
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Click-UP: Toward the Software Upgrade of
Click-Based Modular Network Function

Junxiao Wang, Heng Qi , Member, IEEE, Keqiu Li , Senior Member, IEEE, and Steve Uhlig

Abstract—A Click-based network function (NF) has significant
advantages for pipeline development, including modularity, exten-
sibility, and programmability. Despite these features, its internal
architecture has unfortunately not kept up with some specific
problems of the software upgrade. To motivate our article, we
analyzed a series of use cases to identify the limitations of native
Click. These limitations include the inefficiencies in modifying
modules, integrating modules, and recovering states. To bridge the
gap, we present three novel enhancements in our Click upgrade
(Click-UP) system: 1) modular state abstraction refines each type of
stateful operations as an atom operation and decouples it from the
pipeline, letting separately managing logics for stateless operations
and stateful operations become practical; 2) essential module inte-
gration manages dependencies between modules, avoiding shipping
unnecessary modules with neutral functionalities to the target NF;
and 3) local state migration migrates needed states seamlessly from
the old NF to the target NF at local memory. Our evaluation
demonstrates that Click-UP reduces the context code required for
module modification by 12–81%, cutting down the NF integration
time by 78–96% and the service disruption time by 76–93%, as
compared to the software upgrade performance represented by
native Click.

Index Terms—Click, modular network function, software
upgrade.

I. INTRODUCTION

FOR network function virtualization (NFV), an active net-
work function (NF) typically comes with infrequent but

necessary software upgrades, e.g., when off-the-shelf NFs be-
come inappropriate in terms of their functionalities or when NFs
evolve [1]. NFs have to be refactored and adapted to fit their
new/improved purpose better. With the software-driven pipeline
inherent to NFV [2] comes the opportunity to replace traditional
(partly) hardware-based upgrade with software one, increasing
cost efficiency by allowing technological and software improve-
ments to include faster [3].

Manuscript received October 29, 2019; revised February 10, 2020; accepted
February 26, 2020. This work was supported in part by the National Key
Research and Development Program of China under Grant 2016YFB1000205,
in part by the National Natural Science Foundation of China under Grant
61772112, Grant U1701263, Grant 61672379, and Grant 61751203, and in part
by the Science Innovation Foundation of Dalian under Grant 2019J12GX037.
(Corresponding author: Heng Qi.)

Junxiao Wang, Heng Qi, and Keqiu Li are with the School of Com-
puter Science and Technology, Dalian University of Technology, Dalian
116024, China (e-mail: wangjunxiao@mail.dlut.edu.cn; hengqi@dlut.edu.cn;
keqiu@dlut.edu.cn).

Steve Uhlig is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, London E1 4NS, U.K. (e-mail:
steve.uhlig@qmul.ac.uk).

Digital Object Identifier 10.1109/JSYST.2020.2979170

The Click [4], thanks to its design, has been the best platform
for the NF upgrade [5]–[7]. Compared to other platforms such
as P4 [8], Click encourages modular programming of the packet
processing pipeline. Prior work [9] showed that a wide range of
NFs share a considerable amount of functionalities. Click makes
it easy to reuse such functionalities, abstracting them into a set of
reusable modules, called elements. Therefore, the Click-based
NF can be refactored by modifications to the required module
code rather than to the whole pipeline.

Despite these features, its internal architecture has unfortu-
nately not kept up with some specific problems of the software
upgrade. We conclude the limitations1 represented by Click-
based NF upgrade from three perspectives.

L1. Modifying Modules: While the framework (in Click)
enables the pipeline in a modular way, the way to identify state
is not modular. The developers require modifications to module
code to identify needed state, let alone state maintenance, e.g.,
custom state allocation, track updates to state, and (de)serialize
state objects. This process is tedious and manual, hindering the
adoption of the stateful upgrade. When the functionalities of the
NF are complex, the logic to update/create different pieces of
states can be intricate. It will be challenging to make sure the
completeness or correctness of manual modifications.

L2. Integrating Modules: Current module integration (in
Click) is a time-consuming process. Although the upgrade de-
clared what functionalities it would use for, integration (in Click)
does not bound to the required modules, but instead redundantly
shipping inessential modules with neutral functionalities to the
target NF. The substantial burden involved increases the upgrade
latency significantly as well as its further impacts on the service
consistency.

L3. Recovering States: Native Click does not provide support
for state migration. Due to the absence of needed states at the
new instance, the software upgrade (in Click) always leads to
incorrect operations conducted by the target NF. For the state
migration, there have been two lines of research: 1) check-
pointing state regularly into one remote instance and the state
migrated from the instance is reconstructed [10]–[12]. State mi-
gration from remote, however, takes time, inherently increases
the upgrade latency, and ignores the local state update during the
checkpointing; and (2) logging all inputs (i.e., packets) and using
deterministic replay in order to rebuild the state [13]–[15]. The
solution of this kind, in fact, works at the cost of a substantial

1Note that Click is not designed with an efficient upgrade in mind; hence,
these limitations are not aimed at evaluating Click itself, only our Click-based
upgrade system.

1937-9234 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8770-3934
https://orcid.org/0000-0003-1758-3030
https://orcid.org/0000-0001-6251-6836
mailto:wangjunxiao@mail.dlut.edu.cn
mailto:hengqi@dlut.edu.cn
mailto:keqiu@dlut.edu.cn
mailto:steve.uhlig@qmul.ac.uk

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

increase in recovery time (e.g., replaying all packets received
since the last checkpoint).

To bridge the gap, we present three novel enhancements in
the Click upgrade (i.e., so-called Click-UP) system.

E1. State Operation Abstraction: Click-UP achieves the mod-
ular state abstraction with a series of refined atom operations,
which are independent of stateless modules and correspond to
needed states. Each atom operation implements a single stateful
functionality that packets travel through and only requires oper-
ators to insert it into the pipeline. For developers, separately
managing logics for stateless modules and atom operations
become practical and will be relatively simple.

E2. Essential Module Integration: In Click-UP, the target NF
is built with only essential modules, which are required by the
functionalities of the target NF. By managing the functional
dependencies between modules, the module’s compilation and
linking methods will stick to dependencies, thereby eliminat-
ing the burden of redundantly shipping inessential modules
with neutral functionalities and significantly reducing upgrade
delays.

E3. Local State Migration: Click-UP enables the state mi-
gration scheme at the local memory. This scheme relies on a
pull/push state interface embedded in each NF to migrate needed
states. With a coordinator daemon as an intermediary, internal
network states are collected through the pull interface of the old
NF and are seamlessly reloaded to the target NF through the
push interface. Access to external/shared states is also migrated.
In doing so, needed states are migrated effectively in local,
significantly eliminating the service disruption.

