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ABSTRACT

Existing deep learning algorithms for person re-identification
(re-id) typically rely on single-sample classification or pair-
wise matching constraints. This indicates a breach of deploy-
ment due to ignoring the probe-specific matching information
against the gallery set encoded in ranking lists. In this work,
we address this problem by exploring the idea of RANkinG
Ensembles (RANGE) that learns such information from the
ranking lists. Specifically, given an off-the-self deep re-id
feature representation model, we construct per-probe ranking
lists and exploit them to learn inter ranking ensemble repre-
sentation. To mitigate the harm of inevitable false gallery pos-
itives, we further introduce a complementary intra ranking en-
semble representation. Extensive experiments show that both
supervised and unsupervised re-id benefit from the proposed
RANGE method on four challenging benchmarks: MSMT17,
Market-1501, DukeMTMC-ReID, and CUHK03.

Index Terms— Person re-identification, ranking list.

1. INTRODUCTION

Person re-identification (re-id) aims to match people across
non-overlapping camera views distributed over different lo-
cations [1]. Existing deep learning re-id algorithms mostly
leverage the classification and matching pair constraints [2, 1,
3]. This is limited in understanding ranking list data as used
in deployment, e.g. ignoring useful latent ranking informa-
tion specific to the probe sample therefore less generalisable.

There are a few existing attempts that exploit the rank-
ing content information for re-id by learning to rank [4] and
post-rank [5]. However, these methods are either based on
hand-crafted features or assume good performance of trained
re-id models, without the advantages of end-to-end deep rep-
resentation learning for exploiting the potentially informative
ranking context. Specifically, for a given probe image, the
top-ranked gallery candidates, either true or false matches,
resemble similar view variations as the probe image. Such
contextual information may be useful for re-id. Importantly,
this can generally benefit both existing supervised and unsu-
pervised re-id methods due to no need for extra labelling.

In this work, we explore the largely ignored ranking con-
text information for supervised and unsupervised re-id in deep
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Fig. 1. An overview of the proposed RANGE architecture.
Stage A: To extract the visual appearance features and gen-
erate the initial rank lists. Stage B: To extract inter ranking
ensemble features. Stage C: To extract the intra ranking en-
semble features.

learning. To this end, we propose a RANkinG Ensembles
(RANGE) approach capable of generally benefiting the exist-
ing off-the-self re-id models (see Fig. 1). Our contributions
are two-fold: (I) We propose the idea of exploiting the rank-
ing context encoded in the ranking lists for improved person
re-id in both supervised and unsupervised settings. To our
best knowledge, this is the first attempt of using the rank-
ing context information in end-to-end deep learning. (II) We
present a novel deep learning architecture for deriving the
ranking ensemble representation. This is achieved by formu-
lating per-probe rank lists to learn the plausible visual varia-
tions among top ranks (inter ranking ensemble) and the intra
body-part visual correlations (intra ranking ensemble) simul-
taneously.

Extensive comparative experiments show that the pro-
posed RANGE method improves the state-of-the-art super-
vised and unsupervised person re-id models on four large
scale benchmarks, including MSMT17 [6], Market-1501 [7],
DukeMTMC-ReID [8], and CUHK03 [9].
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2. LEARNING RANKING CONTEXT

Problem statement We assume an off-the-shelf deep re-id
CNN model θ0 trained by an existing learning algorithm [1,
2] for charactering person appearance. The initial model can
be used to generate a ranking list per probe on the training
set along with the Euclidean distance metric. Let pi be an
arbitrary probe person image and {xl}kl=1 the corresponding
top-k re-id matches from the gallery set. This allows to con-
struct a training data with ranking lists.

RANGE formulation We aim to discover the ranking con-
text information underlying to the gallery collection. This is
based on the RANGE learning from {pi, {xt}kt=1}. The rank-
ing lists are ordered data structures which accommodate extra
sequential information, i.e. the contextual information of the
gallery specific to the probe. In light of such understanding,
we consider a sequential learning strategy. We exploit a recur-
rent neural network model, BiLSTM [10] in particular. This
aims to learn the inter ranking ensemble representations per
probe (Sec 2.1). Meanwhile, we construct a unified CNN-
BiLSTM architecture to learn the intra ranking ensemble rep-
resentation for improving the corresponding inter ranking en-
semble features (Sec 2.2). Inter and intra ranking ensemble
representations can be correlated and aggregated end-to-end
to jointly optimise the model generalisation capability. Im-
portantly, both supervised and unsupervised learning methods
allow to benefit from the RANGE method (Sec 2.3).

