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ABSTRACT: Water confined by hydrophilic materials shows unique transport properties 10 

compared to bulk water thereby offering new opportunities for development of nano-fluidic 11 

devices. Recent experimental and numerical studies showed that nano-confined water undergoes 12 

liquid-to-solid phase-like transitions depending on the degree of confinement. In the case of water 13 

confined by graphene layers, the Van der Waals forces are known to deform the graphene layers, 14 

whose bending leads to further non-uniform confinement effects. Despite the extensive studies of 15 

nano-confined water at equilibrium conditions, the interplay between the confinement and 16 

rheological water properties, such as viscosity, slip length and normal stress differences under 17 
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shear flow conditions, is poorly understood. The current investigation uses a validated all-atom 18 

non-equilibrium molecular dynamics model to simultaneously analyse continuum transport and 19 

atomistic structure properties of water in a slit between two moving graphene walls under Couette 20 

flow conditions. A range of different slit widths and velocity strain rates are considered. It is shown 21 

that under the sub-nanometer confinement, water loses its rotational symmetry of a Newtonian 22 

fluid. In such conditions, water transforms into ice, where the atomistic structure is completely 23 

insensitive to the applied shear force and which behaves like a frozen slab sliding between the 24 

graphene walls. This leads to the shear viscosity increase, although not as dramatic as the normal 25 

force increase that contributes to the increased friction force reported in previous experimental 26 

studies. On the other end of the spectra, for flows at large velocity strain rates in moderate to large 27 

slits between the graphene walls, water is in the liquid state and reveals a shear thinning behavior. 28 

In this case, water exhibits a constant slip length on the wall, which is typical of liquids in the 29 

vicinity of hydrophobic surfaces. 30 

INTRODUCTION 31 

Understanding of properties of water confined at the nanoscale is important for development of 32 

nano-fluidic devices1-2. Indeed, in comparison with bulk water, water confined by hydrophobic 33 

materials exhibits greatly enhanced transport properties which makes the design of nanoscale flow 34 

devices feasible3-7. Molecular Dynamics simulations8-9 show that the enhanced water permeability 35 

property of nanofluidic devices is due to a reduced friction force between the water flow and solid 36 

walls. The friction force is inversely proportional to slip length and linearly depends on the shear 37 

viscosity.  38 

The slip length characterises the effective repulsion of water molecules by a solid surface and is 39 

significantly increased in hydrophobic materials. For example, due to the water slip on their solid 40 
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interfaces, carbon nanotubes (CNT) generate flow rates which are several orders of magnitude 41 

larger in comparison with the flow rate predicted by the continuum theory based on the classical 42 

non-slip boundary condition6. For the same reason, the permeation rate of water flowing through 43 

graphene-based membranes can be O(1010) times faster than the permeability of helium7. In 44 

general, hydrophobic materials are known to be characterized by an enhanced slippage as 45 

discussed by Vinogradova 10-11 and the references therein. In particular, for nano-confined water 46 

between graphene layers, existing experimental and computational data consistently predict a slip 47 

length that is much larger in comparison with the effective radius of Van der Waals forces 48 

(Table 1). 49 

Table 1. Experimental results for slip length of nano-confined water in graphene  50 

Reported by Slip length (nm) 

Ortiz-Young et al.12 12.5 

Li et al.13 8 

Maali et al.14 8 

 51 

In comparison with the slip length, the role of water viscosity on the transport of water in 52 

hydrophobic materials such as CNT or graphene-based membranes5-7 is not fully resolved. In the 53 

existing Atomic Force Microscopy experiments, the viscosity is measured indirectly, for example, 54 

by measuring the tangential force exerted on the AFM tip that is determined from a bending 55 

moment acted on the cantilever. Such measurements show a sharp increase of the shear force for 56 

sub-micron distances between the AFM needle and the substrate (Table 2). However, it remains 57 

unclear if, in addition to the shear force, the measured force also incorporates a large contribution 58 

of the normal force component. The force exerted in the normal direction to the tip surface in a 59 

nanometer-size gap can be very large when the distance between water atoms and the hydrophobic 60 
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surface becomes order of the effective radius of Van der Waals forces. In this case, the product of 61 

this force with the leading sine that contributes to the force component in the horizontal laboratory 62 

plane can be very significant (see further discussion in Supplementary Information III). 63 

Furthermore, the interactions between water atoms and the graphene surface under confinement 64 

also strongly depends on the density and temperature as well as molecular dipole moment 65 

orientation15-18 on the solid surface. 66 

Table 2. Experimental results for shear viscosity of nano-confined water in graphene 67 

Reported by 
Gap between tip and 

graphene (nm) 

Confined shear viscosity/bulk 

shear viscosity 

Ortiz-Young et al.12 0.7 2.5×104 

Li et al.19 0.5 104 

Li et al.20 ≥ 2 1 

 68 

The sensitivity of interaction between water atoms and a hydrophobic surface can be explained 69 

by properties of water phase transition from liquid-like to solid-like states 21-27 . Experimental and 70 

molecular dynamics studies revealed that crystals of 2D ice form in water at room temperature 71 

under a nanometer-size confinement22. For example, the freezing point of water in CNT 72 

experiments varies from -30ºC to 140ºC, when the carbon nanotube diameter changes from 73 

1.05 nm to 1.52 nm25. Molecular Dynamics (MD) simulations showed that water changes its phase 74 

transition from discontinuous to continuous type when the tube diameter is smaller than 1.2 nm28. 75 

For water confined between graphene sheets, MD simulations showed that water undergoes a 76 

discontinuous phase transition above some critical density below which the phase transition 77 

becomes continuous23. Furthermore, MD simulations showed that the stacking pattern of solid-78 

like water in nano-size gaps can change from one pattern to another (AB to AA, where AA denotes 79 
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the 2D ice structure) depending on the pressure applied in the system22, 27. A similar structure 80 

pattern change was also revealed for water in a non-uniform confinement, such as in the gap 81 

between the tip and the substrate of an Atomic Force Microscope (AFM) device. In the latter case, 82 

localised 2D ice structures, the so-called "nano-ribons", were observed26. These structures depend 83 

on how well water atoms fit in the nano-size gap of a solid material, i.e. whether the characteristic 84 

size of individual water atoms is commensurate with respect to the gap or not. This leads to 85 

different solid-like structures, e.g. monolayer, bilayer, tri-layer, or a diffuse layer typical of liquid 86 

water. In turn, these localised water structures lead to rapidly changing material properties thereby 87 

enabling a discontinuous local friction force that produces the “stick-slip” motion of lubricated 88 

surfaces, as reported in the experiments29. Furthermore, recent MD simulations of a stack of 89 

parallel graphene sheets immersed in water30 reported the deformation of planar graphene layers 90 

into surface ripples. The ripples are a result of the graphene sheet flexibility and the effect of Van 91 

der Waals forces between graphene and water, which leads to a non-uniform water confinement. 92 

