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C O N D E N S E D  M A T T E R  P H Y S I C S

Minimal quantum viscosity from fundamental  
physical constants
K. Trachenko1* and V. V. Brazhkin2

Viscosity of fluids is strongly system dependent, varies across many orders of magnitude, and depends on molecular 
interactions and structure in a complex way not amenable to first-principles theories. Despite the variations and 
theoretical difficulties, we find a new quantity setting the minimal kinematic viscosity of fluids: ​​​ m​​ = ​ 1 _ 4​ ​ 

ℏ _ ​√ 
_

 ​m​ e​​ m ​​​, 
where me and m are electron and molecule masses. We subsequently introduce a new property, the “elementary” 
viscosity  with the lower bound set by fundamental physical constants and notably involving the proton-to-electron 
mass ratio: ​​​ m​​ = ​ ℏ _ 4​ ​​(​​ ​​m​ p​​ _ ​m​ e​​ ​​)​​​​ 

​1 _ 
2
​
​​, where mp is the proton mass. We discuss the connection of our result to the bound found 

by Kovtun, Son, and Starinets in strongly interacting field theories.

INTRODUCTION
Several important physical properties can be expressed in terms 
of fundamental physical constants including, for example, the Bohr 
radius, the Rydberg energy, and fine structure constant (1, 2). These 
properties serve as a basis for atomic units and importantly set the 
scale of energy and length: The Bohr radius gives a characteristic 
interatomic distance in condensed matter phases on the order of 
angstroms, and the Rydberg energy gives a characteristic binding 
energy on the order of several electron volts. It is interesting to see 
whether a transport property such as viscosity or diffusion can be 
similarly expressed in terms of fundamental constants, setting their 
characteristic scale. Here, we find a quantum quantity setting the 
minimal kinematic viscosity of fluids, m, as

	​​ ​ m​​ = ​ 1 ─ 4 ​ ​  ℏ ─ ​√ 
_

 ​m​ e​​ m ​ ​​	 (1)

where me is the electron mass and m is the mass of the molecule set 
by the nucleon mass. For atomic hydrogen with the mass given by 
the proton mass mp, m is defined by fundamental constants only.

We subsequently introduce a new property: the “elementary” 
viscosity  = mm with the lower bound m set by fundamental physical 
constants as

	​​ ​ m​​ = ​ ℏ ─ 4 ​ ​​(​​ ​ 
​m​ p​​

 ─ ​m​ e​​ ​​)​​​​ 
​1 _ 2​
​​	 (2)

which is on the order of ℏ.
Equation 2 interestingly involves the proton-to-electron mass ratio, 

one of few dimensionless combinations of fundamental constants 
of importance in a variety of areas, including formation of stars, 
ordered molecular structures, and life-supporting environment (2).

We recall that viscosity of fluids, , varies in a wide range, from 
about 10−6 Pa·s for the normal component of He to 1013 Pa·s in viscous 
liquids approaching liquid-glass transition.  strongly depends on 
temperature and pressure.  is additionally strongly system depen-
dent and is governed by the activation energy barrier for molecular 
rearrangements, U, which, in turn, is related to the intermolecular 
interactions and structure. This relationship is complicated in general, 

and no universal way to predict U and  from first principles exists 
[tractable theoretical models describe the dilute gas limit of fluids 
where perturbation theory applies, but not dense liquids of interest 
here (3)]. This is appreciated outside the realm of condensed matter 
physics: The difficulty of calculating the viscosity of water was com-
pared to the problem of calculating the fundamental constants them-
selves (4). As far as thermodynamic properties of liquids are concerned, 
the absence of a small parameter due to the combination of strong 
interactions and the absence of small oscillations is considered to 
disallow a possibility of calculating liquid thermodynamic properties 
in general form (5). For example, theoretical calculation and under-
standing liquid energy and heat capacity have remained a long-
standing problem (6), which started to lift only recently when new 
understanding of phonons in liquids came in (7). In view of these 
problems related to liquid theory, the existence of universal m (Eq. 1) 
and m (Eq. 2) is notable.

We note that viscosity is mostly considered as a classical quantity. 
At the same time, it is governed by molecular interactions set by 
quantum effects. Hence, we can suppose that there is a characteristic 
value of viscosity-related quantities involving ℏ, as in Eqs. 1 and 2.