2.1. Inter Ranking Ensemble Representations

To learn the inter ranking ensemble feature of pi, we construct
an augmented ranking lists by setting pi as the first element,
i.e. {xt}kt=0 with x0 = pi. We denote {vat }kt=0 the corre-
sponding appearance feature vectors extracted by the model
θ0, we formulate them as an input sequence to a BiLSTM
model as: 

ht = f(w1v
a
t + w2ht−1)

h′t = f(w3v
a
t + w5h

′
t+1)

yt = g(w4ht + w6h
′
t)

(1)

where {wj}6j=1 are the shared weights between each input
unit, f is the hidden layer activation function, g is the output
layer activation function, and ht and h′t are the forward and
backward hidden states, respectively. yt denotes the output
feature representation.

Remarks The forward and backward hidden states effectively
encapsulate the ranking order information for a given probe.
The output yt strongly emphasises the correlation and dis-
criminative selections among the input units (elements in the
list). The BiLSTM network output yt contains the output fea-
tures ht from the last layer of the LSTM, so the output fea-
tures are formulated as latent inter ranking ensemble feature
vectors {vrl }kl=0, i.e. [vr0, v

r
1, ..., v

r
k] = [y0, y1, ..., yk].

To obtain the inter ranking ensemble representation vRi of
xi, we use the average pooling strategy as:

vRi =
1

k + 1

k∑
l=0

vrl,i (2)

Objective loss function To train this BiLSTM network with
labelled training data in the supervised re-id, we employ the
hardest positive vRi,p and negative vRi,n of xi in the feature
space vR. We adopt the triplet ranking loss function [11] as:

Lr = max
(
0, α+ d(vRi , v

R
i,p)− d(vRi , vRi,n)

)
(3)

where α denotes a margin and d is the Euclidean distance.

2.2. Intra Ranking Ensemble Representations

While the inter ranking ensemble can effectively learn the
variations and correlation between a probe and the gallery,
there may be more false positives than true positives. This is
likely to contaminate the inter ranking ensemble representa-
tions. To overcome this problem, we further develop the in-
tra ranking ensemble representation so that the initial ranking
lists can be improved.

Given xi, the feature map obtained from the CNN model
θ0 is horizontally divided into m stripes to compute feature
vectors by average pooling. Unlike existing part-based re-
id methods [12, 13, 14], we progressively input these feature
vectors into another BiLSTM model to learn bi-directional in-
tra correlations using Eq (1). With m output feature vectors
from the BiLSTM, i.e. [vp1 , ..., v

p
m] = [yp1 , ..., y

p
m], the intra

ranking ensemble features of xi is obtained as the concatena-
tion of m feature vectors, i.e. vPi = [vp0⊕v

p
1⊕...⊕vpm]i, where

vp0 and ⊕ denote the holistic visual feature vector and vector
concatenation, respectively. In the intra ranking ensemble, the
CNN and the BiLSTM are jointly trained as a CNN-BiLSTM
model. The objective is to optimise the softmax cross-entropy
loss function:

Lp = − 1

K

K∑
i=1

yi log
exp(Wc[v

p
0⊕...⊕vpm]i)∑Q

q=1 exp(Wq[v
p
0⊕...⊕v

p
m]i)

(4)

where K and Q denote the mini-batch size and the total num-
ber of person identity (c ∈ Q), yi is the ground truth distribu-
tion, and Wc and Wq are to-be-learned model weights.

2.3. Supervised and Unsupervised RANGE

Supervised RANGE In supervised re-id, we have n train-
ing person images X = {x1, ..., xn} of Nid = {1, ..., nid}
different people together with their corresponding identity la-
bels Y = {y1, ..., yn} (yi ∈ Nid). We first train a CNN re-id
model (e.g. ResNet-50 with the Cross Entropy loss) for person
appearance feature vectors extraction V a = {vai }ni=1. Then,



we compute the pairwise Euclidean distances Da for ranking
pi against the gallery xg in X .
Inter and intra ranking ensemble representations To compute
the inter ranking ensemble representation vRi , we start by gen-
erating the i-th candidate rank list Sc

i , ranking vai in the first
position and the other candidates in an ascending order ofDa.
Top k + 1 candidates in this list are then used as inputs to
the BiLSTM for inferring the inter ranking ensemble vectors
{vrl }kl=0 from the gallery. We finally obtain the vRi by Eq (2).
Meanwhile, we compute the intra ranking ensemble vPi of xi.
Re-id deployment Given a test probe, we utilise the inter and
intra ranking ensembles to compute the pairwise Euclidean
distances Dr and Dp, respectively. We then aggregate the
two types of distance score for re-id as

D∗ = Dr + βDp (5)

where β is the fusion weight. When β = 0, only the inter
ranking ensemble is used for re-id. We denote this score fu-
sion as RANGE-s.

