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ESSENTIALS 

1. A synergistic relationship exists between cyclic nucleotides and P2Y12 receptor 
inhibition. 

2. Approved drugs that modulate cyclic nucleotide tone in platelets produce 
numerous side effects including headache.  

3. Low dose GC activators synergise with P2Y12 inhibition to produce a powerful 
anti-platelet effect without altering blood flow. 

4. This novel combination can provide a strong and focused anti-thrombotic 
regimen.  

 
ABSTRACT  

Background: Endothelium-derived prostacyclin and nitric oxide elevate platelet cyclic 

nucleotide levels and maintain quiescence.  We previously demonstrated a synergistic 

relationship exists between cyclic nucleotides and P2Y12 receptor inhibition.  A number 

of clinically approved drug classes can modulate cyclic nucleotide tone in platelets 

including activators of NO-sensitive guanylyl cyclase (GC) and phosphodiesterase 

(PDE) inhibitors.  However, the doses required to inhibit platelets produce numerous 

side effects including headache.   

Objective: We investigated using GC-activators in combination with P2Y12 receptor 

antagonists as a way to selectively amplify the anti-thrombotic effect of both drugs. 

Methods: In vitro light transmission aggregation and platelet adhesion under flow were 

performed on washed platelets and platelet rich plasma. Aggregation in whole blood 

and a ferric chloride-induced arterial thrombosis model were also performed.  

Results: The GC-activator BAY-70 potentiated the action of the P2Y12 receptor inhibitor 

prasugrel active metabolite in aggregation and adhesion studies and was associated 

with raised intra-platelet cyclic nucleotide levels.  Furthermore, mice administered sub-

maximal doses of the GC activator cinaciguat together with the PDE inhibitor 

dipyridamole and prasugrel, showed significant inhibition of ex vivo platelet 

aggregation and significantly reduced in vivo arterial thrombosis in response to injury 

without alteration in basal carotid artery blood flow. 
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Conclusions: Using in vitro, ex vivo and in vivo functional studies, we show that low 

dose GC activators synergise with P2Y12 inhibition to produce powerful anti-platelet 

effects without altering blood flow.  Therefore modulation of intra-platelet cyclic 

nucleotide levels alongside P2Y12 inhibition can provide a strong, focused anti-

thrombotic regimen whilst minimising vasodilator side effects. 

 

INTRODUCTION 

Platelets play a central role in cardiovascular disease, as they are integral to the 

development of acute thrombotic events.  For this reason, anti-platelet therapy is 

prescribed for the secondary prevention of atherothrombotic events in patients with 

acute coronary syndromes or following percutaneous coronary intervention [1, 2].  

Aspirin, which irreversibly inhibits the cyclooxygenase enzyme and downstream 

thromboxane (Tx)A2 production [3, 4], is often coadministered with a P2Y12 receptor 

antagonist, such as clopidogrel or prasugrel, to produce dual anti-platelet therapy 

(DAPT).  P2Y12 receptor antagonists inhibit platelet aggregation by blocking the 

amplifying effects of adenosine diphosphate (ADP) [5, 6].  Whilst such therapy is 

effective, recurrent events still occur [7, 8] and alternative ways to prevent thrombosis 

continue to be required. 

Vascular endothelial cells produce the short-lived autacoids prostaglandin I2 

(prostacyclin; PGI2) and nitric oxide (NO) that relax blood vessels and inhibit platelets.  