In comparison with the fixed non-uniform confinement in the AFM experiment case, the 93 

graphene/water interaction process is dynamic: the rheology of the graphene layer changes due to 94 

response from the water atoms, which leads to bending of the graphene sheet, which, in turn, 95 

triggers new phase transitions in water, and so on31. In this case, mobile areas of graphene ripples, 96 

the so-called “dripplons” are formed, which show unusual transport properties, such as a very large 97 

diffusion velocity. 98 

Despite recent progress in the understanding of the role of nano-confined water phase transitions 99 

on water/hydrophobic surface interaction, many existing investigations in the literature have been 100 

limited to systems at equilibrium conditions, that is, no flow case. For example, because of the 101 

absence of flow, the slip length in nanoconfined water systems cannot be computed from 102 
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Equilibrium Molecular Dynamics (EMD) simulations directly. Instead, the slip length is computed 103 

as a ratio of the viscosity coefficient and the friction coefficient32-33. In comparison with the slip 104 

length, viscosity can be calculated from EMD simulations using the Green-Kubo method21, 34. 105 

Results of the shear viscosity coefficient calculation from several EMD simulations are 106 

summarised in Table 3. It can be noted that predicted the shear viscosity coefficients tend to 107 

increase with the water confinement. The suggested viscosity increase for sub-nanometer 108 

confinement is especially drastic. However, it should be reminded that the Green-Kubo (G-K) 109 

relation was derived for bulk liquid systems and its validity in application to water under strong 110 

confinement is not guaranteed35-40. Furthermore, for an EMD simulation of the nano-size water 111 

slab confined between graphene layers, the G-K method results may not be reliable. As discussed 112 

in Supplementary Information III, in this case the tails of the autocorrelation function at large time 113 

separations show a very slow non-monotonic decay and the corresponding integral under the curve 114 

does not converge.  115 

Table 3. EMD predictions for change in water shear viscosity coefficient under confinement 116 

by a hydrophobic material 117 

Reported by 

Change in water system size, 

nm (diameter of CNT or slit 

width of graphene channel) 

Obtained results for the shear 

viscosity coefficient, Pas 

Ye et al.41 0.8 to 5.4 Decreases from 5.6×10-4 to 2.6×10-4 

Babu et al.42 1.2 to 5.4 Decreases from 4.5×10-4 to 0.5×10-4 

Shaat et al.43 1.3 to 9.7 Decreases from 6.8×10-4 to 3.2×10-4 

Chen et al.44 0.675 to 4.053 Decreases from 10-6 to 10-8 

Neek-Amal  

et al.21 
0.75 to 2 

Non-monotonically decreases from 

10-1 to 8.8×10-4 

 118 
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Both slip length and viscosity of molecular liquids at nano-confinement conditions can also be 119 

obtained from Non-Equilibrium Molecular Dynamics33, 45-46 (NEMD). In comparison with EMD, 120 

NEMD explicitly includes flow in the simulation. However, up until present, NEMD simulations 121 

of nano-confined water have been limited to calculations of the slip length only (Table 4) while 122 

both the viscosity and the underlying water molecular structure, which formed in the process, 123 

received little attention.  124 

Table 4. NEMD predictions for change in water slip length under confinement by a 125 

hydrophobic material 126 

Reported by 
Range of strain 

rates, s-1 

Change in water 

system size, nm 
Trend in slip length, nm 

Ramos-Alvarado  

et al.33 

1×1011 to 

12×1011 
3 to 8 

Decreases from 30 to 20 for all 

strain rates 

Wagemann et al.45 108 to 109 2 to 2.8 
Increases from 50 to 125 for all 

strain rates 

Kannam et al.46 
1.79×1010 to 

25.6×1010 
3.9 Values in the range from 65 to 115 

 127 

Table 4 shows no consensus for predictions of the NEMD simulations for the slip length in nano-128 

confined water systems even in terms of the trend. This lack of agreement can be explained by the 129 

fact that in comparison with the experiment, NEMD usually has to operate at unrealistically high 130 

flow rates to overcome the statistical noise problem. The noise occurs as the result of insufficient 131 

ensemble averaging in case of a microscopically small space and time domain of the molecular 132 

dynamics simulation when calculating the meanflow velocity gradients from MD results. Unless 133 

the meanflow velocity gradient is in order of THz it is difficult to accurately separate it from noise 134 

due to the insufficient averaging of thermal velocity fluctuations. On the other hand, very high 135 
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shear rates require an extra care when performing NEMD simulations and interpreting their rults8, 136 

33, 46. 137 

This gives motivation to the present work which aims to investigate how the flow and structure 138 

properties of water depend on the gap between graphene walls. A systematic NEMD campaign is 139 

performed to include a non-uniform flow in the simulation while keeping the simulation errors 140 

under control. The shear flow of water in a nano-size slit between two graphene walls is initiated 141 

by moving one wall tangentially to another in accordance with the steady Couette flow conditions. 142 

Several molecular dynamics models of water and graphene walls (different MD potentials, 143 

different MD ensembles, different layer structure of graphene walls) are considered in accordance 144 

with recommendations in the literature. The simulation results from the different models are 145 

compared to probe the results’ sensitivity to numerical parameters. Furthermore, the effect of the 146 

size of the molecular dynamics simulation domain on the observed structural and hydrodynamic 147 

properties of the nano-confined system is analysed. Finally, simulations in a wide range of velocity 148 

strain rates accessible to NEMD are conducted and the results are extrapolated to the kHz region, 149 

which would be of interest to experimentalists. 150 

RESULTS 151 

1. Steady Couette problem 152 

A slab of water is placed between two parallel graphene sheets aligned with the x-y plane (Fig.1). 153 

A Couette flow is started by impulsively moving the top graphene sheet relative to the bottom well 154 

at a constant velocity in the x-direction thereby generating a shear velocity gradient in the wall-155 

normal direction, z. The stationary solution is obtained by running molecular dynamics simulations 156 

over a sufficiently long time, 1 ns, to eliminate transients from the solution and then run for another 157 

10-90 ns for statistical averaging. Both the width of the water slab and the velocity of the moving 158 
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graphene sheet are varied in order to investigate the effect of different strain rates under a range of 159 

confinements from sub-nanometer to several nanometers where water is expected to demonstrate 160 

standard bulk liquid properties. 161 

The number of graphene layers in the graphene sheets is also a parameter of the model because 162 

previous research for other nano-confined molecular liquids such as liquid argon showed the 163 

importance of the Van der Waals forces for nanometer-size argon slabs, which affects transport 164 

properties such as slip length47. Furthermore, previous studies also used multi-layer graphene sheet 165 

models for the NEMD simulation of nano-confined water46, 48. Despite these previous 166 

investigations, it should be noted that the present work is the first time when the effect of the 167 

number of layers in the graphene sheet on the transport properties of nono-confined water has been 168 

systematically studied in NEMD simulations. The multi-layer model is implemented by treating 169 

the two outermost graphene layers as rigid surfaces whose coordinates are calculated in accordance 170 

with the analytical Couette solution. Two areas of the computational domain in the (x-y) plane are 171 

considered: 3.5 x 3.6 nm2 and 8 x 8 nm2 to investigate the NEMD model sensitivity to the domain 172 

size. All internal graphene layers remain flexible and are simulated in accordance with the 173 

molecular dynamics potentials for graphene-graphene and graphene-water interactions.  174 
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 175 