To demonstrate the efficiency of our solution, we present two
typical NFs implemented on top of Click-UP: network address
translation (NAT) and whitelist Firewall. Click-UP reduces the
context code required for module modification. We also show
that NFs on Click-UP conduct the software upgrade with sig-
nificantly reduced NF integration time and service disruption
time, as compared to native Click. Click-UP is open source and
is available at https://click-up.github.io.

The rest of this article is organized as follows. Section II
presents the motivation and design of the modular state abstrac-
tion. Followed by Section III, we show how to compile/link
the essential modules according to the managed dependencies.
Section IV presents the migration of needed states between the
old instance and the target instance. In Section V, we evaluate
the performance of our upgrade system over a series of testbed
simulations and cared metrics analysis. We discuss the current
limitations of Click-UP in Section VI. In Section VII, the related
work is summarized. Finally, Section VIII concludes this article.

II. MODULAR STATE ABSTRACTION

A. Motivation and Challenges

By rethinking the software upgrade of the Click-based mod-
ular NF, we denote its lifecycle with Fig. 1. The lifecycle
depicts such a process: developers implement modules with
new features and store them at a module library; operators give
deterministic upgrade intents, resolving to a list of modules
corresponding to required functionalities; and by collecting the

Fig. 1. Lifecycle for the software upgrade of the Click-based modular NF.

Fig. 2. Traditional software upgrade, where the target NF is organized in a
stateless way (i.e., lacking of modular state abstraction).

required modules from the library, target NFs are then formed.
On the data path, the old NFs are unloaded and replaced with
the target ones.

In domains of Click, the modularity has been developed to
allow operators to use high-level abstractions for the software
upgrade, while the developers implement those abstractions
(ensuring detailed functionalities). The use of the high-level
modular abstractions should include the abstractions not only for
stateless pieces (e.g., packet header parser), but also for stateful
pieces (e.g., connection information lookup). Tight coupling of
these pieces easily becomes a source of modification complexity
and a maintenance nightmare.

As shown in Fig. 2, traditional upgrades are organized in a
manner without modular state abstraction. The target NF is com-
posed of a sequence of directed modules, each of which packages
needed states inside. These states are dynamic (they can be
updated by each incoming packet) and critical (their values deter-
mine correct operation conducted by the NF). Recognizing this,
and given the nonmodular way to identify state, developers must
modify carefully, or at least annotate, module code to perform
custom state allocation, track updates to state, and (de)serialize
state objects. These factors make such modifications difficult.
When the functionalities of the NF are complex, the logic to
update/create different pieces of states can be intricate. It will
be challenging to make sure the completeness or correctness
of manual modifications. Moreover, these factors make such
modifications redundant in the module library. It complicates
the dependence management and makes the process of module
collecting inefficient.

B. Design and Implementations

To enable the modular state abstraction, Click-UP refines each
type of stateful operations as an atom operation and decouples
it from the pipeline. As illustrated in Fig. 3, the atom opera-
tions correspond to needed states (read or write). Each atom
operation implements a single stateful functionality that packets
travel through and only requires operators to insert it into the

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: CLICK-UP: TOWARD THE SOFTWARE UPGRADE OF CLICK-BASED MODULAR NETWORK FUNCTION 3

Fig. 3. Software upgrade with Click-UP, where the target NF is organized in
a stateful way.

Fig. 4. Processing of an NF using the modular state abstraction.

pipeline and specify its action of output. By decoupling stateless
operations and stateful operations, separately managing for them
becomes possible. For developers, custom needed states can
bypass the module library and direct access to the atom library,
which should be relatively simple and with less redundant mod-
ifications/management. Note that the meaning of the module is
different in the concept of Click and Click-UP. Since Click-UP
decouples stateful operations from original Click modules, the
module of Click-UP refers to purely stateless operations.

As illustrated in Fig. 4, most of the NF code can be logically
divided into three basic parts: initialization, packet receive loop,
and packet processing. The initialization code runs when the
NF starts. It reads and parses configuration input and loads
modules or files. All of these can be done inmain(). The packet
receive loop is responsible for reading a packet from the kernel
and passing it to the packet processing procedure. The latter
analyzes and potentially modifies the packet. This procedure
reads/writes needed states to the processing of the current packet.
Via declaring the atom operation in Click-UP, needed states can
be identified and embedded to the NF automatically. Each atom
operation will come with an application programming interface
(API) to read or write state. The focus of the state store is
the key–value interface. That is, the API can read values by
providing a key (which returns the value) or write values by
providing both the key and the value. We leverage this key–value
interface to exchange needed states with the data store in a
general way, by registering the metadata for each atom operation.
The metadata includes all the states carried by each packet that
enters pipeline. All the states are also stored using the metadata
as the data structure.

Table I shows the states to be decoupled and read/written
by the key–value interface for some typical NFs. Each of the
NFs contains a certain number of WriteState atoms and
ReadState atoms.

TABLE I
DECOUPLED STATES IN THE ATOM OPERATION FOR TYPICAL NFS

1) Load Balancer: Upon receiving a TCP connection request,
the atom of WriteState retrieves the list of backend servers
from data store and then assigns a server to new flow. The
load for backend servers is subsequently updated, and the
revised list of backend servers is written into the data store.
The assigned server for the flow is also stored into the
data store before the packet is forwarded to the selected
server. For a data packet, the atom of ReadState retrieves
the assigned server for that flow and forwards the packet
to the server.

2) Signature-Based IPS: Upon receiving a new flow, the atom
of WriteState initializes the automata state and writes it
into data store. The automata state is computed against
a database of signatures from known malicious threats.
For a data packet, the atom of ReadState retrieves the
deterministic automaton for that flow. The bytes from the
payload are then scanned. In the case of malicious sig-
natures, the subsequent packets are discarded. Otherwise,
the packet is forwarded, and the deterministic automaton is
updated. Toward the TCP out-of-order problem, the atom
of WriteState buffers out-of-order packets into the data
store. The atom of ReadState retrieves buffer to reassemble
the stream of bytes.

3) NAT: Upon receiving a TCP connection request, the atom
of WriteState retrieves the list of ips and ports from data
store and then assigns a pair of (ip, port) to new flow. The
load for the pool is subsequently updated, and the revised
list of the pool is written into the data store. For a data
packet, the atom of ReadState retrieves the assigned pair
of (ip, port) for that flow and updates the packet header.

4) VPN: Upon receiving a TCP connection request, the atom
of WriteState initializes the authorized token for new flow
and writes it into the data store. For a data packet, atom of
ReadState retrieves the authorized token for that flow and
decrypts the stream of bytes.

