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Abstract:  

Biofabricated semiconductor arrays exhibit smaller channel pitches than existing lithographic 

feasibility. However, the metal ions within biolattices and the submicrometer dimensions of typical 

biotemplates result in both poor transport performance and small array uniformity. Using DNA-25 

templated parallel carbon nanotube (CNT) arrays as model systems, we developed a rinsing-after-

fixing approach to improve the key transport performance metrics by more than a factor of 10 folds 

over previous biotemplated field-effect transistors. We also used spatially confined placement of 

assembled CNT arrays within polymethyl methacrylate cavities to demonstrate centimeter-scale 

alignment. At the interface of high-performance electronics and biomolecular self-assembly, 30 

current approaches may enable scalable biotemplated electronics sensitive to local biological 

environments.  

 

 

One Sentence Summary: High-performance transistors are constructed from biotemplates.  35 
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In projected high-performance energy-efficient field-effect transistors (FETs) (1, 2), evenly-

spaced small-pitch (spacing between two adjacent channels within individual FET) semi-

conductor channels are often required. Smaller channel pitch leads to higher integration density 

and on-state performance, but with the risk of enhanced destructive short-range screening and 

electrostatic interactions in low-dimensional semiconductors, such as carbon nanotubes (CNTs) 5 

(3); whereas evenly-spaced alignment minimizes the channel disorder that impacts the switching 

between on/off states (4). Therefore, although high-density CNT thin films exhibit on-state 

performance comparable with Si FETs (5, 6), degraded gate modulation and increased 

subthreshold swing (3, 5) are observed because of the disorder in the arrays.  

Biomolecules such as DNAs (7, 8) can be used to organize CNTs into prescribed arrays (9–11). 10 

Based on the spatially hindered integration of nanotube electronics (SHINE), biofabrication further 

scales the evenly-spaced channel pitch beyond lithographic feasibility (12). However, none of the 

biotemplated CNT FETs (12–14) have exhibited performance comparable with those constructed 

from lithography (15) or thin-film approaches (3, 5, 6, 16–18). Meanwhile, during the surface 

placement of biotemplated materials, broad orientation distributions (19) prevent their large-scale 15 

alignment.  

Here, we show that small regions of nanometer-precise biomolecular assemblies can be integrated 

into the large arrays of solid-state high-performance electronics. We used the parallel 

semiconducting CNT arrays assembled through SHINE as model systems (12). At the FET channel 

interface, we observed lower on-state performance induced by high-concentration DNA/metal ions. 20 

Using a rinsing-after-fixing approach, we eliminated the contamination without degrading CNT 

alignment. Based on the uniform inter-CNT pitch and clean channel interface, we constructed 

solid-state multichannel PMOS (p-channel metal-oxide-semiconductor) CNT FETs displaying 

high on-state performance and fast on/off switching simultaneously. Using lithography-defined 

polymethyl methacrylate (PMMA) cavities to spatially confine the placement of the CNT-25 

decorated DNA templates, we demonstrated aligned arrays with prescribed geometries over a 0.35-

cm2 area substrate. Building high-performance ultra-scaled devices at the biology-electronics 

interface may enable diverse applications in the post-Si era, such as multiplexed biomolecular 

sensors (20) and 3D FETs, with nanometer-to-centimeter array scalability.  

We assembled DNA-templated CNT arrays using DNA-based SHINE (12). We applied a rinsing-30 

after-fixing approach (Fig. 1A) to remove DNA templates. Starting from the surface-deposited 

DNA-templated CNT arrays, both ends of the DNA-templated CNT arrays were first fixed onto 

Si wafer with deposited metal bars (first step in Fig. 1A). DNA templates and high-concentration 

metal salts (1 to 2 M) within DNA helices were gently removed through sequential rinsing with 

water and low-concentration H2O2 (second step in Fig. 1A and fig. S5). The inter-CNT pitch and 35 

the alignment quality of the assembled CNTs were not degraded during the rinsing (Fig. 1B, figs. 

S3 and S4) (21).  

To explore the impact of single-stranded DNAs (ssDNAs) at channel interface, we first fabricated 

the source and drain electrodes onto the rinsed CNT arrays (Fig. 1C, left). Next, ssDNAs were 

introduced exclusively into the predefined channel area (first step in Fig. 1C, channel length ~200 40 

nm). Finally, gate dielectric of HfO2 and gate electrode of Pd were sequentially fabricated (second 

and third steps in Fig. 1C and fig. S6).  

