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Full Waveform LiDAR for Adverse
Weather Conditions
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Abstract—We present and discuss the case for full waveform
pixel and image acquisition and processing to enable LiDAR sen-
sors to penetrate and reconstruct 3D surface maps through ob-
scuring media. To that end, we review work on signal propagation,
on scanning and arrayed sensors, on signal processing strategies
for independent pixels and employing spatial context, on reducing
complexity and accelerating processing by sensor design, algo-
rithmic changes, compressed sensing, and parallel processing. We
report several experimental studies on LiDAR imaging through
complex media, and how these can inform the automotive LiDAR
scenario. We conclude with a discussion of future development and
potential for full waveform LiDAR (FWL).

Index Terms—Automotive LiDAR, full waveform LiDAR,
obscuring media, bad weather, signal propagation, scene
reconstruction, discussion paper.

I. INTRODUCTION

CURRENT automotive sensing systems designed for either
full autonomy or driver assistance employ a multimodal

suite of disparate sensors for scene mapping and classification of
other road users, of which passive optical cameras, LiDAR and
radar are usually the main components [1]. As these sensors have
complementary strengths and weaknesses, sensor fusion [2]–[4]
is often applied to acquire high resolution images at near to far
ranges in both favourable and unfavourable viewing conditions.
However, fusion of disparate sensing systems with different
fields of view, acquisition rates, resolutions, and error models
is not trivial.

In this discussion paper, we make the case for full waveform
LiDAR (FWL) in its own right and as a key component of sensor
fused systems. We argue that new developments in solid state
LiDAR and in FWL data processing mean that we can now
consider LiDAR signals to have a penetrative capability through
obscuring media, and so move closer towards radar performance
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Fig. 1. The sensor suite and the test vehicle. This includes from left to right
(Inset), a Velodyne HDl-32E LiDAR a Zed Stereo Camera pair and a Navtech-
CIR104 79 GHz radar system.

in bad weather while retaining the advantages of high spatial
resolution. Further, as both radar and FWL provide continuous
data on reflected power as a function of range, this opens up new
research in full waveform fusion that goes beyond the current
state of the art. We provide illustrations from our own and other
researchers’ work on FWL, and follow this with a summary
and discussion of the necessary steps to make FWL automotive
sensing a reality.

II. LiDAR, RADAR AND PASSIVE OPTICAL

AUTOMOTIVE SENSING

Although a modern car has many types of sensor [1], we con-
centrate on those capable of the two key functions for situational
awareness, scene mapping and object recognition using a-priori
information provided by GPS and/or IMU systems if available.
Currently we employ a test vehicle to map the environment in
all weathers, fusing data from radar, LiDAR and optical stereo
sensors as shown in Fig. 1. However, the LiDAR sensor is a
limited, single or dual pulse system, typical of the automotive
context [5], [6]. We do not have FWL data available on this
vehicle; an example of concurrent multimodal data acquisition is
shown in Fig. 2. The main concentration for LiDAR technology
has been on scene mapping; deep neural networks have been
lauded for their success in recognizing objects in video data
(see [7] for competitive results on automotive benchmarks), but
this does not yet translate to results on objects appearing in
LiDAR (or indeed radar) data.
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Fig. 2. Examples of instantaneous video, radar and LiDAR images acquired by the field trials vehicle of Fig. 1. The images were taken around Edinburgh in
clear weather and the radar and optical stereo image scan be used identify targets (e.g. other vehicles) and correspondences can be made between the different
modalities. The LiDAR image is restricted in range, and demonstrates that we need more sensitive processing of full waveform data.

Even in good conditions, there are a number of limiting factors
to the deployment of LiDAR systems for autonomy and driver
assistance. In principle the resolution can be sub-cm in range
and cross-range as the collimated beam diameter divergence is
small, but such fine cross range resolution implies very dense
pixel arrays or fine scanning, and results in very large datasets.
A typical current, commercial LiDAR system may produce in
excess of 1,000,000 depth points per second, assuming a single
or a dual return per transmitted pulse. If we move to FWL, this
increases dramatically, depending on the distance resolution. So,
there are data bandwidth and storage [8] issues. The vehicle must
be able to see sufficiently far ahead to take appropriate action, but
LiDAR systems must be eye safe, setting limits on laser power,
and hence maximum range. A proposed specification from one
manufacturer is for a 905 nm wavelength solid-state LiDAR with
a range of 150 m at 8% surface reflectivity [5], although we have
not been able to achieve this with our existing sensors. Future
systems also need to be immune from interference (from other
vehicles) and malicious attack [9], necessitating more complex
signal filtering and coding strategies.

What of other sensing modalities? Passive optical sensors
can acquire 3D images from disparity analysis, but as there is
no direct light source this depends on detail in the scene, the
depth resolution is poor and varies with range. The intensity
response is integrated over the optical path, so there is no current
possibility of discriminative (by depth) optical processing for
‘seeing through fog’. Automotive radar systems [10] perform
much better in adverse weather, and have much longer range,
typically up to ≈300 m. Although they can have good resolution
in depth due to the high bandwidths in the 24 GHz–300 GHz

range [11], the image plane resolution is poor due to the wide
beam divergence. Especially in elevation, the data is effectively
discarded and a range bearing map is produced rather than a full
3D image. Recent research in low THz imaging in particular
aims to address these limitations, and super resolution and
interferometric depth techniques [12] may give genuine 3D radar
data at much better resolution in all dimensions. However, it will
be some time before this approaches LiDAR resolution.

Hence, we evaluate the issues concomitant with a move
from single return to FWL for operation in adverse weather
conditions, such as fog, rain, snow and mist. To that end, we
consider signal propagation, processing strategies, what lessons
can be learnt from experimental studies of FWL imaging through
obscuring media, and issues of sensor design and software and
hardware algorithmic complexity. This does not contradict the
probable need for fusion of radar and optical data, but simply
asks the question whether ‘clever’ processing of FWL data can
make a valuable contribution to acquire more detailed 3D scene
maps in adverse conditions.

III. LASER SIGNAL TRANSMISSION IN BAD WEATHER

A. Attenuation and Scattering of the Signal

Adverse conditions for automotive LiDAR can include rain,
snow, hail, mist, fog, smoke, and spray from the road sur-
face. Working from the basic laser radar equations [13], [14],
the designer has to factor in a wide dynamic range of return
signal strengths based on not just reflectivity but also on at-
tenuation. Traditionally, the four main wavelengths for study
of land based, sub-10 km sensing LiDAR have been near the
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Fig. 3. A comparison of attenuation loss in Fog and Smoke in the visible and
near infrared [19]. Here dense smoke is defined as having visibility < 0.07 km,
thick smoke < 0.5 km. These experiments were carried out in a controlled
atmospheric chamber of length 550 cm. (©2012 IEEE).

1 μm, 1.5 μm, 2 μm and 10.6 μm wavelengths [15], of which
the sub-1 μm waveband has the advantage of falling within
the detection range of widely available silicon-based optical
technology [16]. Light can propagate through the human eye
to the retina, which is unsafe, especially at visible wavelengths,
so that 1.5 μm is more suitable, although this necessitates the
more expensive and less integrated Indium Gallium Arsenide
(InGaAs) based detectors.

Theoretical scattering models (Rayleigh, Mie, Geometric)
depend on the relative size of the wavelength and the atmospheric
particles [17], and as there is no benchmark for what is adverse,
there is disagreement between different experimental studies,
and between theory and experiment. Experimental investiga-
tions usually focus on fog and smoke in controllable conditions
using machines or canisters [18]–[22]. Light propagation at
1550 nm may suffer less from attenuation by obscurants than
at shorter wavelengths, but Kim et al. [17] suggested that this
conclusion was true in haze, but not necessarily in fog, based on
theoretical modeling and a meta-analysis of the literature. Fig. 3
shows examples of the attenuation loss in different densities of
fog and smoke, showing an advantage for the higher wavelength
in dense smoke, but not fog. Similar studies and comparisons
between experiment and theory in fog and rain were conducted
by Rasshofer et al. [14] and Khan et al. [20].

Explicit studies on automotive LiDAR at the two wavelengths
of 905 nm and 1550 nm have been conducted [23], [24] and
compared to a 24 GHz radar in [23]. The main metric was
target detection. The conclusions confirm the other studies;
they considered it advantageous to use 1550 nm, not because
of differences in attenuation, but because the higher wavelength
allows significantly higher power while maintaining eye safety.
As regards the radar, they noted that resolution and classification
were poor, and very dependent on the target material.