PGI2 binds to platelet PGI2 (IP) receptors that in turn activate adenylyl cyclase (AC) to 

increase intracellular cyclic adenosine monophosphate (cAMP) levels [9].  In contrast, 

NO diffuses freely into platelets activating the α1β1 isoform of guanylyl cyclase (GC-1, 

formerly known as soluble GC)[10] to increase intracellular cyclic guanosine 

monophosphate (cGMP) levels [11].  This intra-platelet elevation of levels of individual 

cyclic nucleotides is synergistic in maintaining basal platelet quiescence and 

preventing inappropriate platelet activation [12].  Drugs targeting the NO-cGMP 

pathway, such as organic nitrates are long established clinically for treatment of heart 
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failure and angina pectoris [13]. In recent years, drugs which directly activate or 

stimulate GC have been developed as potential vasodilators and have been clinically 

approved for the treatment of pulmonary vascular disease [14].  Similarly, drugs which 

modulate the cAMP pathway such as PDE inhibitors and PGI2 analogues are approved 

for the treatment of peripheral and pulmonary vascular disease.  However, the doses 

of cyclic nucleotide elevating drugs that produce anti-platelet effects are associated 

with side effects such as headache, nausea and hypotension [15, 16].  This is 

consistent with the doses required to inhibit platelets being the same as those that 

produce vasodilatation.   

We have recently demonstrated that blockade of platelet P2Y12 receptor further 

synergises with PGI2 and NO [17, 18] to produce profound platelet inhibition.  We 

therefore hypothesised that the actions of pharmacological agents acting upon cyclic 

nucleotides could be selectively amplified in platelets by combination with P2Y12 

receptor antagonists, thereby producing an enhanced anti-platelet effect of both drugs 

at doses which do not produced systemic vasodilator side effects.  Here we report in 

vitro, ex vivo and in vivo studies that support this hypothesis.  

 

METHODS 

Blood collection and isolation of human platelets 

Use of human blood samples was approved by St Thomas’s Hospital Research Ethics 

Committee (Ref. 07/Q0702/24) and all studies were conducted in accordance with the 

Declaration of Helsinki.  Blood was obtained by venepuncture from the median cubital 

vein using a 19G butterfly needle into tri-sodium citrate (0.32% w/v final; Sigma, UK).  

Blood from healthy volunteers free of antiplatelet drugs was centrifuged at 180 x g for 

15 min to obtain platelet-rich-plasma (PRP).  Where appropriate, washed platelets 

(WP) were isolated from PRP by further centrifugation (1000 x g, 10 min) in the 

presence of PGI2 (1 μg/ml; Tocris, UK) and apyrase (0.02 U/ml; Sigma).  The resulting 

pellet was washed in modified Tyrode’s (MTH) buffer (containing 134 mM NaCl, 2.9 



	 5	

mM KCl, 0.34 mM Na2HPO4, 12 mM NaHCO3 and 1 mM MgCl2; pH 7.4) containing 

HEPES (20 mM; Sigma) and 0.02 U/ml apyrase (Sigma) and re-suspended in MTH 

buffer to a concentration of 3 x108 platelets/ml.   

Washed platelets, PRP or whole blood were treated either with vehicle (0.5% DMSO), 

P2Y12 receptor antagonist prasugrel active metabolite (PAM; kind gift from 

AstraZeneca, Sweden), ARC66096 tetrasodium (Tocris, UK) and/or GC-1 activator 

BAY 60-2770 (BAY-70; kind gift from Dr. Johannes-Peter Stasch, Bayer AG, Germany) 

for 30 min at 37oC. 

Mouse strains 

C57Bl/6 wild-type (WT) mice were purchased from Charles River UK. All mice were 8-

12 weeks old (20-25 g) and housed for a minimum of 7 days before commencement 

of experiments.  They were housed on a 12-hour light-dark cycle, at a temperature of 

22 to 24°C with access to water and food ad libitum. Animal procedures were 

conducted under UK Home Office project licence authority (PPL/8422) in accordance 

with “The Animals (Scientific Procedures) Act 1986”, EU directive 2010/63/EU, and 

were subject to local approval from Queen Mary University of London and Imperial 

College London Ethical Review Panels.  

Mouse dosing and obtaining blood 

To maximise clinical relevance in vivo we replaced PAM with prasugrel and BAY-70 

with cinaciguat (BAY 58-2667, kind gift from Bayer AG, Germany), as both are 

approved for human administration.  However, given the short half-life of intra-platelet 

cyclic nucleotides we co-administered the clinically used PDE inhibitor dipyridamole 

so as to maximise the detection of anti-platelet effects ex vivo.  In total four test groups 

were conducted, 1) vehicle alone, 2) prasugrel alone, 3) cinaciguat & dipyridamole, or 

4) prasugrel, cinaciguat & dipyridamole together (combined therapy).  