Alternatively, we can concatenate vRi and vPi as v∗i =
[vRi ⊕γvPi ] of xi, with γ is the concatenation weight. The
final re-id distance D∗ is then computed with v∗i . We call this
feature fusion as RANGE-f.
Unsupervised RANGE We explore the benefits of RANGE
for unsupervised cross-domain re-id. In this case, the initial
model θ0 is typically weak for performing re-id in the un-
seen target domain due to the potentially significant domain
discrepancy, resulting in more false matches in the top ranks.

To this end, we adapt a CNN model pre-trained in a la-
belled source domain to an unlabelled target domain for more
accurately estimating v∗i andD∗. This is achieved by adaptive
clustering and fine-tuning [15, 16], with the aim of improving
the ranking ensemble representations. More specifically, as-
sume there are a total of N unlabelled training data, after the
performing adaptive clustering, n samples are then clustered
into a number of j clusters, where j � n < N . We label
these clustered samples with cluster labels with the remain-
ing discarded. Then, we fine-tune the pre-trained model to
optimise the ranking ensemble representations with the triplet
loss (one-pass solution instead of iterative clustering for com-
putation reduction). The updated model is then used to revise
v∗i and D∗. We conduct person re-id deployment as above.

3. EXPERIMENTS

Datasets To evaluate the benefits of RANGE for both su-
pervised and unsupervised re-id, we selected four large-scale
benchmarks (i.e. MSMT17 [6], Market-1501 [7], DukeMTMC-
ReID [8], and CUHK03 [9]). We used the standard data split
setting (Table 1) and the single query test.
Evaluation protocol We adopted the Cumulative Matching
Characteristic (CMC) and mean Average Precision (mAP) as
the performance evaluation metrics.

Table 1. Statistics of four re-id datasets and test settings.
Benchmark Image ID Train Test

MSMT17 126,441 4,101 1041 3,060
Market-1501 32,668 1,501 751 750

DukeMTMC-ReID 36,411 1,404 702 702
CUHK03 14,097 1,467 767 700

Table 2. Comparisons to the state-of-the-art supervised re-id
methods on Market-1501 and DukeMTMC-ReID. The top 1
and 2 results are in red and blue.

Methods Reference
Market DukeMTMC

mAP R1 mAP R1

Backbone - 70.5 87.6 59.2 76.9
RANGE-f Ours 81.9 91.0 69.7 81.3
RANGE-s Ours 81.0 90.7 70.1 81.9
SVDNet [19] ICCV17 62.1 82.3 56.8 76.7
PDC [12] ICCV17 63.4 84.1 - -
DPFL [20] ICCVW17 72.6 88.6 60.6 79.2
DaF [21] BMVC17 72.4 82.3 - -
Reranking [5] CVPR17 63.6 77.1 - -
JLML [3] IJCAI17 65.5 85.1 56.4 73.3
CRAFT [22] TPAMI18 42.3 68.7 - -
BraidNet [23] CVPR18 69.5 83.7 59.5 76.4
DML [24] CVPR18 68.8 87.7 - -
MLFN [2] CVPR18 74.3 90.0 62.8 81.0
HAN [1] CVPR18 75.7 91.2 63.8 80.5

Implementation details We implemented the RANGE model
using Pytorch. We employed the ResNet-50 [17] pre-trained
on ImageNet as the backbone network. Other off-the-self re-
id networks, such a MLFN [2], and HA-CNN [1], can be read-
ily used. We adopted the SGD for optimisation with the ini-
tial learning rate as 10−2 (decayed to 10−3 after 20 training
epochs). After the model is trained, 2048-D initial feature
vectors are extracted from the last convolutional layer. For
the inter ranking ensemble representations, we set the number
of forward-backward recurrent layer to 1 and set the learn-
ing rate to 10−4. The input sequence length for BiLSTM is
k + 1 = 5 and the margin α = 0.8. We set β = 0.25 and
γ = 0.15. The output feature vector is 1024-D. For the intra
ranking ensemble, we set m = 4 and the output feature di-
mension of each stipes is 256-D. The final output feature vec-
tor is 2048-D. We adopted DBSCAN [18] for adaptive clus-
tering and set β = 0.4 in unsupervised cross-domain re-id.

3.1. Comparison to the State-of-the-Art Methods

Supervised re-id Table 2 and 3 compare the supervised re-id
performance of the proposed RANGE method with state-
of-the-art methods. We make the following observations:
(I) When using ResNet-50 as the baseline model, re-id per-
formance can be significantly improved from the proposed



Table 3. Comparisons to the state-of-the-art supervised re-id
methods on MSMT17 and CUHK03.

