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Origin and evolution of eukaryotic transcription factors
Alex de Mendoza'? and Arnau Sebé-Pedros®*

Transcription factors (TFs) have a central role in genome
regulation directing gene transcription through binding specific
DNA sequences. Eukaryotic genomes encode a large diversity
of TF classes, each defined by unique DNA-interaction
domains. Recent advances in genome sequencing and
phylogenetic placement of diverse eukaryotic and archaeal
species are re-defining the evolutionary history of eukaryotic
TFs. The emerging view from a comparative genomics
perspective is that the Last Eukaryotic Common Ancestor
(LECA) had an extensive repertoire of TFs, most of which
represent eukaryotic evolutionary novelties. This burst of TF
innovation coincides with the emergence of genomic nuclear
segregation and complex chromatin organization.
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Introduction

T'ranscription factors (‘T'Fs) are proteins that bind DNA by
recognizing specific sequence motifs located at regulatory
elements, such as promoters and enhancers. In turn, this
TF binding controls downstream chromatin processes such
as recruitment of RNA polymerases, DNA methylation,
and nucleosome chemical modifications and displacement.
Theresultis the activation or repression of gene expression.
Therefore, TFs have a crucial role in interpreting genomic
information and are central players in gene regulatory
networks. Although TFs are present in all life forms,
eukaryotes have a unique set of TF classes, as defined
by class-specific DNA binding domains (DBDs) [1°]. Some
of these TF classes are conserved across large evolutionary
distances [2,3].

ScienceDirec

brought to you by

provided by Queen Mary Research Online

< . Lurrent upinion in

R Genetics
& Development

Check for
updates

Eukaryotic genomes tend to be larger than those of
prokaryotes. Furthermore, eukaryotic genomic DNA is
packed around histone-based nucleosomes that limit the
access to genetic information and can carry epigenetic
modifications, constituting a complex chromatin environ-
ment. Similarly, the origin of the nuclear envelope further
changed the way proteins could access and regulate DNA.
Therefore, the evolution of a new set of 'TF classes was
likely a pivotal event in the lineage that led to the Last
Eukaryotic Common Ancestor (LECA). These ancestral
eukaryotic TF classes diversified into large multi-gene
families like homeodomain or bHLH T'Fs [4]. Addition-
ally, new TF classes appeared in specific eukaryotic
lineages, further increasing the potential for sophisticated
genome regulation. This expansion was more pronounced
in plants and animals, both of which encode the most
diverse and abundant TF repertoires [3].

This review discusses the emergence and diversification
of eukaryotic TF classes, as well as the modes of TF
acquisition and the evidence of conserved TF function-
ality across eukaryotes.

Revisiting transcription factor diversity across
the tree of life

The continuously growing availability of genome sequence
data from key branches of the tree of life is transforming our
understanding of the evolution of major eukaryotic gene
families. For example, several deep-branching eukaryotic
species have recently been either described and/or
sequenced for the first time [5,6°,7°,8°]. Similarly, the
discovery and placement of Asgard archaea as the sister
group to eukaryotes reshaped our view on cukaryotic
origins [9°%,10]. Although there is not yet a consensus on
the phylogenetic root of eukaryotes, phylogenomic
analyses have reduced the potential cukaryotic tree
topologies to a few alternative options, which chiefly differ
on the phylogenetic position of Discoba and Metamonada
[5,11]. Taking advantage of these new genomic data, we
reviewed the distribution of a curated list of DBDs
representing 74 TF classes in 158 eukaryotic species,
265 archaea and 5394 bacteria (Figures 1, 2) [12].

Some TF classes have pre-cukaryotic origins. For example,
the basal transcription factor machinery is present in
multiple archaeal species [13,14], including the TBP
(TATAboxbinding protein), NFYB (Nuclear transcription
factor Y subunit beta) and the TFIIB (Figure 2). CSD TFs
are also found across all domains of life. Interestingly, some
Asgard archaea also encode E2F/TDP, which is a key cell
cycle regulator in eukaryotes [15]. This constitutes a new
example of a gene family shared between Asgard archaea
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Distribution of transcription factor classes across eukaryotic species.