Out of 19 FETs we constructed, 63% (12 out of 19) showed typical gate modulation (on-state 

current density divided by off-state current density, Ion/Ioff, exceeded 103, fig. S7). The other 7 
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devices exhibited Ion/Ioff  <5, which was caused by the presence of metallic CNTs within the array. 

At a drain-to-source bias (Vds) of -0.5 V, one typical multichannel DNA-containing CNT FET (Fig. 

1D) exhibited threshold voltage (Vth) around -2 V, Ion of 50 μA/μm (normalized to inter-CNT 

pitch) at gate-to-source bias (Vgs) of -3 V, subthreshold swing of 146 mV/decade, peak 

transconductance (gm) of 23 μS/μm, and on-state conductance (Gon) of 0.10 mS/μm. Statistics over 5 

all the 12 operational FETs exhibited Vth distribution of -2 ± 0.10 V, Ion of 4 to 50 μA/μm, and 

subthreshold swing of 164 ± 44 mV/decade (fig. S7A). The transport performance was stable 

during repeated measurements (fig. S7C).  

We annealed the above DNA-containing FETs at 400 oC for 30 min under vacuum to thermally 

decompose ssDNAs (22), and then recharacterized the transport performance. Compared to the 10 

unannealed samples, thermal annealing (Fig. 1D, figs. S7 and S16) slightly shifted the average Vth 

(around 0.35 V, Vth of -1.65 ± 0.17 V after annealing), and increased the average subthreshold 

swing by ∼70 mV/decade (subthreshold swing of 230 ± 112 mV/decade after annealing). Other 

on-state performance, including gm and Gon, as well as FET morphology, did not substantially 

change after annealing.  15 

To build high-performance CNT FETs from biotemplates, we deposited a composite gate 

dielectric (Y2O3 and HfO2) into the rinsed channel area, instead of introducing ssDNAs (Fig. 2, A 

and B, figs. S10 and S11) (21). Of all the FETs constructed, 54% (6 out of 11) showed gate 

modulation (fig. S12). The other 5 out of 11 FETs contained at least one metallic CNT within the 

channel (fig. S15). Using identical fabrication process, we also constructed another 9 operational 20 

single-channel DNA-free CNT FETs for comparing transport performance (fig. S8). The single-

channel CNT FET (channel length ~200 nm) with the highest on-state performance exhibited on-

state current of 10 μA/CNT (Vds of -0.5 V) at the thermionic limit of subthreshold swing (that is, 

60 mV/decade, Fig. 2C and fig. S9).  

At Vds of -0.5 V, the multichannel DNA-free CNT FET (channel length ~200 nm, inter-CNT 25 

pitch of 24 nm) with highest on-state performance (Fig. 2D and fig. S13) exhibited Vth of -0.26 V, 

Ion of 154 μA/μm (at Vgs of -1.5 V), and subthreshold swing of 100 mV/decade. The gm and Gon 

values were 0.37 mS/μm and 0.31 mS/μm, respectively. The noise in the gm-Vgs curves may 

originate from thermal noise, disorder and scattering within the composite gate construct. On-state 

current further increased to ~250 μA/μm, alongside with gm of 0.45 mS/μm and subthreshold swing 30 

of 110 mV/decade, at Vds of -0.8 V.  

When the channel length scaled to 100 nm, we achieved Ion of 300 μA/μm (at Vds of -0.5 V and 

Vgs of -1.5 V), and subthreshold swing of 160 mV/decade (fig. S14). Both the Gon and the gm 

values were thus promoted to 0.6 mS/μm. The DNA-free CNT FETs exhibited comparable Ion to 

thin-film FETs from aligned chemical vapor deposition (CVD)-grown CNT arrays (28, 29), even 35 

at 60% smaller CNT density (∼40 CNTs/μm vs. more than 100 CNTs/μm in (28, 29)). The 

effective removal of the contaminations, such as DNA and metal ions, and shorter channel length 

contributed to the high Ion. Notably, a previous study fixed CNTs directly with the source and drain 

electrodes (13). Because contamination could not be fully removed from the electrode contact 

areas, the on-state performance (gm and Gon) decreased by a factor of 10.  40 

At similar channel length and Vds (-0.5 V), we benchmarked the transport performance (gm and 

subthreshold swing) against conventional thin-film FETs using CVD-grown or polymer-wrapped 

CNTs (3, 5, 16–18, 23–27) (Fig. 2E, figs. S17 and S18). Both high on-state performance (gm 

around 0.37 mS/μm) and fast on/off switching (subthreshold swing around 100 mV/decade) could 
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be simultaneously achieved within the same solid-state FET; whereas thin-film CNT FETs with 

similar subthreshold swing (∼100 mV/decade) exhibited more than 50% smaller gm.  