5) Whitelist-Based Firewall: Upon receiving a new flow, the
atom of WriteState initializes the TCP finite-state machine
(FSM) for that flow and writes it into data store. In the
absence of an invalid FSM state, the updated whitelist
is stored into the data store for the new flow. For a data
packet, the atom of ReadState retrieves the whitelist and
forwards the packet.

To clarify above mappings, we show how to describe the
stateful target NF with atom operations included in the modular
pipeline. Take the whitelist firewall as an example (see Fig. 5).

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

Fig. 5. Stateful target NF of a whitelist-based firewall. The text corresponds to a DAG using stateless modules and stateful atom operations as nodes.

It employs ReadFSM, ReadWL, WriteFSM, and WriteWL
as stateful atoms. When a packet arrives at the input port, it
is processed by FromDevice, Classifier, Strip, and
CheckIPHeader in order. These modules belong to the state-
less part of the pipeline, responsible for header field checking
and filtering. After that, ReadWL retrieves the whitelist for the
packet. If its 5-tuple is on the whitelist, the packet is forwarded
to the output port. Otherwise, the direct forwarding is declined,
and ReadFSM retrieves the transmission control protocol (TCP)
FSM for the packet. If its TCP tag is invalid, the packet is
dropped. Otherwise, WriteFSM updates new FSM into the data
store. If its TCP tag is valid and the connection is established,
WriteWL updates the whitelist for that flow, before the packet
is forwarded to the output port.

Besides the example, we argue that the modular state ab-
stractions in Click-UP are general for more NFs and have the
efficiency of their implementation and maintenance. We allow
the developers to customize the stateless modules and the stateful
atoms they need. This gives the NF upgrade great flexibility
while allowing the operators to use optimized implementations
of these abstractions. By refining state operations into modular
atoms, the integration and the state migration will be more ben-
eficial and effective. In Section III, we show how to integrate the
modules and atoms determined by the target NF. In Section IV,
we introduce how to migrate needed states (related to the atoms)
from the old NF to the deployed new NF.

III. ESSENTIAL MODULE INTEGRATION

A. Motivation and Challenges

For operators, it is ideal to achieve always up-to-date NFs and
zero upgrade latency. For maximum security, a cellular provider
may want traffic always to be processed by the latest NF. For
example, an service level agreement (SLA) may require that
outdated NF instances never process traffic for more than 10
min per year [16]. A shorter upgrade delay let operators’ intents
be applied to data plane sooner.

Click’s native module integration process can be divided
into two steps: 1) compile and link all modules available in
the module library into an executable NF; and 2) load needed
modules of the executable NF to the pipeline. However, for
the software upgrade, required new functionalities are always
outside the range of the executable NF. As a result, each upgrade

Fig. 6. Integration time of the software upgrade in Click. The data are obtained
in a server with Intel Xeon (E5-2630v3) 64-GB RAM.

will lead to integration between the new modules and all other
modules. So what impact does this NF integration have on the
upgrade latency, even the service consistency?

To answer the question, we used a Click-based NAT imple-
mented by Mazu Networks and upgraded it with a given num-
ber of customized Print modules2 inserted into the original
pipeline. The integration time of the target NAT was measured
by observing the timestamp of the first printed flow. In Fig. 6,
we plotted the average of 20 experiments.

We find that the time for module compilation and linking
covers up to 99% of the total integration time. We observe an
upward trend of compilation time as the number of new modules
increases, while the time for linking new modules has a less
pronounced upward trend, more constant. The reason behind is
that Click natively lets the executable NF contain the whole
networking stack. Hence, all existing modules (up to 300+)
are linked every time redundantly, even if we add/modify a
single module to the pipeline. The burden makes the upgrade
latency to be significantly increased. Toward more strong service
consistency, we are motivated to care about the functional de-
pendencies between the modules and let every integration stick
to the required functionalities.

B. Design and Implementations

To cut down unnecessary burden involved by module inte-
gration, we propose a more lightweight integration in Click-UP.

2The print module does nothing but log the timestamp of packet traversing
through it. Each print module is implemented with a Click element.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: CLICK-UP: TOWARD THE SOFTWARE UPGRADE OF CLICK-BASED MODULAR NETWORK FUNCTION 5

Fig. 7. Design of lightweight integration layer in Click-UP.

Keeping in mind what the target NF will be used for, integration
in Click-UP sticks to the required modules, instead of redun-
dantly shipping inessential modules with neutral functionalities
to the target NF. To this end, we present the design and imple-
mentation of an integration layer on top of Click and modify
the way modules compiled and linked. As shown in Fig. 7,
the components of the integration layer are intent resolution
component (IRC), dependence management component (DMC),
configuration management component (CMC), and compile link
component (CLC).

1) Intent Resolution Component: IRC is with an upgrade in-
tent resolver. The resolver is input with a stateful upgrade intent
(as illustrated in Fig. 5) and then resolve it into directed acyclic
graphs (DAGs) of the target NF, where the DAG corresponds to
a stateful packet processing pipeline.

2) Configuration Management Component: CMC is with a
Click lexer mapper, which maps the pipeline of the target NF
into configuration files Click.conf of Click lexer.

3) Dependence Management Component: DMC is with a
dependence database, which stores the module relationship used
by dependence exploration. In most cases, the declared modules
in the target NF are not equal to the required modules in the exe-
cutable NF. The traditional scheme in Click directly embraces all
the modules into the executable NF, which has been proven to be
inefficient. To manage the functional dependencies between the
modules and let integration stick to the required functionalities,
we leverage a functionality-oriented element dependence model
as follows.

We have two classes of dependencies defined in the mod-
ularity of Click: element3-to-functionality and functionality-to-
functionality. When an element depends on a functionality with-
out itself providing functionalities, we refer to the dependence
as an element-to-functionality dependence. When the element

3“element” is a term in the concept of Click, indicating a modular component
in the pipeline. In the concept of Click-UP, the terms “module” and “atom” are to
indicate a purely stateless Click “element” and a purely stateful Click “element,”
respectively.

provides functionalities and requires other functionalities to
provide its own functionality, we refer to the dependence as
a functionality-to-functionality dependence.

The required functionalities of an element instance are bound
to dependencies once this instance is employed. Any func-
tionalities provided by this instance are registered after the
dependencies of this instance are satisfied. An element instance
is valid when its functionality dependencies are fully satisfied.
Following this, an element instance is always in one of two
possible stages: invalid or valid. The invalid stage means that
at least one of its functional dependencies is not satisfied. The
end of dependence exploration is with all the declared element
instances of the target NF in a valid stage.