(a) Barplot showing the total number of TF proteins encoded in the genome/transcriptome of different eukaryotic species. The y is square root
transformed. (b) Heatmap showing the number of TFs of each class (rows) found in each species. TFs are identified using Pfam HMM profiles for
different DNA-binding domains (DBDs) and HMMERS3 hmmsearch (http://hmmer.org/) searches against predicted proteomes with default gathering
threshold (—cut_ga). The total number of proteins encoding a given domain is reported, not the total number of domains (i.e. TFs with more than
one copy of a particular DBD are counted only once). Asterisks indicate those species for which the genome is not available and transcriptomes
were used instead. The transcriptomes were obtained from previous assemblies (one asterisk) [5,6°,7°,53] or the publicly available lllumina reads
were downloaded from NCBI Sequence Read Archive (two asterisks) [8°,54]. The later were assembled into transcripts using Trinity (https://github.
com/trinityrnaseq/) and coding regions were identified using Transdecoder (https://github.com/TransDecoder/). To reduce redundancy in de novo
transcriptomes, transcripts classified as isoforms of the same gene were counted only once. Finally, proteins that encode more than one DBD
domain were counted only once, choosing the DBD with the lowest e-value from the HMM searches.
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Transcription factors across the tree of life.

Presence (blue) and absence (white) of TF classes in distinct eukaryotic lineages. Major phyletic patterns are subdivided by dashed lines. The
phylogenetic relationships among species are based on [6°,7°,8°,9°°,53]. Arrow indicates the TF class (E2F/TDP) shared exclusively by Asgard
archaea and eukaryotes. Eukaryotic TF classes found in nucleocytoplasmic large DNA viruses are shown in red and TF classes found in a small

subset of bacterial genomes are shown in yellow.

and eukaryotes but absent from other archeal lineages
[9°°,10], thus reinforcing the view of an Asgard-like
ancestor as the initial step toward ecukaryogenesis. An
additional group of TFs are found in a small number of

bacterial species. For example, AP2 and Myb TFs are
found in 149 and 257 bacterial species respectively. There
are three possible explanations for these observed
distributions. First, this could indicate that these T'Fs have
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bacterial origins [13]. Second, some bacterial lineages could
have acquired eukaryotic TFs through Horizontal Gene
Transfer (HG'T). Finally, the presence of these eukaryotic
TFs in some bacterial genomes could also be explained by
contaminations in the genome sequencing/assembly
process.

Another possible source of eukaryotic TFs could have been
viruses. In particular, giant viruses such as Marseilleviridae
have been hypothesized as representatives of a fourth
domain of life or as having acquired genes from proto-
eukaryotic lineages, such as histone tetramers [16-18].
Intriguingly, some of these giant viruses encode for TFs
such as Homeobox or HMG-box that are specific to
eukaryotes. However, it is increasingly accepted that giant
virus lineages originated multiple times independently, and
that most of their genomic repertoire has been acquired from
eukaryotic hosts [19-21].

Despite the presence of a few 'TF classes in non-eukaryotic
lineages, the phylogenetic distribution of most other TF
classes indicates that they emerged in the lineage leading to
the LECA. These include major TF classes such as Homeo-
box, bZIP or Forkhead. Most phylogenies situate the root of
eukaryotes close to Metamonads and/or Discoba. Therefore,
depending on the exact topology of the deep branches of the
eukaryotic tree of life, the absence of particular TF classes
like GATA, bHLH, and HSF in Discoba and Metamonada
could change the inferred repertoire of TFs in the LECA.
Importantly, including data from free living species of
Metamonads offersa complementary view to the secondarily
reduced genomes of many parasites of this lineage. This is
illustrated by TFIIA or Forkhead TFs which were consid-
ered absent in Metamonads [14] but are, in fact, found in the
free-living Trimastix marina. Overall, this highlights the need
for additional efforts in sampling divergent eukaryotic
lineages and to resolve the cukaryotic tree of life to
reconstruct the genomic repertoire of the LECA.

