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Abstract—Visual Question Answering (VQA) has attracted extensive research focus recently. Along with the ever-increasing data scale
and model complexity, the enormous training cost has become an emerging challenge for VQA. In this paper, we show such a massive
training cost is indeed plague. In contrast, a fine-grained design of the learning paradigm can be extremely beneficial in terms of both
training efficiency and model accuracy. In particular, we argue that there exist two essential and unexplored issues in the existing VQA
training paradigm that randomly samples data in each epoch, namely, the “difficulty diversity” and the “label redundancy”. Concretely,
“difficulty diversity” refers to the varying difficulty levels of different question types, while “label redundancy” refers to the redundant and
noisy labels contained in individual question type. To tackle these two issues, in this paper we propose a fine-grained VQA learning
paradigm with an actor-critic based learning agent, termed FG-A1C. Instead of using all training data from scratch, FG-A1C includes
a learning agent that adaptively and intelligently schedules the most difficult question types in each training epoch. Subsequently, two
curriculum learning based schemes are further designed to identify the most useful data to be learned within each inidividual question
type. We conduct extensive experiments on the VQA2.0 and VQA-CP v2 datasets, which demonstrate the significant benefits of our
approach. For instance, on VQA-CP v2, with less than 75% of the training data, our learning paradigms can help the model achieves
better performance than using the whole dataset. Meanwhile, we also shows the effectivenesss of our method in guiding data labeling.
Finally, the proposed paradigm can be seamlessly integrated with any cutting-edge VQA models, without modifying their structures.

F

1 INTRODUCTION

Visual Question Answering (VQA) refers to answering1

a natural language question by giving a reference image,2

which requires a holistic understanding of visual and tex-3

tual contents to perform various tasks, such as counting4

(how many), telling time (when) and recognition (what is).5

Certain questions in VQA further require logical reasoning6

to get correct answers, which dramatically increases the7

task difficulty. To this end, most recent VQA models are8

built upon deep learning modules. In a typical setting [1]9

[2], a VQA model consists of a convolution neural network10

(CNN) to extract visual features, a Long Short Term Memory11

(LSTM) network to produce text representation, followed by12

a fusion module (optionally with attention components) to13

output the final reasoning.14

To cope with various answering tasks, state-of-the-art15

VQA models typically need a large amount of training data16

and model parameters. For example, the Multimodal Com-17

pact Bilinear (MCB) model proposed in [2] has 75 million18

parameters, a scale almost 30 times larger than ResNet-19

50 [3]. Specific structures, like Attention Mechanism [4]20

and Compact Bilinear Pooling [5], are also widely used in21

VQA [2] [1] [6], which further increase the computational22

burden in off-line training. For instance, the HiCoAtt model23

in [6] needs over 100-round epochs to achieve convergence,24
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Fig. 1. A comparison between the traditional learning paradigm and our
fine-grained learning paradigm.

which takes approximately a week to train using a regular 25

server equipped with a standard Titan GPU. 26

We argue that such an expensive training cost is in- 27

deed plague. Instead, a fine-grained design of the learning 28

paradigm can be beneficial to simultaneously boost training 29

efficiency and model accuracy. In particular, we identify 30

two essential and unexploited issues that widely exist in 31

the learning paradigm of existing VQA models, i.e., the 32

“difficulty diversity” and the “label redundancy”. Generally 33

speaking, the existing VQA training paradigm typically 34

follows a random sampling procedure to pick up training 35

epochs, as shown in Fig.1.a. The “difficulty diversity” refers 36

to the varying difficulty levels of different question types, 37

while the “label redundancy” refers to the redundant and 38

noisy label contained in each question type. The existing 39

random sampling scheme (Fig.1.a) is contradicted with the 40
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Fig. 2. Statistics of six question types from VQA1.0 [7]. Fig.a shows
the ages of humans that can answer each type of question. Fig.b gives
the performance of VQA models using visual and textual content on
different types. These two figures serve as an indicator of the “difficulty
diversity” as introduced in Sec.1. Fig.c gives the proportion of each
type of questions in the dataset, which indicates the issue of “label
redundancy”. These statistics reflect the varying difficulties of different
question types and the extremely uneven data distribution, which leads
to two key issues in VQA training, i.e., the “difficulty diversity” and the
“label redundancy”. The target of our fine-grained learning paradigm
is to address these two issues by evaluating the learning progress of
the VQA model on each question type and selecting the most suitable
examples to improve the training efficiency and the model performance.