Fig.1 NEMD simulation domain for the graphene-water Couette problem. 176 

2. Configuration of the NEMD model 177 

A suitable choice of molecular dynamics potentials for the nano-confined Couette problem has 178 

been identified to include the flexible-bond model SPC/Fw for water, optimized Tersoff for carbon 179 

atoms of graphene sheets, and a suitably modified Leonard-Jones (L-J) potential for graphene-180 

water interactions (see details in the Methods).  181 

For a specified temperature and number of atoms in the system, two typical choices are to 182 

conduct molecular dynamics simulations for a conserved volume (NVT ensemble) or a conserved 183 

pressure (NPT). The NVT approach allows one to precisely control the distance between the 184 

graphene sheets thereby preserving the density of the nano-confined water in this slit. For sub-185 

nanometer confinement, such precise control of local water density is very important for capturing 186 

the liquid-to-solid state water transition that critically depends on how commensurate water atoms 187 
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are with the slit size as discussed in the introduction. However, in this case the normal pressure 188 

force exerted on the graphene sheets is not controlled and reaches very large values order of GPa.  189 

The alternative NPT approach does allow one to preserve a constant pressure (e.g. equal to 190 

atmospheric) by applying a local barostat model to the graphene wall atoms49-50. The barostat 191 

works by artificially adjusting the distance between the two graphene sheets at each time step 192 

thereby modifying the local density of water atoms accordingly. The modification is very 193 

significant for sub-nanometer slit sizes and the NPT model fails to reproduce the liquid-to-solid 194 

water transition in comparison with the experimental observations for such systems (Supporting 195 

Information I, Parts 1-4). Hence, despite the large values of pressure obtained in the system, the 196 

NVT model is selected as the molecular dynamics approach of choice for simulations here. 197 

The next step is to establish a trade-off between the accuracy of NEMD simulations and the 198 

computational cost of the model by adjusting the number of layers in the graphene sheet to an 199 

appropriate number. This is achieved by performing simulations at different numbers of graphene 200 

layers per sheet, from 2 to 6 and comparing the results for slip length and shear viscosity for 201 

different slit widths and strain rates. Both quantities are computed from the meanflow velocity 202 

distribution of water in the wall-normal direction, using the Newtonian flow assumption and using 203 

the averaging in time and over the statistically homogeneous directions, x and y (further details 204 

are in Methods and Supporting Information II, Part 1 and 2)  205 

Fig.2a and b shows the distributions of slip length obtained for water flows inside the 3.8 nm 206 

and the 0.8 nm size slit, respectively. The strain rate is varied in each case and its values are 207 

significantly higher than currently realizable in the experiment. The high rates are essential for 208 

keeping the MD simulation cost feasible, as discussed in the introduction.  209 
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In the 3.8 nm slit case, which corresponds to a relatively large thickness of the water layer where 210 

the nano-size confinement effects are not too important, the results show that the slip length 211 

virtually remains constant with respect to the strain rate. This is consistent with the previous MD 212 

study33 that reported a constant slip length of water under a range of velocity strain rates from 213 

12×1010 to 40×1010 s-1. The same trend is also confirmed in the experiment51 for a similar size slit 214 

between the graphene layers (but at much lower strain rates).  215 

For the 0.8 nm slit width, the slip length increases with the strain rate. Importantly, the slip length 216 

increase in this case is sufficiently above the error bar of the MD simulations (see Supporting 217 

Information I, Part 6), hence, the reported variation is significant.  218 

It can be noted that the increase of the slip length with confinement is consistent with some of 219 

the previous studies (Table 4). Furthermore, the previously mentioned lack of consensus in the 220 

NEMD literature on the slip length behaviour as a function of the velocity strain rate47, 51-54 for the 221 

nano-size confinement, at least partially, can be attributed to the effect of the number graphene 222 

layers on the graphene/water interaction. For example, previous NEMD simulations of 223 

graphene/water systems with large slits33, 45-46 predicted the slip length in a range from 20 to 224 

125 nm. This is consistent with the results of the suggested NEMD model with two layers per 225 

graphene sheet at the 3.8 nm slit width, which predicts the slip length of about 20 nm. However, 226 

the predicted value is too large in comparison with in the graphene/water experiments12-14 which 227 

reported the slip length between 8 and 12 nm12-14. In the suggested NEMD model, once the number 228 

of graphene layers is increased to 4-5, the results for the lip length fully agree with the experiment. 229 

In comparison with the 3.8 nm slit MD models, the slip length results of the 0.8 nm slit system 230 

are much less sensitive to the number of layers in the graphene sheet. This difference is an 231 
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indication of the structural change of graphene/ water interactions which occur in the case of sub-232 

nanometer size confinement.  233 
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Fig.2 Dependence of the slip length of water on velocity strain rate for different numbers of layers 235 

per graphene sheet at (a) 3.8 nm and (b) 0.8 nm slit width. 236 

Fig.3 shows the resulting distributions of the dynamic shear viscosity coefficient 𝜇 of water as 237 

a function of the strain rate for the same slit widths, 0.8 nm and 3.8 nm and for different numbers 238 

of graphene layers (comp. with Fig.2). In each case, the computed shear viscosity coefficient is 239 

normalised by the bulk water viscosity value at room temperature55. As expected, for moderate 240 

velocity strain rates in the large slit of 3.8 nm, the shear viscosity coefficient is close to the bulk 241 

value (Fig.3a). For high strain rates, in accordance with the literature56-57, water exhibits a shear 242 

thinning behaviour so that the shear viscosity coefficient 𝜇 decays with the shear rate. Fig.3b 243 

shows that, for the 0.8 nm slit case, the viscosity coefficient becomes 2 to 3 times larger than the 244 

bulk value. In contrast to the large slit case, there is no clear dependence on velocity strain rate 245 

observed for the small slit case. The notable amplification of water viscosity under the sub-246 

nanometer slit is another manifestation of the liquid-to-solid water transition that occurs when the 247 
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slit width reduces from 3.8 nm to 0.8 nm in consistence with previous EMD investigations58 and 248 

the experiment57, 59.  249 

Interestingly, in comparison with the slip length, there is no strong dependency of the shear 250 

viscosity coefficient, 𝜇 on the number of layers in the graphene wall model even in the 3.8 nm slit 251 

case. This can be explained by the fact that molecular viscosity is an average volume property 252 

whereas the slip length mainly depends on the water/graphene interface forces. These forces 253 