Following the initial burst of TF innovation in LECA,
novel TF classes emerged in specific eukaryotic lineages
(Figure 2). Many of these innovations occurred in the
Amorphean lineage and, within this group, in the
Opisthokont lineage, which includes animals, fungi and
their unicellular relatives. Many novel TFs emerged at
the root of Holozoa, comprising animals plus choanofla-
gellates, filastereans, and teretosporeans. This expansion
of new TFs was particularly pronounced in animals, both
in terms of number of TF classes and number of TFs
encoded in animal genomes (Figures 1, 2) [3,22]. More
recently, an expansion in TF genes has also been
described in multicellular fungi [23]. A similar stepwise
TF evolution is observed in the plant lineage, with
specific  TF classes originating at the root of
Chloroplastida (plants and their algal relatives) and later
innovation and expansion in the number of TFs at the
root of land plants (Figures 1, 2) [24-26].

It is important to note that the observed phylogenetic
patterns of TF acquisition are biased by model-system
studies. Most TFs were characterized in plant, fungal or
animal model species, which at least partially explains
why we observe many lineage-specific TF classes in these
groups. In contrast, we are very likely missing specific TF
classes in other, understudied major eukaryotic lineages.

Modes of transcription factor evolution

The most widespread mechanism of TF diversification is
gene duplication. Gene duplication explains the expansion
of many TF classes into large multi-gene families and, in
many instances, gene duplication comes in hand with novel
domain acquisitions. This has been particularly well estab-
lished in the animal and plant lineages [25,27°,28] (Figure 1).
Interestingly, some of these duplications date back to the
origin of eukaryotes. For example, E2F/TDP is found in
single copy in Asgard archaea but in eukaryotes two paralogs
are present, E2F and DP, which are known to heterodimer-
ize through their C-terminal domains (Pfam PF08781, Pfam
PF16421)[15]. Another example of ancestral LECA paralogs
are TALE and non-TALE Homeobox, distinguished by a
insertion of three amino acids in the TALE subclass [28].

While gene duplications can explain the expansion of TF
classes, it is unclear how entirely new TF classes, with unique
DBDs, first emerge. De zovo gene origin seems to be the most
likely scenario to explain the origin of many of these T'Fs.
However, structural similarities between different DBD
types might indicate evolutionary affinities obscured by rapid
sequence evolution. For example, it has been proposed that
Homeobox TFs are derived from Helix-Turn-Helix DBDs
[4]. Another mechanism that could have fostered the origin of
eukaryotic DBDs is domestication of transposable elements.
For example, the plant MUSTANG and FAR/FHY families
of TFs evolved from MULE DNA transposons [29,30].
Similarly, many other TFs have been proposed to have
originated from transposons in animals and fungi [31,32].
However, transposons also capture sequences from host
genomes [33], thus confounding the reconstruction of the
evolutionary history of these transposon-derived TFs. Still,
given that one of the key events in eukaryotic history was
invasion by transposable elements [34,35], ancestral gain of
transposon-derived DBDs could have played an important
role in the evolution of LECA.

Conserved TF functions across eukaryotes
Although many TF classes date back to the eukaryotic
ancestor, we are ignorant regarding the extent to which they
function in a similar manner and whether they mediate
similar regulatory programs in different eukaryotic
lineages. However, recent analyses of non-conventional
model systems provide interesting examples of evolution-
arily conserved 'T'F functions or convergent deployment of
the same TF classes in similar processes.

Current Opinion in Genetics & Development 2019, 58-59:25-32
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The best examples of conserved function across eukar-
yotes come from TALE Homeobox TFs. Two studies in
the moss Physcomitrella patens and the unicellular green
alga Chlamydomonas reinhardtii indicate a conserved role
of heterodimerizing TALE homeoboxes in sexual deter-
mination in the plant lineage [36,37°,38]. A more recent
report showed that this conservation extends to the
multicellular brown algae Ecrocarpus siliculosus, where
two heterodimerizing TALE TFs (Ouroboros and Sam-
sara) control sporophyte—gametophyte transitions [39°°].
A previous report identified two homeobox-like hetero-
dimerizing TFs (MatA and MatB) controlling haploid-to-
diploid transitions in the amoebozoan Dictyostelium
discoideum, although in this case these case it is unclear
whether these are highly divergent homeobox homologs
or a lineage-specific TF class [40]. In any case, these
results indicate that heterodimerizing TALE homeo-
boxes are likely linked to an ancient mode of sex
determination or, at least, that this system is particularly
amenable to be co-opted into this function. Interestingly,
TALE homeoboxes are also known to heterodimerize
with non-TALE homeoboxes: Hox in animals and
MATal in yeast [28]. However, while the TALE
homeoboxes involved in this heterodimerization are
deeply conserved, the interacting non-TALE
homeoboxes are later innovations within each lineage
[41]. In summary, while the specific dimerization partners
may vary in each lineage, the capacity of TALE

Transcription factor evolution de Mendoza and Sebé-Pedrés 29

homeoboxes to heterodimerize seems to be an ancient
conserved mechanism present in the LECA.