above two issues, as quantitatively validated latter in Fig.2.41

Such a learning paradigm leads to low efficiency in offline42

training, while the learned model is also sub-optimal. We43

argue, and subsequently validate, that a fine-grained control44

of the selecting priority and the training epoch quality affect45

the training quality of VQA models.46

In this paper, we propose a fine-grained VQA learning47

paradigm with an actor-critic based learning agent, termed48

FG-A1C. Instead of using all training examples from the49

beginning, we start from a small set of training examples,50

and gradually augment the training data by evaluating the51

diversity of concept difficulties and the redundancy of su-52

pervised labels, as depicted in Fig.1.b. As the core design of53

FG-A1C, the learning agent consists of an actor network and54

a critic network. Both the actor network and the critic net-55

work receive a feedback that reflects the learning progress56

of the VQA model on different types of questions. Based57

on this feedback, the actor network first generates an action58

to perform data augmentation of a specific question type.59

Then, the critic network evaluates the action and the state,60

and predicts an expected reward to decide the update direc-61

tion of the gradients in the actor network. After training on62

the augmented dataset, the model returns an actual reward63

for updating the critic network. Finally, the model decides64

which question type to be trained, upon which the model65

further picks a subset of examples in the selected question66

type. Specially, to further filter noisy examples, three data67

selection schemes are further proposed, which are inspired68

by curriculum learning [8] and active learning [9].69

To validate the proposed FG-A1C approach, we conduct70

extensive experiments on the VQA2.0 dataset [10]. In addi-71

tion to the existing random sampling paradigm, we also72

compare our approach against other learning paradigms73

like Self-paced Learning [11] and Active Learning [12]. Ex-74

periments validate the merits of the proposed paradigm.75

Compared to the alternative approaches and baselines, the76

proposed FG-A1C has achieved a significant improvement77

in terms of both learning efficiency and model accuracy. 78

For instance, by using only 50% training examples, FG-A1C 79

saves 21.4% and 25.9% training time for two recent VQA 80

models [1] [14], introducing only 0.6% and 2.9% accuracy 81

decreases, respectively. It is worth noting that, FG-A1C 82

can be seamlessly integrated with almost all VQA models 83

without modifying the model structures. 84

The rest of the paper is organized as: In Sec. 2, we give 85

a brief introduction to related work. In Sec. 3, the pro- 86

posed strategy is depicted in details. In Sec. 4, we describe 87

the baselines, experimental setup, experimental results and 88

quantitative analysis. Finally, a conclusion is given in Sec.5. 89

2 RELATED WORKS 90

2.1 Visual Question Answering 91

Visual Question Answering (VQA) serves as a hybrid task 92

involving both visual content understanding and natural 93

language processing. At present, VQA is typically regarded 94

as a multi-modal classification problem [1] [2] [7] [13] [6]. 95

Under this setting, the potential answers are treated as 96

fixed categories, which are predicted based on visual and 97

textual features extracted by deep neural networks, e.g., 98

convolutional neural networks (CNN) and recurrent neural 99

networks (RNN). Features of two modalities are fused by 100

concatenation [7] [14] or convolutional operation [15] before 101

sending to the prediction layer. To precisely capture visual 102

signals in the image, the attention mechanism [4] is further 103

introduced, which aims to select the most relevant visual 104

regions according to the question information. 105

Due to the increasing complexity of questions in VQA, 106

some recent works focus on investigating the revision of 107

attention mechanism to improve the models’ reasoning abil- 108

ities [1] [6] [2] [16]. For instance, Yang et al. [1] proposed 109

a multi-step attention operation to gradually and precisely 110

locate potential answer regions. Lu et al. [6] proposed two 111

co-attention algorithms to capture the correlation between 112

visual and textual modalities. Fukui et al. [2] used a con- 113

volutional layer to produce multi-glimpse attentions. Bor- 114

rowing the idea from [17], Zhu et al. used a grid-structured 115

Conditional Random Field to build a structure multivariate 116

attention to capture relations among different visual regions. 117

Patro et al. [18] used negative examples to guide the learning 118

of attentions via distinguishing obtained attention features 119

between positive and negative examples. 120

Some methods further exploit information beyond the 121

given images for VQA [19] [20] [21] [14]. For example, 122

Wu et al. [20] used document embedding to encode Wiki 123

entries as the knowledge base to help question answering. 124

The work in [21] uses a set of off-the-shelf algorithms 125

to obtain additional information for question answering, 126

which includes detecting visual relationships and attributes 127

in the image, and incorporating generated image captions 128

in answer prediction. Tenny et al. [14] propose a model 129

named Buttom-up Top-Down attention (BUTD) , which uses 130

high quality regional features extracted by Fast R-CNN [22] 131

from [23] as visual inputs, which significantly improves 132

performance with a simple model structure. Jiang et al. 133

[24] proposed a project named Pythia that makes subtle 134

but important changes to BUTD and achieved significant 135

performance improvements. Specifically, they replaced the 136
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Fig. 3. Overall framework of our fine-grained learning paradigm. Our paradigm starts with a fine-grained training set, which has much fewer examples
than the complete training set. A learning agent, composed of an actor network and a critic network, constantly interacts with the model training
process. It evaluates the learning progress of the VQA model and generates actions of data augmentations for specific question types. The specific
training data are selected via the proposed selection schemes, and integrated to augment the fine-grained training set. Afterwards, the model will
be trained on the fine-grained training set and the corresponding rewards are used for updating the learning agent.