4) Compile Link Component: CLC is with a redesigned ele-
ment compiler and linker. Note that we implement both the state-
less module and the stateful atom with unified Click modular
files Element.cc and Element.hh. Therefore, input of the
CLC (i.e., output of the DMC) is a set of Click elements. We first
categorize these elements into two boxes: 1) elements used by
both the old NF and the target NF; and 2) elements only used by
the target NF. For the elements in box 1, our compiler will reuse
their compiled files Element.o to reduce overhead, while for
the elements in box 2, our compiler will normally compile their
code files Element.cc and Element.hh into Element.o
plus Element.d. In the step of linking, our linker will link
three parts of files into an executable NF file Click.ko: a) a
set of reused elements; b) a set of fresh elements; and c) a set of
static resource files, e.g., Libclick.a and Click.o.

According to environmental requirements, the NF file
Click.ko has two deployable versions, which run in Linux
kernel space and user space, respectively. In both of two cases,
the atoms in the target NF will read/write the needed states (via
the stateful operations defined in Section II) within a memory
cache of user space. In Section IV, we show how the scheme of
state recovering works for Click-UP.

IV. LOCAL STATE MIGRATION

A. Motivation and Challenges

Besides the period of service inconsistency, another metric
cared by operators is the period of service disruption. When the
target NF is deployed, whether it can immediately handle traffic
and does not disrupt the data plane is essential. An upgrade
without state management always leads to incorrect operations
conducted by the new NF, due to the absence of state at the target
instance. This may involve states such as connection information
in a stateful firewall, substring matches in an intrusion detection
system, address mappings in a NAT, or server mappings in a
stateful load balancer.

Click modularity poses significant challenges in recovering
network states during the software upgrade. To better quantify
the impact of state loss on the data plane, let us consider files
of 0.5, 1.0, and 2.0 GB transmitted by an http server to a
client through the previous NAT. We upgraded the NAT with
a customized Print module during the file transmission. As
shown in Fig. 8, the transmission duration (y-axis) is based on
the average across 20 experiments.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

Fig. 8. Transmission time with the state loss. The data are obtained in an http
server with 1.0-Gb/s NIC.

We find that the ACK packet sent by the client had its source
port randomly overwritten after the port mapping tables were
lost by the target NAT so that the rewritten port was inconsistent
with the one stored in the old NF. This caused the wrong source
port number to be used, so the server reset the connection. If the
connection is reset due to the upgrade, the original transmission
progress will also be reset to the beginning of the file, wasting
the previously transmitted subset of the file. When no upgrade
happened during the file transmission (x-axis coordinate is 0%),
the average total transmission time was 11 s for the 0.5-GB size
file and 43 s for the 2.0-GB file. When the upgrade happened
after 40% of the file has been transmitted, the total average
transmission time became 16 and 63 s, respectively. Obviously,
due to the state loss, the larger the file, the more unnecessary
traffic retransmission, potentially causing more impact on the
data plane, such as switch buffer pressure, packet loss, and con-
gestion. In order to avoid service disruption, we are motivated to
take care of Click’s state migration during the software upgrade.

B. Design and Implementations

The main idea of state recovering is to reserve the states of the
old NF and seamlessly migrate it to the target NF, thus eliminat-
ing service disruption. We present the following requirements
that an ideal migration scheme should satisfy.

1) Low Performance Overhead: The NF is often on the crit-
ical data path, processing millions of packets per second.
The performance overhead involved by the state maintain-
ing scheme (latency and throughput) on individual flows
must be minimal.

2) Low Migration Latency: The state migration as one stage
of software upgrade, whose duration must be minimal.
Much too long time used for migrating states may top up
a significant upgrade latency and its further impacts on
service consistency.

3) Recovery Transparency: The NF is often an invisible entity
that lies along the network path between two endpoints.
Thus, it is insufficient to just steer flows to the target NF
transparently. The states of the old NF must be recovered
with consistency, such that on-flying flows can continue
with minimal disruption.

Click-UP employs a new approach to state migration. Instead
of checkpointing and migrating states from remote, we capitalize

Fig. 9. High-level design of state migration in Click-UP.

on a unique structure of the NF to enable state migration at
the local memory. Fig. 9 shows the high-level components that
make up the migration scheme. We assume that the target NF
and the old NF are on the same machine. We also assume that
needed states include internal states and external/shared states
(e.g., clock signal), where the latter only requires to migrate the
access interface.

The NF runs three components for migrating states.
1) State Management Component (SMC): SMC is for manag-

ing atoms’ stateful operations and controlling access to a set of
key–value states that are being processed at the memory cache.
It also play a role of responding calls from pull/push interface,
fetching or embedding needed states during upgrade.

2) Buffer Management Component (BMC): BMC is for ensur-
ing that packets enter and exit the NF at appropriate times. The
incoming and outgoing packets through the NF will be buffered
in a blocking queue tree, where unless all the leaf queues go
empty, the root queue remains blocked. This scheme can avoid
inconsistencies on the buffer as well as the states, since the
packets buffered in leaf queues are typically abandoned in the
target NF. The balance here, for BMC, is that if the queue size is
set too large, the process of blocking may induce higher latency
because more packets need to be drained from the leaf queues,
and if the queue size is set too small, the packets may lose the
opportunity for buffer gains. In Click-UP, we have a fixed queue
size, but we ultimately envision an BMC, which increases or
decreases the queue size adaptively. The BMC can respond calls
from pull/push interface, fetching or embedding packet buffers
during upgrade.

3) Coordinator Daemon Component: It is for coordinating the
workflow of state migration during upgrade. Upon informed by
an event that the upgrade set up, coordinator daemon component
(CDC) will asynchronously call the SMC and the BMC via the
pull interface to fetch buffer and states from the old NF (see 1©
in Fig. 9). Upon informed by an event that target NF has been
built finished, CDC will first call the BMC to block the old NF
(see 2© in Fig. 9), then via the push interface to embed buffer
and states into target NF (see 3© in Fig. 9), and, finally, data path
will be switched from the old NF to the new one, and the traffic
will also be redirected to the target NF.

To optimize this scheme to match the common structure
of network processing, we make use of the following three
techniques.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: CLICK-UP: TOWARD THE SOFTWARE UPGRADE OF CLICK-BASED MODULAR NETWORK FUNCTION 7

1) Eliminating Data Copy: To guarantee efficiency and con-
sistency of migration, we do not conduct data copy for any buffer
or states, but instead provide a pointer to the memory data store
to which issued the pull request.

2) Memory Pool: When submitting state and buffer read/write
requests to the data store, memory must be allocated for the
request. As this process is in the critical path, we, thus, reduce
the overhead for allocating memory by having a preallocated
pool reused in the memory data store.

3) Rollback: Click-UP does compose, compile, and link target
click.ko offline (i.e., without disrupting services during this
period), and then unload the old click.ko and reload the new
one. To roll back from failures (e.g., the target NF startup
failed), we employ a status checking, which checks the bootstrap
status of the target NF before embedding. If the checking is
passed, normally embed buffer and states. Otherwise, it turns to
rollback, and the data path will not be switched, avoiding service
disruption caused by integration failures.

