate that the roles of the
two networks are different. We also see, however, that for the pairing
with a higher shear resistance (Fig. 8-a) the anisotropy of the strong
network is higher than the other pairing (Fig. 8-b). By following the
work of Estrada et al. [19], there should be a value of shear strength
for which the WN starts to orient towards the shearing direction like
the SN, but this was not seen with these HSS simulations.

While these results provide physical insight concerning the flow dy-
namics, they show no difference in potential inter-particle coefficient
pairs. To highlight the impact of selection of pairs in a realistic applica-
tion, simulations of the full FT4 shear cell were also conducted. The con-
ditions of the LE simulations are different from the ones used in the FT4
shear cell experiments in a number of ways. These include linear homo-
geneous shearing, periodic boundary conditions (nowall effect), and re-
duced particle number. It was also hoped these additional simulations
would shed valuable light on the particle-scale dynamics of a shear test.
5.3. Shear cell simulations - effect of the inter-particle friction
coefficient pairs

In this section, the effects generated by inter-particle friction coeffi-
cient selection on the results of shear cell simulations will be investi-
gated. Aspects investigated will include main internal structure of the
FT4 shear cell, as well as results for bulk friction, local friction, particle
velocity, and contact number. The parameters used for the simulations
are mostly the same as for HSS simulations. Differences include particle
number increasing to 800,000 and shear rate being set by shear head ro-
tation speed, which will be discussed later. An additional parameter
input required for the shear cell simulations was the wall friction coef-
ficient, μw, between particles and the cylindrical vessel wall. The effect
of the choice of wall friction was investigated and can be found in ap-
pendix 7.2, with the results showing that a minimum value of wall fric-
tion was necessary to stop singular block rotation of the particle bed. It
was also found that too high a value produced sharp reductions in the
dimensionless normal stresses in the shear zone approaching the wall.



Fig. 10. Polar diagrams of the probability density function of the branch vector directions on the 3 planes for the strong network (SN) and the weak network (WN) for shear cell
simulations. (a)–(c): (μ, μr) = (0.45, 0.15). (d)–(f): (μ, μr) = (0.25, 0.20). (g)–(i): (μ, μr) = (0.25, 0.00). The shaded areas represents an isotropic distribution.
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A value of μw = 0.1 was then chosen for use in the simulations in this
section to give good balance between these two constraints.

Three simulations were performed where the friction pairs were (μ,
μr)= (0.45, 0.15), (μ, μr)= (0.25, 0.20) and (μ, μr) = (0.25, 0.00). These
represent the two calibration pairs yielded from section 5.2, as well as
an incorrect pairwhichdoes not account for rolling friction. The rotation
speed,Ω, used for these simulationswas higher than the one used in ex-
perimentsΩexp. This was done to increase the speed of the simulations,
which would otherwise be prohibitively expensive. ForΩ= 3RPM, the
inertial number I is equal to 3 × 10−4, which should ensure that the sys-
tem lies in the quasi-static regime. Nonetheless, to prove this hypothe-
sis, another simulation was run with Ω0 = 1RPM. No change was
observed in μ ∗ when changing the speed from Ω to Ω0, further proving
that the granular material for this speed is in the quasi-static regime.
Considering Ωexp = 0.05RPM, and the increased speed simulations still
took ~2 weeks on 28 CPUs to simulate 7 of real-time, it can be clearly
seen why this step was taken.

The internal structures of the shear cell simulations for each pair
were compared with each other, and also with those obtained with
the HSS simulations. Fig. 9 shows the force network PDF P(Fc) for each
case, which gives the distribution of normalised contact forces in the
shear deformation zonewith artificial contacts (contact vector > dp) ig-
nored as in section 5.2. A logarithmic binning procedure was also
employed to ensure the weakest forces were effectively captured.