activation function and the way of feature concatenations137

with ReLU and element-wise product. Meanwhile, they138

also applied some useful training tricks to BUTD, e.g., fine-139

tuning FRCNN features and data augmentation.140

As a key step, the multi-modal fusion also receives great141

research focus in VQA [25] [2] [26] [27]. In [25], Kim et142

al. used a residual learning framework to obtain the deep143

interaction between two modalities. In [2], Fukui et al.144

first introduced the bi-linear pooling based fusion method,145

termed multi-modal compact bilinear pooling (MCB), to146

efficiently capture interactions between visual and textual147

features. Although MCB helps the model achieve significant148

performance gains, it also leads to a large increase in model149

parameters. Kim et al. [28] and Yu et al. [27] proposed two150

low-rank bi-linear pooling fusion methods, which aim to151

improve the model performance while reducing the number152

of parameters.153

2.2 Learning Paradigms154

Inspired by the cognitive process of humans, Bengio et al. [8]155

proposed a novel learning paradigm, termed Curriculum156

Learning (CL), which gradually includes training examples157

from easy to hard. The curriculum is often derived from158

predetermined heuristics in particular problems, which is159

less adaptive to other problems [29]. Based on CL, Kumar160

et al. [11] proposed a dynamic learning paradigm termed161

self-paced learning (SPL). SPL embeds the curriculum design162

into the model learning, which dynamically selects suitable163

examples based on the current learning progress. Jiang et al.164

[29] extended SPL by considering the diversity of training165

examples, which makes it more practical to different tasks.166

In [30], the relationship between curriculum learning and167

self-paced learning is explored. Another related learning168

paradigm is the active earning (AL), which targets at achiev-169

ing comparable performance with fewer training labels. AL 170

assumes that if a model is able to select the data from which 171

it learns, it will perform better even with fewer training ex- 172

amples [9]. The data selection metric of AL is very different 173

from that of SPL. It prefers examples with more information, 174

for instance, using the uncertainty measure to find examples 175

with large entropies on the conditional distribution [31] [32], 176

or examples that are closest to the classification boundary 177

[33] [34]. A recent learning paradigm named learning-by- 178

asking was proposed in [35], which also follows the spirit 179

of active learning. The principle of [35] is similar to ours 180

in that the paradigm requests specific training examples 181

according to the learning state of the model. However, 182

the main difference is that learning-by-asking heavily relies 183

on the oracle provided by the CELEVR dataset [36] to 184

create suitable examples, which greatly limits its application 185

scenarios. In contrast, our scheme can accommodate most 186

existing VQA datasets, which takes advantage of available 187

training examples and requires no extra labels. 188

Reinforcement learning can be divided into three 189

groups [37]: actor-only, critic-only and actor-critic methods, 190

where actor and critic are synonyms for the policy and 191

value function, respectively. The actor-only methods work 192

with a parametrized family of polices. They merit in that 193

the parameters are directly estimated and improved, while 194

the shortcoming is that the gradient estimator may have 195

a large variance. The critic-only methods aim at learning 196

an approximation to the Bellman equation. They work well 197

when it is possible to build a “good" approximation of the 198

value function. However, both methods can not reliably 199

guarantee the optimal solution of the resulting policy. Actor- 200

critic methods aim at combing the advantages of actor- 201

only and critic-only methods. Actor-critic learning is also 202

investigated in deep learning [38] [39] [40]. 203
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Some recent works also focus on applying reinforcement204

learning (RL) methods to the process of efficient data selec-205

tions [41] [42] [43]. The work in [41] proposes a deep RL206

framework called Neural Data Filter to explore automatic207

and adaptive data selection in the tasks of text and image208

classifications. Liu et al. [43] followed the idea of [41] and209

proposed a learning scheme called imitation learning, which210

incorporates prior knowledge to shorten the training pro-211

cess of the policy network. In addition to the differences of212

application scenarios and the RL methods used, our scheme213

differs from these works in two main aspects. First, these214

works focus on selecting high-value examples and minimiz-215

ing the amount of training examples. In practice, the process216

of their example evaluations typically consumes a large217

proportion of learning cost. In contrast, our scheme aims218

at boosting the training efficiency as well as reducing the219

amount of training examples required. Second, the learning220

agent in these works requires offline training, which means221

the RL networks need to train with at least several full222

training periods before being applied to the data selection.223

In contrast, our learning agent is set as an online learning224

model, which can be directly trained with any VQA models225

and requires few extract training costs.226

3 THE PROPOSED FINE-GRAINED LEARNING227

The main target of our fine-grained learning scheme is to228

reduce the number of training examples as well as the229

cost of model training. To this end, we propose a learning230

agent to evaluate the learning state of the VQA model231

on different question types, and then augment the target232

data to accelerate the model training. The corresponding233

framework is depicted in Fig.3. In the following, we describe234

the design of our learning paradigm in detail.235

3.1 Problem Setup236

We denote the fine-grained training set as Dtrain, which237

is initialized with a small number of examples. After each238

training epoch, the VQA model, Mvqa, is evaluated on the239

validation set, ( denoted as Dval), and the learning agent240

will receive a state s ∈ Rk that reflects the model perfor-241

mance on different question types. Based on this state, the242

learning agent is able to decide examples of which question243

type should be added to the Dtrain, such that the model can244

improve the overall performance.245

Since the capacity of the fine-grained training set is246

limited, e.g., 50% of the entire dataset, the learning agent247

should make best choices within N sampling steps to find248

most suitable examples for the model training. We cast249

this fine-grained learning into a decision process, by which250

reinforcement learning can be applied to maximize the251

performance improvements. Specifically, we design the state252

feature s, action space a and reward r as follows.253

State Feature. The state feature s ∈ Rk denotes the254

learning progress of the VQA model on each question type,255

where k denotes the number of question types. It can be256

calculated by st = xt − xt−1, where xt ∈ Rk denotes257

the averaged cross-entropies of each question type in the258

validation set at the t-th training epoch. To explain, there is a259

significant gap among the difficulty of each type of question260

in VQA, which is difficult to measure the importance of 261

example types by simply using the model performance to 262

represent the learning state of the model. Instead, we adopt 263

the learning progress as the state feature to capture the 264

subtle changes on each tasks. 265

Action space. The discrete action space a is denoted as 266

ai ∈ {1, 2, ..., k, k + 1}. The 1-th to the k-th actions refer to 267

a data sampling on the corresponding question type, and 268

the (k + 1)-th action refers to not data augmentation. The 269

k + 1 action is designed to take into account that the model 270

occasionally need certain training steps to digest the newly 271

integrated examples. 272

Reward Function. The reward function is denoted as:

r (st, a, st−1) = lt−1 − lt, (1)

where lt denotes the overall loss at the t-th step. Such an 273

immediate reward helps the learning agent quickly adjust 274

its parameters during the model training. 275

The objective of our learning scheme is to maximize 276

the expectation of rewards in the limited sampling steps. 277

Therefore, we set the cost-to-go function in a discounted 278

setting as: 279

J (π) = E

{ ∞∑
k=0

λkrk+1

∣∣∣∣π
}
. (2)

Here, λ ∈ [0, 1) is the discount factor used to trade-off the 280

importance of immediate and future rewards. π denotes the 281

policy that the learning agent needs to learn. 282

3.2 Actor-Critic based Learning Agent 283

In order to avoid excessive training cost, the learning agent 284

should quickly adapt to the VQA model training. In other 285

words, its structure should be simple. More importantly, it 286

can be updated after each sampling step. To this end, we 287

build the learning agent with an actor-critic setting and 288

use a relatively shallow network structure. Specifically, it 289

consists of two main components: the actor network (policy 290

function) and the critic network (value function). The actor 291

network consists of fully-connected layers and a Softmax 292

layer with parameters ϑ, which is denoted as πϑ. The critic 293

network is a one-layer network with parameter θ, denoted 294

as Vθ. Both the actor and the critic networks receive the state 295

vector st. 296

The actor network is to generate a data augmentation 297

action, while the critic network evaluates the current policy 298

by a value function approximation, which is called policy 299

evaluation. Here, we use the state-value function to estimate 300

J : 301

Vθ (st) = E

{ ∞∑
i=0

λiri+1

∣∣∣∣s0 = st, πϑ

}
. (3)

The Bellman equation of the state value function can be 302

described as: 303

Vθ = E {r (st, a, st+1) + γVθ (st+1)} , (4)

where r (·) denotes the reward function. 304

To find an appropriate policy, a prerequisite is that the 305

critic should be able to accurately evaluate a given policy. 306
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We use temporal difference (TD) [44] to update the critic. At307

the t-th step, the TD error δt can be estimated as:308

δt = rt+1 + γVθt (st+1)− Vθt (st) . (5)

The TD error δt is to decide the direction of the update309

gradients of the critic. The update equation is denoted as:310

θt+1 = θt + αc,tδt∆θVθt (st) , (6)

where αc,t is the learning rate of the critic agent. However,311

Eq.6 is only a one-step estimation and does not consider the312

historical rewards. For model training, the rewards are often313

the results of a series of actions. In this case, we include the314

Eligibility Traces [45] to make use of past experiences. The315

eligibility trace gradients are denoted as zk, and its updating316

equation is:317

zt = λγzt−1 + ∆θVθt (st) , (7)

where λγ is a decay factor with λ ∈ [0, 1). Then Eq.6 is318

modified to the following:319

θt+1 = θk + αc,tδtzt. (8)

In terms of the actor, the updating equation is:320

ϑk+1 = ϑk + αa,k∆ϑJk. (9)

According to the policy gradient theorem, the gradient can be321

denoted as:322

∆ϑJk = ∆ϑ log πϑk
(s, u)Vθk+1

(s) . (10)

Eq.10 greatly connects both the actor network and the critic323

network. The value evaluation results will be used to guide324

the direction of the critic’ gradients. When the critic can325

correctly predict the action reward, it helps the actor to find326

out the best action based on the given state vector.327

3.3 Example Selection328

In principle, our scheme focuses more on perceiving the329

model’s learning progress on each question types, and per-330

forms data augmentation at the task level, which is the main331

difference to the previous works [41] [35] [43]. Nevertheless,332

we also include three example selection strategies to facili-333

tate the model learning.334

3.3.1 Active Sampling335

Active sampling aims to select examples with more infor-336

mation, i.e., more training values. Following [46], we use337

entropy to measure the amount of information in a sample.338

Given an example eik from Di, its entropy is defined as:339

eik = −
N∑
j=1

pjk log pjk, (11)

where N is the dimension of answer space and pk is the pre-340

diction of Mvqa. However, such measurement is more likely341

to sample noisy examples, e.g., outliers in data distribution.342

Therefore, we discard the first 10% of the examples during343

each sampling, and then selects the top H from the rest.344

3.3.2 Weighted Sampling 345

In contrast to active sampling, weighted sampling prefers 346

examples with low entropy during each selection, which 347

follows the principle of curriculum learning [8] that manages 348

the teaching from easy to hard. The weight of a candidate 349

example can be calculated as: 350

wk =
e−1k∑

wj∈Di
e−1k

. (12)