The SMC and all the states are resided in Linux user space
for security and scalability. Remember that Click-UP supports
the pipeline running both in kernel and user spaces. In the case
that the pipeline is running in kernel space, we leverage the
Netlink socket for interprocess communication both between
the kernel and user space processes, and between different user
space processes. In the case that the pipeline is running in user
space, we leverage Netmap to bypass the protocol stack in Linux
kernel, which capacities the zero-copy technique.

The target NF can be deployed and hosted with a variety of ap-
proaches, such as virtual machine, container, or even a physical
machine. We focus on the container as our main deployable unit
(matched with pipeline in user space mode). This is due to its fast
deployment, low-performance overhead, and high reusability.
The old and target NFs are implemented as Docker instances
with independent cores and memory space/region. In doing
so, we ensure that the switching pipeline does not affect each
other. For network connectivity, we share the physical interface
among each of the containers (pipelines). Toward this, we use
OpenvSwitch to provide virtual interfaces to each container and
steer the flows of traffic to the correct NF by installing the
appropriate OpenFlow rules.

V. EVALUATION

In this section, a series of testbed simulations were conducted
to evaluate the performance of our upgrade system. We seek to
answer some questions as follows: 1) What are the advantages
of lightweight integration? 2) What is the performance of the
local state migration? and 3) How does the impact of the soft-
ware upgrade system on the data plane? In order to ensure the
generality of our upgrade system, we reimplement two typical
NFs on top of Click-UP and show that their upgrades perform
well compared to their native versions.

A. Simulation Setup

1) NFs: To stress the generality of our modular state abstrac-
tions, we implemented two typical NFs from the range of native
Click.

TABLE II
NUMBER OF MODULES AND ATOMS IN THE EXPERIMENTAL NFs

TABLE III
SOFTWARE UPGRADES IN THE SIMULATIONS

Fig. 10. Topology of the simulations. The data path is implemented with the
GRE technique.

a) NAT: It is based on Click Mazu NAT, a modular network
address translation implemented by Mazu Networks, and
commonly used in academic research.

b) Firewall: It is based on whitelist firewall, implemented
in Click; the firewall performs a linear scan of a TCP
connection whitelist to find the first matching entry.

Table II shows the number of essential modules in the exper-
imental NFs. As illustrated in Section II, in the implementation
of Click-UP, stateful operations of the NF have been decoupled
from the pipeline into the refined atoms.

2) Software Upgrades: We conducted the simulations using
four types of software upgrades. Each NF corresponds to two
types of upgrades that update either stateless operations or state-
ful operations. Table III shows the lines of context code to corre-
spondent upgrades. We find that the modular state abstractions
of Click-UP significantly reduce the amount of code involved
by updated operations, especially when the updates happen on
stateful operations. This proves its benefits on completeness
and correctness of manual modifications to the code. We offline
finished the coding of updated operations, before all the upgrades
happen.

3) Topology: We evaluated the performance of software up-
grade using a topology shown in Fig. 10. The node of http
client will request the node of http server for downloading files.
The file stream traverses the Click NF and gets the stateful
processing. To enable the data path in this figure, we leverage
generic routing encapsulation (GRE) tunnels by creating virtual
tunnel end points (VTEPs) on the nodes of http client, http server,
and Click NF. All the upgrades happen during the procedure of
the file streams.

4) Devices: We consider two dominating scenarios to deploy
NFs: telecom network and edge network, whose features are

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

TABLE IV
DEVICES IN THE SIMULATIONS

Fig. 11. Deployment environment in the simulated scenario of the edge
network.

distinct. The devices in the former case always equip with
high-performance hardware, aiming at high network throughput.
However, the devices in edge networks are prone to focusing on
large-scale deployment (more close to users) and deployment
costs; these devices tend to equip with economic hardware.
We simulate to deploy Click-UP in two scenarios. Table IV
shows the correspondent device hardware. The nodes of http
client and http server are deployed on two virtual machines.
Fig. 11 shows our testbed environment in the simulated scenario
of edge network. Find the demo video at https://www.youtube.
com/watch?v=5G244I0LEYg.

5) Schemes Compared: In terms of module integration, we
selected integration scheme of native Click as the baseline.
Compared to Click-UP, the scheme in native Click will integrate
all modules into an executable NF.

In terms of state migration, we selected two typical schemes
from the literature: 1) remote synchronization [10]–[12]. When
the upgrade happens, the old NF first sends its states to a remote
instance, followed by the target NF getting back needed states
from the same remote instance; and 2) packet replay [13]–[15].
When the upgrade happens, the old NF first sends its states to
a remote instance and, then, let the packets arriving later be
logged; after the target NF gets back needed states from the same
remote instance, the logged packets are preferentially replayed
to the target NF (before the target NF start processing packets
from the buffer).

B. Metrics Cared

1) Integration Time: It is the time for finishing the building
job of the target NF. After only the integration is finished, the
target NF can then reload the network states. Thus, this metric
can reflect an upgrade system’s ability to transition an old NF
to a new one. Less integration time, more beneficial for always
achieving up-to-date NFs, and upgrade intents can be applied to
data plane sooner.

Fig. 12. Comparison of integration time between Click-UP and native Click
in two simulated scenarios. (a) TN. (b) EN.

2) Service Disruption Time: It is the time topped up by state
inconsistencies. With the inconsistent states, the target NF will
conduct incorrect operations after going online, resulting in end-
to-end service performance degradation. Less service disruption
time, more transparent the state recovery is, and the negative
impact on the data plane service can be slighter.

C. Effectiveness of Module Integration

To analyze the impact of our essential module integration
on the integration time, we conducted an experiment using the
predefined upgrade cases: NAT1, NAT2, Firewall1, and Fire-
wall2. For comparison, we started the integration job of the same
upgrade case at the same time for native Click and Click and
measured their time to complete the job. To emphasize fairness,
we let the state migration also included in the integration job of
Click-UP.

With the measured integration time, Fig. 12(a) and (b) plots
a comparison between Click-UP and native Click under two
simulated scenarios, where the case of upgrade varies in the
x-axis. We made the following observations.

1) Compared with the native version, Click-UP has a signif-
icantly reduced integration time. This is expected since
Click-UP leverages the dependence management to ex-
clude the redundant modules from the target NF. There-
fore, no matter for which simulated scenario, the number
of linked modules is significantly reduced.

2) Compared with the simulated scenario EN, TN has sig-
nificantly less integration time (26 ms versus 941 ms) and
higher reduction rate (96.1% versus 78.2%). The reason is
that powerful computation performance (from, e.g., CPU
and RAM) speeds up the process of compiling and linking,
thus boosting the gap between Click-UP and native Click.