Other cases of conserved roles of TFs span relatively
shorter phylogenetic distances. One such example is the
TF Brachyury, a member of the T-box class involved in
animal gastrulation and mesoderm differentiation.
Analysis of the Brachyury ortholog of the unicellular
holozoan Capsaspora owczarzaki showed that this distant
ortholog could rescue gastrulation and mesoderm
specification in the frog Xenopus, through recognition of
the same DNA binding motifs [42]. Moreover, the
inferred Capsaspora Brachyury regulatory network and
the mouse Brachyury network share target genes linked
to actin-based cell motility. This indicates a possible
conserved role of this TF in regulating amoeboid cell
behavior across more than 800 million years of evolution
and predating the origin of animal multicellularity [43].

The conserved binding motifs observed in Brachyury and
other T-box TFs across Opisthokonts represent a
common theme in TF evolution. Many TF classes have
highly conserved core motifs, and specific orthologues
conserve identical binding properties across vast
evolutionary distances [44,45,46°°]. Notable exceptions
include Myb/Sant, B3 and, especially, zfC2H2 TF
classes, all of which have fast diverging binding motifs
[46°°]. Overall, the DNA sequences that define TF

Figure 3
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Transcription factors and eukaryogenesis.

On the left side, TF classes found in archaea and bacteria are indicated. In the case of bacteria, the contribution to the eukaryotic TF repertoire
could be ancestral and/or more recent, depending on different eukaryogenesis scenarios and the timing of different symbiotic events
(mitochondria, plastid). The TF classes that were acquired during eukaryogenesis are shown in the grey arrow. A question mark indicates TFs with
possible presence in LECA, depending on the exact topology of the eukaryotic tree. On the right side, examples of TF novelties in different
eukaryotic groups are indicated. The proposed contribution of viral-derived or transposable element-derived proteins is indicated with a question

mark.
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binding can be highly conserved in evolution and consti-
tute a constrained regulatory lexicon. Together, these
sequence motifs are essential building blocks of the
genetic programs that define eukaryotic cell decisions,
from physiological states to developmental processes.

Conclusions

Comparative genomics indicates that few TF classes pre-
date the origin of eukaryotes, as these TFs can be found
in extant archaea and/or bacterial species (Figure 3).
Regardless of the different eukaryogenesis scenarios
[47-49], a large number of novel TF classes emerged
at the root of eukaryotes. This burst of innovation was
accompanied by changes in the nuclear chromatin envi-
ronment such as the emergence of nucleosomes with
protruding histone tails bearing chemical modifications.
In this context, novel TFs could have played a crucial role
in LECA genome regulation, mobilizing regulatory
processes such as chemical DNA and histone modifica-
tions and controlling chromatin accessibility. Later in
eukaryotic evolution, additional lineage-specific TF
classes emerged and TF repertoires expanded in the
plant and animal lineages, concomitantly with the
emergence of complex multicellularity.

The study of TF function is still heavily biased toward a
handful of model species in the plant, animal and fungal
lineages. Still, pioneering studies are uncovering the
existence of at least some conserved features across
eukaryotes, including TF dimerization networks and
TF DNA binding motif preferences. We predict that
the phylogenetic expansion of functional TF studies will
transform our view on TF function and evolution. This
transformation will be unlocked by coupling genomic
data with current high-throughput approaches such as
in vitro 'T'F sequence binding affinity assays, genome-
wide profiling of TF binding, and proteomics studies of
chromatin beyond model species [50]. Additionally, the
establishment of genetic manipulation tools in species
representing unsampled eukaryotic lineages will crucially
open the window to both targeted studies and genetic
screens  [51,52]. The comparative analysis and
interpretation of these data will ultimately allow us to
uncover general principles of TF regulation across
eukaryotes and it will contribute to reconstruct the
cellular and regulatory biology of the LECA.