In addition to condensed matter, the universal lower bound of 
viscosity is important in high-energy physics and strongly interacting 
quantum field theory. Using the duality between strongly interacting 
field theories and gravity models, Kovtun, Son, and Starinets (KSS) 
(8) have found a universal ratio between fluid viscosity and volume 
density of entropy s as

	​​   ─ s ​ = ​  ℏ ─ 4 ​k​ B​​ ​​	 (3)

This result has generated an ample interest from a theoretical 
perspective and from the point of view of understanding the prop-
erties of quark-gluon plasma and its viscosity in particular. Relations 
of this result to a wider range of systems, and more general effects 
have been of subsequent interest, including Planckian dissipation 
[see, e.g., (9–14) for review]. KSS have conjectured that ​​ _ s ​​ has a lower 
bound that more generally follows from strongly coupled quantum 
field theories: ​​ _ s ​  ≥ ​   ℏ _ 4 ​k​ B​​​​ and found that the bound is about 25 times 
smaller than the viscosity minima in familiar liquids such as H2O 
and N2. This raises a question of how ordinary liquids are different 
from high-energy hydrodynamic models. We will see that an important 
difference is the presence of the ultraviolet (UV) cutoff in condensed 
matter, setting the viscosity minima.
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RESULTS AND DISCUSSION
Kinematic viscosity
We start with recalling the origin of viscosity minima shown in 
Fig. 1A where we collected available experimental  (15) for several 
noble (Ar, Ne, and He), molecular (H2, N2, CO2, CH4, O2, and CO), 
and network (H2O) fluids. For some fluids, we show the viscosity 
minimum at two pressures. The low pressure was chosen to be far 
above the critical pressure so that the viscosity minimum is not 
affected by near-critical anomalies. The highest pressure was chosen 
to (i) make the pressure range considered as wide as possible and 
(ii) be low enough to see the viscosity minima in the temperature 
range available experimentally.

In the liquid-like regime of molecular dynamics at low temperature, 
 decreases with temperature as

	​​  = ​​ 0​​ exp ​(​​ ​ U ─ T ​​)​​​​	 (4)

where 0 is a prefactor and U can be temperature dependent, resulting 
in the super-Arrhenius temperature dependence.

In the gas-like regime of molecular dynamics,  is

	​  = ​ 1 ─ 3 ​ vL​	 (5)

where  is density, v is average particle velocity, and L is the particle 
mean free path.

For gases, ​L ∝ ​ 1 _ ​​ and ​ ∝ v ∝ ​√ 
_

 T ​​ (3). Hence,  increases with 
temperature without bound, although new effects such as ionization 
start operating at higher temperature and change the system prop-
erties and .

Equations 4 and 5 imply that  should have a minimum as seen 
in Fig. 1A. Before calculating  at the minimum, it is useful to qualify 
the terms “liquid-like” and “gas-like” regimes of molecular dynamics 
and the conditions at which the minima are seen. Molecular motion 
in low-temperature liquids combines solid-like oscillations around 
quasi-equilibrium positions and diffusive jumps to new positions, 
enabling liquid flow. These jumps are due to temperature-induced 
molecular rearrangements over an energy barrier set by the interaction 
with other molecules, resulting in Eq. 4. The jumps are characterized 
by liquid relaxation time, , the average time between the molecular 
jumps, which is related to  by the Maxwell relationship  = G, 
where G is the high-frequency shear modulus (16).  decreases with 
temperature in the same way as Eq. 4 and is bound by the elementary 
vibration period, commonly approximated by the Debye vibration 
period in the Debye model, D. At this point, the oscillatory component 
of molecular motion is lost, and molecules start moving in a purely 
diffusive manner. At high temperature and/or low density, molecules 
gain enough energy to move distance L without collisions. In this 
gas-like regime, the fluid viscosity can be calculated by assuming 
that a molecule’s momentum is unchanged between collisions, 
resulting in Eq. 5.