In general, the WN represents most of the contacts in the force net-
work while the SN represents only a small part for HSS simulations.
Only one of the calibration pairs is given for these simulations as they
had identical distributions. Rolling friction does not alter the general
shape of the PDF, however the effect of rolling friction is clearly visible
and gives a more isotropic distribution for both HSS and shear cell



Fig. 11. Time-averaged local coefficient of internal friction 〈τθz〉
〈Plocal〉

as a function of the

dimensionless radial co-ordinate ρ ∗ for different inter-particle friction coefficient pairs,
compared with the coefficient of internal friction obtained from experiments. The
yellow line represents the boundary of the central “no-shearing” zone. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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simulations. When increasing rolling friction there is a decrease in par-
ticles belonging to the “mean” network and an increase in particles be-
longing to the strong and weak contact networks. This is logical as
increasing the shear strength of the system increases the likelihood of
the system to form strong force chains that carry almost all the load ap-
plied to the granular assembly.

It can be seen that there is a clear difference in theWN values found
with the shear cell simulations, when compared with the HSS simula-
tions. In fact, in the shear cell simulation there is almost a complete ab-
sence of the weakest structures, while the strong network shows a
similar distribution to HSS simulations. The absence of the weak net-
work is probably due to the presence of the wall, which takes on the
role of stabilising the strong force chains. Supporting this hypothesis,
most of the weak network is concentrated in the central “no-shearing”
zone, as well as a small part near the cylindrical cup.

Fig. 10 shows the branch vector distribution P(ψ) on the three prin-
cipal planes for each shear cell simulation pair. The co-ordinate system
was converted fromCartesian to cylindrical to analyse the branch vector
directionsψn. For comparisonwith P(ψ) for HSS simulations in Fig. 8, the
plane-xz is equivalent to plane-θz in these diagrams (Figs. 10-a,d,g). It
can be seen that the shape of the strong network in this plane is very
similar to what was obtained before, particularly for the pair (μ,μr) =
(0.25,0.20). It is orientated in the direction of the major stress and
would seem to confirm the notion that the SN ismore or less unchanged
in the shear cell simulations, aswas seen in Fig. 9. Also as beforewith the
HSS simulations, the case without rolling friction has a notably less iso-
tropic distribution for the strong network. A difference of note in this
plane between the simulation methods, is that the weak network can
also be seen to orient in the direction of the major stress, perhaps
confirming its loss of the role of support network.

The branch vector distributions on two other planeswere also inves-
tigated, plane-θρ (Figs. 10-b,e,h) and plane-ρz (Figs. 10-c,f,i). It can be
seen that for the ‘correct’ (μ, μr) = (0.25, 0.20) and the ‘potential’ (μ,
μr)= (0.45, 0.15) pairs, the strong networks are orientated in the angu-
lar and compression axes respectively, while the pair without rolling
friction shows more of a radial orientation. This is possibly due to the
Table 6
Comparison of bulk friction coefficient results using homogeneous simple shear (HSS) simulat

Friction coefficient pair HSS

(μ,μr) = (0.25,0.00) 0.337 ± 0.012
(μ,μr) = (0.25,0.20) 0.461 ± 0.018
(μ,μr) = (0.45,0.15) 0.463 ± 0.018
fact without rolling friction the particles are prone to movement in di-
rections other than that of the shear rotation. It can also be seen that
for the friction coefficient pair (μ,μr) = (0.45,0.15) the SN distributions
are asymmetrical and favour more the direction of shear head rotation
and upward on the z-axis towards the shear head itself. This is possibly
due to the increased sliding friction of particles showing a greater ten-
dency to be dragged along with the shear head and the particles driven
between the blades causing shear.

TheWN for all pairs on these planes show similar distributions, with
those on the plane-θρ approaching isotropy and those on the plant-ρz
orientating slightly along the radial axis counter to the orientation of
the SN on the compression axis. A final observation is the ‘correct’ pair
(μ,μr) = (0.25,0.20) is the only pair to show symmetrical distributions
with axial orientation on the two radial planes. This is an aspect which
may warrant further investigation with other particle systems to possi-
bly establish this as a numerical method to identify the ‘correct’ friction
coefficient pair following HSS simulations.