Conflict of interest statement
Nothing declared.

Acknowledgements

We thank Matt Brown, Alex Tice, Guifre Torruella, Andrew Roger and
Michelle Leger for advice on newly sequenced eukaryotic species and data
sources. We thank Daniel J. Richter for commenting on the manuscript.
AdM thanks Ryan Lister for mentorship and financial support, ASP is
supported by CRG Severo Ochoa.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

e of special interest
ee Of outstanding interest

1. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M,

. Chen X, Taipale J, Hughes TR, Weirauch MT: The human
transcription factors. Cell 2018, 175:598-599.

The most updated and complete review on human transcription factors,

covering all aspects of our current understanding of TF function.

2. Weirauch MT, Hughes TR: In A Catalogue of Eukaryotic
Transcription Factor Types, Their Evolutionary Origin, and Species
Posirthution. Edited by Hughes TR. Netherlands: Springer; 2011:

3. de Mendoza A, Sebé-Pedrés A, Sestak MS, Matejcic M,
Torruella G, Domazet-LoSo T, Ruiz-Trillo I: Transcription factor
evolution in eukaryotes and the assembly of the regulatory
toolkit in multicellular lineages. Proc Nat/ Acad Sci U S A 2013,
110:E4858-E4866.

4. lyer LM, Anantharaman V, Wolf MY, Aravind L: Comparative
genomics of transcription factors and chromatin proteins in
parasitic protists and other eukaryotes. Int J Parasitol 2008,
38:1-31.

5. Derelle R, Torruella G, Klime$ V, Brinkmann H, Kim E, Vigek C,
Lang BF, Elids M: Bacterial proteins pinpoint a single
eukaryotic root. Proc Natl Acad Sci U S A 2015, 112:E693-E699.

6. Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F:
New phylogenomic analysis of the enigmatic phylum
telonemia further resolves the eukaryote tree of life. Mol Biol
Evol 2019, 36:757-765.

Another recent example of newly resolved phylogenetic position of an
‘orphan’ eukaryotic group: Telonemia.

7. Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Simpson AGB:

. Hemimastigophora is a novel supra-kingdom-level lineage of
eukaryotes. Nature 2018, 564:410-414.

Two species of the neglected Hemimastigophora eukaryotic clade are

first described in this work, using transcriptomics to reveal how this

lineage likely represents a new deep branching eukaryotic supergroup.

8. Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK,
. Shiratori T, Ishida K-I, Hashimoto T, Simpson AGB et al.:
Phylogenomics places orphan protistan lineages in a novel
eukaryotic super-group. Genome Biol Evol 2018, 10:427-433.
Through newly sequencing multiple deep branching eukaryotes, the
authors resolve major branching points in the amorphean lineage.

9. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Béckstrém D,

ee Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P,
Kjeldsen KU et al.: Asgard archaea illuminate the origin of
eukaryotic cellular complexity. Nature 2017, 541:353-358.

The authors describe a set of new archaeal lineages from metagenomic

samples. They find in these genomes key genes previously considered to

be unique of eukaryotes.

10. Spang A, Saw JH, Jergensen SL, Zaremba-Niedzwiedzka K,
Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJG:
Complex archaea that bridge the gap between prokaryotes
and eukaryotes. Nature 2015, 521:173-179.

11. He D, Fiz-Palacios O, Fu C-J, Fehling J, Tsai C-C, Baldauf SL: An
alternative root for the eukaryote tree of life. Curr Biol 2014,
24:465-470.

12. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V,
O’Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR et al.:
RefSeq: an update on prokaryotic genome annotation and
curation. Nucleic Acids Res 2018, 46:D851-D860.

13. lyer LM, Aravind L: Insights from the architecture of the
bacterial transcription apparatus. J Struct Biol 2012,
179:299-319.

14. Talbert PB, Meers MP, Henikoff S: Old cogs, new tricks: the
evolution of gene expression in a chromatin context. Nat Rev
Genet 2019, 20:283-297.