If the temperature is increased at pressure below the critical point, 
then the system crosses the boiling line and undergoes the liquid-gas 
transition. As a result,  undergoes a sharp change at the phase tran-
sition, rather than showing a smooth minimum as in Fig. 1A. To 
avoid the effects related to the phase transition, we need to consider 
the supercritical state. Here, the Frenkel line (7, 17, 18) formalizes 
the qualitative change of molecular dynamics from combined oscil-
latory and diffusive, where  is given by the activation behavior (Eq. 4), 
to purely diffusive, where  follows the gas-like behavior (Eq. 5). 
The location of the minima of  slightly depends on the path taken 
on the phase diagram. As a result, the minimum of  may deviate 
from the Frenkel line (FL) depending on the path (7).

We now calculate viscosity at the minimum, m. There are two 
ways in which m can be evaluated: by taking the low-temperature 
limit of the gas-like viscosity (Eq. 5) or by taking the high-temperature 
limit of the liquid-like viscosity given by the Maxwell relation  = 
G. We start from the high-temperature gas-like dynamics, cor-
responding to the hydrodynamic regime considered in high-energy 
physics calculations (8) and consider how  = vL changes with 
temperature decrease (we drop the factor ​​1 _ 3​​ in Eq. 5 since our calcu-
lation evaluates the order of magnitude of viscosity minimum as 
discussed below).  and the mean free path L decrease on lowering 
the temperature but, differently from scale-invariant quantum field 
theories, L is bound by a UV cutoff in condensed matter systems: 
interparticle separation a where intermolecular interactions become 
appreciable [a similar effect is related to the mean free path of 
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Fig. 1. Viscosity and kinematic viscosity of fluids. Experimental viscosity  (A) and 
kinematic viscosity  (B) of noble, molecular, and network liquids (15) showing 
minima.  for H2, H2O, and CH4 are shown for pressure P = 50, 100, and 20 MPa, 
respectively.  for He, Ne, Ar, and N2 are shown at two pressures each: 20 and 
100 MPa for He, 50 and 300 MPa for Ne, 20 and 100 MPa for Ar, and 10 and 500 MPa 
for N2. The minimum at higher pressure is above the minimum at lower pressure 
for each fluid.
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quasi-particles limited by the interatomic separation at the Ioffe-
Regel crossover or the phonon mean free path limited by the atom-
istic scale (19, 20)]. From this point on, L has no room to decrease 
further. Instead, the system enters the liquid-like regime where  
starts increasing on further temperature decrease according to 
Eq. 4 because the diffusive motion of molecules crosses over to 
thermally activated as discussed earlier. Therefore, the minimum of 
 approximately corresponds to L ≈ a. When L becomes compara-
ble to a, v can be evaluated as ​v = ​ a _ ​​ D​​​​ because the time for a molecule 
to move distance a in this regime is given by the characteristic time 
scale set by D. Setting L = a, ​v = ​ a _ ​​ D​​​ = ​ 1 _ 2​ ​​ D​​ a​, where D is Debye 
frequency, and ​ ≈ ​ m _ 

​a​​ 3​
​​ gives m as

	​​ ​ m​​ = ​ 1 ─ 2 ​ ​ m ​​ D​​ ─ a  ​​	 (6)

We note that Eq. 5 applies in the regime where L is larger than a, 
and in this sense, our evaluation of viscosity minimum is an order-
of-magnitude estimation, as are our other results below. In this re-
gard, we note that theoretical models can only describe viscosity in 
a dilute gas limit where perturbation theory applies (3), but not in 
the regime where L is comparable to a and where the energy of 
intermolecular interaction is comparable to the kinetic energy. In 
view of theoretical issues as well as many orders of magnitude by 
which  can vary, we consider our evaluation meaningful. In addition 
to being informative, an order-of-magnitude evaluation is perhaps 
unavoidable if a complicated property such as viscosity is to be ex-
pressed in terms of fundamental constants only.

m in Eq. 6 approximately matches the result obtained by approach-
ing the viscosity minimum from low temperature where  is given 
by Eq. 4 and considering the Maxwell relationship  = G.  and  
decrease with temperature according to Eq. 4, but this decrease is 
bound from below because  starts approaching the shortest time 
scale in the system given by the Debye vibration period, D. From 
this point on,  has no room to decrease further. Instead, the system 
enters the gas-like regime where  starts increasing with tem-
perature according to Eq. 5 because the thermally activated motion 
of molecules crosses over to diffusive as discussed earlier. There-
fore, the minimum of  can be approximately evaluated from 
 ≈ D. G can be estimated as G = c2, where ​c ≈ ​ a _ ​​ D​​​​ is the trans-
verse speed of sound. Then, ​​η​ m​​  =  G ​τ​ D​​  =  ρ ​ ​a​​ 2​ _ ​τ​ D​​​  = ​  1 _ 2π​ ​m ​ω​ D​​ _ a  ​​ as in 
Eq. 6, where we used ​  = ​  m _ 

​a​​ 3​
​​ as before.