Most of these studies tended to focus on relatively repro-
ducible pollutants rather than snow or rain which are harder
to characterize. Fersch et al. [25] did consider the influence
of discrete rain drops on a pulsed LiDAR but this really only
looked at rain on the aperture and they concluded the effect was

Fig. 4. Comparison of attenuation coefficient of glycol-based smoke at visible
and 1550 nm wavelengths as smoke disperses [29]. The key observation is the
significantly reduced attenuation at 1550 nm.

non-critical in reducing power. Trierweiler et al. [26] discussed
steps to both detect and remove the presence of contaminants on
sensors and any signal effect of very near-field distortion in the
signal can be effectively gated in many cases.

Our own trials [27] included verification of point-to-point
propagation measurements using a TCSPC LiDAR at a wave-
length of 1550 nm through several obscuring media, water fog,
smoke generated from a glycol smoke machine and white smoke
from canisters. Calibration targets were used to give an indepen-
dent visibility estimate [20] so that the attenuation length of the
medium could be calculated. The tunnel was filled initially then
the obscuring medium slowly dispersed, and images were ac-
quired at 2 minute intervals, as shown in Fig. 4 for glycol-based
smoke. These results confirm that the 1550 nm wavelength is
potentially advantageous for certain obscuring media, as in
Fig. 4, but not all, and improves eye safety. Satat et al. [28]
did similar experiments to recover single target surfaces through
fog, to which we shall return in Section V.

The study of Pfennigbauer et al. [22] is instructive. The
experimental environment was similar to [29], but they recorded
a FWL measurement through all the obscuring medium between
the sensor and the target, not gating the results around an
a-priori target position [29]. For an automotive LiDAR, this is
necessary because objects of interest are distributed in depth,
a near pedestrian, a distant car and so on. There are two key
observations. At 40 m visibility (Fig. 5), the majority of the
returned signal is from the intervening medium, and further
there are significant peaks due, presumably, to inhomogeneous
volumes in a relatively sparse medium. At 10 m visibility (not
shown), the intervening medium is homogeneous, but the target
is barely visible, if at all. Hence we argue later in this paper
for more advanced processing strategies that take into account
a significant presence of outliers, spatial constraints between
adjacent pixels, and modeling of the medium itself.

Recently, an extensive study by Carballo et al. [30] examined
the performance of 12 different LiDAR sensors to capture the
range accuracy and density of scenes in a 200 meter weather
chamber, simulating rainy and foggy conditions. This, too, is
instructive, showing false returns generated by intervening fog
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Fig. 5. Example of imaging a black and white planar target in fog with visibility
of 40 m from [22]. The path length was 30 m. Similar data can be found in [23]
and [28].

and rain that confuse the LiDAR sensors to detect false tar-
gets, and additional interference effects when using multiple
LiDARS simultaneously. Zhao et al. [31] developed an auto-
motive simulation package that includes geometric modelling,
attenuation using the laser radar equation, and a probabilistic
model for reflection from homogeneously distributed raindrops.
Outdoor validation tests were performed, but because these were
uncontrolled these provided only intuitive comparisons with the
simulated data. Although very instructive, these latter studies use
commercial systems that operate on the single echo principle,
and as such reinforce the necessity for full waveform processing
presented here.

Attenuation is not the only concern; turbulence can produce
wind affected, time varying refractive gradients that can create
scintillation, beam spreading and wander [15], which is par-
ticularly noticeable on short time exposures. The majority of
the studies have been directed at long distance optical com-
munication, e.g. [32]. The effect of such adversarial conditions
has not been systematically studied in an automotive context
where established benchmarks tend to provide good weather
data [33]. Li et al. [34] observed that turbulence effects were
substantial in reducing the achievable resolution in azimuth
and elevation at long range (8.2 Km) using a single-photon
system, especially during the day and in an urban environment.
Pawlikowska et al. [35], [36], have performed an extensive
study of the effects of turbulence on a photon counting system
at 1550 nm using both single element and arrayed detectors,
and Henrikson and Sjoberg [37] have investigated methods for
correction of scintillation effects in laser radar systems. To
model this theoretically on a single line of sight is complex;
Huela et al. [38] progressed from simpler models for beam
wandering and scintillation to more complex theory for phase
front distortion, comparing their work with previous attempts.
In summary, the effect of turbulence is very much dependent on
atmospheric conditions, natural or man-made, but these works
have been directed at much longer ranges than is common in
an automotive environment, and are unlikely to be the major
concern in this application.

B. Choice of Detector

For FWL, there are two main types of detector, linear
mode avalanche photodiodes (APDs) and time-correlated

single-photon counting (TCSPC), typically using Geiger mode
APDs or single-photon avalanche diode (SPAD) detectors [39].
APDs operate in linear multiplication mode, where the output
signal is linearly proportional to the incident optical power level,
thus providing full waveform information. These systems have
proven robust and reliable and have been used in a variety of
long-range LiDAR applications, but typically require detection
thresholds of the return signals of the order of several 100s
photons [39]. Single-photon LiDAR systems use APDs biased
above the avalanche breakdown voltage so that a single-photon
can initiate a self-sustaining and readily detectable avalanche
current. These detectors can register only the presence or
absence of a photon and cannot distinguish between one or two
(or more) photons incident at the same time. The advantage of the
single-photon approach is sensitivity at the single-photon level,
which when coupled with high repetition rate laser sources,
can produce an FWL response over many laser cycles. The
picosecond jitter of TCSPC systems can provide an advantage
in terms of signal-to-noise ratio and, significantly, in terms of
depth resolution (of the order of centimeters) when compared
to linear mode detectors. These advantages have been apparent
for a number of years [40], but have suffered from long data
acquisition times, too slow for most automotive applications.
However, as discussed in Section VI-A1, the development of
detector arrays, allied to rapid image processing techniques [41],
suggest that TCSPC LiDAR systems can become more effective
for future automotive requirements.

When imaging through obscuring media, light is attenuated in
both directions, so for a linear APD the return signal amplitude
is greatly reduced and may be missed in the presence of system
noise and back-scatter from the medium. In a TCSPC detection
system, however, the detector can only trigger only once per
laser pulse, with the detector requiring a reset after each event,
typically resulting in a detector dead time of 10’s nanoseconds.
If the likelihood of photon returns is high compared to the
pulse rate then a statistical skew in measurement probability
will occur across the timing window, called pulse pile-up. This
pile-up effect will be of particular significance in multiple return
measurements through adverse media [28], [39]. In previous
work, the authors have corrected single photon returns for loss
of light through vegetative layers [42], but this does not fully
correct for pulse pile up effects. In short, if TCSPC is to be
used for full dynamic range depth imaging in the automotive
context, rather than applying a window with limited depth of
field (‘gating’), further statistical correction is needed.

C. A Comparison With Automotive Radar

Automotive radar has the particular strengths of relatively
long range operation, is unaffected by lighting conditions (e.g.
at night) and is less sensitive than optical sensors to obscuring
media such as rain, mist, smoke or fog. Unfortunately, current
azimuthal and elevation resolution of automotive radars is poor,
and this makes detailed scene mapping and object classification
challenging and error prone. Automotive radar imaging and
processing systems [10] are generally targeted at the millimeter-
wave region from 30–300 GHz (1 cm to 1 mm wavelength),
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Fig. 6. Absorption spectra in fog and rain, from [45], [46] (©2012 IEEE).

penetrating poor weather [43] and receiving echoes from both
surfaces and actors within the field of view and at medium to long
range. 77 GHz is a popular choice, but increasing frequency and
modulating bandwidth in an FM system improves depth resolu-
tion, shown by experiment for a 150 GHz FMCW radar [11]. In
comparison with LiDAR, radar signals can propagate through
dense obscurants such as fog with much smaller propagation
loss [44], but the greater impediment to detailed scene mapping
and actor recognition is the low azimuth and elevation resolution
due to beam spread.

However, examining Fig. 6 one can observe that relative to
fog, in rain there is much higher attenuation [45], [46]. In an
explicit study of the effects of adverse weather on automotive
radar, Zhang et al. [47] note that rain, snow, mist, and hail,
can all have a significant impact, showing for example how
the received power and probabilities of detection of vehicles
and pedestrians reduce considerably as rain density increases.
Noruzian et al. [48] measured experimentally the effects of
snowfall, concluding that as the density of snow increases, so the
attenuation increases at all measured wavelengths. Comparing
wet and dry snow, higher attenuation occurred in the former
case.