We then sample n examples from this weighted distribu- 351

tion. 352

3.3.3 Self-paced Sampling 353

Inspired by self-paced learning [11], [29], we further use a dy- 354

namic threshold vector, ξ ∈ Rk, to select training examples 355

of a corresponding task. Different from the traditional SPL 356

scheme [11], we hope to select a fixed number of examples 357

during each sampling, which can avoid selecting too many 358

easy examples for the model training. Specifically, given a 359

threshold ξi of the i-th task, the weight of an example in 360

this task is defined as: 361

wk =
|e−1k − ξi|∑
wj∈Di

e−1k
. (13)

Therefore, during each augmentation, examples of which 362

entropy values are closer to the threshold will be selected. 363

Meanwhile, the threshold ξi will be increased after each 364

action, which can be expressed as: ξi ← αtξ
i, where 365

α ∈ [1,∞). The dynamic threshold guides the model to 366

learn easy examples at the infant stage. When the model 367

becomes more mature, more informative examples will be 368

included. 369

Specifically, the motivation of the active sampling is very 370

different from the weighted sampling and the SPL sampling. 371

To explain, the proposed three strategies is to take account 372

the situations of the existing VQA datasets and models. 373

VQA datasets typically contain some questions that are too 374

difficult to answer or have ambiguous answers. In this case, 375

simply feeding difficult questions may be counterproduc- 376

tive for the model training. Meanwhile, for some simple 377

models, simple yet informative examples might be more 378

beneficial. 379

3.4 Overall Algorithm 380

The overall learning procedure is depicted in Alg.1. The 381

complete dataset is dented as Dvqa = {D1, D2, ..., Dk}, 382

where k is the number of question types. Each subset Di 383

contains ni training examples. The fine-grained training set 384

Dtrain is initialized with N randomly selected examples, 385

and the validation set Dval exactly follows the data distri- 386

bution of Dvqa. During each selection, the agent selects up 387

to K examples from the target question type. When there is 388

no example in the target subset Di, the agent will make a 389

suboptimal choice. The data selection continues until Dtrain 390

has sufficient examples, while the model will keep training 391

until reaching the optimal state. 392
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Algorithm 1 Training with Fine-grained A1C Learning
Paradigm
Input: The complete training set Dvqa and the val set Dval.

A discounting factor λ.
Output: The fine-grained training set Dtrain and the

trained VQA model Mvqa.
1: Initialize the VQA model M0

vqa and the learning agent
M0
A1C , and set the state vector x0 ∈ Rn with zeros.

2: Initialize Dtrain with N random selected examples.
3: Evaluate M0

vqa on Dval and obtain the model loss l0 and
the cross entropy vectorx0.

4: for t in M Epochs do
5: Obtain an action: at−1i by the actor network
Actor (st−1).

6: Select K examples in the i-th question type, and add
examples to Dtrain.

7: Evaluate M t
vqa on Dval and obtain new overall loss

lt and cross entropy vector xt.
8: Obtain reward ri−1 = (li−1 − li).
9: Obtain new state st ← (xt − xt−1)

10: Update the actor and the critic with
[st−1, rt−1, st, rt, λ] by Eq.10.

11: Update weights of M t
vqa based on Dt

train.
end for

12: return The trained VQA model M t
vqa and the fine-

grained training set Dt
train

3.5 Application of Expert Knowledge393

Since the learning agent is trained simultaneously with the394

VQA model, it is expected to well predict the action and395

the reward as soon as possible. In this case, we apply some396

prior knowledge to the setting of model configurations.397

Specifically, in terms of the actor network, the values of398

the weights in the prediction layer are set according to the399

default distributions of the corresponding question types.400

Such a design can enable the model to tend to choose401

questions of most frequent types in the initial phase, such402

as the binary questions containing answers only “yes” or403

“not”. These questions are usually easier to answer, which404

typically occupy a certain percentage in the dataset and have405

a great impact on the final model performance. In terms406

of the critic network, the values of its weight parameters407

are all set to non-negative. Meanwhile, before the training408

starts, we test the initialization of the weights to ensure the409

predicted reward is close to the estimated results.410

4 EXPERIMENTS411

We apply our approach to two VQA models, i.e.,Stacked At-412

tention Networks (SAN) [1] and Bottom-up Top-Down network413

(BUTD) [14], and conduct extensive experiments on two414

benchmark datasets, i.e., VQA2.0 [10] and VQA-CP [48].415

4.1 Dataset416

VQA2.0 [10] is built on top of the widely-used VQA1.0417

dataset [7]. It has 204,721 images from COCO dataset [47],418

with about 1.1 million questions that are double of that of419

VQA1.0. Each question has 10 answers labeled by 10 AMT420

workers. The sizes of training set, the validation set and421

TABLE 1
Statistics of question types of VQA2.0 and VQA-CP-2.0.