An averaging utility that allows mapping particle properties onto a
three-dimensional mesh was used to obtain locally-averaged results
for contact number, stress, and velocity in the shear deformation zone.
To perform a mesh convergence study, four mesh element sizes were
studied: mesh 1:7 dp cell size; mesh 2:5.1 dp cell size; mesh 3:3.9 dp
cell size; mesh 4:3.2 dp cell size. Themesh whichwas chosen as a result
of the convergence studywas that with cubic cells of length equal to 3.2
dp. The averaging utility assigns each particle i to the mesh element J
with a weighting function wi

J. It is then possible to average a generic
macroscopic discrete property Φi for every mesh element through the
following equation:

<ΦJ> ¼
∑N

i¼1w
J
iΦi

∑N
i¼1w

J
i

, ð35Þ

where <ΦJ> is the local average value of the generic discrete prop-
erty Φ in the mesh element J. These properties were calculated for
every time-step and used to create time-averaged properties
〈ΦJ〉 for each mesh element, and finally these properties were av-
eraged over the θz-plane in the shear deformation zone to yield ra-
dial distributions of the properties of the form ‘〈Φ〉’. The radial
evolution of the local friction coefficient 〈τθz〉/〈Plocal〉 in the
shear deformation zone is shown in Fig. 11. It is given as a function
of the dimensionless radial coordinate ρ∗ ¼eρRe

. The time-averaged
non-local normal pressure 〈Plocal〉 is calculated as:

〈Plocal〉 ¼
1
3
Tr〈σ〉 ð36Þ

For low values of ρ∗ (up to ρ∗ = 0.12), the system is in the œno-
shearing zone, where blades do not induce any shear on particles. In

this part of the system, 〈τθz〉
〈Plocal〉

is low, but it rapidly reaches a value of

μ ∗ similar to that observed with HSS simulations. This is not surprising,
since μ ∗ represents the failure criterion for glass beads in thequasi-static
regime; hence, for ρ ∗ < 0.12 the granular material behaves like a rigid
solid, while for ρ ∗> 0.12 it behaves like a plastic. Averaging over the ra-
dial axis yields an estimate for bulk friction coefficient and the results
obtained in this way are shown in Table 6, along with the values pre-
dicted by eq. (32) and HSS simulations. It can be seen that there is
good agreement between the HSS simulations predictions and the pre-
dictions using the local friction method for shear cell simulations. This
ions and two evaluation methods using shear cell (SC) simulations.

SC - torque method [eq. (32)] SC - local friction method

0.235 ± 0.004 0.344 ± 0.023
0.375 ± 0.005 0.474 ± 0.032
0.418 ± 0.004 0.478 ± 0.051



Fig. 12. Comparison of time-averaged local variables as a function of the dimensionless radial co-ordinate for different friction coefficient pairs: (a) - contact number〈C〉; (b) - solid

velocity normalised with shear head tip speed 〈Uθ
s〉

ΩRc
. The yellow lines represent the boundary of the central “no-shearing” zone. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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shows equivalence between the two methods for predicting the shear
strength of the material. It can also be seen that the method using eq.
(32) in a similar way to the actual experimental process, is insufficient
and consistently under-predicts bulk friction. This is possibly due to
the manner in which the simulation is conducted, with pressure being
applied by the base rather than the shear head itself.

The time-averaged local contact number 〈C〉 as a function of
the dimensionless radial co-ordinate for each friction coefficient
pairing is shown in Fig. 12-a. Near the centre of the cell the parti-
cles remain in their initial solid state with a slightly raised contact
number. The contact number then decreases slightly across the ra-
dial length and drops significantly at the wall, as is expected due
to wall-particle contacts not contributing to the contact number.
It is possible to see clear differences between friction coefficient
pairs, with the couple (μ, μr) = (0.45, 0.15) having the lowest
values along the whole radial length, then (μ, μr) = (0.45, 0.15),
and finally the case without rolling friction shows the highest con-
tact number throughout. It would seem that greater inhibition of
motion - particularly sliding motion - prevents particles packing
as closely.

Fig. 12-b reports the time-averaged local solid velocity in the angular
axis, normalised by shear head tip speed〈Us

θ〉/ΩRc, as a function of the
dimensionless radial co-ordinate. For each pair the same trend is ob-
served, with a linear increase from the centre to a critical point near
the wall, at which velocity drops slightly. It should be noted that the
case without rolling friction reaches this critical point further from the
wall than the ‘correct’ and the potential pairs, and also sees particle ve-
locity drop more significantly approaching the wall. The case without
rolling friction logically has the highest velocity profile due to motion
being less inhibited.