Prasugrel (0.3mg/kg, Sigma) or vehicle (0.6% DMSO) i.v. plus dipyridamole (2 mg/kg; 

Sigma) or vehicle (0.03% v/v HCl) i.p was administered 2 hours prior to blood collection 
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or arterial injury. Mice were subsequently anaesthetised with ketamine (Narketan, 100 

mg/kg; Vetoquinol, UK) and xylazine (Rompun, 10 mg/kg; Bayer, Germany) i.p. 

Cinaciguat (0.3mg/kg) or vehicle (2% DMSO) i.v. was administered 10 min prior to 

blood collection or arterial injury. Blood was collected from the inferior vena cava into 

tri-sodium citrate (0.32%).  

Light transmission aggregometry 

Aggregation in response to collagen (10 µg/ml, Horm collagen; Nycomed, Austria), 

thrombin (1 U/ml, Sigma), or thrombin receptor activating peptide SFLLRN (30 µM, 

TRAP-6, Bachem, Switzerland) was measured by light transmission aggregometry 

(LTA) in a Bio/Data PAP-8E turbidometric aggregometer (Alpha Laboratories, UK).  

Percent final aggregation, or percent inhibition of final aggregation values after 5 min 

are reported.  

Platelet adhesion under physiological flow 

Flow chamber slides (VI0.1 µ-slide, Ibidi, Germany) were coated with Horm collagen 

(100 µg/ml) followed by blocking with bovine serum albumin (BSA, 4%, Sigma).  Whole 

blood, treated with mepacrine (10 µM, Sigma) to label platelets, was perfused across 

the coated surface at 1000s-1 for 5 min.  Post-flow images were taken (4 per 

experiment) at x40 magnification using a TE-2000S, Nikon Eclipse inverted 

microscope connected to a RT slider CCD camera (Diagnostic Instruments Inc., USA).  

Images were analysed using Image J (NIH, USA). 

Whole blood aggregation 

Aggregation was conducted as we have previously described [19].  Half-area 96-well 

microtiter plates (Greiner Bio-One, UK) were pre-coated with hydrogenated gelatin 

(0.75% w/v; Sigma) in phosphate-buffered saline to block nonspecific activation of 

blood.  Horm collagen (10 µg/ml), TRAP-6 (30 µM), the PAR-4 activating peptide 

AYPGKF amide (PAR4-amide, 30 µM; Bachem), or the TxA2 mimetic U46619 (3 µM; 
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Cayman Chemical Company, USA) were freeze-dried onto the plate and the plates 

vacuum sealed until needed.   

At the time of experiment whole blood was placed into each well and aggregation 

stimulated by placing the plate on a heated plate shaker (Bioshake IQ, Q Instruments, 

Germany) at 37°C, mixing at 1200rpm, for 5 min. The single platelet counts of each 

well were determined by flow cytometry.  Human platelets were labelled with 

allophycocyanin (APC) conjugated anti-CD61 monoclonal antibody (clone VI-PL2, Life 

Technologies, Hatfield, UK) for 30 min.  Alternatively, mouse platelets were labelled 

using APC-conjugated anti-CD41 monoclonal antibody (clone MWReg30, Life 

Technologies) for 30 min.  Samples were then diluted in phosphate buffered saline 

containing 0.1% formalin (Sigma), 0.1% dextrose (Sigma) and 0.2% BSA before 

addition of 104 CountBright™ absolute counting beads (Life Technologies).  Labelled, 

diluted blood was then analysed using a FACSCalibur flow cytometer (BD Biosciences, 

Oxford, UK).   