Type VQA2.0 VQA-CP2.0 Type VQA2.0 VQA-CP2.0
Yes/No 263,186 192,958 Counting 72,058 43,216
What 270,636 169,911 Where 13,924 8,490
Which 7,830 4,308 Who 3,224 2,163
Why 6,834 4,177 Others 20,419 12,960

the testing set are 443,757, 214,354 and 447,739, respectively. 422

Following the setting in [2], we select the top-3,000 most fre- 423

quent answers to build the answer vocabulary, and discard 424

training examples that are not in this vocabulary. We follow 425

most VQA methods [1], [2], [14] that combine the training 426

set and the validation set for model training, and separate 427

10,000 examples for validations. The data distribution of the 428

validation set follows the one of the entire dataset. There- 429

fore, we make a fair comparison between different training 430

paradigms. For the training set, we divide its examples into 431

seven main types, which are Yes/No, Counting, what, where, 432

which, who and why. For examples that don’t belong to these 433

seven types, we classify them into the one of others. Detailed 434

statistics are shown in Tab.1. 435

VQA-CP (Visual Question Answering under Changing Pri- 436

ors) datasets [48] are built upon VQA1.0 and 2.0 datasets, 437

which aim to eliminate the effects of language priors in 438

VQA examples. VQA-CP v1 and v2 are created by re- 439

organizing the training and val splits of VQA1.0 and VQA2.0 440

respectively. Their distributions of answers per question 441

type are by design different in the test split compared to the 442

training split [48]. In this paper, we focus on the VQA-CP-v2 443

set, which has about 438K examples for training and 220k 444

examples for testing. Following the above setting, we also 445

divide the training examples into 8 main types, the number 446

of which are also shown in Tab.1. 447

4.2 Experiment Setup 448

4.2.1 VQA Models 449

For SAN, we implement the model with L2 regularization 450

for model variables, and use the convolutional feature maps 451

before the last pooling of a pre-trained ResNet-152 [3] as 452

the visual input, which has a shape of 14 × 14 × 2048. 453

We use one attention layer to attend to the visual features. 454

The dimensions of attention embeddings and the prediction 455

layer are set to 512 and 3,000 respectively. During training, 456

we follow the setting in [3] that selects the most frequent 457

answer of each example as the label, and use the softmax 458

cross entropy as the model’s training loss. 459

For BUTD, we abandoned the manual initializations of 460

the textual and visual prediction layers, and the rest of the 461

model structure is the same to the original one in [14]. The 462

dimensions of attention embedding and the prediction layer 463

are set to 512 and 3,000 respectively. Following the setting in 464

[14], we use the regional features extracted by Faster RCNN 465

as the visual input [23]. Meanwhile, we convert the given 466

answer list of each example into a soft label vector [14] and 467

use the binary cross entropy as the model’s training loss. 468

For both models, we use Adam [49] as the optimizer, 469

and the learning rate and batch size are set to 1e-5 and 64, 470

respectively. 471
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Fig. 4. Learning curves of different learning paradigms with different proportions of training examples on VQA2.0 dataset.

4.2.2 Learning Paradigms472

We compare our paradigms with three baselines, which473

are Random Sampling, Self-paced Learning [11] and Active474

Learning [9], respectively. For simplicity, we denote them as475

Random, SPL and AL. For SPL, we augment the examples476

of entropy values below the threshold to the training set.477

For AL, we add a fixed number of examples based on478

the sorting of entropy values. Meanwhile, we denote our479

learning paradigm with three sampling strategies, i.e., Active480

Sampling, Weighted Sampling, and Self-paced Sampling, as FG-481

A1C-AL, FG-A1C-WS and FG-A1C-SPL, respectively. These482

paradigms all selects a fixed number of training examples483

during each sampling. For all paradigms, we test their484

performance on 25%, 50% and 75% proportions of training485

examples, respectively.486

In terms of our RL learning agent, the Actor is a shallow487

network consisting of a fully-connected layer with dimen-488

sions of 7 × 14, and a Softmax Layer with a dimension of489

14 × 8, while the Critic network has two fully-connected490

layers with dimensions of 7 × 14 an 7 × 1. The activation491

function used is tanh.492

On the VQA2.0 dataset, the settings of all learning493

paradigms are as follows. For all paradigms except Ran-494

dom, the numbers of initial training examples for all four495

proportions are 80K, 160K, 240K and 320K, respectively. The496

numbers of examples of each sampling are 3K, 6K, 8K and497

8K. For SAN, the training interval steps for validations are498

1K, 2K, 3K and 4K for proportions of 25%, 50% and 75% and499

100%, while the ones for BUTD are 100, 200, 300 and 400,500

respectively. The different settings of training interval are501

due to the different performance of the two models. Due to502

the advantages of network architectures and FRCNN visual503

features, BUTD can digest sampled examples faster than504

SAN. For Random, we train the model with all available 505

examples from scratch. On VQA-CP dataset, the sizes of 506

initial training sets under different proportions are all set 507

to 30K, while the settings of samplings and the training 508

intervals are the same with the ones of VQA2.0. For all 509

paradigms, the early stop is applied when the performance 510

is not improved after 5 validations. 511

In terms of the evaluation metric, we use VQA Accuracy
[7] for both two datasets, which can be denoted as:

Acc (ans) = min
{

#humans that said ans
3 , 1

}
. (14)

This metric means that if the prediction is consistent with 512

three or more manually labeled answers, the accuracy is 1. 513

4.3 Experimental Results 514

4.3.1 VQA2.0 515

We first present the learning curves and evaluation results 516

of two VQA models under different proportions of train- 517

ing examples in Fig.4 and Tab.2. From Fi.g4, we can first 518

observe that the proposed fine-grained learning paradigms 519

can successfully train two VQA models and achieve clear 520

improvements in terms of both the training efficiency and 521

the model accuracy, especially when fewer training exam- 522

ples are available. For instance, with the setting of 25% 523

training examples, FG-A1C-SPL helps SAN achieves above 524

5% performance gains and about 20% training cost to the 525

random paradigm. For BUTD, FG-A1C-AL achieves about 526

3% and 15% improvements in terms of both the model 527

accuracy and training efficiency under the setting of 50%. 528

We also notice that the advantages of our learning 529

paradigms become less significant when the proportion of 530

training examples used increases after a certain value. For 531
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TABLE 2
Evaluation results of SAN and BUTD with different learning paradigms on the VQA2.0-Test-dev.