These results also show that the case with higher sliding friction
shows the lowest velocity profile, and the closest to approaching the
shear head tip speed. Higher sliding friction means the particles in the
shear deformation zone aremore likely tomatch the velocity of the par-
ticles above which are inducing shear. They are effectively being
‘dragged’ as a result of sliding friction, and this hypotheses would ap-
pear to be supported by the force network branch vector direction
PDFs (Figs. 10-a,b,c). As was discussed previously, the contact vector
distribution suggests a greater influence of the shear head. It is likely
that if inter-particle friction coefficients were increased further - partic-
ularly sliding friction - the velocity profile peak would approach 1 i.e.
the shear head tip speed.
6. Conclusions

The main objective of this work was to investigate the frictional
properties of a dry particle assembly of glass beads. To attain this objec-
tive, experimental studies of the shearing behaviour using the FT4 shear
cell apparatus have been coupledwith extensive DEM shear simulations
with both homogeneous simple shear and shear cell flow configura-
tions. This was done in order to understandwhich inter-particle friction
coefficients in DEM simulations could reproduce the bulk friction coeffi-
cient found with the experimental apparatus, and what the effect of
selecting different inter-particle friction coefficients was on obtained
simulation results.

It was found that with HSS simulations, it was not possible to repro-
duce the experimental value of μexp∗ unless a rolling friction model was
implemented. HSS simulations on their own also leave an infinite set
of possibly correct pairs of rolling and sliding friction coefficients. A cor-
rect pair can be readily identified in most cases by using another exper-
iment to fix either sliding or rolling friction. In this study, the coefficient
of sliding friction was fixed by performing the sliding test experiments.
Investigation of the force network in these simulations showed inclu-
sion of rolling friction produced a more realistic outcome, with the
strong network orientated firmly in the direction of the major stress
and having a less isotropic distribution.

The HSS simulations identified inter-particle friction coefficient
pairings capable of reproducing the bulk friction coefficent butwere un-
able to show any differences in obtained results for the force networks
betweenpairings. To showmore clearly the impact of friction coefficient
selection, a more realistic case was simulated. To this end, the FT4 shear
cell used for experiments was simulated numerically using the ‘correct’
pair and another potential calibration pair, as well as a pair without
rolling friction. The results showed clear differences between each
pairing. Analysis of the force networks showed equivalency between
the shear cell simulations and HSS simulations with regards to the dis-
tribution and orientation of the SN in the direction of the major stress.
A clear difference was found between the two methods with regards
to theWNhowever, with the shear cell simulations showing a complete
absence of theweakest contacts. This absencewas attributed to thewall
taking over the role of supporting the strong network, and supported by
the fact the weak network was now also orientated in the direction of
the major stress. Differences between pairings were also shown, with
the pair without rolling friction showing a radial orientation of SN con-
tacts not seen with the correct pair and additional potential calibration



Table 7
Internal friction coefficient μ ∗ as a function of sliding friction coefficient μ and rolling fric-
tion coefficient μr pairs for different rolling friction models.

CDT EPSD; ηr = 0 EPSD; ηr = 0.3 EPSD2

(μ, μr) = (0.15, 0.00) 0.301 0.301 0.301 0.301
(μ, μr) = (0.25, 0.00) 0.337 0.337 0.337 0.337
(μ, μr) = (0.35, 0.00) 0.352 0.352 0.352 0.352
(μ, μr) = (0.45, 0.00) 0.362 0.362 0.362 0.362
(μ, μr) = (0.15, 0.05) 0.300 0.336 0.338 0.349
(μ, μr) = (0.25, 0.05) 0.340 0.377 0.375 0.386
(μ, μr) = (0.35, 0.05) 0.358 0.395 0.393 0.401
(μ, μr) = (0.45, 0.05) 0.364 0.402 0.401 0.410
(μ, μr) = (0.15, 0.10) 0.300 0.369 0.369 0.377
(μ, μr) = (0.25, 0.10) 0.334 0.413 0.413 0.420
(μ, μr) = (0.35, 0.10) 0.357 0.430 0.427 0.436
(μ, μr) = (0.45, 0.10) 0.462 0.434 0.440 0.442
(μ, μr) = (0.15, 0.15) 0.301 0.387 0.386 0.389
(μ, μr) = (0.25, 0.15) 0.338 0.441 0.440 0.442
(μ, μr) = (0.35, 0.15) 0.353 0.456 0.457 0.459
(μ, μr) = (0.45, 0.15) 0.363 0.462 0.463 0.464
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pair. The pair with higher sliding friction showed a significant effect of
the shear head on the SN orientations.