15. Trimarchi JM, Lees JA: Sibling rivalry in the E2F family. Nat Rev
Mol Cell Biol 2002, 3:11-20.

Current Opinion in Genetics & Development 2019, 58-59:25-32

www.sciencedirect.com


http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0005
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0005
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0005
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0010
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0010
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0010
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0015
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0015
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0015
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0015
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0015
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0020
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0020
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0020
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0020
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0025
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0025
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0025
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0030
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0030
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0030
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0030
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0035
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0035
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0035
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0040
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0040
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0040
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0040
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0045
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0045
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0045
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0045
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0050
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0050
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0050
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0050
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0055
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0055
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0055
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0060
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0060
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0060
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0060
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0065
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0065
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0065
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0070
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0070
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0070
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0075
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0075

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Erives AJ: Phylogenetic analysis of the core histone doublet
and DNA topo Il genes of Marseilleviridae: evidence of proto-
eukaryotic provenance. Epigenetics Chromatin 2017, 10:55.

Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La
Scola B, Suzan M, Claverie J-M: The 1.2-megabase genome
sequence of Mimivirus. Science 2004, 306:1344-1350.

Forterre P, Gaia M: Giant viruses and the origin of modern
eukaryotes. Curr Opin Microbiol 2016, 31:44-49.

Koonin EV, Yutin N: Multiple evolutionary origins of giant
viruses. F1000Res 2018, 7.

Moreira D, Lopez-Garcia P: Evolution of viruses and cells: do we
need a fourth domain of life to explain the origin of
eukaryotes? Philos Trans R Soc Lond B Biol Sci 2015, 370
20140327.

Krupovic M, Dolja VV, Koonin EV: Origin of viruses: primordial
replicators recruiting capsids from hosts. Nat Rev Microbiol
2019, 17:449-458 http://dx.doi.org/10.1038/s41579-019-0205-6.

Sebé-Pedrés A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I:
Unexpected repertoire of metazoan transcription factors in
the unicellular Holozoan Capsaspora. Mol Biol Evol 2011,
28:1241-1254.

Kiss E, Hegedis B, Varga T, Merenyi Z, Koszo T, Balint B,
Prasanna AN, Krizsan K, Riquelme M, Takeshita N et al.:
Comparative genomics reveals the origin of fungal hyphae and
multicellularity. bioRxiv 2019 http://dx.doi.org/10.1101/546531.

Catarino B, Hetherington AJ, Emms DM, Kelly S, Dolan L: The
stepwise increase in the number of transcription factor
families in the precambrian predated the diversification of
plants on land. Mol Biol Evol 2016, 33:2815-2819.

Wilhelmsson PKI, Mihlich C, Ullrich KK, Rensing SA:
Comprehensive genome-wide classification reveals that
many plant-specific transcription factors evolved in
streptophyte algae. Genome Biol Evol 2017, 9:3384-3397.

Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K,
Yamaoka S, Nishihama R, Nakamura Y, Berger F et al.: Insights
into land plant evolution garnered from the marchantia
polymorpha genome. Cell 2017, 171:287-304.e15.

Grau-Bové X, Torruella G, Donachie S, Suga H, Leonard G,
Richards TA, Ruiz-Trillo I: Dynamics of genomic innovation in
the unicellular ancestry of animals. eLife 2017, 6.

The description of several new genomes of unicellular relatives of animals
reveal new patterns of conservation across the multicellular-unicellular
boundary, including key TF such as LIM homeoboxes.

28.

29.

30.

31.

32.

33.

34.

35.

Birglin TR, Affolter M: Homeodomain proteins: an update.
Chromosoma 2016, 125:497-521.

Joly-Lopez Z, Hoen DR, Blanchette M, Bureau TE: Phylogenetic
and genomic analyses resolve the origin of important plant
genes derived from transposable elements. Mol Biol Evol 2016,
33:1937-1956.

Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H:
Transposase-derived transcription factors regulate light
signaling in Arabidopsis. Science 2007, 318:1302-1305.

Babu MM, lyer LM, Balaji S, Aravind L: The natural history of the
WRKY-GCM1 zinc fingers and the relationship between
transcription factors and transposons. Nucleic Acids Res 2006,
34:6505-6520.