Mouse ferric chloride arterial injury 

In mice anaesthetised with ketamine and xylazine, the carotid artery was exposed and 

isolated from surrounding tissues to permit a ferric chloride (FeCl3, 10% solution, 

Sigma) soaked filter paper to be applied for 3 min.  The carotid artery was then flooded 

with saline and the filter paper removed.  A Doppler flow probe (Transonic, USA) was 

then placed around the artery and flow monitored for up to 30 min.  The time to stable 

occlusion (defined as flow 0.0 ± 0.2ml/min for 1 min) was recorded. 

Mouse tail bleeding assay 

Anaesthetised mice were maintained at 37oC and their tail was transected with a 

scalpel blade at 1 mm from its end. The tail was immersed immediately in warm saline 

(37oC) and time recorded until it stopped bleeding for 30 sec.  
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Statistics and data analysis 

Parametric data presented as mean ± standard error of the mean (SEM). Statistical 

analysis was performed using Prism 6.0 (GraphPad software, USA).  Significance was 

determined by one-way analysis of variance (ANOVA) with Dunnett’s post-hoc test 

unless otherwise stated, and data sets considered different if p<0.05.  For non-

parametric data significance was determined by Mantel-Cox test and with Holm-Sidak 

correction for multiple comparisons where necessary. Flow cytometry data was 

analysed using FlowJo v7.4 (Tree Star, USA).  For analysis, the “single platelet” 

population was gated based on side scatter and anti-platelet immunoreactivity 

(fluorescence intensity).  

 

RESULTS 

BAY-70 potentiates the inhibitory action of PAM in washed platelets and PRP in 

a concentration-dependent manner. 

Aggregation responses to thrombin were first established in WP (Figure 1a, 1b).  A 

threshold concentration of PAM (3μM) that had little inhibitory effect when used alone 

was determined (64 ± 1% vehicle vs. 59 ± 1% PAM, p>0.05).  Increasing 

concentrations of the GC-1 activator BAY-70 produced concentration-dependant 

potentiation of the inhibitory effect of PAM.  At the maximum tested concentration of 

BAY-70 (10μM) in presence of PAM, aggregation was reduced by 54 ± 4% (p<0.05).  

The same concentration of BAY-70 in the absence of PAM had little inhibitory action, 

with aggregation being reduced by 7 ± 3% (p>0.05).  A similar pattern was seen in 

experiments examining collagen-induced aggregation (Figure 1b).  Interestingly, in 

these conditions BAY-70 achieved a 65 ± 4% decrease at the far lower concentration 

of 10nM in the presence of PAM, compared to a 17 ± 5% decrease without PAM 

(p<0.05). 

In experiments using PRP, thrombin was replaced by the activator peptide TRAP-6. 

As in WP, PAM 3μM had little effect on TRAP-6 induced aggregation (77 ± 10% 
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vehicle; 70 ± 8% PAM; Figure 1c and 1d).  Similarly, BAY-70 potentiated the effect of 

PAM against both TRAP-6 and collagen.  Aggregation (Figure 1d) conducted in the 

presence of 10μM BAY-70 plus PAM were inhibited by 55 ± 10% and 76 ± 11% when 

induced by TRAP-6 and collagen respectively, compared to 15 ± 3% and 28 ± 5% 

respectively when PAM was not present (p<0.05 v BAY-70 plus PAM). In a separate 

mechanistic study (Suppl. Figure S1) we found that PAR4, as compared to PAR1, 

agonism was more sensitive to P2Y12 antagonism in presence of BAY-70. 

BAY-70 potentiates the anti-thrombotic action of PAM in whole blood. 

Similar data were obtained in whole blood assays.  In studies of whole blood platelet 

adhesion under flow, BAY-70 and PAM when used individually produced similar 

reductions in platelet coverage from 9.8 ± 2.6% (vehicle) to 5.4 ± 1.1% and 5.5 ± 0.9% 

respectively.  Combination of BAY-70 and PAM together caused a further reduction of 

coverage to 2.3 ± 0.5% (p<0.05 v vehicle) (Figure 2a, 2b). 

Aggregation in whole blood stimulated by TRAP-6 was determined by flow cytometry.  