In experiments to compare current automotive optical imaging
and a prototype automotive radar [49], a marquee was filled with
artificial (glycol based) obscurant and images were taken using a
150 GHz FMCW azimuth scanning radar, a Velodyne HDL-32E
LiDAR and a StereoLabs ZED optical stereo camera. In Figs. 7
and 8 the radar image can be compared against clear optical
images and against optical images acquired at a visibility of
4.4 m, as measured by a Secchi disc. At shorter distances, the
radar image shown in Fig. 7 is unaffected, but if we examine the
optical stereo image it is difficult to discertain the highlighted
objects, and several LiDAR returns at the further distances are
not detected by the algorithms used in the Velodyne system.
This illustrates very clearly the need for sensitive, full waveform
processing as argued in this paper.

D. Fusion

As introduced in Section I, given the complementary strengths
of the different sensors [50], all prototype vehicles for au-
tonomous and assisted driving have sensor suites designed to

Fig. 7. Scene within tent before smoke machine is switched on, from [49].
The ellipses enclose two mannequins, a spherical target of 20 cm diameter (on
the left) and a trolley (on the right). From top to bottom are the radar, camera
and LiDAR images. (©2017 IET). (a) Radar Image. (b) Optical Stereo (Left)
and LiDAR Images.

cope with the different conditions. However, most sensor fusion
methodologies [3] rely on unchanging descriptions of prior
and error probabilities that are not appropriate to changing
weather conditions. For example, RobustSENSE [51] employs
{LiDAR, stereo camera, short and long range radar} sensors for
external environmental monitoring, aiming to maximize sensor
performance while keeping component costs reasonable (≤1000
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Fig. 8. Scene within tent as smoke density increases to give 4.4 m visibil-
ity [49]. The camera and LiDAR images are shown. (©2017 IET).

Euro). Radecki et al. [16] present algorithms for data association,
object tracking, and object classification using video, LiDAR
and radar, detecting and tracking cars and pedestrians in a variety
of conditions, {Sunny, Night, Wet and Cloudy, Snow, Rain}. In
addition to attenuation and image distortion, they paid attention
to sensor fouling in snow, rain, and dusty conditions, and gave a
full discussion of how these effects occur and how to avoid the
associated problems. For fusion, one needs a switching strategy,
and variable parameters according to conditions. Trivially, this
could be optical in good weather, radar in bad weather, but
this suggests we need algorithms to determine when to switch,
touched upon in Section III-E.

E. Online Fog Determination

If fog (or other weather) is an impediment to optical imaging
because it attenuates and degrades the recorded image, the
corollary is that measurements of passive optical and LiDAR
image data can be used to estimate fog or other pollutant densi-
ties [45]. Pfennigbauer et al. [22] suggested that it was possible
to determine the visibility range and hence estimate fog density
from a LiDAR waveform measured from immediately in front
of the sensor to a maximum range of 30 m, since the rate of
amplitude decay was a clear indication of this. This suggests a
way to recover targets hidden in fog, because if the distributed
return from the relatively homogeneous fog can be measured,
this can be substituted in a model that analyzes multiple real
target echoes against a known background [52], [28].

As a rare exception, Shamsudin et al. [53] have investigated
algorithms for fog detection and elimination from 3D point

Fig. 9. Multispectral data for a single pixel through tree canopy, from [42]. In
this case the stand-off distance was 45 m to the zero reference point, just above
the tree apex. (©2014 IEEE).

clouds and conducted experiments under laboratory conditions.
This uses intensity and geometrical distribution to separate
clusters and is applied to the much more constrained situation
of an indoor robot. Effectively, it is an outlier removal algorithm
based on geometry, laser intensity and the beam itself. This is
unlikely to be robust outdoors over wide range fields as beam
divergence, different surface reflectance and distributed surfaces
all confuse the issue.

IV. FULL WAVEFORM LIDAR SIGNAL ANALYSIS

Current automotive LiDAR systems [5], [6] work on single
or occasionally dual peak detection, using a constant false alarm
rate (CFAR) matched filter or a similar strategy, assuming that
return signals from the LiDAR are significantly above a con-
stant noise floor. We consider temporal pulse modeling of a
FWL return as a non-normalized statistical mixture of single
surface returns rather than as an aggregated convolution. Such a
waveform has density F (i; k, φ) [54] defined as

F (i; k, φ) =

k∑

j=1

fsystem(i;βj , t0j ) +B (1)

where k denotes the number of returns, β each peak amplitude,
t0 peak position, and B the background. Examples of four such
waveforms for a single array pixel are shown in Fig. 9.

FWL processing to extract the parameters of Equation 1, as
surveyed by Mallet and Bretar [55], is the key to extracting
meaningful information from more complex scenes in which
the simple model of reflection from a single (or possibly dual)
flat surface with negligible depth variation normal to the beam
direction, as used for example in the Velodyne scanner [56], is
not appropriate. Multiple echoes can occur due to secondary
reflections [57], imaging from and through transparent sur-
faces [58], [59], imaging through complex surface structures
with mean size less than the beam width such as trees [42], and of
particular relevance to the automotive case, through obscuring
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media in which much of the return is scattered from particles
between the sensor and objects of interest, shown in Fig. 5.

Wagner et al. [13], following [60], [61], considered the re-
turned signal as a mixture of Gaussians. In the system consid-
ered, pulses were wide, of the order of 5 ns, corresponding to
1.5 m distance, so resolution of closely separated surfaces was
difficult. Rather than resolve, Mallet et al. [62] considered the
waveform as a distributed response characteristic of the target,
using a similar pulse width and a large footprint, of the order of
25 m2. A set of characteristic signal return models (generalised
Gaussian, Nakagami, Burr) was used to discriminate between
cathedrals, lesser buildings, grass, fields and streets. However,
an automotive LiDAR operates at shorter range, less than 200 m.
If we employ a narrow pulse and beam width in a time correlated
photon counting (TCSPC) LiDAR system [40], the footprint
on an opaque surface is much narrower, and the change in
pulse shape due to surface variation in azimuth and elevation
is negligible. This means we can build a high resolution image
by scanning or a focal plane array.

Several strategies have been proposed to estimate multi-peak
parameters given the observed photon histograms. The key
advantages of a Reversible Jump Markov Chain Monte Carlo
(RJMCMC) approach [52], [63], following [64] are the ability
to detect very weak and closely based returns, as short as
1 cm at a distance of 330 m [52], but these algorithms are
time-consuming. Other algorithms [59], [65], [66] consider a
convex formulation coupled with sparsity promoting regularisa-
tion. These approaches take into account the Poisson statistics
of the data and use optimization and employ assumed spatial
correlation between pixels. This latter constraint can be used
to discourage adjacent pixels from having different values of k
(number of peaks) [67], enforce neighbouring pixels to share
similar depth and reflectivity estimates [41], [68], [69], or even
account for non-local spatial correlations [63], [70]–[72]. These
algorithms have been demonstrated on real data showing con-
siderable performance improvements; examples of their use in
real studies of object perception through fog are provided in
Section V-B.

V. EXPERIMENTAL STUDIES ON 3D IMAGING USING TCSPC
DATA THROUGH OBSCURING MEDIA

We now report our own, and other studies, on 3D image
formation using FWL through various obscuring media and
extrapolate to the automotive case. As discussed in Section III-B,
for much published work and for existing commercial sys-
tems the preferred receiver technology is usually based on the
Avalanche Photodiode (APD). In our experiments, we employed
Time-Correlated Single-Photon Counting (TCSPC) with excel-
lent sensitivity, depth resolution, and operated at eye safe low
laser power, all advantageous for automotive applications.

A. Penetrative LiDAR Through Tree Canopies

We investigated multispectral LiDAR imaging of forest
canopies to the ground floor along the tree apex direction (e.g.
from the perspective of an airplane) [42]. The obscuring media

Fig. 10. Multispectral Data for 100 accumulated pixels through the tree
canopy, from [42]. (©2014 IEEE).

is the canopy, so we can perform penetrative analysis, e.g. to de-
termine the presence of invasive species on the ground. Equally,
the canopy itself is of interest and using multispectral FWL
we recovered parameters to infer structural and physiological
processes.