D. Effectiveness of State Migration

We also investigated how our upgrade system performs in
terms of state migration. As we discussed in Section IV, our
target instance can seamlessly handle the redirected traffic from
the old instance without causing any disruption for the traffic.
To illustrate this effect and compare to the traditional approach,
we performed a number of file downloads that go through a
firewall and a NAT, respectively, and measured the number of
successful file downloads and the time required to complete all
of the downloads in the following two cases: the firewall and the

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

https://www.youtube.com/watch{?}v$=$5G244I0LEYg

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: CLICK-UP: TOWARD THE SOFTWARE UPGRADE OF CLICK-BASED MODULAR NETWORK FUNCTION 9

Fig. 13. Comparison of time taken to satisfy completed requests between
Click-UP and native Click. (a) Click NAT1 and Click-UP NAT1. (b) Click
Firewall1 and Click-UP firewall1.

NAT on top of native Click and Click-UP 1) without software
upgrade and 2) with software upgrade, where we redirect traffic
from the old NF to the target one. For fairness, we simulated all
the streams start at some same time, and all the upgrades also
start at some same time.

We conduct the experiment using the simulated scenario TN.
Fig. 13(a) and (b) shows our results where we download up
to 300 10-MB files in a loop of 60 concurrent http downloads
through the firewall and the NAT. Fig. 13(a) provides a com-
parison of time taken to satisfy completed requests through an
upgraded NAT. As we can see, much more service disruption
time is caused during the software upgrade with native Click.
The associated ACK packets sent by the client get their source
port randomly overwritten after the port mapping tables are lost
on the NAT so that the rewritten port is inconsistent with the
one stored in the old instance. This causes the wrong source
port number to be used, so the server resets the connection. As a
result, breaking existing connections will reset the file transfer,
and all the progress before that gets waste. In contrast, there is
almost no service disruption time for Click-UP.

Similarly, as plotted in Fig. 13(b), the firewall of native Click
is significantly affected by the software upgrade because the
new instance does not recognize the redirected traffic, hence
drops the connections, which, in turn, results in the client
reinitiating the connections after a TCP connection timeout.
We find that the Click-UP firewall benefits from seamless state
migration, and its corresponding download time is almost the
same as the download time without a software upgrade.

E. Insight of Local State Migration

It is critical to understand the effect of the state migration
scheme as it may top up the upgrade latency and disrupt the data
plane service. We claim that the local state migration of Click-
UP provides seamlessness, where much less migration time is
achieved with almost no disruption to the traffic. To evaluate
the capability of seamless state migration, we performed the
following experiment: we stream continuous traffic of http flows
through a firewall, keep the flow rate steady, and simulate an
upgrade to start at some specific time.

The migration time and the disruption time heavily depend on
the flow rate because the flow rate has a significant impact on the
number of stored states. We experimented using the simulated
scenario TN. Fig. 14(a) and (b) plots a comparison between

Fig. 14. Comparison of throughput and migration between our local mi-
gration schemes and other baseline schemes. (a) Comparison of throughput.
(b) Comparison of migration time.

our local migration scheme and other baseline schemes, where
the flow rate varies in the x-axis. Each flow consists of 100
packets, and the size of each packet is 512 bytes. Fig. 14(a)
provides the measured throughput during the software upgrade.
The four curves in this figure represent the ideal throughput
(Ideal) that matches the flow rate, migrating states by the re-
mote synchronization (Remote Sync) scheme, migrating states
using the remote synchronization scheme followed by packet
replay (Packet Reply), and migrating states using the local state
migration (Click-UP) scheme.

We made the following observations.
1) The throughput of Click-UP matches the ideal one when

the rate of flow is lower than 1100 flows per second. It
means that the newly added firewall instance normally has
the states to process the redirected packets and, therefore,
does not get affected by traffic redirection. As the rate of
flow increases beyond 1100 flows per second, the effective
throughput achieves a bottleneck. This is caused by some
time-consuming operations, e.g., IP header checksum in
the firewall pipeline.

2) The throughput of remote synchronization is, on average,
lower than other schemes. The reason is that the states
acquired from the remote are inconsistent with actual
states. During the remote state transfer, the local states
are still being updated in the old NF (the traffic is not yet
redirected to the target NF). Upon the traffic is redirected,
the new instance starts dropping packets because it does
not recognize them (i.e., does not have states for those
flows) and, thus, breaks the connections. As the rate of flow
increases, the number of associated states will increase
accordingly, and the gap in the throughput will become
more significant.

3) The throughput of Click-UP always outperforms the
packet replay, and the gap increases with the flow rate.
This is because logging and replaying packets lead to
extra computation occupation, while the total computation
capacity is fixed. Therefore, in the period of packet log-
ging/replaying, the throughput of the old instance is signif-
icantly reduced. As the rate of flow increases, the number
of logged/replayed packets will increase accordingly, and
the effect on reducing throughput will be more potent.

Fig. 14(b) plots a comparison of time to migrate states be-
tween Click-UP and other schemes. Observe that Click-UP

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

Fig. 15. Comparison of state transmission delay.

always outperforms other schemes, and the migration time of
Click-UP has no significant change with increasing flow rate.
This is due to the local pointer copy instead of the remote data
copy, whose time consumption is independent of the rate of
flow and the number of states. Compared to Click-UP, remote
synchronization and packet replay both depend on costly remote
data copy; their migration time is sensitive to the number of
transmitted states as well as the transmission delay. The number
of transmitted states is positively correlated with the flow rate.

As for the transmission delay, we implemented two baseline
for evaluation. The first one is to transfer state leveraging stan-
dard TCP, and the second one is based on software-driven remote
direct memory access (RDMA) [17], i.e., SoftiWARP [18] and
SoftRoCE [19]. Fig. 15 plots a comparison of state transmission
delay between the baseline and our local solution, where the
state size varies in the x-axis. We measured the average over 20
tries. The results show that, even though the transmission delay
can be largely masked by applying some advanced transmission
techniques, there is still a gap compared to the performance in
local.

Back to Fig. 14(b), we also observe that the migration time
of packet replay is several milliseconds higher than remote
synchronization, and the gap increases with the flow rate. This
is due to the increasing number of replayed packets. Combined
with the results in Fig. 14(a), packet replay has a higher migration
time and a higher throughput than remote synchronization. To
sum up, Click-UP using the local state migration has significant
advantages in terms of throughput and the time to migrate states.

F. Analysis of Data Plane Latency

The interaction with the local state database can increase the
latency of each packet, as every incoming packet needs to be
blocked until its stateful operations are completed. To evaluate
the delay increase, we compared the round-trip time (RTT)
of each packet in Click-UP, native Click, and P4-bmv2. We
performed the following experiment: the traffic of http stream
starts from the http client, travels through a firewall, reaches
the server, and is sent back to the client. The client records
the sending time and the receiving time of every packet to
compute the packet RTT. Fig. 16(a) and (b) shows the RTT of
ten flows traversing the firewall under two simulated scenarios.
We measured the average over 20 tries.