Furthermore, the subthreshold swing difference between the multichannel (average value of 103 

mV/decade) and the single-channel CNT FETs (average value of 86 mV/decade in fig. S9) was 

reduced to 17 mV/decade. Theoretical simulations suggest that, under identical gate constructs, 5 

uneven diameter of CNTs (6) and the alignment disorder (including crossing CNTs) (5) raise the 

subthreshold swing (4). We observed a wide diameter distribution of the DNA-wrapped CNTs in 

AFM images (fig. S2) and TEM images (fig. S1). Hence, the small subthreshold swing difference 

above indicated the effective gate modulation and evenly-spaced CNT alignment using SHINE 

(12), i.e. the absence of crossing/bundling CNTs within the channel area.  10 

Statistics over all the operational multichannel DNA-free FETs exhibited Vth of -0.32 ± 0.27 V, 

Ion of 25 to 154 μA/μm (at Vds of -0.5 V and Vgs of -1.5 V), and subthreshold swing of 103 ± 30 

mV/decade. Different amounts of narrow CNTs (i.e. diameter < 1 nm) within FETs led to the wide 

distribution of Ion. Because the Schottky barrier and the band gap increase with narrower CNT 

diameter, lower CNT conductance is often observed than those with diameter above 1.4 nm (30, 15 

31).  

When comparing the transport performance differences between DNA-containing and DNA-free 

FETs (fig. S16), we observed largely negatively shifted Vth (-2V versus -0.32 V), higher drain-to-

source current density (Ids) at positive Vgs (mostly 10 to 200 nA/μm versus 0.1 to 10 nA/μm), and 

more than one order of magnitude smaller gm (4 to 50 μS/μm versus 70 to 370 μS/μm). Thus, high-20 

concentration ssDNAs and metal ions within multichannel FETs deteriorated the transport 

performance. Thermal annealing did not fully eliminate the impact because of the presence of 

insoluble annealing products, such as metal phosphates (22).  

When CNT-decorated DNA templates were deposited onto a flat Si wafer, random orientations 

of DNA templates were formed through unconfined surface rotation. We solved this issue by using 25 

3D polymeric cavities to confine the surface orientation during large-area placement. We first 

assembled fixed-width CNT arrays (fig. S19) (21) with prescribed inter-CNT pitch of 16 nm (2 

CNTs per array). Next, in a typical 500 μm by 500 μm write-field on the PMMA-coated Si 

substrate (more than 20 write-fields on 0.35 cm2 substrate), we fabricated densely-aligned 

crenellated parapet-like PMMA cavities (cavity density ∼2×107 cavities/cm2, fig. S20). The 30 

minimum and the maximum designed widths along z direction were 180 and 250 nm, respectively.  

After DNA deposition and PMMA liftoff (Fig. 3A), >85% of the initial cavities (∼600 cavities 

were counted) were occupied by DNA templates (Fig. 3B, fig. S21). The measured angular 

distribution, defined as the difference between the longitudinal axis of the DNA templates and the 

x direction of the substrate, was 56% within ± 1◦ and 90% within ± 7◦ (Fig. 3C), per scanning 35 

electron microscopy (SEM)-based counting of all of the remaining DNA templates within the 600 

cavities sites. This value included improvable impacts from the fabrication defects of PMMA 

cavities sites, the variation during DNA placement, and any disturbance from PMMA liftoff. 

Notably, the angular distribution was still improved compared to previous large-scale placement 

of DNA-templated materials (19). CNTs were not visible under SEM, because they were 40 

embedded within the DNA trenches and shielded from the SEM detector by DNA helices.  