In field trials, we collected a 10 by 10 matrix of full waveform
data from a viewpoint normal to the apex of a small conifer. Fig. 9
shows the pixel illuminated by four independent wavelengths
(531 nm, 579 nm, 670 nm and 780 nm). Fig. 10 shows the
response for these same four wavelengths integrated over all
the pixels, which is analogous to a wide footprint aerial sensor.
As stated previously, some have used an aggregated model to
represent the obscuring medium, such as generalised Gaussian,
Nakagami, Burr functions to represent the tree canopy [62], or
a gamma function to represent homogeneous fog [28]. Using
RJMCMC analysis, supplemented by additional parameters to
define spectral response, we recovered the relative abundance of
needle and bark through the canopy, as well as the ground surface
and height of the tree, using the model of Equation (1) with an
unknown number (k) of impulse responses. The dotted lines
in Fig. 10 are effectively the positions of instrumental returns
and show the recovered positions of several layers of the tree
canopy, and the ground, and each layer has a corresponding area
and reflectance model, leading to the abundance recovery. Like
Fig. 5, the last return is of low amplitude because the tree crown is
relatively dense, so that little radiation penetrates to ground level.
Fig. 10 shows that the bulk of the canopy returns are between
approximately 0.6 m and 1.5 m, and the ground plane return is
at approximately 1.8 m, and that although the vast majority of
the photon returns are for the intervening medium (the canopy),
there is nevertheless sufficient return to recover the “‘target”’
depth, assuming that the ground height is the parameter of
interest. The key lesson for automotive LiDAR is that where
multiple surfaces may exist within the fog, or the fog is itself
non-homogeneous, the superposition of impulses allows a more
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Fig. 11. Polystyrene head and calibration targets used in France for 3D
imaging work through obscuring media, from [27]. (©2019 IEEE).

Fig. 12. Examples of photon count histograms under different levels of at-
tenuation. These are focussed on a narrow time (distance) window of 2000 ps
(30 cm) extracted from the full measurement window of 65536 ps (9.8 m) [27].
(a) 14:00 hours. (b) 14:55 hours.

flexible model than predefined aggregated distributions [28],
[62].

B. Penetrative LiDAR Through Smoke and Fog

We now turn our attention to a more detailed study of LiDAR
imaging through obscurants (smoke, fog) conducted in a sealed
tunnel using different media and densities of the intervening
medium [29], a situation which is more representative of the
automotive case. For our experiments, we used a polystyrene
head and a series of planar targets, as shown in Fig. 11. The
transceiver was located at a stand-off distance of 17 m from
the tunnel, and the head at a distance of 24 m from the tunnel
entrance so that the total transceiver-target stand-off was 41 m.
In Fig. 12 are shown a single pixel captured as the tunnel is
filled with smoke (14:00 hours) then the corresponding pixel
image after most of the smoke has dispersed (14:55 hours). These
measurements are gated around the target, unlike Fig. 5, but
there is no clear concentration of photons at the object surface
in Fig. 12(a) due to reflections from the surrounding fog.

Satat et al. [28] have also recovered dense depth images of
mannequins, similar in essence to those shown in Figs. 11 and
5, through fog in a specially constructed chamber. Like [62],
they applied the alternative approach to the superimposition of

Fig. 13. An example histogram from [28]. OT refers to the optical thickness of
the fog. On the left the orange curve is the fitted Gamma function, and the green
curve is the assumed surface return. The yellow function denotes the difference.
(©2018 IEEE).

a variable number of impulse returns which is to model the
obscuring medium by a representative gamma function con-
volved with the instrumental response, as shown in Fig. 13. A
Kernel Density Estimate (KDE) smooths the original signal, then
the fitted gamma function at a given optical thickness (OT) is
subtracted from this to leave the signal estimate, and the assumed
single surface return is extracted. The key problem here is the
assumption of a single return so that peaks in the yellow signal
are assumed to be inhomogeneities in the fog rather than real
surface returns.

In a scene such as this, it is possible to incorporate assump-
tions about the nature of the objects depicted, in particular the
smoothness of the surfaces with few significant obscuring or
sharp curvature edges. In Fig. 14 are shown several examples of
reconstruction of the depth image of the polystyrene head that
take advantage of either local or non-local spatial constraints,
in addition to data statistics. In particular, the paper by Tobin
et al. [27] compares Multidimensional Nonlocal Reconstruction
of 3D (M-NR3D) [27] against two earlier approaches, Restora-
tion of Depth and Intensity using Total Variation (RDI-TV) [73]
and the Unmixing Algorithm (UA) [68]. The regularization term
included variation in intensity as well as depth, as both the head
and planar surfaces are of uniform Lambertian reflectance. In
more complex scenes it may be more appropriate to regularize
based on consistency of normal or curvature data or on the
assumption of a few piecewise extended surfaces [74], [75] but
this may make an already time-consuming optimization strategy
intractable as we consider in Section VI.

In similar vein, we also recorded spectral transmittance at
wavelengths from 500−900 nm for different sediment densities
in sea water in comparison with clear water, from both single-
pixel scanning [76] and arrayed detector [77] configurations.
Like the tree canopy examples, FWL processing was used to
compute the peak positions, amplitudes and background photon
count, and to classify target objects (model mines) through
underwater vegetation [78]. In essence propagation through un-
derwater sediment is analogous to propagation though airborne
obscurants and is not considered further here as it does not add
to the discussion.

VI. COMPLEXITY: HARDWARE AND SOFTWARE ISSUES

Complexity issues are key in dealing with the much greater
volume of data associated with FWL. We have to be system-
centric, considering focal plane vs. scanned hardware, how data
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Fig. 14. Depth image restored by a number of methods using spatial con-
straints and data statistics.NAL is number of attenuation lengths in glycol based
smoke. The per-pixel acquisition time was 3 ms (approximately 30 seconds
total). The data was reconstructed using, from top to bottom, cross-correlation;
RDI-TV [73]; UA [68]; M-NR3D [27]. The depth scale is in meters for all
images.

is acquired and read out, where and how it is processed, and what
computational languages and hardware are most appropriate. In
Section IV we argued that FWL required sophisticated tech-
niques to recover weak and closely separated returns expected
in imaging complex scenes through obscuring media. Methods
such as RJMCMC or the convex optimisation methods have
significant time complexity. In brief, to achieve high frame rate
processing, especially in the presence of obscurants, requires
significant progress in sensor design, algorithms, software and
embedded hardware.

1) Solid State Arrays: Solid state detector arrays: Over the
last few decades, silicon-based SPAD arrays have come to
prominence for a variety of applications, particularly when
fabricated in CMOS technology [79]. These sensors have been
configured in full TCSPC mode [80], [81], and for single-photon
3D imaging in range-gated mode [82], [83]. Over the years,
there have been considerable developments aimed at improving
the fill factor, the quantum efficiency, reducing crosstalk, and
incorporating fast read out circuitry [81], [84], [85]. Arrayed
silicon SPAD detectors are being developed explicitly for the

automotive sector [5], with detection capability demonstrated
at up to 300 m. Larger arrays are now being fabricated, e.g. of
256 × 256 [86] or 252 × 144 pixels [87]. Earlier [88], a 64 ×
32 pixel array was operated at an even higher rate of 100fps.
More recently, Gyongy et al. [89] demonstrated 1000fps depth
imaging using a 80 × 30 SPAD array with TCSPC capability
having an on-chip histogramming capability.

With silicon-based SPADs, the spectral range is limited to
wavelengths below 1000 nm. As highlighted in Section III,
there are advantages in using longer wavelengths. Up to ap-
proximately 1600 nm, this has been addressed by the use of In-
GaAs/InP and InGaAsAsP/InP SPAD detectors [83], [90]. Itzler
at al [90] demonstrated these picosecond-resolution TCSPC-
based detector arrays in formats of 32 × 32 and 128 × 32 pixels
applied to many applications including: high speed depth pro-
filing at 1000fps [91], panoramic 3D profiling in clutter [92],
and real-time depth reconstruction of complex, multi-surface
scenes [41]. Pawlikowska [35] provides a thorough account of
the relative merits of a scanned, single element 3D InGaAs/InP
TCSPC LiDAR system against a non-scanning transceiver sys-
tem containing a 32 × 32 InGaAs/InP SPAD detector array.