Before calculating the kinematic viscosity, we first see how well 
Eq. 6 estimates the minima of . Taking the typical values of a=3 
to 6 Å, ​​​​ D​​ _ 2 ​​ on the order of 1 THz and atomic weights 2 to 40 for liquids 
in Fig. 1A, we find m in the range 10−5 to 10−4 Pa·s, providing 
an order of magnitude estimation of m consistent with Fig. 1A. 
We also observe that high pressure reduces a and increases D. 
Equation 6 predicts that m increases as a result, in agreement with 
the experimental behavior in Fig. 1A.

The viscosity minima of strongly bonded metallic liquids were 
not measured because of their high critical points; however, we 
note that high-temperature  is close to 10−3 Pa·s for Fe (2000 K), 
Zn (1100 K), Bi (1050 K) (21), Hg (573 K), and Pb (1173 K) and 
is expected to be close to  at the minima. This is larger than m 
in Fig. 1A and is consistent with Eq. 6 predicting that m increases 
with molecular mass (​m ​​ D​​ ∝ ​√ 

_
 m ​​) and decreases with a (a is smaller 

in metallic systems as compared with noble and molecular ones 
in Fig. 1A).

As discussed above, the minimum of viscosity is ultimately related 
to the UV cutoff in condensed matter such as interparticle spacing 
a or characteristic time scale D. This cutoff is absent in common 
scale-free field theories used in high-energy physics [see, however, 
(22) where the cutoff is discussed]. Below, we relate the UV cutoff to 
fundamental physical constants.

We now consider the kinematic viscosity  shown in Fig. 1B.  
also describes momentum diffusivity, analogous to thermal diffusivity 
involved in heat transfer, and gives the diffusion constant in the gas-
like regime of molecular dynamics (16). Another benefit of considering 
 is that it makes the link to the high-energy result (Eq. 3) where 
 is divided by the volume density of entropy. Using ​ = ​ _  ​ = vL​, ​
v  = ​  1 _ 2​ a ​​ D​​​, and L = a as before gives the minimal value of , m, as

	​​ ​ m​​  = ​  1 ─ 2 ​ ​​ D​​ ​a​​ 2​​	 (7)

An expression similar to Eq. 7 was heuristically obtained for 
thermal diffusivity and interpreted as the random walk of heat transfer 
consisting of jumps distance a with a certain frequency (23).

We now recall that the properties defining the UV cutoff in 
condensed matter can be expressed in terms of fundamental phys-
ical constants. Two quantities of interest are Bohr radius, aB, setting 
the characteristic scale of interparticle separation on the order of 
angstroms

	​​ a​ B​​ = ​ 4 ​ϵ​ 0​​ ​ℏ​​ 2​ ─ 
​m​ e​​ ​e​​ 2​

  ​​	 (8)

and the Rydberg energy, ​​E​ R​​ = ​  ​e​​ 2​ _ 
8 ​ϵ​ 0​​ ​a​ B​​

​​ (1), setting the characteristic 
scale for the cohesive energy in condensed matter phases on the 
order of several electron volts

	​​ E​ R​​  = ​   ​m​ e​​ ​e​​ 4​ ─ 
32 ​​​ 2​ ​ϵ​0​ 2​ ​ℏ​​ 2​

 ​​	 (9)

where e and me are electron charge and mass.
We now recall the known ratio between the characteristic phonon 

energy ℏD and the cohesive energy E, ​​ℏ​​ D​​ _ E  ​​. Approximating ℏD as ​

ℏ ​​(​​ ​  E _ 
m ​a​​ 2​

​​)​​​​ 
​1 _ 2​
​​, taking the ratio ​​ℏ​​ D​​ _ E  ​​ and using a = aB from Eq. 8 and E = ER 

from Eq. 9 gives, up to a factor close to 1

	​​  ℏ​​ D​​ ─ E  ​ = ​​(​​ ​ ​m​ e​​ ─ m ​​)​​​​ 
​1 _ 2​
​​	 (10)