SAN 25% 50% 75% 100%
Method All Y/N Num. Other All Y/N Num. Other All Y/N Num. Other All Y/N Num. Other
Random 48.5 67.4 31.7 39.2 51.2 68.9 32.1 40.2 54.3 72.7 34.6 43.1 55.2 73.0 34.2 44.6
SPL 49.1 68.5 32.7 36.4 51.8 71.0 32.6 41.2 53.8 71.8 35.4 42.5 54.2 71.7 35.5 43.5
AL 48.5 66.5 31.7 40.4 51.9 70.0 32.4 41.6 53.4 70.8 34.7 42.7 54.2 71.2 35.8 43.7
A1C-SPL 50.1 66.9 31.4 40.1 52.1 68.4 32.1 42.5 54.4 70.7 34.6 45.1 54.8 72.9 35.1 43.8
A1C-AL 49.9 66.0 29.6 40.8 52.1 68.8 31.4 42.6 54.2 71.0 34.2 44.5 53.6 70.8 35.5 42.9
A1C-WS 50.1 68.0 31.2 38.9 52.6 69.0 30.8 43.6 54.6 71.5 37.0 44.1 55.0 73.4 35.0 43.8
BUTD 25% 50% 75% 100%
Method All Y/N Num. Other All Y/N Num. Other All Y/N Num. Other All Y/N Num. Other
Random 60.0 77.0 39.3 49.8 64.1 80.6 44.9 54.4 65.0 82.4 43.2 55.1 66.2 83.0 46.8 56.2
SPL 60.3 77.1 40.0 50.5 63.7 81.2 42.5 62.8 65.5 81.9 45.7 56.0 66.2 83.1 46.1 56.0
AL 59.5 74.3 38.7 52.4 64.3 81.0 44.7 54.5 65.2 81.4 46.4 55.7 66.0 82.8 47.1 57.0
A1C-SPL 60.0 76.0 39.7 51.2 65.0 81.9 43.1 54.8 65.7 82.1 46.3 56.0 66.8 83.3 48.2 57.0
A1C-AL 60.9 76.6 40.0 52.4 64.6 80.8 42.7 55.8 65.8 81.4 44.5 57.2 67.0 83.6 47.7 57.2
A1C-WS 60.3 75.6 40.0 51.9 64.2 82.0 45.8 53.4 65.2 80.1 47.3 56.7 66.5 83.2 47.4 56.5

instance, when trained with the full dataset, the BUTD532

performance by FG-A1C-SPL is slightly better than that by533

Random, i.e., 66.8 v.s. 66.2. To explain, when trained with534

the full data, the final performance is mostly determined by535

the quality of the entire dataset, rather than the schedule of536

each training epoch. But we still can see that our learning537

paradigm can help the model to converge to optimal more538

quickly, e.g., above 20% training saving on SAN as shown in539

Fig.4.540

Another observation is that the proposed AL and WS541

sampling strategies have different effects on two VQA mod-542

els. Specifically, WS can help SAN achieve better model543

performance than AL, while AL is more suitable for BUTD.544

To analysis, as a classical VQA model, the learning ability545

of SAN is largely limited by its network design and the546

visual features used. For instances, its softmax cross entropy547

based objective function is much less efficient than that548

based on multi-label binary cross entropy [14]. Thus, WS can549

collect questions with more certain content and less noisy550

label information to help SAN achieve the best performance.551

In contrast, BUTD, as an up-to-date VQA model, shows552

a better question answering ability than SAN, which re-553

quires more informative examples to reach the optimal state.554

Compared to FG-A1C-WS and FG-A1C-AL, we find that555

FG-A1C-SPL is more general, which shows good efficiency556

in both SAN and BUTD, as shown in Fig.4 and Tab.2. To557

explain, FG-A1C-SPL can adjust the thresholds of different558

question types according to the learning pace of models,559

so either easy or informative examples of each question560

type can both be included to the training set. Meanwhile,561

compared to SPL [11], we fixed the number of sampled562

examples to avoid collecting too many easy examples. Its563

main shortage lies in the selections of the pace and the initial564

thresholds, which requires both prior experiences and cross-565

validations.566

We further compared our learning paradigms with 25%,567

50% and 75% of training data used to the Random paradigm568

trained with the whole dataset in Fig.5. Since the time569

for each training step are different on different hardwares,570

we define a notation called “learning step” to access the571

training efficiency. For our learning paradigms, its leanring572

steps includes training steps, validation steps and the example573

evaluation steps, while the learning steps of Random consists of574
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Fig. 5. Comparisons of the training expenditures and the model perfor-
mance between FG-A1C paradigms and the random sampling scheme
on the VQA2.0 dataset.