However, all of these process the data on the basis of an
assumed single surface return to limit complexity. Of concern is
the need to achieve high resolution over the full dynamic range,
typically 4 cm resolution from 1–200 m in the automotive case,
which places very high demands on data storage and processing
in an array structure. If using a focal plane array, there are limited
space and thermal budgets, and if we increase the complexity
of the data storage (e.g. for full histograms instead of single
points), then we reduce the fill factor and the frame rate accord-
ingly [93]. Simple binary logic and external frame summation
can reduce the frame time (to as low as 10 ms [94]) but that
does not allow full wave data analysis of the type described in
Section IV. To achieve FWL LiDAR data comparable to video
resolution in azimuth and elevation would require in excess
of 109 measurements per frame, which is unachievable now,
and so current, commercial sensors [5], [6], [22] process single
echoes at low vertical resolution, or multiple echoes on single
elevation sweeps, relying on sensor movement to ‘pushbroom’
the remaining dimension.

2) Array Architectures and Compressed Sensing: As stated
in the previous paragraph, in addition to maintaining high de-
tection efficiency and fill factor in a high resolution integrated
sensor, for FWL we have to store, transfer and process long
data vectors at each pixel, i.e. the depth profile, e.g. in contrast
to the triple RGB values recorded by a camera. This puts a
premium on space and thermal budgets, so full sensors generally
have low resolution in all spatial dimensions, and if processing
is integrated then it has to be very simple, e.g. a centre of
mass computation on the response. To try and resolve this and
eliminate the need to process every pixel, the first applications
of compressed sensing technology, e.g. [95], [96], were applied
to single pixel cameras, random sampling from a dense pixel
matrix using a digital-micro-mirror-device (DMD) to provide
the data to reconstruct 3D surfaces on the assumption of few
smooth surfaces, and in some cases uniformity of reflectance as
well.
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Fig. 15. Reconstructed scene from compressed reconstruction at a frame
processing time of 1 ms, from [97]. The scene is complicated, with several
surfaces separated by sharp, blade edges, and as such is representative of the
kind of data expected in the automotive context. (©2019 IEEE).

Recently, we expanded the CS methodology [97] into a pro-
grammable array, synchronizing the receiver and transmitter,
boosting the signal-to-noise-ratio (SNR) by restricting active
measurements to the patterns constituting the sensing matrix.
To reconstruct depth in the CS framework, a mixed domain
approach was adopted and simplified, using total variation (TV).
Earlier work relied on iterative processes to find the sparsest
solution and were computationally expensive for images larger
than 64 × 64 pixels [95], [96]. In contrast, we sampled and
processed the scene in small individual square tiles. The algo-
rithm was encoded in Matlab to reconstruct 3D scenes using
full waveforms derived from both synthetic 64 × 64 [98] and
real 256 × 256 data [78]. An example of a reconstructed scene
is shown in Fig. 15. The key observation is how the application
of full waveform, compressed sensing, implemented on a GPU
reduces the frame processing times to below 10 ms, which is
comparable to the necessary frame rates for the automotive area.

3) Reducing Algorithmic Processing Time: For deployment
in automotive scenarios, it is essential to reduce the compu-
tational cost of existing algorithms. Assuming a preferred al-
gorithm, the necessary first step is to profile the code. Quan-
tifying the performance of RJMCMC processing in compari-
son with the prevalent less complex approaches [99] showed
that simple likelihood computation accounted for 90% of the
processing time. This can be accelerated by special purpose
hardware.

Improving data representation is important. For example,
working in sparse regimes requires the use of a photon tagged
representation [63], [68], but in dense regimes it is more efficient
to work with FWL histograms in the presence of a scattering en-
vironment [100]. Simplifying assumptions, if valid, also ensure
faster performance. This can include fixing the number of esti-
mated peaks, the use of down-sampled data to reduce dimensions
and proposing specific formulations that allow parallel and GPU
computing tools. For example, in [101] we examined the ability
to resolve closely spaced surface returns, one of the key strengths
of TCSPC FWL systems, with a much faster approach. The

Fig. 16. Measurement of surface resolution using the RJMCMC, OMP and
the Matrix Pencil methods from [101]. The Matrix Pencil method results in a
reduction of per pixel processing time from 1s to 1.8 ms. (©2016 IEEE).

problem was reformulated as a parameter estimation problem
pivoted around the finite rate of innovation framework [102]. As
shown in Fig. 16 [101] we were able to achieve similar results
to full RJMCMC [52], but in a fraction of the time, reducing
computation time per pixel from 1s to 1.8 ms per pixel. This
comes with the caveat that it relies on low pass filtering of the
raw data, and on an a-priori assumption of two, relatively strong
returns. However, this approach does not make any a-priori
assumptions on spatial constraints, as in Fig. 14, so in that sense
is more generally applicable.

4) Parallel Methods for Full Waveform Analysis: If we con-
sider single pixels, or pixel windows, then the simplest form
of data parallelism is to process these independently and in de-
signing new arrayed sensors this can be encapsulated in on-chip
processing. As the same instruction sequence is performed on
multiple data sets, this makes it suitable for implementation on
a single-instruction-multiple-data architecture, such as the new
range of GPUs.

In [103], we also looked at multiple-instruction-multiple data
(MIMD) methods to implement the RJMCMC methodology, us-
ing both control and data parallelism. This facilitates concurrent
sampling by forming a group of parallel chains, decomposing
the state space into subsets of parameter space. The complete
state space of n candidate models, {k1, k2, . . ., kn} is divided
into (n−m+ 1) groups, each containing m adjacent models,
i.e. groupi = (ki, ki+1, . . ., ki+m−1). Each group is assigned
an independent RJMCMC chain, hence reducing the between-
model mixing complexity by reconfiguring the state space. An
implementation on a 32-node Beowulf cluster led to significant
speedup, of the order of 15–25 times, while maintaining the
same capability of RJMCMC to better explore the whole solution
space having several possible echoes.

VII. CONCLUSION

We have addressed some of the key strengths of full waveform
LiDAR (FWL) with particular regard to obscuring media. We
aim to prompt a discussion on the key strengths and weak-
nesses for deployment of FWL to allow autonomous or driver
assisted vehicles to operate in adverse weather, including smoke,
fog, mist and precipitation. Although we focus on automotive
LiDAR, by which we assume cars and public transport used
by the general population, such discussion encompasses more
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specialized applications, such as emergency vehicles operating
in adverse conditions, e.g. during fog that causes an accident, or
sensor controlled robots operating in extreme environments, e.g.
underground or in a smoke filled building. We now summarise
the main issues.

There is the issue of operating range, even in good weather.
Photon counting LiDARS have high sensitivity, and combined
with new developments in sparse modeling of scenes and very
efficient scanning optics have been shown to work at long
ranges [35], [104] but these are not (yet) suitable for automotive
applications. In addition to issues of optical and computational
efficiency, in general, the 3D reconstruction algorithms make
simplifying assumptions, e.g. that ‘reflectors are clustered in
depth’ [104], so that many pixels can be aggregated, which
is questionable in an automotive context. In contrast, current
automotive LiDAR manufacturers claim ranges in excess of
100 m; in our own experience even this is dependent on good
reflectivity and favourable ambient light. A move towards the
1550 nm wavelength should increase the operating range while
remaining within laser eye safety thresholds. In some adverse
conditions, such as dense smoke, the attenuation is also reduced
at the longer wavelength, so again this would improve operating
range. However, the move to 1550 nm wavelength comes at
a cost when compared to silicon where there is a consider-
able legacy of materials and device optimisation. Single-photon
detectors are now being developed for wavelengths around
1550 nm using Ge-on-Si [105], [106] which may reduce costs
if markets stimulate mass production.

Many existing automotive LiDARS use single return, or
perhaps dual (e.g. strongest, last) return only processing. If
FWL and TCSPC technology can be applied this will allow
not only improved distance resolution but also the capability
to detect and characteristic weak returns. Single shot image
plane resolution is usually poor. Scanning systems give dense
spatial sampling in the spin direction but generally use sparse
sampling normal to the spin direction, e,g, 32–128 lines, so that
denser sampling requires vehicle movement. If the spin rate is
fast and vehicle movement can be accurately monitored, and
point clouds accurately registered, then this may suffice. On the
other hand focal plane arrays have generally many fewer pixels
than conventional CCD cameras, so either larger arrays must be
developed, or mosaics of smaller sensors configured. The array
fill factors are also improving [81], [85], which together with
micro-lensing [84] should allow a more dense sampling of the
scene.