In addition to the force network, the shear cell simulations showed
differences between pairs in radial profiles of local friction, contact
number, and velocity. The results for local friction, althoughprofiles var-
ied slightly, showed good agreement with values for bulk friction ob-
tained with HSS simulations. In terms of contact number, the results
showed that increasing both rolling and sliding friction decreased the
contact number, and inhibited the ability of particles to pack closely. A
similar trendwas seen with velocity, with increasing sliding and rolling
friction reducing solid velocity, approaching the shear head tip speed.

In this workmuch effort was spent to correctly calibrate the numer-
ical model with experimental results, and to understand that a correct
calibration should focus, not only on capturing the overall response of
a system, but also on capturing the physics at the particle scale. The
use of mathematical modelling is justified by the high quantity and
quality of information able to be retrieved from the numerical model.
Much of this data is difficult or impossible to obtain by experimental
means, or limited to a very lownumber of particles. It remains infeasible
in most cases to rely on more complicated, more computationally ex-
pensive interaction models which could reduce the efforts necessary
for the correct calibration of inter-particle friction coefficients. In partic-
ular, improved rolling frictionmodels are needed in DEMmodelling be-
cause it is not possible in most cases to experimentally measure the
coefficient of rolling friction.

Many of the hypotheses in this work would be further supported by
conducting the outlined procedure on a different particle system. Al-
though this was not conducted at this stage, it is a potential avenue
for future work. It is also planned to use the calibrated system to simu-
late the mechanical behaviour of glass beads in the presence of cohe-
sion. Specifically, it is intended to use a coating liquid to induce liquid
bridges between particles. For these systems, the configuration of the
contact number (in which the inter-particle friction coefficient pair
play a major role) has to be correctly captured by the DEM modelling
in order to approximate the experimental system. It is hoped that the
procedure outlined in this work can therefore go some way to easing
the associated difficulties with calibration, and eventually shed valuable
light on complex particle-particle interactions.

Declaration of Competing Interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

The support from the EPSRC, UK (Grant No. EP/N034066/1) is kindly
acknowledged.

Appendix A. Appendices

A.1. Results for other friction models

Many rolling frictionmodels are available in literature to account for
the rolling friction phenomena, and in this work four different ap-
proaches were tested. The first is the constant directional torque
(CDT) model, developed by Zhou et al. [54]:

Mμ ¼ μrr
∗Fc,n

ω
 

μ

∣ω
 

μ ∣
, ð37Þ

where Mμ is the rolling friction torque, μr is the rolling friction parame-
ter, r ∗ is the equivalent radius of the two particles in contact, Fc, n is the
contact normal force and ω

 
μ is the relative rotational velocity. This
rolling friction model is one of the most used in DEM algorithms
[22,41,42] due to its simplicity and the lownumber of parameters to cal-
ibrate. The second model is that of Ai et al. [3] outlined in the main dis-
cussion, taking into consideration two values of ηr=0and 0.3. The third
model considered is that developed by Kazuyoshi and Masanobu [34]
(EPSD2), which is also based on a spring approach, but the spring con-
stant is computed as:

Mμ ¼ kEPSD2μ θμ if ktr∗
2
θμ≤μrr

∗Fc,n
μrr

∗Fc,n otherwise:

(
ð38Þ

kEPSD2μ ¼ ktr∗
2 ð39Þ

This model comes from dimensional considerations of sliding fric-
tion torque and rolling friction torque. To test thesemodels, several sim-
ulations were run with the algorithm explained in section 4 while
varying the friction coefficient pairs. The results for μ ∗ for each model
and friction coefficient pair are shown in Table 7.