depend on the interplay of Van der Walls forces and the flexibility of graphene layers in the normal 254 

direction.  255 

In summary, to correctly calculate both the slip length and the viscosity coefficient for the large 256 

slit case in comparison with the reliable experimental data available, the five-layer graphene-water 257 

model is selected for all further NEMD simulations in this article. 258 
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Fig.3 Dependence of the shear viscosity coefficient of water on velocity strain rate for different 260 

numbers of graphene per graphene sheet at (a) 3.8 nm (b) 0.8 nm slit. 261 

3. The confinement effect on normal stress differences  262 

In the non-Newtonian flow literature60, normal stresses are used to characterise the deviation of 263 

the shear stress-strain behaviour from a linear relationship. In continuum mechanics, the maximum 264 
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shear stress is equal to one half of the applied normal stress when the angle between the normal 265 

force and the shear direction is 45°. For Newtonian systems with a rotational symmetry, like the 266 

current nano-confined water system where the shear is applied in the normal direction to the 267 

graphene wall (z-direction), this means 
1

2
× (𝜏𝑥𝑥 − 𝜏𝑦𝑦) = 𝜏𝑥′𝑦′ = 0, where (𝑥′, 𝑦′) corresponds 268 

to the rotated coordinates of the stress tensor in (𝑥, 𝑦) plane. 269 

In order to investigate how the effect of sub-nanometer confinement affects the Newtonian 270 

property of water between the graphene sheets, Fig.4 compares the distribution of the first normal 271 

stress difference  
1

2
× (𝜏𝑥𝑥 − 𝜏𝑦𝑦) as a function of velocity strain rate for the 3.8 nm and the 0.8 nm 272 

slit systems. Here 𝜏𝑥𝑥 and 𝜏𝑦𝑦 are the normal stresses in water which can be calculated from the 273 

virial stress relationship61 (Supporting information II, Part 3).  274 

In agreement with the continuum theory, the simulation of the 3.8 nm slit case reveals that the 275 

water interaction with the graphene sheet has a negligible effect on the rotational symmetry of the 276 

water system: the first normal stress difference is virtually zero for all velocity strain rates. In 277 

comparison with this large slit case, for 0.8 nm slit, the first normal stress difference is notably 278 

amplified. Again, this suggests that the water in the 0.8 nm slit underwent a state change in 279 

comparison with the 3.8 nm slit case.  280 

Despite the difference in the graphene sheet/water response, it can be also noted that in both 281 

these cases the normal stress difference is virtually independent on the out-of-plane strain rate as 282 

expected for a Newtonian fluid. This justifies the use of the standard method for calculating the 283 

shear viscosity coefficient as discussed in Methods.  284 
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Fig.4 Dependence of first normal stress difference on the velocity strain rate for different slit 286 

widths between the graphene sheets. 287 

4. The effect of graphene confinement on water state  288 

In order to understand the origin of the differences, which occur in mechanical properties of the 289 

nano-confined water when the slit width reduces from 3.8 nm to 0.8 nm, instantaneous snapshots 290 

of molecular structures in both cases are compared. Fig.5a shows the atomistic structure of water 291 

in the centre of the 3.8 nm slit. The water structure is amorphous as typical of liquids. In contrast 292 

to this, for the 0.8 nm slit case, Fig.5b shows the presence of layers of 2D ice, which is similar to 293 

the square ice structure reported in the EMD literature22 that forms in a sub-nanometer 294 

confinement. Furthermore, Fig.5b shows the formation of a monolayer ice structure in Zone Ι and 295 

Zone ΙΙΙ while bilayer ice exists in Zone II, where the slit gap between the top and the bottom inner 296 

graphene layers opens up slightly wider. The variation of water solid-states is similar to the 297 

previous reports of the nano-ribon ice structure under non-uniform confinement26, 31. In the current 298 

case, the non-uniform confinement is caused by deformation of the graphene layers and 299 

attributable to the Van der Waals forces at the graphene/water interface. As was previously  300 
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reported in the EMD literature for zero flow case31, it is the interplay of the Van der Waals forces 301 

and the subsequent graphene bending deformation response that leads to a coexistence of 302 

monolayer and bilayer ice structures between flexible graphene layers.  303 

 304 

Fig.5 Atomistic structure of water confined between the graphene layers for the 3.8 nm (a) and the 305 

0.8 nm (b) slit cases at a strain rate of 23.68×1010 s-1. The snapshots on the top are the top view 306 

and those on the bottom are for side view. The top view corresponds to a slab of water of the size 307 

of the small gap (0.8 nm) extracted from between the graphene layers as shown. Monolayer ice is 308 

formed in Zone Ι and Zone ΙΙΙ, while bilayer ice is formed in Zone ΙΙ, which corresponds to the 309 

graphene layer “ripples”.  310 
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Following31, the graphene layer bending / Van der Walls force interaction could be expected to 311 

be a dynamic process. Hence, in order to answer the question if the time scale of the evolution of 312 

“ripples” in graphene layers is important in comparison with the atomistic time scales and also to 313 

prove that the graphene layer deformation was not an artefact of large velocity strains applied in 314 

the NEMD model, a separate equilibrium molecular dynamics (EMD) simulation is performed for 315 

the same system. In this EMD simulation, water is confined by stationary graphene walls which 316 

are separated by a 0.8 nm slit. The simulation is run for a sufficiently large time (30ns) to 317 

investigate the long-time behaviour of the “ripples”. Fig.6 shows snapshots of the resulting 318 

atomistic graphene/water structure at different time moments in the y-z plane. It can be seen that 319 

the bilayer region is separated by two monolayer zones and slowly diffused between the graphene 320 

walls. Notably, the increase of the molecular dynamics simulation domain by a factor of 2 in each 321 

x and y direction, from 3.5 x 3.6 nm2 to 8 x 8 nm2 area of the graphene sheet, while keeping the 322 

same slit width equal to 0.8 nm, does not change either the structure of the “ripples” or their 323 

diffusion time. Animations of the graphene-water system are provided in Supporting Information 324 

IV and V. 325 

 326 

t=1 ns                                       t=10 ns                                  t=30 ns 327 
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Fig.6 Slow diffusion of the graphene layer “ripples”: snapshots of the atomistic structure of nano-328 

confined water inside graphene layers with 0.8 nm slit as obtained from equilibrium MD 329 

simulations for zero flow. 330 

Having established that diffusion of the graphene layer “ripples” is a slow process in comparison 331 

with molecular dynamics times, another question to answer is if material properties of the nano-332 

confined graphene/water system depend on local rheology details such as the orientation of the 333 

“ripples” of the deformed graphene layer. In order to answer this question additional NEMD 334 

simulations were performed for the graphene layer “ripples” aligned with the flow direction and 335 

at 90o angle to it. The obtained results confirm that both the transport and the atomistic structure 336 

properties of nano-confined water are more-or-less insensitive to the orientation of the “ripples” 337 

on the graphene layer with respect to the flow (Supporting Information VI). 338 

5. The effect of confinement on water dynamics  339 

The next step is to investigate transport properties of the nano-confined graphene-water system 340 

for a variable slit width while keeping the velocity strain rate constant and equal to a high value 341 