There are storage and processing issues for FWL. In the
penetrative LiDAR studies cited above, a sensor acquires a full
waveform at each pixel or scan direction; this is then processed
to find the multiple reflections contained therein. To store and
read out such voluminous data at each pixel requires addi-
tional circuitry that reduces the semiconductor area available for
sensing, and also takes considerable time, reducing frame rate.
Conversely, to introduce on-chip processing using other than
simple centre of mass detectors, would be both area and time
expensive. Having said that, there may not be a need to store
then post-process full waveform data. Taking TCSPC sensors as
an example, one can consider each photon arrival as an event

that updates range estimates, which are retained as new photons
arrive.

A number of authors have shown that compressed sens-
ing [107] has the potential to acquire high resolution images from
relatively few samples, usually sampled at random [63], [65],
[95]. The advantage of reducing the number of pixel samples,
and using optical methods to sample randomly, is that it allows
us to use fewer pixel sites and attain faster frame rates. Further,
it can potentially release sensor area for readout and processing
circuitry. However there are some caveats. Compressed sensing
relies on the signal or image being sparse in some domain, and
the majority of illustrations of compressively sensed LiDAR use
simple test scenes with simple surfaces and even uniform re-
flectance. Further, success is often measured by a reconstructed
distance from ground truth, which is best on continuous surfaces
rather than significant blade or fold boundaries. In an automotive
LiDAR, the anomalies have precedence over the common-place,
so one has to be careful that the sparse domain does not eliminate
the irregularities. Equally, in scene reconstruction it is important
to be sure that the underlying sparsity assumptions are applica-
ble, and to include estimates of uncertainty on the reconstructed
scene data. Nevertheless, the concept is promising for future
automotive systems.

Allied to the potential of compressed sensing, there is a key
requirement for algorithmic acceleration. Much has been made
of the recent, ubiquitous application of deep learning, but the
recent progress is due in large part to hardware innovation such as
relatively low cost GPU architectures. So there is a requirement
for stack (task − > algorithm − > code − > compilation − >
hardware) analysis of solutions to the signal and image analysis
problems presented here, including for example delegation of
repetitive maths to FPGAs, application of SIMD and multi-
core architectures as appropriate to the problem, as shown in
Section VI

In Section V we presented a number of examples of penetra-
tive LiDAR in action. In some of these studies the target was
gated so the surface shape was sensed using a-priori knowledge
of distance, i.e. using differential depth of focus. However, in
an automotive LiDAR, the assumption is that the scene must be
sensed at all ranges, and in adverse weather, one must analyse
the medium. This was best illustrated by the tree canopy exam-
ple [42], but if we examine sensing through fog, we realise we
cannot assume a homogenous and constant arrival of returned
light as a function of depth, as is the case in almost all previous
research. Allied to this, in an automotive system, if we want
to adjust dynamically to changing conditions, then we need to
know what those conditions are, a circular problem.

Hence, although LiDAR research and development is pro-
ceeding apace, is it likely in the short term that this could
become a sole sensor of choice? It seems that in the near term
at least sensor fusion [3] will remain necessary. For example,
radar is well know to operate well in bad weather but suffers
from poor scene resolution, currently a focus of improvement
using different radar frequencies, and processing methods such
as Doppler beam sharpening and synthetic aperture. There is also
variability on return that leads to difficulty in target recognition
or detection in cluttered environments (by which we mean
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having several confusing objects such as echoes, potholes, line
markings, which are difficult to model in electromagnetic simu-
lation, rather than statistically modelled background). Similarly,
we know that video processing for object recognition is much
more advanced, but both this and stereo scene reconstruction
suffer badly in adverse conditions. Therefore, we would suggest
that FWL filtered by better resolved radar data to give a-priori
information about coarse scene structure, could in future give
highly resolved scene reconstruction, but not immediately.

Less studied, interference or crosstalk [9] between different
sensors operating in a cluttered environment such as a road
network is a potential problem. In terms of ambient light, a
scanning LiDAR employs spatial (through a directional beam),
spectral (using a narrow band filter) and temporal (gated range)
filtering. Yet, Carballo et al. [30] found considerable interference
between multiple LiDARS in a weather tunnel, in the form of
both fringe patterns and random echoes, but were unable to
model these effects theoretically. Most models that do exist,
e.g. [108], are based on solution of the laser radar equation with
a realistic automotive or other transceiver model, and either a
synthetic environment or a mathematical model of probability
of return. Hence, automotive LiDARs should have some degree
of immunity to ambient effects, even in strong sunlight. If a focal
plane array is used, with a wide footprint transmitter for parallel
data acquisition, some capability for spatial filtering is lost. As
the dynamic range must be over 100 m or more, this negates
a degree of temporal filtering. Therefore, most authors suggest
that some further form of sensor specific modulation, e.g. code
division multiple access [25], is required to disambiguate the
intended from other sources. Again, this is really designed for
single returns, as multiple surfaces will alter the received code,
and the effect of an obscurant is to provide many such additional
returns. To the best of our knowledge, models and coding
strategies for avoiding interference using FWL in obscurants
have not been addressed.

Finally, there are design and cost concerns. Whereas one can
buy a CCD camera or a car radar for less than $200, LiDAR
systems are comparatively expensive. Further, it is not practical
to have a scanning LiDAR or indeed radar system mounted on
top of a production vehicle. Hence, the future of full waveform
LiDAR rests on the design of focal plane arrays, with or without
compressed sensing, that satisfy all the requirements of the
previous paragraphs in this section. If and when such technology
becomes ubiquitous, then the cost per installed system should
drop considerably.

In conclusion, we would suggest that FWL is a key component
of future sensing systems for the automotive sector, and in the
face of adverse weather conditions, analysis of the intervening
medium is a crucial component of the development of algorithms
and sensors.

REFERENCES

[1] J. Guerrero-Ibez, S. Zeadally, and J. Contreras-Castillo, “Sensor tech-
nologies for intelligent transportation systems,” Sensors, vol. 18,
pp. 1–24, 2018.

[2] N.-E. E. Faouzi, H. Leung, and A. Kurian, “Data fusion in intelligent
transportation systems: Progress and challenges: A survey,” Inf. Fusion,
vol. 12, pp. 4–10, 2011.

[3] B. Khaleghi, A. Khamisa, F. Karray, and S. Razavi, “Multisensor data
fusion: A review of the state-of-the-art,” Inf. Fusion, vol. 14, no. 1,
pp. 28–44, 2013.

[4] F. Alam, R. Mehmood, I. Katib, N. Albogami, and A. Albeshri, “Data
fusion and IoT for smart ubiquitous environments: A survey,” IEEE
Access, vol. 5, pp. 9533–9554, 2017.

[5] J. Hecht, “LiDAR for self-driving cars,” Opt. Photon. News, vol. 1,
pp. 27–33, 2018.

[6] J. Halker and H. Barth, “LiDAR as a key technology for automated and
autonomous driving,” ATZ Worldwide, vol. 1, pp. 70–73, 2018.

[7] [Online]. Available: http://www.cvlibs.net/datasets/kitti/eval_3dobject.
php. Accessed on: Apr. 18, 2020.

[8] I. Maksymova, C. Steger, and D. Druml, “Review of LiDAR sensor data
acquisition and compression for automotive applications,” MDPI Proc.,
vol. 2, pp. 852–855, 2018.

[9] P. Angskog, P. Nasman, and L.-G. Mattson, “Resilience to intentional
electromagnetic interference is required for connected autonomous vehi-
cles,” IEEE Trans. Electromagn. Compat., vol. 61, no. 5, pp. 1552–1559,
Oct. 2019.

[10] S. Patole, M. Torlak, D. Wang, and M. Ali, “Automotive radars: A review
of signal processing techniques,” IEEE Signal Process. Mag., vol. 34,
no. 2, pp. 22–35, Mar. 2017.

[11] D. Jasteh, E. Hoare, M. Cherniakov, and M. Gashinova, “Experimental
low-terahertz radar image analysis for automotive terrain sensing,” IEEE
Geosci. Remote Sens. Lett., vol. 13, no. 4, pp. 490–494, Mar. 2016.

[12] S. Gishkori and B. Mulgrew, “Azimuth enhancement for automotive SAR
imaging,” in Proc. Int. Conf. Radar, 2018, pp. 1–5.

[13] W. W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnick,
“Gaussian decomposition and calibration of a novel small-footprint full-
waveform digitising airborne laser scanner,” ISPRS J. Photogrammetry
Remote Sens., vol. 60, pp. 100–112, 2006.

[14] R. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena
on automotive laser radar systems,” Adv. Radio Sci., vol. 9, pp. 49–60,
2011.