Fig. 16(a) plots a comparison under the simulated scenario
TN. Observe that the extra RTT caused by Click-UP is less
than P4-bmv2 (3.2% versus 7.7% on average). Fig. 16(b) plots

Fig. 16. Comparison of data plane latency between Click-UP, native Click,
and P4-bmv2 in two simulated scenarios. (a) TN. (b) EN.

a comparison under the simulated scenario EN, and a similar
observation can be found under EN (8.9% versus 11.5% on aver-
age). We further investigated that the added latency of Click-UP
in the former case is 88.7% less than the latter case on average.
This is due to the more luxurious computation performance
used in the former case. Overall, the data plane latency caused
by Click-UP is bounded by the practical hardware, while the
increase rate is strictly limited as compared to the native version.

VI. DISCUSSION ON LIMITATIONS

1) Distributed Deployment: In this article, we assume that
the target NF and the old NF are on the same machine. We
also assume that the internal states are all locked into the single
machine. All the typical NF’s software upgrades we know of
fit comfortably within the assumption range. However, one
can imagine the target NF that would be deployed to another
machine, or the internal states are distributed. We believe that
there may be further opportunities to optimize Click-UP for
this case through logically centralized synchronizing and dis-
tributively shared states. While our focus in this article is more
on single-instance design, and all-in-one solution, as a future
direction, we intend to further understand how Click-UP can be
adapted to suit the needs of the distributed deployment.

2) Module Redistribution: Click-UP decouples stateful oper-
ations from Click, allowing developers to customize stateless
modules and stateful atoms they need separately. However,
for legacy Click modules that contain stateful operations, the
developers need to redistribute them as stateless versions, plus
correspondent state atoms. The redistribution of a Click module
follows three steps: first, find the stateful operation from the
pipeline and replace it with correspondent Click-UP atom (as
illustrated in Section II); second, remove the stateful operation
from the pipeline and build the remaining stateless operation
as a Click module; and third, let a mapping relationship set up
between them. The module redistribution may, in fact, take an
amount of time. Even so, the state operation abstraction and
stateful upgrade can help developers and operators capitalize
efficiency further on service modification and maintenance,
which are, at the end, important for the software upgrade.

3) Element Splitting: Currently, in Click-UP, each atom is
implemented with an individual Click element. This lets a re-
distributed NF contain more essential elements, compared to
that before. This is because an original Click element (with state
operations inside) might be redistributed and split into one purely

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: CLICK-UP: TOWARD THE SOFTWARE UPGRADE OF CLICK-BASED MODULAR NETWORK FUNCTION 11

stateless element (i.e., module) plus one purely stateful element
(i.e., atom). Theoretically, this element splitting poses a certain
negative impact on upgrade latency. However, since the number
of essential elements and the number of inessential elements
are not in the same order of magnitude, the above impact
can be ignored. We further demonstrate Click-UP’s integration
performance in Section V.

VII. RELATED WORK

In this section, we categorize the existing work most related to
Click-UP into the following parts: 1) click modular integration;
2) state migration scheme; and 3) other click around enhance-
ment.

1) Click Modular Integration: Click natively depends on a
modular integration scheme named hotconfig [20]. It integrates
all modules to build an executable NF file and write a Click-
language description to this file to hot-swap between required
network functionalities. During the process of hot-swap, the
packets queued in the old NF can be migrated into the new
one. However, this scheme still fails to suit the cases of the
software upgrade due to the following reasons. First, hotconfig
cannot hot-swap required network functionalities out of the
scope of integrated modules. As a result, upgrades will inevitably
lead to a reintegration involving all existing modules and the
inserted/modified new modules. Second, hotconfig, although
shifts packets in queues from the old NF to the new one, does not
deal with internal network states. In contrast, Click-UP employs
dependence management to considerably cut down the overhead
of reintegration and provides a seamless state migration.

2) State Migration: Existing work about NF state migration
mainly focuses on how to deal with the case of failover rather
than the software upgrade. Due to different focus points, one can
think of the relationship between them to be analogous to the
difference between a planned event and an unexpected event.
When people consider the failover, they need to assume that the
old NF is failed and only can rely on the checkpoints from the
remote monitor, or the logged traces in the storage. Accordingly,
Pico [10], Split/Merge [11], and OpenNF [12] belong to the
first type of work that rely on migrating the states from remote.
FTMB [13] and REINFORCE [15] turn to pick another way
by replaying traces to migrate states. However, these solutions,
although work well in the case of failover, are not best suitable
for the software upgrade because they are independent of module
integration. Owing to the planned nature of the software upgrade,
Click-UP employs a local state migration, which is fused to the
integration process and fit a more seamless effect. Note that
Click is not designed with the failover or even scaling-out, but
instead plays a complementary role in combination with those
dedicated solutions.

3) Click Around Enhancement: There are also a series of
enhanced solution conducted around native Click. We cate-
gorize them into two main threads. The first thread belongs
to performance-oriented enhancement: ClickOS [2] presents
a 5-MB, fast boot, high-performance, Click-driven virtualized
software middlebox platform on a commodity server. The
fastClick [21] system exploits netmap and dpdk to leverage

the power of hardware multiqueues, multicore processors, and
nonuniform memory access on a commodity server. The other
thread belongs to function-oriented enhancement: CliMB [22]
adds the features of TCP support and blocking I/O into the orig-
inal Click. Legofi [23] designs and implements a Click-driven
functional decomposition for WiFi. Augustus [24] implements
a software architecture for ICN routers on top of Click. To our
best knowledge, Click-UP is the first enhanced solution tailored
to software upgrade.

VIII. CONCLUSION

In this article, we investigated the limitations of the Click in-
ternal architecture when facing with the software upgrade. These
limitations include the inefficiencies in modifying modules,
integrating modules, and recovering states. Motivated by the
problem, we presented the design and implementation of Click-
UP, a Click-based software upgrade system for the modular NFs.
Based on native Click, we made three main improvements in
Click-UP.

First, we achieved the state abstraction with a series of stateful
atom operations, which are independent with stateless mod-
ules and correspond to needed states. For developers, modifi-
cations/management to module code to identify needed state,
state maintenance, e.g., custom state allocation, track updates
to state, and (de)serialize state objects become practical and
will be relatively simple. Our evaluation also demonstrated
that Click-UP reduces the context code required for module
modification. Second, we achieved the essential module inte-
gration with the management of functional dependencies. The
burden involved in redundantly shipping inessential modules
with neutral functionalities is eliminated. The experiment results
showed that the integration time is significantly cut down. Third,
we achieved the state migration scheme at local memory. The
internal states are collected from the old NF and reloaded into
the new NF with seamlessness. The experiment results showed
that there is almost no service disruption time with Click-UP.