23.68×1010 s-1. The latter is to reduce the MD simulation run time required for a sufficient 342 

statistically averaged solution without notable thermal noise effects. 343 

Fig.7a shows that the slip length tends to increase as the slit decreases, in agreement with some 344 

of the previous literature (comp. with Table 4). The decrease is non-monotonic with emerging 345 

oscillations especially notable for slit widths smaller than 1.5nm, which can be attributed to non-346 

continuum water effects. A qualitatively similar trend is also observed for the shear viscosity 347 

coefficient, 𝜇. The latter is about 0.7-1 of the bulk water viscosity at moderate to large slits of 348 
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1-3.8 nm and then becomes amplified by a factor of 2 of the bulk value once the slit width reduces 349 

to 0.8 nm (Fig.7b). 350 
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Fig.7 Distribution of (a) slip length and (b) shear viscosity as a function of the slit width at a fixed 352 

strain rate of 23.68×1010 s-1. 353 

The predicted increase of the shear viscosity for sub-nanometer confinements is several orders 354 

of magnitude smaller in comparison with predictions of some recent equilibrium molecular 355 

dynamics simulations based on the Green-Kubo (G-K) method for viscosity calculation21 as well 356 

as the results of the AFM experiment12. It should be recalled that both the G-K and AFM results 357 

for shear viscosity can be debated as discussed in the introduction. Nevertheless, since the 358 

extremely high strain rates applied in the NEMD calculations remain a potential culprit for 359 

discrepancies with the EMD results, an additional series of simulations was performed with the 360 

standard, 3.5 x 3.6 nm2 and the increased, 8 x 8 nm2 area of the graphene sheets for several slit 361 

widths and for a range of velocity strain rates. 362 

The results for the standard-size and the increased-size computational domains are similar and 363 

in what follows the result for the 8 x 8 nm2 graphene sheets are shown.  364 
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Fig.8 demonstrates the slip length distribution as a function of the strain rate for the 0.8 nm slit 365 

width (Fig8a) and for the 3.8 nm slit width (Fig.8b). Fig.9a and b shows the distribution of the 366 

shear viscosity coefficient as a function of the strain rate for the same two slit widths. And Fig.10a 367 

and b shows the corresponding distributions of the friction coefficient that is a ratio of the shear 368 

viscosity to the slip length.  369 

First of all, in can be noted that, for all three quantities, there is a qualitative change between the 370 

response to shear of the graphene/water system with 0.8 nm slit from that with 3.8 nm slit. 371 

Interestingly, this change occurs when the slit width reaches sub-nanometer. On the other hand, 372 

the variation of the slip length, viscosity and friction coefficient for slit width between 3.8 nm and 373 

1.0 nm are similar (for details of water transport properties in 1.0 nm slit see Supporting 374 

Information II, Part 4).  375 

In case of the sub-nanometer slit width for relatively low strain rates, the slip length shows a 376 

decrease with the slit width decrease. In comparison with this, both the viscosity coefficient and 377 

the friction coefficient show a rise as the shear reduces despite the non-monotonic behaviour of 378 

the viscosity coefficient at high strain rates. Hence, it can be speculated that for standard laboratory 379 

conditions corresponding to the experiments of Table 2 which operate at velocity strain rates order 380 

of kHz, which is much lower in comparison with NEMD, the viscosity coefficient may further 381 

increase. In order to investigate this further, approximate valuates of the shear viscosity coefficient 382 

for both the 0.8 nm and the 3.8 nm slit widths at 1 kHZ strain rate have been obtained by 383 

extrapolation of the NEMD results at three lowest available strain rates, 1.32×107, 3.94×107 and 384 

6.58×107 kHz. The extrapolation results together with the uncertainty band are summarised in 385 

Table 5. It can be noted that the shear viscosity values extrapolated to 1 kHz do not depend on the 386 

size of the model within the uncertainty bar. The results of the NEMD modelling for the large slit 387 
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width underpredict the bulk viscosity value by about 30%. On the other hand, the obtained results 388 

for the 0.8 nm slit width show 4- to 5-fold shear viscosity increase in comparison with the bulk 389 

value. However, this increase is still too small in comparison with the shear viscosity increase 390 

reported in the experiments (Table 2). 391 

0 5 10 15 20 25
0

1

2

3

4

5

 

 

sl
ip

 l
en

g
th

 (
n

m
)

strain rate (10
10

 s
-1
)(a)

0 5 10 15 20 25
3

4

5

6

7

8

9

10

11

(b) strain rate (10
10

 s
-1
)

sl
ip

 l
en

g
th

 (
n

m
)

 392 

Fig.8 Variation of the slip length as a function of the velocity strain rate in the graphene channel 393 

for (a) 0.8 nm and (b) 3.8 nm slit widths. 394 
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Fig.9 Variation of the shear viscosity coefficient as a function of the velocity strain rate in the 396 

graphene channel for (a) 0.8 nm and (b) 3.8 nm slit widths. 397 
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Fig.10 Variation of the frictional coefficient as a function of the velocity strain rate in the graphene 399 

channel for (a) 0.8 nm and (b) 3.8 nm slit widths. 400 

Table 5. NEMD results for shear viscosity extrapolated to 1kHz strain rate 401 

Model size 8 x 8 x 0.8 nm2 
3.5 x 3.6 x 0.8 

nm2 
8 x 8 x 3.8 nm2 3.5 x 3.6 x 3.8 nm2 

/bulk 3.370.85 2.970.73 0.68 0.01 0.6230.05 

 402 

It is further instructive to compare the above NEMD results with the shear viscosity coefficient 403 

which has been obtained for the same system using the standard EMD simulation for the no-flow 404 

case (Supplementary Information III). The obtained viscosity coefficients for different slit widths 405 

are summarised in Table 6 with and without using the conventional rotational symmetry 406 

assumption to simplify the Green-Kubo integral by expressing various shear stress terms via the 407 

normal stress differences37. The EMD results show a strong dependency on the integration time of 408 

the auto-correlation function of the Green-Kubo method, which has very “heavy” tails especially 409 
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in the case the conventional rotational symmetry assumption. Apparently, the corresponding 410 

numerical integrals do not converge over the range of time separations amenable to molecular 411 

dynamics solution averaging. 412 

Table 6. EMD results for shear viscosity as a function of the integration time 413 

 0.8 nm  3.8 nm 

 
Integration 

time 10 ps 

Integration 

time 20 ps 
 

Integration 

time 0.2 ps 

Integration 

time 0.4 ps 

GK no 

diagonal term 
0.6 0.7  0.064 0.1 

GK with 

diagonal term 
3.7 6  0.11 0.21 

 414 

Now turning our attention to address the lack of agreement with the experimental data in Table 2, 415 

which shows a large increase of the viscous force at sub-nanometer confinements, let us compare 416 

the effect of the strain rate on the shear force exerted on the graphene sheet for different slit widths 417 