We note that the factor ​​​(​​ ​​m​ e​​ _ m ​​)​​​​ ​
1 _ 2​​​ also appears in the ratio of sound 

and melting velocity (14). Combining Eqs. 7 and 10 gives

	​​ ​ m​​ = ​ 1 ─ 2 ​ ​ E ​a​​ 2​ ─ ℏ  ​ ​​(​​ ​ ​m​ e​​ ─ m ​​)​​​​ 
​1 _ 2​
​​	 (11)

a and E in Eq. 11 are set by their characteristic scales aB and ER 
as discussed earlier. Using a = aB from Eq. 8 and E = ER from Eq. 9 
in Eq. 11 gives a remarkably simple m as

	​​ ​ m​​ = ​ 1 ─ 4 ​ ​  ℏ ─ ​√ 
_

 ​m​ e​​ m ​ ​​	 (12)

Equation 12 is one of the main results of this paper.
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The same result for m in Eq. 12 can be obtained without explicitly 
using aB and ER in Eq. 11. The cohesive energy, or the characteristic 
energy of electromagnetic interaction, is

	​ E = ​  ​ℏ​​ 2​ ─ 
2​m​ e​​ ​a​​ 2​

 ​​	 (13)

Using Eq. 13 in Eq. 11 gives Eq. 12.
Another way to derive Eq. 12 is to consider the “characteristic” 

viscosity * (24)

	​​ ​​ *​ = ​ ​(Em)​​ ​
1 _ 2​​ ─ 

​a​​ 2​
  ​​	 (14)

* is used to describe scaling of viscosity on the phase diagram. 
For example, the ratio between viscosity and * is the same for systems 
described by the same interaction potential in equivalent points 
of the phase diagram. For systems described by the Lennard-Jones 
potential, the experimental and calculated viscosity near the triple 
point and close to the melting line is about three times larger than 
* (24, 25). Near the critical point, * is about four times larger than 
viscosity near the critical point and is expected to give the right order 
of magnitude of viscosity at the minimum at moderate pressure. The 
kinematic viscosity corresponding to Eq. 14 is

	​​  ​​​ *​ ─  ​ = ​ ​E​​ ​
1 _ 2​​ a ─ 

​m​​ ​
1 _ 2​​
 ​​	 (15)

Using a = aB from Eq. 8 and E = ER from Eq. 9 in Eq. 15 gives the 
same result as Eq. 12 up to a constant factor on the order of unity. 
As before, we can also use Eq. 13 in Eq. 15 to get the same result.

We now analyze Eq. 12 and its implications. m contains ℏ and 
electron and molecule masses only. m characterizes the molecules 
involved in viscous flow. me characterizes electrons setting the inter-
molecular interactions.

m in Eq. 12 is m = Amp, where A is the atomic weight and mp is 
the proton mass. The inverse square root dependence ​​​ m​​ ∝ ​ 1 _ 

​√ 
_

 A ​
​​ inter-

estingly implies that, for different liquids, m varies by a factor of 
about 10 only.

Setting m = mp (A = 1) for H in Eq. 12 (similarly to Eqs. 8 and 9 
derived for the H atom) gives the fundamental kinematic viscosity 
in terms of ℏ, me, and mp as

	​​ ​ f​​  = ​  1 ─ 4 ​ ​  ℏ ─ ​√ 
_

 ​m​ e​​ ​m​ p​​ ​ ​​	 (16)

on the order of 10−7 m2/s.
The quantum origin of m, signified by ℏ in Eq. 12, is due to the 

quantum nature of interparticle interactions. We note that in the 
Eyring theory, the viscosity prefactor 0 in Eq. 4 also contains ℏ (26). 
This follows from assuming that the frequency of molecular oscillation 
in a single minimum, 0 (attempt frequency) is set by the frequency 
of excited phonons as ℏ0 = kBT. In later works, the prefactor was 
mostly treated as a fitting parameter, but its quantum nature was not 
examined further.