Feschotte C: Transposable elements and the evolution of
regulatory networks. Nat Rev Genet 2008, 9:397-405.

de Mendoza A, Bonnet A, Vargas-Landin DB, Ji N, Li H, Yang F,
Li L, Hori K, Pflueger J, Buckberry S et al.: Recurrent acquisition
of cytosine methyltransferases into eukaryotic
retrotransposons. Nat Commun 2018, 9:1341.

Koonin Eugene V: Viruses and mobile elements as drivers of
evolutionary transitions. Philos Trans R Soc Lond B Biol Sci
2016, 371 20150442.

Lee G, Sherer NA, Kim NH, Rajic E, Kaur D, Urriola N, Martini KM,
Xue C, Goldenfeld N, Kuhiman TE: Testing the retroelement

Transcription factor evolution de Mendoza and Sebé-Pedrés 31

36.

37.

invasion hypothesis for the emergence of the ancestral
eukaryotic cell. Proc Natl Acad Sci U S A 2018, 115:12465-12470.

Lee J-H, Lin H, Joo S, Goodenough U: Early sexual origins of
homeoprotein heterodimerization and evolution of the plant
KNOX/BELL family. Cell 2008, 133:829-840.

Joo S, Wang MH, Lui G, Lee J, Barnas A, Kim E, Sudek S,
Worden AZ, Lee J-H: Common ancestry of heterodimerizing
TALE homeobox transcription factors across Metazoa and
Archaeplastida. BMC Biol 2018, 16:136.

A phylogenetic framework establishing deeply conserved TALE homeo-
box relationships across eukaryotes and additional experimental con-
firmation of heterodimeric TALE partners in unicellular chlorophytes.

38.

39.

Horst NA, Katz A, Pereman |, Decker EL, Ohad N, Reski R: A single
homeobox gene triggers phase transition, embryogenesis and
asexual reproduction. Nat Plants 2016, 2:15209.

Arun A, Coelho SM, Peters AF, Bourdareau S, Pérés L, Scornet D,
Strittmatter M, Lipinska AP, Yao H, Godfroy O et al.: Convergent
recruitment of TALE homeodomain life cycle regulators to
direct sporophyte development in land plants and brown
algae. eLife 2019, 8.

The authors discover how the life cycle transition from gametophyte to
sporophyte in the brown algae Ectocarpus siliculosus is controlled by
heterodimeric TALE homeoboxes.

40.

41.

42.

43.

44,

45.

46.

Hedgethorne K, Eustermann S, Yang J-C, Ogden TEH, Neuhaus D,
Bloomfield G: Homeodomain-like DNA binding proteins control
the haploid-to-diploid transition in Dictyostelium. Sci Adv
2017, 3:e1602937.

Hudry B, Thomas-Chollier M, Volovik Y, Duffraisse M, Dard A,
Frank D, Technau U, Merabet S: Molecular insights into the
origin of the Hox-TALE patterning system. eLife 2014, 3:
e01939.

Sebé-Pedrds A, Ariza-Cosano A, Weirauch MT, Leininger S,
Yang A, Torruella G, Adamski M, Adamska M, Hughes TR, Gomez-
Skarmeta JL et al.: Early evolution of the T-box transcription
factor family. Proc Natl Acad Sci U S A 2013, 110:16050-16055.

Sebé-Pedros A, Ballaré C, Parra-Acero H, Chiva C, Tena JJ,
Sabidé E, Gémez-Skarmeta JL, Di Croce L, Ruiz-Trillo I: The
dynamic regulatory genome of capsaspora and the origin of
animal multicellularity. Cell 2016, 165:1224-1237.

Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A,
Drewe P, Najafabadi HS, Lambert SA, Mann |, Cook K et al.:
Determination and inference of eukaryotic transcription factor
sequence specificity. Cell 2014, 158:1431-1443.

Nitta KR, Jolma A, Yin Y, Morgunova E, Kivioja T, Akhtar J, Hens K,
Toivonen J, Deplancke B, Furlong EEM et al.: Conservation of
transcription factor binding specificities across 600 million
years of bilateria evolution. eLife 2015, 4:1-20.