Methods Reference
MSMT17

CUHK03
Labelled Detected

mAP R1 mAP R1 mAP R1

Backbone - 31.0 61.7 44.9 45.8 43.7 45.7
RANGE-f Ours 41.0 68.7 57.0 52.9 56.2 53.0
RANGE-s Ours 41.5 68.6 54.8 51.6 54.2 51.8

DaF [21] BMVC17 - - 31.5 27.5 30.0 26.4
SVDNet [19] ICCV17 - - 37.8 40.9 37.3 41.5
PDC [12] ICCV17 29.7 58.0 - - - -
DPFL [20] ICCVW17 - - 40.5 43.0 37.0 40.7
MLFN [2] CVPR18 37.0 66.3 49.2 54.7 47.8 52.8
HAN [1] CVPR18 35.6 63.5 41.0 44.4 38.6 41.7

Table 4. Comparisons to the state-of-the-art unsupervised
cross-domain re-id. D2M: DukeMTMC (source) ⇒ Market
(target). M2D: Market (source)⇒ DukeMTMC (target).

Methods Reference
D2M M2D

mAP R1 mAP R1

Backbone - 16.3 40.4 11.9 23.1
RANGE Ours 32.5 58.5 21.8 34.6
LOMO [25] CVPR15 8.0 27.2 4.8 12.3
BoW [7] ICCV15 14.8 35.8 8.3 17.1
RKSL [26] ICIP16 11.0 34.0 - -
CAMEL [27] ICCV17 26.3 54.5 - -
PUL [15] TOMM18 20.1 44.7 16.4 30.4
PTGAN [6] CVPR18 - 38.6 - 27.4
TJ-AIDL [28] CVPR18 26.5 58.2 23.0 44.3

RANGE method, thanks to the exploitation of ranking con-
text cues. (II) The RANGE outperforms or is on par with
existing re-id methods on all test benchmarks. For example,
on Market-1501 RANGE-f and RANGE-s significantly im-
prove the state-of-the-art mAP by 6.2% (81.9%-75.7%) and
5.3% (81.0%-75.7%) respectively, although the baseline is
significantly inferior to the state-of-the-arts. On the largest
test MSMT17, RANG-f improves the state-of-the-art method
(i.e. MLFN) by 2.3% and 4.5% in terms of rank-1 accuracy
and mAP. This suggests the importance of considering the
gallery contextual information in re-id similar as other or-
thogonal perspectives like attention modelling in HAN [1].
(III) Overall, RANGE brings more significant improvements
on mAP, which indicates that RANGE benefits the model to
retrieve more related candidates as both probe and gallery
representations are exploited based on ranking context in the
gallery.
Unsupervised cross-domain re-id Table 4 reports the unsu-
pervised cross-domain re-id performance of RANGE in com-
parison to existing alternatives (the results of RANGE-s and
RANGE-f are close, so we report RANGE here). We have
similar observations: RANGE improves the baseline ResNet-
50 significantly, and yields similar performance as the best

Table 5. RANGE component analysis on Market-1501 and
DukeMTMC-ReID. Setting: supervised re-id.

Metric (%)
Market DukeMTMC

mAP R1 mAP R1

Backbone 70.5 87.6 59.2 76.8
Inter ranking ensemble 81.1 88.9 65.5 78.6
Intra ranking ensemble 60.3 83.4 52.9 74.3
RANGE 81.9 91.0 69.7 81.3
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Fig. 2. Analyses about (a) fusion weight and (b) rank length
on Market-1501. Setting: supervised re-id.

competitor TJ-AIDL. This suggests the benefits of our model
when no labels are available for the target domain.

3.2. Component and Parameter Analyses

Component analysis Table 5 shows that inter ranking ensem-
ble clearly improves the re-id performance of the backbone,
while intra ranking ensemble gives extra benefits to further
refine rank lists.

Model parameter analysis Fig. 2(a) shows that the fusion
weights affect the re-id performance. This is because inter
ranking ensemble with gallery contextual information gives
more importance. As shown in Fig. 2(b), the top 5 ranks suf-
fice to capture the gallery contextual information.

4. CONCLUSION

In this work, we presented a RANkinG Ensembles (RANGE)
approach to exploiting the ranking context information of the
gallery population in re-id. Starting with any trained re-id
model, the RANGE constructs per-probe ranking lists on the
same training data for discovering additional discriminative
re-id information. The proposed method can benefit both su-
pervised and unsupervised re-id learning algorithms in a uni-
fied formulation. Extensive experiments on four large scale
benchmarks with varying challenging covariates have demon-
strates the benefits and advantages of the proposed RANGE
method in enhancing the person re-id matching accuracy. We
also conducted in-depth component analysis to give insights
on the superiority of our RANGE design.
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