(Fig.11a) with the that on the normal force (Fig.11b). It can be seen that the shear force only weakly 418 

depends on the slit width unless the strain rates is very high. On the other hand, the magnitude of 419 

the shear force depends on the strain rate approximately linearly is in accordance with the expected 420 

behavior of a Newtonian fluid (see discussion in Section 3). In comparison with this, the normal 421 

force acting on the graphene sheet exhibits a sharp rise in the vicinity of one-nanometer slit width, 422 

which corresponds to at least a factor of 20 amplification in comparison with the “bulk” value 423 

associated with moderate to large slit widths (> 3 nm). This rise is non-monotonic and likely to be 424 

driven by non-continuum effects such as how commensurate or non-commensurate the distance 425 

between two layers of water atoms is in comparison with the slit width (see introduction). 426 

Importantly, the rise of the normal force is completely independent of the strain rate, which 427 
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suggests that the water transition from liquid to solid-like state is independent of the velocity strain 428 

rate either. Indeed, a series of additional EMD simulations performed for zero flow led to virtually 429 

the same result as NEMD (Fig.11b). Hence, it can be expected that unless the local tangential and 430 

normal forces, which are exerted on the graphene sheet of a nano-confined system, are well 431 

resolved in an experiment, so that the product of the normal force and the small angle 432 

corresponding to the deviation from the assumed parallel set-up is much smaller than the shear 433 

force magnitude (see Supplementary Information III), the value of shear viscosity coefficient 434 

estimated from the experiment should be treated with caution. Furthermore, it can be speculated 435 

that the effect of graphene layer rheology due to the emergence of “ripples” at the graphene/water 436 

interface is to increase the effective slip length thereby competing with the effect of shear viscosity 437 

increase under the sub-nanometer confinement.  438 
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Fig.11 Variation of the shear force (a) and normal force (b) on the graphene sheet as a function of 440 

the slit width and the velocity strain rate in the graphene channel. 441 

6. The effect of shear flow on radial distribution functions in liquid-like and solid-like water 442 

In order to further analyse changes in the nano-confined water properties when the slit width 443 

between the graphene layers reduces to sub-nanometer, the atomistic structure of nano-confined 444 
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water is analysed next. Fig.12 shows lateral radial distribution functions (LRDF) of water atoms 445 

in the plane parallel to the graphene walls for different slit widths (see Methods for the definition 446 

of LRDF). In each case, the velocity strain rate is fixed to a constant equal to 23.68×1010 s-1 for 447 

the sake of computational efficiency.  448 

Fig.12a demonstrates the LRDF results for oxygen-oxygen. The same distributions for oxygen-449 

hydrogen are shown in fig.12b. In comparison with larger slits, a drastic change in both LRDF 450 

distributions occurs when the gap between the graphene layers reduces from 1.0 nm and 0.8 nm. 451 

For example, in the case of the 0.8 nm slit, multiple peaks emerge in the water structure which is 452 

typical of the hydrogen bond network. In comparison with the large slit case, the second peak of 453 

the LRDF distribution of the 0.8 nm slit model moves to smaller radial distances rxy, which 454 

indicates a stronger hydrogen bond formed in second shell. Interestingly, while the position for the 455 

first peak remains unchanged, its peak is amplified. This suggests that more atoms are located 456 

within the radial distance of the first peak in the 0.8 nm case in comparison with the larger slits 457 

where the water structure is liquid-like. Notably, the stronger hydrogen bond in the second shell 458 

and the unchanged position for the first peak are in agreement with previous EMD simulations of 459 

nano-confined water58 which reported a similar solid-like water behaviour under strong 460 

confinement. The similarity between the NEMD and the previous EMD results suggests 461 

independence of the solid-like water structure of the applied velocity strain rate in the solid-like 462 

water, which is also consistent with the discussion in Section 5 (comp. with Fig.11b).  463 
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Fig.12 Dependence of lateral radial distribution functions (LRDF) of nano-confined water on the 465 

slit width for (a) oxygen-oxygen and (b) oxygen-hydrogen interactions. LRDF is computed in a 466 

plane parallel to the graphene layers and a constant velocity strain rate of 23.68×1010 s-1 is applied. 467 

The vertical dash line in (b) demarcates the location of the second peak of LRDF for the 0.8 nm 468 

slit case. 469 

In order to analyse how the shear flow affects the nano-confined water structure, Figs. 13 and 470 

14 show how the LRDF distributions of water atoms in the x-y plane evolve as a function of the 471 

strain rate for the 3.8 nm and the 0.8 nm slit case, respectively. The presented results correspond 472 

to the model with the graphene sheet area of 3.5 x 3.6 nm2. The LRDF results obtained for the 473 

same two slit widths and the large computational domain corresponding to the graphene sheet area 474 

of 8 x 8 nm2 are similar. 475 

In the 3.8 nm slit, water behaves as liquid. In this case, LRDF structure of both the oxygen-476 

oxygen and the oxygen-hydrogen becomes more diffuse as the velocity strain rate increases. Here 477 

the peaks and the valleys of the radial distribution gradually reduce as the strain rate grows larger. 478 

Such behaviour can be associated with the shear thinning effect of water at large strain rates (comp. 479 

with Fig.9b). On the other hand, the locations of peaks and dips of the radial distributions are 480 
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invariant of the strain rate. The latter suggests that intermolecular forces, such as those acting 481 

between the water atoms and the graphene walls, are not affected by the shear flow gradient. The 482 

last point is also consistent with the previous observation that the slip length on the graphene wall 483 

is more-or-less independent of the velocity strain rate in the large slit case (comp. with Fig.8b). 484 

Additional MD simulations of the large slit case confirm that the revealed effects do not depend 485 

on the choice of MD force field, e.g. either with a flexible or a rigid bond water model, which are 486 

both equally applicable for liquid-state water simulations (Supporting Information І, Part 5). 487 

In comparison with the 3.8 nm slit case, the water assumes a solid-like state in 0.8 nm slit. In the 488 

latter case, the long-range order of radial distributions of all inter-atomic interactions is completely 489 

independent on the velocity strain rate. The ice structure developed in the slit in this case is 490 

sufficiently rigid to resist any deformation under the applied shear force. This solid-like behaviour 491 

is consistent with a gradual increase of the slip-length with the velocity strain rate observed earlier 492 