Both the lengths of the DNA templates and the aspect ratio of the PMMA cavities affected the 

angular distribution. Longer DNA templates (length >1 μm) exhibited narrower angular 

distribution (0◦ ± 3.4◦ in Fig. 3D) than those of shorter DNA templates (length <500 nm, 1◦ ± 11◦ 
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in Fig. 3D). In addition, PMMA cavities with higher length-to-width aspect ratio (that is, 10 in in 

Fig. 3B and fig. S20) provided better orientation controllability than those with lower aspect ratio 

(that is, 1 in fig. S22). Hence, to further improve the angular distribution, longer DNA templates, 

as well as higher length-to-width aspect ratio of PMMA cavities, were beneficial. Because PMMA 

cavities were wider than the DNA templates, we observed up to 3 DNA templates, as well as the 5 

offset of DNA templates along the x and z directions, within a few PMMA cavities. Notably, DNA 

templates did not fully cover the PMMA cavities, even for a saturated DNA solution.  

Two-dimensional hydrophilic surface patterns, with shape and dimensions identical to the DNA 

structures, could direct the orientation of the deposited DNA structures (32). However, it is 

difficult to design patterns adaptive to DNA templates with variable lengths. In contrast, effective 10 

spatial confinement relies mainly on the lengths of the DNA templates and the aspect ratio of 

PMMA cavities, and is applicable to irregular template lengths. Therefore, the anisotropic 

biotemplated CNT arrays could be aligned along the longitudinal direction of the cavities 

(Supplementary Sect. S4.1 and fig. S23) (21).  

To further promote the on-state performance, scaling the inter-CNT pitch into sub-10 nm may be 15 

beneficial. However, at 2 nm inter-CNT pitch, the enhanced electrostatic interactions may impact 

the on/off switching. Therefore, the correlation between the inter-CNT pitch and performance 

metrics of CNT FETs needs to be verified. Combined with large-area fabrications through 

conventional lithography and directed assembly of block copolymers, biomolecular assembly 

could provide a high-resolution paradigm for programmable electronics over large area. The 20 

hybrid electronic-biological devices may also integrate electrical stimuli and biological 

input/outputs, producing ultra-scaled sensors or bioactuators. 

 

 

 25 

References and Notes: 

1. The International Technology Roadmap for Semiconductors: 2013.  

2. G. Hills et al., Understanding energy efficiency benefits of carbon nanotube field-effect 

transistors for digital VLSI, IEEE Trans. Nanotech. 17, 1259-1269 (2018).  

3. Q. Cao et al., Arrays of single-walled carbon nanotubes with full surface overage for high-30 

performance electronics, Nature Nanotech. 8, 180-186 (2013).  

4. G. J. Brady, K. R. Jinkins, M. S. Arnold, Channel length scaling behavior in transistors based 

on individual versus dense arrays of carbon nanotubes, J. Appl. Phys. 122, 124506 (2017).  

5. G. J. Brady et al., Quasi-ballistic carbon nanotube array transistors with current density 

exceeding Si and GaAs, Sci. Adv. 2, e1601240 (2016).  35 

6. Q. Cao, J. Tersoff, D. B. Farmer, Y. Zhu, S.-J. Han, Carbon nanotube transistors scaled to a 

40-nanometer footprint, Science 356, 1369-1372 (2017). 

7. H. A. Becerril, A.T.Woolley, DNA-templated nanofabrication, Chem. Soc. Rev. 38, 329-337 

(2009). 



Submitted Manuscript: Confidential 

6 

 

8. M. R. Jones, N. C. Seeman, C. A. Mirkin, Programmable materials and the nature of the DNA 

bond, Science 347, 1260901 (2015). 

9. S.-P. Han, H. T. Maune, R. D. Barish, M. Bockrath, W. A. Goddard, III, DNA-linker-induced 

surface assembly of ultra dense parallel single walled carbon nanotube arrays, Nano Lett. 12, 

1129-1135 (2012).  5 

10. A. Mangalum, M. Rahman, M. L. Norton, Site-specific immobilization of single-walled carbon 

nanotubes onto single and one-dimensional DNA origami, J. Am. Chem. Soc. 135, 2451-2454 

(2013). 

11. H. Pei et al., Organizing end-site-specific SWCNTs in specific loci using DNA, J. Am. Chem. 

Soc. 141, 11923-11928 (2019). 10 

12. W. Sun et al., Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA 

nanotrenches, Science (2020). 