In this assay, neither BAY-70 nor PAM alone had any inhibitory effect (final 

aggregations of 76 ± 8% vehicle versus 84 ± 4% and 76 ± 4% respectively, p>0.05).  

In contrast BAY-70 and PAM strongly combined to reduce aggregation by 71 ± 7% 

(p<0.05 v vehicle). 

Cyclic nucleotide modulators potentiate the inhibitory action of prasugrel in 

vivo. 

Having established that the GC-1 activator BAY-70 potentiates the anti-platelet effect 

of PAM we next sought to investigate if this can occur and is relevant in vivo.  

Following in vivo drug administration, ex vivo platelet aggregation studies 

demonstrated no significant inhibitory effects of either prasugrel alone or the 

combination of two cyclic nucleotide elevating drugs – the GC-1 activator cinaciguat 

plus the PDE inhibitor dipyridamole (Figure 3a-c) at the selected doses.  In contrast, 

platelets in blood from mice that had received the combination prasugrel with 
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cinaciguat plus dipyridamole demonstrated significantly lower aggregatory responses 

than those from vehicle treated animals (collagen, 22 ± 9% vs. 53 ± 9%; PAR-4 

peptide, 7 ± 4% vs. 37 ± 9%; U46619, 13 ± 6% vs. 48 ± 11%; p<0.05 for all).  

In the FeCl3-induced arterial thrombosis injury model prasugrel alone (time to 

occlusion, 438 ± 87 secs) or cinaciguat plus dipyridamole (482 ± 110 secs) had no 

effect relative to vehicle (432 ± 50 secs).  In contrast, the combination of all three 

caused a significant increase in the time to occlusion (p<0.01) with only 2 of 6 mice 

fully occluding within 30mins. Consistent with these results we also observed a 

significantly extended bleeding time (p<0.01) in a tail transection model. No differences 

in blood flow in the carotid artery immediately prior to injury were noted (vehicle, 0.7 ± 

0.1ml/min; prasugrel alone, 0.8 ± 0.1ml/min; cinaciguat plus dipyridamole, 0.8 ± 

0.1ml/min; combination therapy, 0.9 ± 0.1ml/min) demonstrating that at the doses used 

the drugs did not cause systemic vasodilation alone or in combination. 

DISCUSSION 

Here we demonstrate that cyclic nucleotide level modulators can preferentially target 

platelets through combination with P2Y12 receptor antagonists.  In all experiments we 

observed potentiation of the effects of PAM or prasugrel using direct GC-1 activation.  

Importantly, this combination of multiple drugs achieved anti-platelet protection using 

lower concentrations or doses that were ineffective individually and which did not 

cause systemic vasodilation in vivo.  

In our in vitro experiments we observed this combinatorial effect against both adhesion 

and aggregation of platelets.  Moreover, we established that this effect is maintained 

across a range of environments, from washed platelet preparations to platelet rich 

plasma or anti-coagulated whole blood.  Finally, we translated our findings towards the 

clinic by demonstrating the combinatorial effect was displayed in ex vivo whole blood 

aggregation and in in vivo thrombosis models in mice that had received clinical 

formulations of these therapeutics. 
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Currently patients at risk of coronary thrombotic events receive a dual anti-platelet 

regimen consisting of aspirin plus a P2Y12-receptor antagonist such as clopidogrel or 

prasugrel [20, 21].  However, research efforts continue to identify the optimal 

combination of existing medications.  One aspect, assessed in studies such as 

GLOBAL LEADERS and TWILIGHT [22, 23], is whether aspirin is essential as a 

baseline therapy.  We have previously described how in the presence of strong P2Y12 

receptor blockade, addition of aspirin could produce a net pro-thrombotic effect and so 

potentially a reduction in clinical efficacy [24-26].  An alternative therefore is to use 