(comp. with Fig.8a). The slip length change with the strain rate is indicative of a weaker interaction 493 

between the water atoms and the graphene wall in comparison with the interatomic forces of the 494 

condensed-state water that behaves like a solid crystal sliding between the two graphene sheets.  495 
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Fig.13 Lateral radial distribution functions (LRDF) of (a) oxygen-oxygen and (b) oxygen-497 

hydrogen interactions of water in a plane parallel to the graphene walls for the 3.8 nm slit width at 498 

different strain rates. The insets in (a) are zoomed-in views of the first peak and the first valley of 499 

the radial distribution function. The insets in (b) show a zoomed-in view of the first and the second 500 

peak. 501 
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 502 

Fig.14 Lateral radial distribution functions (LRDF) of (a) oxygen-oxygen and (b) oxygen-503 

hydrogen interactions of water in a plane parallel to the graphene walls for the 0.8 nm slit width 504 

and different velocity strain rates. The inset definitions are the same as in Fig.13. 505 

CONCLUSION 506 

A comprehensive Non-Equilibrium Molecular Dynamics (NEMD) campaign is performed to 507 

simulate nano-confined water flows between two moving graphene sheets in accordance with the 508 

Couette problem for a range of the strain rates and the slit widths. All components of the suggested 509 

all-atom NEMD model, such as the number of layers in the graphene sheet and the MD force field 510 

details, are selected in accordance with recommendations in the literature and tested to ensure that 511 
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sensitivity of the model results to the numerical parameters such as the graphene sheet size and the 512 

number of graphene layers is low.  513 

In comparison with the previous experimental and computational studies of graphene/water 514 

systems, both the continuum hydrodynamics properties, such as the slip length, the shear viscosity, 515 

and the normal stress differences, as well as the atomistic structure details such the lateral radial 516 

distribution function, are analysed. 517 

For the large width between the graphene sheets, the model reproduces the behaviour of slip 518 

length and viscosity coefficients as reported for similar graphene-water systems in previous 519 

experimental and computational studies.  520 

For the sub-nanometer-size confinement, the NEMD simulations reveal that ice structures form 521 

in the slit between the graphene sheets. The ice formation promotes the development of “ripples” 522 

in the graphene layers whose slow diffusion process agrees with a previous Equilibrium MD 523 

investigation. The formation of condensed water state under the strong confinement leads to a 524 

notable change in mechanical properties of water such as breaking of the rotational symmetry in 525 

the plane normal to the applied shear. The simulations reveal that the slip length decreases and the 526 

shear viscosity coefficient is amplified when the slit width between the graphene layers decreases. 527 

Besides, for the sub-nanometer confinement case, it is shown that the shear viscosity is further 528 

amplified when the velocity strain decreases. Then, by extrapolation of the NEMD results to the 529 

1 kHz range of velocity strain rates used in the experiments, it is shown that the shear viscosity of 530 

water under the sub-nanometer size confinement is a factor of 4-5 larger in comparison with the 531 

bulk value. Notably, this amplification is not as drastic as predicted from some previous 532 

Equilibrium Molecular Dynamics (EMD) simulations and also from Atomic Force Microscope 533 

(AFM) experiments. It is further argued that the validity of the Green-Kubo relation for viscosity 534 
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calculation in nano-confined liquids is debatable while the indirect methods of viscosity 535 

calculation used in AFM is also prone to error because of the non-parallel effects between the 536 

AFM tip surface and the substrate surface which makes the accurate resolution of tangential and 537 

normal force components difficult.  538 

The change of the material properties of water under the sub-nanometer confinement is attributed 539 

to the formation of a long-range order in the lateral radial distribution function of water atoms as 540 

typical of the crystal-like behaviour. The response of the condensed-state-like water to applied 541 

velocity strain rates is also notably different in comparison with that of the liquid-like water at 542 

room temperature. While the liquid state-like water shows a shear thinning effect at higher strain 543 

rates, which leads to some smearing of the lateral radial distribution of water atoms, the water 544 

structure in the condensed-like state is virtually independent on the applied strain rate. In this 545 

condensed-like state, water behaves like a frozen slab sliding between the two moving graphene 546 

walls so that the slip length between the water slab and the graphene layers increases with the 547 

strain rate increase. It can also be speculated that the effect of graphene layer rheology due to the 548 

flexibility of the graphene/water interface under normal stresses is competing with the effect of 549 

shear viscosity increase under the sub-nanometer confinement. 550 

The findings of this study provide a useful reference point for further studies of transport and 551 

material properties of water subjected to extreme confinement and shear conditions. These can be 552 

further used in the design of nanofluidic devices such as high-permeability membranes as well as 553 

for reliable interpretations of the results of AFM experiments. 554 

METHODS 555 

Dipole and quadrupole moments are a key factor for correctly modelling of water transport 556 

properties in molecular dynamics simulations17, 62-65. In rigid-bond water models, the dipole 557 
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moment is generated by placing a partial charge on the oxygen and hydrogen sites. However, using 558 

the fixed charge distribution may lead to an underprediction of the dipole moment in water models 559 

such as SPC thereby leading to inconsistent shear viscosity, diffusion coefficient and dielectric 560 

constant in comparison with experiments17, 62-63. In comparison with SPC, SPC/E water model is 561 

able to more accurately reproduce water polarisation and dipole moment properties due to a 562 

slightly better adjusted atomic partial charge but still gives a too low shear viscosity coefficient in 563 

comparison with the experimental data63. Another example of the rigid-bond water models is 564 

TIP4P that has the best performance among the family of TIP3P/TIP4P/TIP5P models due to its 565 

much more elaborate charge distribution and parametrisation66-68. Still, TIP4P under-predicts the 566 

shear viscosity in comparison with the experiments63. A promising method to capture water 567 

polarisation effects, which are very important for correct representation of water transport 568 

properties, is to introduce flexibility of the intermolecular bonds and angles18, 62, 64-65. In particular, 569 

SPC/Fw water model is a recent example of the flexible water models which incorporates a 570 

changeable dipole moment with respect to the thermodynamic state. The flexible bond model leads 571 

to a good agreement with the experimental data for the shear viscosity coefficient17, 55, 63. Hence, 572 

it is the SPC/Fw water model that has been selected for most MD simulations in this article. 573 

To initialise the NEMD simulation, SPC/Fw water atoms are filled in the slit between the 574 

stationary graphene walls. After the initialization step, the top wall moves impulsively in 575 

accordance with the Couette flow conditions for a range of strain rates from 1.32×1010 s-1 to 576 

23.68×1010 s-1. The range of considered strain rates is sufficiently large to investigate the effect of 577 

shear on material properties of water under confinement without producing notable numerical 578 

artefacts such noise or spurious heating effects contaminating the NEMD results.  579 
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In order to model interactions between the carbon atoms in graphene layers, the so-called 580 

optimised Tersoff potential is used. This is an optimized version of Tersoff 198969-70 which has 581 

been used associated with the modified Lennard-Jones (L-J) potential based on 𝜀𝑐𝑐 =0.298 kJ/mol 582 

and 𝜎𝑐𝑐 = 3.14Å to simulate water confined between graphene layers33. The carbon-water 583 

interactions are also modelled by the L-J potential where 𝜀𝑐𝑜 =0.392 kJ/mol and 𝜎𝑐𝑜 =3.19Å as 584 

recommended in previous publications71. The L-J cutoff distance is 1.5 nm and the Coulombic 585 

interaction is modelled by the PPPM algorithm with the target accuracy of 10-6.  586 