[15] G. R. Osche and D. S. Young, “Imaging laser radar in the near and far
infrared,” Proc. IEEE, vol. 84, no. 2, pp. 103–124, Feb. 1996.

[16] P. Radecki, M. Campbell, and K. Matzen, “All weather perception:
Joint data association, tracking, and classification for autonomous ground
vehicles,” CoRR, vol. abs/1605.02196, 2016, arXiv:1605.02196.

[17] I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam
propagation at 785 nm and 1550 nm in fog and haze for optical wireless
communications,” in Proc SPIE, vol. 4214, pp. 26–37, 2001.

[18] F. Christnacher, B. Schertzer, M. N., E. Bacher, M. Laurenzis, and R.
Habermacher, “Influence of gating and of the gate shape on the penetra-
tion capacity of range-gated active imaging in scattering environments,”
Opt. Express, vol. 23, no. 26, pp. 32 897–32 908, 2015.

[19] M. M. Ijaz, Z. Ghassemlooy, H. L. Minh, S. Rajbhandari, and J. Perez,
“Analysis of fog and smoke attenuation in a free space optical com-
munication link under controlled laboratory conditions,” in Proc. Int.
Workshop Opt. Wireless Commun., Oct. 2012, pp. 1–3.

[20] M. Khan, S. Muhammad, M. Awan, M. Kvicera, V. Grabner, and E.
Leitgeb, “Further results on fog modeling for terrestrial free-space optical
links,” Opt. Eng., vol. 51, no. 3, pp. 1–10, 2012.

[21] X. Cao, P. Church, and J. Matheson, “Characterization of the opal
LiDAR under controlled obscurant conditions,” in Proc. SPIE, vol. 9839,
May 2016, Art. no. 98390I.

[22] M. Pfennigbauer, C. Wolf, J. Weinkopf, and A. Ullrich, “Online waveform
processing for demanding target situations,” in Proc. SPIE, vol. 9080,
2014, Art. no. 90800J.

[23] M. Kutila, P. Pyyknen, H. Holzhter, M. Colomb, and P. Duthon, “Auto-
motive LiDAR performance verification in fog and rain,” in Proc. 21st
Int. Conf. Intell. Transp. Syst., 2018, pp. 1695–1701.

[24] M. Bijelic, T. Gruber, and W. Ritter, “A benchmark for LiDAR sensors in
fog: Is detection breaking down?” in Proc. IEEE Intell. Vehicles Symp.,
2018, pp. 760–767.

[25] T. Fersch, A. Buhmann, A. Koelpin, and R. Weigel, “The influence of
rain on small aperture LiDAR sensors,” in Proc. German Microw. Conf.,
Mar. 2016, pp. 84–87.

[26] M. Trierweiler, T. Peterseim, and C. Neumann, “Automotive LiDAR
pollution detection system based on total internal reflection techniques,”
in Proc. SPIE, vol. 11302, 2020, Art. no. 1130216.

[27] R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christ-
nacher, and G. S. Buller, “Three-dimensional single-photon imaging
through obscurants,” Opt. Express, vol. 27, no. 4, pp. 4590–4611,
Feb. 2019.

http://www.cvlibs.net/datasets/kitti/eval_3dobject.php


7076 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 7, JULY 2020

[28] G. Satat, M. Tancik, and R. Raskar, “Towards photography through
realistic fog,” in Proc. IEEE Int. Conf. Comput. Photography, May 2018,
pp. 1–10.

[29] R. Tobin, A. Halimi, A. McCarthy, M. Laurentzis, F. Christnacher, and G.
Buller, “Depth imaging through obscurants using time-correlated single-
photon counting,” in Proc. SPIE Conf. Adv. Photon Counting Techn. XII,
2018, pp. 86–90.

[30] A. Carballo et al., “Libre: The multiple 3D LiDAR dataset,” 2020,
arXiV:2003.06129v1.

[31] J. Zhao, Y. Li, B. Zhu, W. Deng, and B. Sun, “Method and applications of
LiDAR modeling for virtual testing of intelligent vehicles,” IEEE Trans.
Intell. Transp. Syst., to be published, doi: 10.1109/TITS.2020.2978438.

[32] I. Capraro et al., “Impact of turbulence in long range quantum and
classical communications,” Phys. Rev. Lett., vol. 109, Nov. 2012.

[33] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” Int. J. Robot. Res., vol. 11, pp. 1231–1237, 2013.

[34] Z. Li et al., “Super-resolution single-photon imaging at 8.2 kilometers,”
Opt. Express, vol. 28, no. 3, pp. 4076–4086, 2020.

[35] A. Pawlikowska, “Single-photon counting LiDAR for long-range three-
dimensional imaging,” Ph.D. theses, Dept. Phys., Inst. Photon. Quant.
Sci. Heriot-Watt Univ., Edinburgh, U.K., 2016.

[36] A. Pawlikowska, A. Halimi, R. Lamb, and G. Buller, “Single-photon
three-dimensional imaging at up to 10 kilometers range,” Opt. Express,
vol. 25, no. 10, pp. 11 919–11 931, 2017.

[37] M. M. Henriksson and L. Sjqvist, “Scintillation index measurement using
time-correlated single-photon counting laser radar,” Opt. Eng., vol. 53,
no. 8, pp. 081 902–1–8, 2014.

[38] M. Hulea, Z. Ghassemlooy, X. Tang, and S. Rajbhandari, “A review on
effects of the atmospheric turbulence on laser beam propagation—An
analytic approach,” in Proc. 10th Int. Symp. Commun. Syst., Netw. Digit.
Signal Process., Jul. 2016, pp. 1–6.

[39] A. Ullrich and M. Pfennigbauer, “Linear LiDAR versus geiger mode
lidar: impact on data properties and data quality,” in Proc. SPIE, vol. 9832,
2014, Art. no. 983204.

[40] G. Buller and A. Wallace, “Ranging and three-dimensional imaging using
time-correlated single-photon counting and point-by-point acquisition,”
IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 4, pp. 1006–1015,
Jul.–Aug. 2007.

[41] J. Tachella et al., “Real-time 3D reconstruction from single-photon
LiDAR data using plug-and-play point cloud denoiser,” Nature Commun.,
no. 10, pp. 1–6, 2019.

[42] A. Wallace et al., “Design and of evaluation of multi-spectral LiDAR for
the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 8, pp. 4942–4954, Aug. 2014.

[43] M. Khan, S. Muhammad, M. Awan, M. Kvicera, V. Grabner, and E.
Leitgeb, “Millimeter-wave and submillimeter-wave imaging for security
and surveillance,” Proc. IEEE, vol. 95, no. 8, pp. 1683–1690, Aug. 2007.

[44] Y. Yang, M. Mandehgar, and D. R. Grischkowsky, “Broadband THz
signals propagate through dense fog,” IEEE Photon. Technol. Lett.,
vol. 27, no. 4, pp. 383–386, Feb. 2015.

[45] P. Sallis, C. Dannheim, C. Icking, and M. Mder, “Air pollution and fog
detection through vehicular sensors,” in Proc. 8th IEEE Asia Modelling
Symp., 2014, pp. 181–186.

[46] H. Winner, S. Hakuli, F. Lotz, and C. Singer, Handbook of Driver
Assistance Systems: Basic Information, Components and Systems for
Active Safety and Comfort. Berlin, Germany: Springer, 2016.

[47] S. S. Zang, M. Ding, D. Smith, P. Tyler, T. Rakotoarivelo, and M. Kaafar,
“The impact of adverse weather conditions on autonomous vehicles,”
IEEE Veh. Technol. Mag., vol. 14, no. 2, pp. 103–111, Jun. 2019.

[48] F. Norouzian et al., “Experimental study on low-THz automotive radar
signal attenuation during snowfall,” IET Radar, Sonar Navigation,
vol. 13, no. 9, pp. 1421–1427, 2019.

[49] L. Daniel, D. Phippen, E. Hoare, A. Stove, M. Cherniakov, and M.
Gashinova, “Low-thz radar, LiDAR and optical imaging through arti-
ficially generated fog,” in Proc. Int. Conf. Radar Syst., 2017, pp. 1–4.

[50] G. Rudolph and U. Voelzke, “Three sensor types drive autonomous
vehicles,” Sensors Online, 2017.

[51] M. Kutila, P. Pyyknen, W. Ritter, O. Sawade, and B. Schufele, “Auto-
motive LiDAR sensor development scenarios for harsh weather condi-
tions,” in Proc. IEEE 19th Int. Conf. Intell. Transp. Syst., Nov. 2016,
pp. 265–270.