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R.
Boutaba, “Network function virtualization: State-of-the-art and research
challenges,” IEEE Commun. Surv. Tut., vol. 18, no. 1, pp. 236–262, Jan.–
Mar. 2016.

[2] J. Martins et al., “Clickos and the art of network function virtualization,”
in Proc. USENIX Symp. Netw. Syst. Des. Implement., 2014, pp. 459–473.

[3] G. Sun, G. Zhu, D. Liao, H. Yu, X. Du, and M. Guizani, “Cost-efficient
service function chain orchestration for low-latency applications in NFV
networks,” IEEE Syst. J., vol. 13, no. 4, pp. 3877–3888, Dec. 2019.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
2000.

[5] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick
network functions,” in Proc. ACM SIGCOMM Symp. Softw. Defined Netw.
Res., 2015, pp. 1–13.

[6] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A software-defined
framework for developing, deploying, and managing network functions,”
in Proc. ACM SIGCOMM Conf., 2016, pp. 511–524.

[7] B. Li et al., “ClickNP: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proc. ACM SIGCOMM
Conf., 2016, pp. 1–14.

[8] P. Bosshart et al., “P4: Programming protocol-independent packet proces-
sors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95,
2014.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE SYSTEMS JOURNAL

[9] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in Proc.
USENIX Symp. Netw. Syst. Des. Implementation, 2012, pp. 323–336.

[10] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high
availability framework for middleboxes,” in Proc. Annu. Symp. Cloud
Comput., 2013, pp. 1–15.

[11] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/merge:
System support for elastic execution in virtual middleboxes,” in Proc.
USENIX Symp. Netw. Syst. Des. Implementation, 2013, pp. 227–240.

[12] A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network
function control,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 163–174, 2014.

[13] J. Sherry et al., “Rollback-recovery for middleboxes,” ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 227–240, 2015.

[14] A. Gember-Jacobson and A. Akella, “Improving the safety, scalability, and
efficiency of network function state transfers,” in Proc. ACM SIGCOMM
Workshop Hot Topics Middleboxes Netw. Funct. Virtualization, 2015,
pp. 43–48.

[15] S. G. Kulkarni, G. Liu, K. Ramakrishnan, M. Arumaithurai, T. Wood,
and X. Fu, “Reinforce: Achieving efficient failure resiliency for network
function virtualization based services,” in Proc. ACM Conf. Emerg. Netw.
Exp. Technol., 2018, pp. 41–53.

[16] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, “A first look at cellular
machine-to-machine traffic: Large scale measurement and characteriza-
tion,” ACM SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 65–76,
2012.

[17] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to build a
fast, CPU-efficient key-value store,” in Proc. USENIX Annu. Tech. Conf.,
2013, pp. 103–114.

[18] P. Stuedi, A. Trivedi, and B. Metzler, “Wimpy nodes with 10GbE: Lever-
aging one-sided operations in soft-RDMA to boost memcached,” in Proc.
USENIX Annu. Tech. Conf., 2012, pp. 347–353.

[19] G. Kaur, M. Kumar, and M. Bala, “Comparing ethernet & soft RoCE
over 1 gigabit ethernet,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 1,
pp. 323–327, 2014.

[20] Click, “hotconfig.” [Online]. Available: https://github.com/kohler/click/
wiki/Linuxmodule. Accessed on: Mar. 14, 2020.

[21] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet processing,”
in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst., 2015, pp. 5–16.

[22] R. Laufer, M. Gallo, D. Perino, and A. Nandugudi, “Climb: Enabling
network function composition with click middleboxes,” ACM SIGCOMM
Comput. Commun. Rev., vol. 46, no. 4, pp. 17–22, 2016.

[23] J. Schulz-Zander, S. Schmid, J. Kempf, R. Riggio, and A. Feldmann,
“LegoFi the WiFi building blocks! The case for a modular WiFi architec-
ture,” in Proc. Workshop Mobility Evol. Internet Archit., 2016, pp. 7–12.

[24] D. Kirchner et al., “Augustus: A CCN router for programmable networks,”
in Proc. ACM Conf. Inf.-Centric Netw., 2016, pp. 31–39.

Junxiao Wang received the B.S. degree in soft-
ware engineering from Dalian Maritime University,
Dalian, China, in 2014. He is currently working
toward the Ph.D. degree with the School of Com-
puter Science and Technology, Dalian University of
Technology, Dalian.

His current research interests include software-
defined networks, network function virtualization,
and cloud computing.

Heng Qi (Member, IEEE) received the bachelor’s de-
gree in mathematics from Hunan University, Chang-
sha, China, in 2004, and the master’s degree in soft-
ware engineering and the Ph.D. degree in computer
science and technology from the Dalian University
of Technology, Dalian, China, in 2006 and 2012,
respectively.

He was a JSPS Overseas Research Fellow with
the Graduate School of Information Science, Nagoya
University, Nagoya, Japan, from 2016 to 2017. He
is currently an Associate Professor with the School

of Computer Science and Technology, Dalian University of Technology. His
research interests include computer networks and multimedia computing.

Keqiu Li (Senior Member, IEEE) received the bach-
elor’s and master’s degrees in mathematics from the
Department of Applied Mathematics, Dalian Uni-
versity of Technology, Dalian, China, in 1994 and
1997, respectively, and the Ph.D. degree in computer
science and technology from the Graduate School
of Information Science, Japan, Advanced Institute of
Science and Technology, Nomi, Japan, in 2005.

He has a two-year postdoctoral experience with the
University of Tokyo, Tokyo, Japan. He is currently a
Professor with the School of Computer Science and

Technology, Dalian University of Technology. He has authored or coauthored
more than 200 technical papers published in journals, such as the IEEE/ACM
TRANSACTIONS ON NETWORKING, the IEEE TRANSACTIONS ON MOBILE COM-
PUTING, the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,
and the ACM Transactions on Internet Technology. His research interests in-
clude Internet technology, data center networks, cloud computing, and wireless
networks.

Steve Uhlig received the Ph.D. degree in applied
sciences with the University of Louvain, Louvain-la-
Neuve, Belgium, in 2004.

He is currently a Professor of Networks with the
Queen Mary University of London, London, U.K. His
research interests include the large-scale behavior of
the Internet, Internet measurements, software-defined
networking, and content delivery.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on May 25,2020 at 21:21:50 UTC from IEEE Xplore. Restrictions apply.

https://github.com/kohler/click/wiki/Linuxmodule