As a side remark, it can be noted that other choices for the molecular dynamics potentials of the 587 

same family include Tersoff 199072, Tersoff 199473 and the optimized Tersoff69. Previous studies74 588 

found that the Tersoff 1989 is able to produce the correct graphene structure e.g. carbon-carbon 589 

distance in graphene whereas the Tersoff 1990 and Tersoff 1994 models cannot. All these models 590 

can well produce the Young’s moduli. In comparison with its modified version69 used in the 591 

present study, Tersoff 1989 cannot accurately reproduce the phonon dispersions of graphene, 592 

which is used to characterize anharmonic and harmonic interactions between atoms. The latter is 593 

important since the harmonic and non-harmonic interactions determine the bending deformation 594 

(“ripples”) of graphene layers75-77. Most notably, the optimized Tersoff potential has already been 595 

validated in application to water-graphene simulations and resulted in good a prediction of the 596 

hydrodynamic properties33. In order to verify the recommendations in the literature, in addition to 597 

the optimized Tersoff model, we also implemented and tested a few other models mentioned 598 

above. Notably, none of them gives a stable result for the nano-confined graphene/water system 599 

once the slit width reduces to 1 nm or less.  600 

Parameters of the graphene/water model such as the number of layers in the graphene walls and 601 

the slit width are varied in order to analyse their effect on the transport and structure water 602 
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properties. The number of graphene layers from 2 to 6 and several slit widths in the range from 603 

0.8 nm to 3.8 nm and 0.2 nm step are considered. The number of water molecules in the slit is 604 

adjusted to reach the targeted water density of 1 g/cm3. The effective volume occupied by water 605 

atoms in the slit is calculated by excluding the volume occupied by graphene whose Van der Waals 606 

force radius is 0.17 nm. The graphene layers have a rectangular shape of 3.5 nm times 3.6 nm, or 607 

8 nm times 8 nm for the larger domain, that matches dimensions of the computational box in the 608 

x- and the y-direction, respectively. Periodic boundary conditions are applied in all directions 609 

except for z where the domain is confined by graphene layers.  610 

Prior to starting the Couette flow, an initial minimisation and equilibration of the MD model is 611 

performed. During the equilibration stage, all internal graphene layers and water atoms are put in 612 

contact with the Langevin thermostat with the time constant of 0.1 ps to reach the target 613 

temperature of 300 K. The equilibration calculation time is 1 ns and the time step of the MD 614 

solution is 1 fs. The time step of the following NEMD simulation is 0.1 fs.  615 

The use of thermostat for nano-confined water atoms is avoided since dissipation of energy in 616 

the steady Couette case should be achieved through wall boundaries rather than through the water 617 

volume that can lead to unphysical results78-81. After completing the equilibration step, the main 618 

NEMD simulations are performed where the thermostat is activated only in the flexible graphene 619 

layers. Both the equilibration and the subsequent NEMD simulations are based on the NVT 620 

ensemble. The run time of NEMD simulations over which the statistical averaging of the solution 621 

is performed depends on the strain rate and varies from 10 to 90 ns. 622 

To calculate the slip length and the shear viscosity coefficient, the velocity profile across the slit 623 

is calculated from the NEMD simulation. In this process, the entire water volume is divided into 624 

bins in the z-direction. For each bin, the stream-wise velocity of all water atoms is volume and 625 
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time averaged, assuming the statistical homogeneity of the atom distribution in the entire (x-y) 626 

plane and the corresponding stationarity in time. The obtained area-averaged velocity profile, 627 

𝑢𝑥(𝑧) and its slope 
𝑑𝑢𝑥

𝑑𝑧
 are computed from the discrete bin values using the least square method.  628 

The dynamic shear viscosity coefficient, 𝜇 is computed assuming the Newtonian stress-strain 629 

relationship for water82-83:  630 

𝜇 =
𝐹𝑥,𝑡𝑜𝑝

𝐴𝑥𝑦
/

𝜕𝑢𝑥

𝜕𝑧
             (1) 631 

Here 𝐴𝑥𝑦 and 𝐹𝑥,𝑡𝑜𝑝 are the area of the graphene sheet in (x-y) plane and the integral viscous shear 632 

force applied to the graphene sheet in the flow direction, respectively. The shear force is calculated 633 

from results of the NEMD simulation by summing up all non-bond forces, which are exerted on 634 

the graphene sheet due to the water/graphene interaction in the flow direction. It can be noted that 635 

the error of the viscosity coefficient calculation is mainly due to that of computing the velocity 636 

gradient (Supporting Information ІI, Part 5).  637 

To analyse the water structure properties in the slit confined in the z-direction, the lateral radial 638 

distribution function (LRDF) is calculated in (x-y) plane following the definition suggested in the 639 

literature24. 640 

𝑔𝑥𝑦(𝑟) =
1

𝜌2𝑉
∑ 𝛿(𝑟 − 𝑟𝑖𝑗) [𝜃 (|𝑧𝑖 − 𝑧𝑗| +

𝛿𝑧

2
) − 𝜃 (|𝑧𝑖 − 𝑧𝑗| −

𝛿𝑧

2
)] 𝑖≠𝑗                     (2)  641 

Here 𝜌,𝑉,𝑟𝑖𝑗 and 𝑧𝑖 are the number density, volume of the water, pairwise distance in (x-y) plane 642 

and atom coordinates in z direction, respectively. 𝛿(𝑥) and 𝜃(𝑥) are Dirac delta-function and 643 

Heaviside function. Following recommendations in the literature24, the lateral width of the 644 

distribution is set to z =0.1 nm.  645 

In addition to the main NVT simulation runs, a separate series of simulations is performed where 646 

a boundary-controlled barostat is applied to control the pressure of the graphene-water system49-647 
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50. The barostat implementation is based on fixing the outermost graphene layers only in the x and 648 

y direction while allowing the z-coordinates of the layers to be adjusted dynamically in the 649 

simulation. The vertical adjustment is performed so that the target 1bar pressure is maintained in 650 

the system at all times. It has become apparent that the lack of control of the effective width of the 651 

graphene slit that occurs during the NPT simulations interferes with the mechanism of liquid-state 652 

water to solid-state-like water transition for the sub-nanometer slit width (Supporting information 653 

II, Part 1-4). It has been further confirmed that the NPT simulations with applying the barostat to 654 

either the top layer or both the top and the bottom graphene layers lead to similar incorrect results. 655 

In consistence with the previous nano-confined water investigations30, this has proven that the 656 

liqud-to-solid transition process is very sensitive to how commensurate the width of the graphene 657 

slit is with respect to the molecular size of water and one should use NVT simulations for this 658 

problem.  659 
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