Lambert SA, Yang AWH, Sasse A, Cowley G, Albu M, Caddick MX,
Morris QD, Weirauch MT, Hughes TR: Similarity regression
predicts evolution of transcription factor sequence specificity.
Nat Genet 2019, 51:981-989.

The authors develop a novel in silico TF binding motif prediction strategy
to systematically compare TF motifs across animals, plants and fungi.
This analysis reveals TF class-specific patterns of binding motif diver-
gence and conservation at an unprecedented scale.

47.

48.

49.

50.

51.

Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG: Archaea and
the origin of eukaryotes. Nat Rev Microbiol 2017, 15:711-723.

Martin WF, Garg S, Zimorski V: Endosymbiotic theories for
eukaryote origin. Philos Trans R Soc Lond B Biol Sci 2015, 370
20140330.

Lépez-Garcia P, Moreira D: Open questions on the origin of
eukaryotes. Trends Ecol Evol 2015, 30:697-708.

Marinov GK, Kundaje A: ChlP-ping the branches of the tree:
functional genomics and the evolution of eukaryotic gene
regulation. Brief Funct Genomics 2018, 17:116-137.

Lynch M, Field MC, Goodson HV, Malik HS, Pereira-Leal JB,
Roos DS, Turkewitz AP, Sazer S: Evolutionary cell biology: two
origins, one objective. Proc Natl/ Acad Sci U S A 2014,
111:16990-16994.

www.sciencedirect.com

Current Opinion in Genetics & Development 2019, 58-59:25-32


http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0080
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0080
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0080
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0085
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0085
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0085
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0090
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0090
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0095
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0095
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0100
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0100
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0100
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0100
http://dx.doi.org/10.1038/s41579-019-0205-6
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0110
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0110
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0110
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0110
http://dx.doi.org/10.1101/546531
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0120
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0120
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0120
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0120
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0125
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0125
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0125
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0125
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0130
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0130
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0130
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0130
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0135
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0135
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0135
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0140
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0140
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0145
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0145
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0145
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0145
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0150
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0150
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0150
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0155
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0155
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0155
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0155
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0160
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0160
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0165
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0165
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0165
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0165
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0170
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0170
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0170
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0175
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0175
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0175
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0175
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0180
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0180
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0180
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0185
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0185
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0185
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0185
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0190
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0190
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0190
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0195
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0195
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0195
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0195
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0195
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0200
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0200
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0200
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0200
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0205
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0205
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0205
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0205
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0210
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0210
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0210
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0210
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0215
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0215
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0215
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0215
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0220
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0220
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0220
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0220
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0225
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0225
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0225
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0225
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0230
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0230
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0230
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0230
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0235
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0235
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0240
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0240
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0240
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0245
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0245
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0250
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0250
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0250
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0255
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0255
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0255
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0255

32

52.

53.

Evolutionary genetics

Waller RF, Cleves PA, Rubio-Brotons M, Woods A, Bender SJ,
Edgcomb V, Gann ER, Jones AC, Teytelman L, von Dassow P
et al.: Strength in numbers: collaborative science for new

experimental model systems. PLoS Biol 2018, 16:2006333.

Torruella G, de Mendoza A, Grau-Bové X, Anté M, Chaplin MA,
del Campo J, Eme L, Pérez-Cordén G, Whipps CM, Nichols KM
et al.: Phylogenomics reveals convergent evolution of

54.

lifestyles in close relatives of animals and fungi. Curr Biol
2015, 25:2404-2410.

Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Cepicka |,
Silberman JD, Andersson JO, Xu F, Yabuki A et al.: Organelles
that illuminate the origins of Trichomonas hydrogenosomes
and Giardia mitosomes. Nat Ecol Evol 2017, 1 0092.

Current Opinion in Genetics & Development 2019, 58-59:25-32

www.sciencedirect.com


http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0260
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0260
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0260
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0260
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0265
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0265
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0265
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0265
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0265
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0270
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0270
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0270
http://refhub.elsevier.com/S0959-437X(18)30128-X/sbref0270

	Origin and evolution of eukaryotic transcription factors
	Introduction
	Revisiting transcription factor diversity across the tree of life
	Modes of transcription factor evolution
	Conserved TF functions across eukaryotes
	Conclusions
	Conflict of interest statement
	References and recommended reading
	Acknowledgements