In Table 1 we compare m calculated according to Eq. 12 to the 
experimental m (15) for all liquids shown in Fig. 1. The ratio be-
tween experimental and predicted m is in the range of about 0.5 to 3. 
For the lightest liquid, H2, experimental m is close to the theoretical 

fundamental viscosity (Eq. 16). We therefore find that Eq. 12 pre-
dicts the right order of magnitude of m. 

We observe that m increases with pressure in Table 1, similarly 
to m in Fig. 1. However, pressure dependence is not accounted in 
m in Eq. 12 since Eq. 12 is derived in the approximation involving 
Eqs. 8 to 11, which do not account for the pressure dependence of 
D and E.

We make three further remarks regarding the comparison in 
Table 1. First, the important term in Eq. 12 is the combination of 
fundamental constants ​​  ℏ _ ​√ 

_
 ​m​ e​​ m ​​​, which sets the characteristic scale of 

the minimal kinematic viscosity, whereas the numerical factor in 
Eq. 12 may be affected by the approximations used and mentioned 
earlier. Second, Eqs. 8 to 10 assume valence electrons directly in-
volved in bonding and hence strongly bonded systems, including 
metallic, covalent, and ionic liquids. Their viscosity in the supercritical 
state is unavailable because of high critical points. The available data 
in Fig. 1 and Table 1 include weakly bonded systems such as noble, 
molecular, and hydrogen-bonded fluids. Although bonding in these 
systems is also electromagnetic in origin, weak dipole and van der 
Waals interactions result in smaller E and, consequently, smaller 
 as compared with strongly bonded ones, with the viscosity of 
hydrogen-bonded fluids lying in between (27). However, m in 
Eq. 11 and  in Eq. 15 contain factors Ea2 and ​​E​​ ​

1 _ 2​​ a​, respectively. ​​E​​ ​
1 _ 2​​​ 

is 3 to 10 times smaller and a is 2 to 4 times larger in weakly bonded 
as compared with strongly bonded systems (27). This results in a weak 
dependence of m on bonding type, and the order-of-magnitude 
evaluation (Eq. 12) is unaffected as Table 1 shows. Third, Eq. 12 
for strongly bonded fluids serves as a prediction for future experi-
mental work.

Elementary viscosity
Equation 16 gives the maximal value of the minimum of kinematic 
viscosity for H. It is interesting to ask what viscosity-related quantity 
has an absolute minimum. We introduce a new quantity: the elementary 

Table 1. Calculated and experimental m.  

m (calc.) m (exp.)

×108 m2/s ×108 m2/s

Ar (20 MPa) 3.4 5.9

Ar (100 MPa) 3.4 7.7

Ne (50 MPa) 4.8 4.6

Ne (300 MPa) 4.8 6.5

He (20 MPa) 10.7 5.2

He (100 MPa) 10.7 7.5

N2 (10 MPa) 4.1 6.5

N2 (500 MPa) 4.1 12.7

H2 (50 MPa) 15.2 16.3

O2 (30 MPa) 3.8 7.4

H2O (100 MPa) 5.1 12.1

CO2 (30 MPa) 3.2 8.0

CH4 (20 MPa) 5.4 11.0

CO (30 MPa) 4.1 7.7

 on A
pril 24, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Trachenko and Brazhkin, Sci. Adv. 2020; 6 : eaba3747     24 April 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 6

viscosity  (“iota”) defined as the product of m and elementary volume 
a3:  = ma3 or, equivalently, as  = mm. Using Eq. 12,  is

	​  = ​ ℏ ─ 4 ​ ​​(​​ ​ m ─ ​m​ e​​ ​​)​​​​ 
​1 _ 2​
​​	 (17)

which has the lower bound, m, for m = mp in H

	​​ ​ m​​ = ​ ℏ ─ 4 ​ ​​(​​ ​ 
​m​ p​​

 ─ ​m​ e​​ ​​)​​​​ 
​1 _ 2​
​​	 (18)

and is on the order of ℏ.
Equation 18 notably involves the proton-to-electron mass ratio, 

one of few dimensionless combinations of fundamental constants of 
general importance (2).