P2Y12 antagonists as a baseline therapy with the addition of anti-thrombotic drugs 

acting upon other pathways.  Since the effects of P2Y12 receptor antagonists in vivo 

may be, at least partly, dependent upon the presence of the endothelial autacoids NO 

and PGI2 [27], their clinical effectiveness could well be reduced in patients with 

endothelial dysfunction, which is an early event in the pathophysiology of 

cardiovascular disease [28].  During endothelial dysfunction NO and PGI2 production 

will be reduced, leading to reduced intra-platelet cyclic nucleotide tone and so 

increased platelet reactivity.  Therefore, it may well be those patients with the greatest 

level of endothelial dysfunction that get the smallest benefit from adequate P2Y12 

inhibition.  Indeed we recently reported that the P2Y12 inhibitor ticagrelor attenuated 

platelet function more potently in samples from well-trained middle-aged men with a 

superior vascular function compared to matched untrained men with a reduced 

vascular function [29].  

A logical extension of the argument above is that drug therapy to increase intra-platelet 

cyclic nucleotides would boost the anti-platelet effect of P2Y12 antagonists.  There 

exists a number of agents available to modulate cyclic nucleotide levels, however we 

chose to focus upon the relatively recently developed direct GC-1 activators [30] in 

combination with standard drugs already used for anti-thrombotic prophylaxis.  These 

GC-1 activators directly act upon NO-sensitive GC to stimulate cGMP production 
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without the requirement of NO or the haem moiety [31], the separation of which can 

occur during endothelial dysfunction and oxidative stress [14].   

Our initial in vitro experiments were completed using the compound BAY-70 as a 

pharmacological tool which is effective at raising cGMP levels [32].  Notably it has also 

previously been reported that BAY-70, in the micro-molar range, can inhibit washed 

platelet activation [33].  In our experiments in washed platelet preparations, nano-

molar concentrations were sufficient to inhibit platelet activation in the presence of 

PAM. 

For the in vivo studies we chose to use the related compound cinaciguat.  Cinaciguat 

has previously been studied in a phase IIb clinical trial in patients with acute 

decompensated heart failure [15], and therefore has potentially more clinical 

relevance.  We also opted to include dipyridamole as a PDE inhibitor with the intention 

to prolong cyclic nucleotide tone and thus detect their influence ex vivo.  Dipyridamole 

has historically been prescribed combined with aspirin as anti-thrombotic therapy for 

patients who have had an ischaemic stroke.  Its use however, like that of other drugs 

targeting cyclic nucleotides modulation, is associated with localised or systemic 

vasodilation [16] due to effects on the vascular smooth muscle.  In our study, we 

administered lower doses of cinaciguat and dipyridamole as we hypothesised that in 

the presence of platelet P2Y12 receptor blockade there would be a synergistic focus of 

effects upon platelet function and away from the vasculature (Figure 4). Indeed we did 

not observe any significant change to arterial blood flow in our in vivo studies in any of 

our treatment groups whilst observing clear anti-thrombotic effects only in our 

combined treatment group. 

Whilst our study primarily centred upon directly activating NO-sensitive GC, the 

physiology of the synergy resulting in increased P2Y12 efficacy means that this could 

realistically be achieved using alternative clinically available agents targeting a number 

of pathways to equally modulate cyclic nucleotide tone.  For example the related 

compound riociguat, approved for use in pulmonary hypertension, acts by a related 
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mechanism of stimulating, rather than activating, GC-1.  Alternatively selexipag, 

approved for use in pulmonary arterial hypertension [34], acts as an agonist of the PGI2 

IP receptor and stimulates AC-dependant cAMP production [35].  Equally, selective 

PDE isoform inhibitors, such as cilostazol that targets PDE3 and is used in the 

management of intermittent claudication, may be effective for the targeted prolongation 

of platelet cyclic nucleotide half-life. 

Another important component of this study is that the concentrations or doses of BAY-

70 or cinaciguat, PAM or prasugrel, and dipyridamole used had little functional effect 

when used on their own.  This means that it may be possible to achieve therapeutic 

effectiveness using lower doses than those currently prescribed for individual use and 

so reducing drug-associated side effects.  