13.  H. T. Maune et al., Self-assembly of carbon nanotubes into two-dimensional geometries using 

DNA origami templates, Nature Nanotech. 5, 61-66 (2010). 

14. K. Keren, R. S. Berman, E. Buchstab, U. Sivan, E. Braun, DNA-templated carbon nanotube 15 

field-effect transistor, Science 302, 1380-1382 (2003).  

15. S.-J. Han et al., High-speed logic integrated circuits with solution-processed self-assembled 

carbon nanotubes, Nature Nanotech. 12, 861-865 (2017). 

16. D. Zhong et al., Gigahertz integrated circuits based on carbon nanotube films, Nature Electron. 

1, 40-45 (2018). 20 

17. C. Zhao et al., Exploring the performance limit of carbon nanotube network film field-effect 

transistors for digital integrated circuit applications, Adv. Funct. Mater. 29, 1808574 (2019). 

18. L. Liu et al., Carbon nanotube complementary gigahertz integrated circuits and their 

applications on wireless sensor interface systems, ACS Nano 13, 2526-2535 (2019). 

19. A. M. Hung et al., Large-area spatially ordered arrays of gold nanoparticles directed by 25 

lithographically confined DNA origami, Nature Nanotech. 5, 121-126 (2010). 

20. N. Nakatsuka et al., Aptamer-field-effect transistors overcome Debye length limitations for 

small-molecule sensing, Science 362, 319-324 (2018). 

21. See supplementary materials on Science Online. 

22. F. Zhou et al., Programmably shaped carbon nanostructure from shape-conserving 30 

carbonization of DNA, ACS Nano 10, 3069-3077 (2016). 

23. Q. Cao, S.-J. Han, G. S. Tulevski, Fringing-field dielectrophoretic assembly of ultrahigh-

density semiconducting nanotube arrays with a self-limited pitch, Nature Commun. 5, 5071 

(2014).  

24. J. Wu et al., Self-assembly of semiconducting single-walled carbon nanotubes into dense, 35 

aligned rafts, Small 9, 4142-4148 (2013).  

25. Y. Cao et al., Radio frequency transistors using aligned semiconducting carbon nanotubes with 

current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 

70 GHz, ACS Nano 10, 6782-6790 (2016). 



Submitted Manuscript: Confidential 

7 

 

26. J. Wu, A. Antaris, M. Gong, H. Dai, Top-down patterning and self-assembly for regular arrays 

of semiconducting single-walled carbon nanotubes, Adv. Mater. 26, 6151-6156 (2014). 

27. D. Lee et al., Three-dimensional fin-structured semiconducting carbon nanotube network 

transistor, ACS Nano 10, 10894-10900 (2016).  

28. M. M. Shulaker et al., High-performance carbon nanotube field-effect transistors, IEEE Int. 5 

Electron Devices Meeting in San Francisco CA 33.6.1-33.6.4 (2014). 

29. Y. Hu et al., Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts, 

Nature Commun. 6, 6099 (2015). 

30. L. Zhang et al., Assessment of chemically separated carbon nanotubes for nanoelectronics, J. 

Am. Chem. Soc. 130, 2686-2691 (2008).  10 

31. L. Zhang et al., Optical characterizations and electronic devices of nearly pure (10,5) single-

walled carbon nanotubes, J. Am. Chem. Soc. 131, 2454-2455 (2009).  

32. A. Gopinath, P. W. K. Rothemund, Optimized assembly and covalent coupling of single-

molecule DNA origami nanoarrays, ACS Nano 8, 12030-12040 (2014). 

33. C. Qiu et al., Scaling carbon nanotube complementary transistors to 5-nm gate lengths, Science 15 

355, 271-276 (2017).  

34. L. Xiang et al., Low-power carbon nanotube-based integrated circuits that can be transferred 

to biological surfaces, Nature Electron.1, 237-245 (2018).  

35. C. Qiu et al., Dirac-source field-effect transistors as energy-efficient, high-performance 

electronic switches, Science 361, 387-392 (2018).  20 

36. G. S. Tulevski et al., Toward high-performance digital logic technology with carbon nanotubes, 

ACS Nano 8, 8730-8745 (2014). 

37.  J. Zhang et al., Robust digital VLSI using carbon nanotubes, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 31, 453-471 (2012). 