In Fig. 2 (A and B), we show the product m in the units of ℏ for 
two lightest liquids, H2 and He, for which the minimum of m, 
mm = , should be the closest to the lower bound (Eq. 18). We calcu-
late m using the experimental data (15) and show it above and below 
the critical pressure Pc. For He, the temperature range is above the 
superfluid transition (we do not consider superfluidity in this work).

The liquid-gas phase transition results in sharp changes of 
viscosity below Pc. For H2, the minimum of m is kinked as a result 
and decreases with pressure up to Pc. This is followed by the mini-
mum becoming smooth and increasing above Pc. We observe 
that the smooth minimum just above the critical point (where our 
derivation of m and m, assuming a noninterrupted variation of 
viscosity, applies) is very close to the minimum at Pc. For He, the 
minimum similarly increases with pressure in the supercritical 
region and weakly varies below Pc.

The smallest value of m,  = mm, in Fig. 2 (A and B) is in 
the range (1.5 to 3.5)ℏ for He and H2. This is consistent with the 
estimation of the lower bound of , m in Eq. 18. Given that m 
varies four to six orders of magnitude in Fig. 2, the agreement with 
our result (Eq. 18) is notable.

We also show m for common H2O in Fig. 2C as a reference and 
include the triple and critical point in the pressure range. The quali-
tative behavior of m is similar to that of H2, with  of about 30ℏ.

Our lower bound for  is consistent with the uncertainty principle. 
As discussed earlier, the minimum of  can be evaluated as m = va, 
corresponding to  = mva = pa, where p is particle momentum. 
According to the uncertainty principle applied to a particle localized 
in the region set by a,  ≥ ℏ. This is consistent with our bound m 
in Eq. 18, although a more general Eq. 17 gives a stronger bound, 
which increases for heavier molecules.

We now return to the high-energy physics result and the finding 
of KSS (8) that their lower bound (Eq. 3) is about 25 times smaller 
than in liquid H2O and N2. We consider, more generally, the ratio 
between  and the volume density ​d = ​qN _ V ​​ of any intensive quantity 
Q = qN, where N is the number of particles. Then, ​​ _ d ​ = ​m _ q ​​. If Q is 
entropy S = qN and q0 is q corresponding to m, the experimental 
data (15) show that the minimum of ​​ _ d ​​ or ​​m _ q ​​, Rm, is close to ​​​​ m​​m _ ​q​ 0​​ ​  = ​  _ ​q​ 0​​​​ 
because of slow temperature variation of entropy. Then, Rm is con-
veniently written in terms of  using Eq. 17 as

	​​ R​ m​​ = ​  ─ ​q​ 0​​ ​ = ​  ℏ ─ 4​q​ 0​​ ​ ​​(​​ ​ m ─ ​m​ e​​ ​​)​​​​ 
​1 _ 2​
​​	 (19)

We observe that, compared to the KSS bound (Eq. 3), Eq. 19 
contains an additional factor, ​​​(​​ ​ m _ ​m​ e​​​​)​​​​ ​

1 _ 2​​​. For H2O and N2 considered by 

KSS, ​​​(​​ ​ m _ ​m​ e​​​​)​​​​ ​
1 _ 2​​​ is 182 and 227. Using q0 = 8.7kB for H2O and 14.6kB for 

N2 (15) at pressures considered (8), Eq. 19 predicts that the ratio ​​ _ s ​​ in 
these liquids exceeds the bound (Eq. 3) by a factor of 16 to 21, in an 
order-of magnitude agreement with the KSS finding and the ability 
of Eq. 12 to predict experimental m within an order of magnitude.
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Fig. 2. Elementary viscosity of fluids. m calculated from experimental kinematic 
viscosity (15) for H2 (A), He (B), and H2O (C) below and above the critical pressure Pc. 
Pc = 1.3 MPa for H2, 0.23 MPa for He, and 22 MPa for H2O. The smallest value of m, 
, is consistent the lower bound (Eq. 18).
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CONCLUSIONS
In summary, we have found a new quantum quantity corresponding 
to the minimum of kinematic viscosity, an interesting result in view 
of wide variation of viscosity across different systems and external 
parameters as well as complexity of theoretical description. A related 
result is the new elementary viscosity  with the lower bound set by 
fundamental physical constants and involving the proton-to-electron 
mass ratio.
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