In conclusion, our study builds upon our previous observations of a synergistic 

relationship between P2Y12 receptor inhibition and platelet cyclic nucleotide levels to 

identify a novel potential anti-platelet drug regimen.  We demonstrate the principle of 

a combination of low doses of approved drugs targeted at cyclic nucleotide modulation, 

combined with P2Y12 inhibition, as a realistic and powerful therapeutic regimen.  Whilst 

more work and optimisation will be required to clinically translate this in human studies, 

such combined pharmacological approaches represent a focused anti-platelet regimen 

whilst potentially sparing associated off-target side effects.  
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FIGURE LEGENDS 

Figure 1: GC-1 activator BAY-70 potentiates anti-platelet actions of the P2Y12 inhibitor 

PAM in vitro.  (A) Representative LTA trace of aggregation in response to thrombin (1 

U/ml) of washed platelets treated with BAY-70 (1µM) and/or PAM (3µM). (B) 

Concentration inhibitor curves (as % of final aggregation after 5 minutes) for BAY-70 

in presence of vehicle or PAM against aggregation induced by thrombin or collagen 

(10 µg/ml).  (C) Representative LTA trace of aggregation to TRAP-6 (30 µM) of PRP 

treated with BAY-70 (10µM) and/or PAM (3µM). (D) Concentration inhibitor curves (as 

% of final aggregation after 5 minutes) for BAY-70 in presence of vehicle or PAM 

against aggregation induced by TRAP-6 or collagen (10 µg/ml). Data presented as 

mean ± SEM. *p<0.05 by two-way ANOVA, n=4 for all. 

 

Figure 2: GC-1 activator BAY-70 potentiates inhibition by PAM of platelet adhesion 

and aggregation in whole blood. (A) Representative images of platelet (green) 

adhesion to collagen (100 µg/ml) following perfusion (1000 s-1 for 5 minutes). Images 

acquired at x40 magnification using a Nikon TE-2000S inverted microscope. (B) 

Quantification of area covered (%, n=6). (C) Aggregation (%, n=7) in whole blood in 

response to TRAP-6 (30 µM) using flow cytometry. Data presented as mean ± SEM. 

**p<0.01 vs. vehicle by paired ANOVA. 

 

Figure 3: GC-1 activator cinaciguat, in combination with dipyridamole, potentiates the 

inhibitory effects of prasugrel against ex vivo aggregation and in vivo thrombosis in 
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mice. (A) Aggregation in whole blood in response to collagen (10 µg/ml), PAR-4 amide 

(30 µM) and TxA2 mimetic U46619 (3 µM). *p<0.05 vs. vehicle, n=5-7 per group. (B) 

Kaplan Meier plot for occlusion against time (min) following FeCl3-induced arterial 

injury in mice.  **p<0.01 vs vehicle by Mantel-Cox test with Holm-Sidak correction, n=6 

per group. (C) Kaplan Meier plot of bleeding against time for vehicle and combined 

treatment groups. **p<0.01 vs vehicle by Mantel-Cox test, n=6 per group. 

Figure 4: Summary of the patho-physiological rationale for the efficacy of combined 

cyclic nucleotide modulators with P2Y12 receptor antagonists as anti-platelet therapy. 

(A) In the healthy circulation endothelial-derived mediators NO and PGI2 act upon 

platelets to raise cyclic nucleotide (cAMP and cGMP) levels that in turn maintain 

platelets in a quiescent state. (B) During established cardiovascular disease, 

concurrent endothelial dysfunction results in reduced production of NO and PGI2, 

lowering intra-platelet cyclic nucleotide tone and decreasing the threshold for 

activation. (C) A synergic relationship exists between intra-platelet cyclic nucleotides 

and P2Y12 receptor blockade such that pharmacological modulators of cyclic 

nucleotides, to compensate for reduced endothelial cell function, combined with 

P2Y12 receptor antagonist produces a focused anti-platelet effects at low-doses of 

each associated with reduced drug side effects.   

 