[52] S. Hernandez-Marin, A. Wallace, and G. Gibson, “Bayesian analysis of
LiDAR signals with multiple returns,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 12, pp. 2170–2180, Dec. 2007.

[53] A. Shamsudin, K. Ohno, T. Westfechtel, S. Takahiro, Y. Okada, and
S. Tadokoro, “All weather perception: Joint data association, tracking,
and classification for autonomous ground vehicles,” Adv. Robot., vol. 30,
no. 11–12, pp. 729–743, 2016.

[54] S. Pellegrini, G. Buller, J. Smith, A. Wallace, and S. Cova, “Laser-based
distance measurement using picosecond resolution time-correlated single
photon counting,” Meas. Sci. Technol., vol. 11, no. 4, pp. 713–716, 2000.

[55] C. Mallet and F. Bretar, “Full-waveform topographic LiDAR: State-of-the
art,” ISPRS J. Photogrammetry Remote Sens., vol. 64, no. 1, pp. 1–16,
2009.

[56] H. Wang, B. Wang, B. Liu, X. Meng, and G. Yang, “Pedestrian recognition
and tracking using 3D LiDAR for autonomous vehicle,” Robot. Auton.
Syst., vol. 88, pp. 71–78, 2017.

[57] A. Wallace, B. Liang, J. Clark, and E. Trucco, “Improving depth image
acquisition using polarized light,” Int. J. Comput. Vision, vol. 32, no. 2,
pp. 87–109, 1999.

[58] A. Wallace, P. Csakany, G. Buller, and A. Walker, “3D imaging of
transparent objects,” in Proc. Brit. Mach. Vision Conf., 2000, pp. 466–475.

[59] D. Shin, F. Xu, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “Compu-
tational multi-depth single-photon imaging,” Opt. Express, vol. 24, no. 3,
pp. 1873–1888, Feb. 2016.

[60] M. A. Hofton, J. B. Minster, and J. B. Blair, “Decomposition of laser
altimeter waveforms,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 4,
pp. 1989–1996, Jul. 2000.

[61] A. Persson, U. Soderman, J. Topel, and S. Ahlberg, “Visualization
and analysis of fullwaveform airborne laser scanner data,” Int. Arch.
Photogrammetry, Remote Sens. Spatial Inf. Sci., vol. ISPRS WG III/3,
pp. 103–108, 2005.

[62] C. Mallet, F. Lafarge, M. Roux, U. Soergel, F. Bretar, and C. Heipke,
“A marked point process for modeling LiDAR waveforms,” IEEE Trans.
Image Process., vol. 19, no. 12, pp. 3204–3221, Dec. 2010.

[63] J. Tachella et al., “Bayesian 3D reconstruction of complex scenes from
single-photon LiDAR data,” Siam J. Imag. Sci., vol. 12, pp. 521–550,
2019.

[64] S. Richardson and P. Green, “On bayesian analysis of mixtures with an
unknown number of components,” J. Royal Stat. Soc. B, vol. 59, no. 6,
pp. 731–792, 2008.

[65] A. Halimi, R. Tobin, A. McCarthy, S. McLaughlin, G. Buller, and G.
Stuart, “Restoration of multilayered single-photon 3D LiDAR images,”
in Proc. 25th Eur. Signal Process. Conf. (EUSIPCO), 2017, pp. 708–712.

[66] R. Tobin et al., “Long range depth profiling of camouflaged targets using
single photon detection,” Opt. Eng., vol. 57, pp. 003 103/1–10, 2018.

[67] S. Hernandez-Marin, A. Wallace, and G. Gibson, “Multilayered 3D Li-
DAR image construction using spatial models in a Bayesian framework,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 6, pp. 1028–1040,
Jun. 2008.

[68] J. Rapp and V. K. Goyal, “A few photons among many: Unmixing signal
and noise for photon-efficient active imaging,” IEEE Trans. Comput.
Imag., vol. 3, no. 3, pp. 445–459, Sep. 2017.

[69] D. B. Lindell, M. OToole, and G. Wetzstein, “Single-photon 3D imaging
with deep sensor fusion,” ACM Trans. Graph. (SIGGRAPH), vol. 37,
no. 4, pp. 1–12, 2018.

[70] W. Marais and R. Willett, “Proximal-gradient methods for poisson im-
age reconstruction with bm3d-based regularization,” in Proc. IEEE Int.
Workshop Comput. Advances Multi-Sensor Adaptive Process., Dec. 2017,
pp. 1–5.

[71] A. Halimi, R. Tobin, A. McCarthy, J. Bioucas-Dias, S. McLaughlin,
and G. S. Buller, “Robust restoration of sparse multidimensional single-
photon LiDAR images,” IEEE Trans. Comput. Imag., vol. 6, pp. 138–152,
2020.

[72] S. Chen et al., “Learning non-local spatial correlations to restore
sparse 3D single-photon data,” IEEE Trans. Image Process., vol. 29,
pp. 3119–3131, 2020.

[73] A. Halimi et al., “Restoration of intensity and depth images constructed
using sparse single photon data,” in Proc. 24th Eur. Signal Process. Conf.
(EUSIPCO), 2016, pp. 86–90.

[74] P. Besl and R. Jain, “Invariant surface characteristics for 3D object
recognition in range images,” Comput. Vision, Graph. Image Process.,
vol. 33, no. 1, pp. 33–80, 1986.

[75] D. Ferstl, C. Reinbacher, R. Ranftl, M. Ruther, and H. Bischof, “Image
guided depth upsampling using anisotropic total generalised variation,”
in Proc. Int. Conf. Comput. Vision, 2013, pp. 993–1000.

[76] A. Maccarone et al., “Underwater depth imaging using time-correlated
single photon counting,” Opt. Express, vol. 26, pp. 33 911–33 926, 2015.

https://dx.doi.org/10.1109/TITS.2020.2978438


WALLACE et al.: FULL WAVEFORM LiDAR FOR ADVERSE WEATHER CONDITIONS 7077

[77] A. A. Maccarone, F. D. Rocca, A. McCarthy, R. Henderson, and G.
Buller, “Three-dimensional imaging of stationary and moving targets in
turbid underwater environments using a single-photon detector array,”
Opt. Express, vol. 27, no. 2, pp. 28 437–28 456, 2019.

[78] P. Chhabra, A. Maccarone, A. McCarthy, A. Wallace, and G. Buller,
“Discriminating underwater LiDAR target signatures using sparse multi-
spectral depth codes,” in Proc. Conf. Sensor Signal Process. Defence,
2016, pp. 1–5.

[79] E. Charbon and S. Donati, “SPAD sensors come of age,” Opt. Photon.
News, vol. 21, no. 2, pp. 34–41, 2010.

[80] M. Albota et al., “Three-dimensional imaging laser radar with a photon-
counting avalanche photodiode array and microchip laser,” Appl. Opt.,
vol. 41, no. 36, pp. 7671–7678, 2002.

[81] R. Henderson et al., “A 256256 40nm/90nm cmos 3D-stacked 120db
dynamic-range reconfigurable time-resolved SPAD imager,” in Proc.
IEEE Int. Solid- State Circuits Conf., 2019, pp. 106–108.

[82] X. Ren et al., “High-resolution depth profiling using a range-gated si cmos
spad quanta image sensor,” Opt. Express, vol. 26, no. 5, pp. 5541–5557,
2018.

[83] S. Chan et al., “Long range depth imaging using a single photon detec-
tor array and non-local data fusion,” Scientific Rep., vol. 9, no. 8075,
pp. 1–12, 2019.

[84] G. Intermite et al., “Fill factor improvement of Si CMOS single-photon
avalanche diode detector arrays by integration of diffractive microlens
arrays,” Opt. Express, vol. 23, no. 26, pp. 33 777–33 791, 2015.

[85] T. Abbas, N. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. Hen-
derson, “Backside illuminated SPAD image sensor with 7.83m pitch in
3D-stacked CMOS technology,” in Proc. IEEE Int. Electron Devices
Meeting, 2016, pp. 8.1.1–8.1.4.

[86] L. Parmesan et al., “A 256 x 256 SPAD array with in-pixel time to
amplitude conversion for fluorescence lifetime imaging microscopy,” in
Proc. IISW Conf., 2015, pp. 1–4.

[87] C. Zhang, S. Lindner, I. Antolović, J. Pavia, M. Wolf, and E. Charbon,
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