TheCDTmodel does not seem to have any influence on μ ∗. This effect
has also been reported by other research groups [42] and can probably
be attributed to the definition of the rolling friction torque direction
ω
 

μ

∣ω
 

μ ∣
. In fact, as reported by Ai et al. [3], in the case of low rolling velocity

the CDT model is inaccurate. For the EPSD model, ηr does not seem to
have any effect on μ ∗. With regards to the EPSD2 model, it seems to
yield a slightly higher μ ∗ compared to the EPSDmodel for the same fric-
tion coefficients. This can probably be explained by the difference in
springs constants and by taking into consideration the ratio:

Rr ¼
kEPSDμ

kEPSD2μ

¼ 0:75μ2
r
2−ν
1þ ν

ð40Þ

For the values of damping coefficient μr considered in this work, kμ-
EPSD is about two orders of magnitude less than kμ

EPSD2, but for higher
values of μr these two models would approach the same value of μ ∗.

A.2. Effect of the wall on shear cell simulations

In addition to the shear cell simulations in Section 5.3, a sensitivity
analysis of thewall frictionwas performed. The need for this section, de-
spite wall friction being readilymeasurable experimentally, comes from
how the shear cell was simulated. While in the real shear cell the shear
head will apply both normal pressure and shear, in the simulation case
the bottom boundary (base) has been used to apply the normal



Table 8
Coefficient of internal friction μ ∗ as a function of the wall
friction coefficient μw.

μ ∗

μw = 0.10 0.478 ± 0.051
μw = 0.15 0.430 ± 0.015
μw = 0.20 0.385 ± 0.012
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pressure. This leads to normal pressure being applied inversely and dis-
crepancies between simulation wall friction and experimental wall
friction.

There are several walls in the simulation environment that could be
investigated, namely the shear head, the base, and the cylindrical cup.
The friction between the shear head and the particles is not expected
to play a major role in the simulation since most of the shear is induced
by the movement of the blades. Similarly, the friction between the par-
ticles and the base will not influence the simulation much since these
particles are in the static region. The wall friction coefficient between
the cylindrical cup and the particles μw is important however, as this
wall interacts directly with particles undergoing shear. For this reason,
it was decided to be the focus of the sensitivity analysis.

The shear cell simulation properties will mostly remain as outlined
in Section 5.3. Where the simulations in this section differ is four wall
friction coefficients will be used: μw = [0.05; 0.10; 0.15; 0.20], and the
only friction coefficient pair used will be the pair (μ, μr) = (0.45, 0.15).
The simulation using μw = 0.05 failed, with the whole particle system
rotating like a rigid body without any shearing applied to the particle
system. For the other simulations, it was possible to apply shearing to
the particle system and to evaluate the coefficient of internal friction,
for which the results are presented in Table 8.

The wall friction coefficient was found to clearly impact the value of
μ ∗ obtained, however no influencewas found onHγ. To understandwhy
the wall friction coefficient μw impacts μ ∗, the compression stress ap-
plied at the base σzz was compared with the time-averaged local
stresses in the shearing deformation zone 〈σzz〉, through the defini-
tion of the dimensionless normal stress 〈σzz, ∗〉:

〈σ zz,∗〉 ¼〈σ zz〉
σ zz ð41Þ

Fig. 13 displays the evolution of the dimensionless normal
stresses〈σzz, ∗〉along the radial direction in the shear deformation zone
for different values of μw.
Fig. 13. Time-averaged dimensionless axial stress profile as a function of the
dimensionless radial co-ordinate ρ ∗ for μw = [0.10; 0.15; 0.20]. The yellow line
represents the central “no-shearing” zone. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
The compression stresses, as expected, are very low in the centre for
all wall friction coefficient values and rise rapidly in the shearing zone.
In the shearing zone the compression profile is highly influenced by
wall friction.While for μw=0.10 and μw=0.15 the dimensionless com-
pression stresses are very near to the stress value applied by the base,
for μw = 0.20 the profile shows heavy losses at the wall because of the
expansion of the weak network near the cylindrical cup. The zone
near the cylindrical cup wall is also the part of the shear cell where
the shear head applies most of the deformation and hence the measure
of the coefficient of internal friction can be greatly affected by the char-
acteristics of the cylindrical cup. Care must therefore be taken when
using an annular shear cell, where the homogeneity of the profile can
be affected more by wall friction.
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