 25 

Acknowledgments:  

Funding: W.S., M.Z., Y.C., K.W., and Z.Z. acknowledge the National Science Foundation of 

China (Grant No. 21875003, 21991134, and 61621061) and PKU for financial support. Y.C., C.Y., 

and Z.Z. acknowledge the National Science Foundation of China (Grant No. 21775128, 21435004, 

and 21974113) for financial support. J.K.S., J.A.F., and M.Z. acknowledge NIST internal fund. 30 

Author contributions: M.Z. conducted the experiments on CNT assembly and CNT FETs, and 

analyzed the data; Y.C. conducted the experiments on CNT assembly and centimeter-scale 

placement, and analyzed the data; K.W. and Z.Z. conducted the experiments on CNT assembly 

and analyzed the data; J.K.S., J.A.F., and M.Z. prepared the DNA-wrapped CNTs and analyzed 

the data; J.T. analyzed the data. Z.Z. supervised the study and interpreted the data; W.S. conceived, 35 

designed, supervised the study and interpreted the data; and all authors wrote the manuscript. 

Competing interests: Two provisional-stage patent applications were submitted by W.S. and M.Z. 

(regarding FET construction) and W.S. and Y.C. (regarding large-area alignment). Data and 

materials availability: All (other) data needed to evaluate the conclusions in the paper are present 

in the paper or the Supplementary Materials.  40 



Submitted Manuscript: Confidential 

8 

 

 

Supplementary Materials: 

Materials and Methods 

Supplementary Text 

Figures S1-S23 5 

References (33-37) 

 

Fig. 1. Multichannel CNT FETs with ssDNAs at channel interface. (A) Design schematic for 

the rinsing-after-fixing approach. (B) Zoomed-in AFM image along the x and z projection direction 

for CNT arrays after template removal. The scale bar is 25 nm. See also figs. S3 and S4 in (21). 10 

(C) Design schematic for introducing ssDNAs at channel interface and FET fabrication. (D) The 

Ids-Vgs curves (drain-to-source current density (Ids) versus Vgs plotted in logarithmic at Vds of -0.5 

V) for multichannel DNA-containing CNT FET before (black line) and after (red line) thermal 

annealing. See also fig. S7. 

 15 

Fig. 2. Constructing top-gated high-performance CNT FETs. (A) Design schematic for the 

fabrication of top-gated DNA-free FETs. (B) Zoomed-in SEM image along the x and z projection 

direction for the constructed multichannel CNT FET. Pink circle indicates the assembled CNT 

arrays. The scale bar is 100 nm. See also fig. S11 in (21). (C and D) The Ids-Vgs curves (solid line, 

left axis, plotted in logarithmic scale) and gm-Vgs curves (dotted line, right axis, plotted in linear 20 

scale) for single-channel (C) and multichannel (D) CNT FETs. Blue, red, and black colors in C 

and D represent Vds of -0.8 V, -0.5 V, and -0.1 V, respectively. See also in figs. S9 and S12. (E) 

Benchmarking of current multichannel CNT FET in D with other reports of high-performance 

CNT FETs. Device performance from previous publications (3, 5, 16 to 18, 23 to 27) are obtained 

at Vds of -0.5 V and channel lengths ranging from 100 nm to 500 nm. See also in figs. S17 and 25 

S18. 

 

Fig. 3. Centimeter-scale oriented placement of fixed-width arrays. (A) Design schematic for 

the oriented placement of the fixed-width CNT-decorated DNA templates on Si substrate. From 

left to right, fabricating cavities on a spin-coated PMMA layer, depositing CNT-decorated DNA 30 

templates onto the PMMA cavities, and liftoff to remove PMMA layer. (B) From left to right, 

zoomed-out and zoomed-in optical and SEM images of the aligned structures on Si wafer after 

PMMA liftoff. The scale bars in the bottom left, bottom middle, and bottom right are 10 μm, 1 μm, 

and 0.5 μm, respectively. The red rectangular circles indicate the selected areas for zoomed-in. 

The yellow arrows in the right panel indicate the aligned arrays. See also fig. S21 in (21). (C) The 35 

statistics of counts (left, red axis) and the cumulative percentage (right, green axis) for the aligned 

structures in (B) at each specific orientation. (D) Plot of angular distribution of the aligned arrays 

versus the lengths of the DNA templates.  

 