training steps and validation steps. Since the learning agent in 575

FG-A1C are two shallow networks, the time required for its 576

policy generation and gradient updates are very short and 577

neglectable to the whole training process. Therefore, we do 578

not include the training cost of the A1C agent. 579

From Fig.5, we draw the following observations. In 580

terms of SAN, FG-A1C-WS can help the model saves 20% 581

on training cost with 75% of training examples, while the 582

performance is reduced by only about 0.9%. With only 50% 583

of training data, the training cost saved by FG-A1C-WL is 584

more significant, i.e., 60%, while the accuracy is still within 585

an acceptable range, i.e., 2.1%. For BUTD, the improvement 586

of training efficiency is still prominent. With 50% and 75% 587

of training data, FG-A1C-SPL achieves a training savings 588

of 50% and 38%, respectively, while the accuracy losses are 589

still small, i.e., 1.6% and 0.5%, respectively. Considering that 590

BUTD is an up-to-date model with a strong performance, 591

these achievements are indeed outstanding. 592

4.3.2 VQA-CP v2 593

We further evaluate our learning paradigms on VQA-CP v2 594

dataset, which has a different label distribution of training 595

and testing sets. The learning curves and experimental 596

results of all paradigms are shown in Fig.6 and Tab.3. From 597
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Fig. 6. Learning curves of different learning paradigms with different proportions of training examples on VQA-CP v2 dataset.

TABLE 3
Evaluation results of SAN and BUTD with different learning paradigms on the VQA-CP-v2 test split.

SAN 25% 50% 75% 100%
Method All Y/N Num. Other All Y/N Num. Other All Y/N Num. Other All Y/N Num. Other
Random 25.6 37.2 10.1 24.0 27.9 38.8 10.5 26.9 29.8 39.4 11.0 29.4 30.2 39.8 11.6 30.3
SPL 25.0 38.2 12.3 20.1 28.6 39.0 9.27 28.4 28.9 39.2 8.0 29.3 30.3 39.1 11.4 30.3
AL 24.3 40.0 14.8 15.0 28.2 38.8 10.3 27.5 29.2 38.5 10.9 28.9 29.5 38.7 11.0 29.1
A1C-SPL 26.5 38.8 10.1 24.6 28.9 37.3 11.5 29.2 30.3 39.2 12.0 30.6 30.4 39.0 11.8 31.0
A1C-AL 25.5 37.4 11.0 22.3 28.6 38.2 11.3 28.3 30.6 39.4 11.0 31.3 30.5 39.1 11.0 31.4
A1C-WS 26.3 38.6 10.2 24.0 29.4 39.2 11.2 28.8 29.6 39.7 10.8 29.1 30.2 39.7 10.8 29.1
BUTD 25% 50% 75% 100%
Method All Y/N Num. Other All Y/N Num. Other All Y/N Num. Other All Y/N Num. Other
Random 34.2 40.4 11.5 38.0 37.8 41.1 12.5 43.1 38.5 41.5 12.6 44.1 38.5 41.7 12.7 44.0
SPL 35.2 40.4 11.0 39.2 37.3 41.0 12.1 32.3 39.0 41.9 11.9 45.0 39.2 42.3 12.9 44.7
AL 35.1 40.3 11.5 39.5 37.3 41.1 12.5 42.0 39.0 42.0 12.6 44.7 39.1 42.3 12.9 44.5
A1C-SPL 35.8 40.7 11.5 39.9 38.4 42.2 12.7 42.9 39.7 42.2 12.8 45.1 39.6 41.9 13.2 45.7
A1C-AL 35.4 41.5 12.0 38.7 38.7 41.6 12.8 43.7 40.2 41.9 13.2 45.9 39.4 42.0 12.6 45.2
A1C-WS 35.0 40.1 11.8 38.4 36.8 41.0 12.2 41.3 38.8 42.2 12.5 44.2 39.6 42.7 12.9 45.3
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220K

440K

53K
109K

38.7% 38.5%

BUTD-FG-A1C-AL-50%
BUTD-RANDOM-100%

Fig. 7. Comparisons of the training expenditures and the model perfor-
mance between FG-A1C paradigms and the random sampling scheme
on the VQA-CP dataset.

these results, the same conclusion can be drawn that our598

learning paradigms still shows better ability to improve the599

model performance and training efficiency than baselines600

on VQA-CP dataset. Particularly, the performance gains are601

more significant than those on VQA2.0. For instance, with602

25% OF the training data, FG-A1C-SPL achieves about 5% 603

increase in BUTD performance to the Random paradigm. 604

Meanwhile, an important observation is that with only 75% 605

of training data, our learning paradigms can help both SAN 606

and BUTD achieve the best performance rather than using 607

all training examples. Considering the different data distri- 608

butions for training and testing of VQA-CP, these results 609

greatly confirm that our learning paradigms can perceive 610

the learning state of VQA models and select most efficient 611

examples of specific question types to help the model reach 612

the optimal state. 613

Fig.7 gives the comparisons of training cost and model 614

performance between our learning paradigms and the 615

Random with the full dataset. From this figure, we can 616

still witness the improvements of training efficiency by 617

our paradigms. For instance, FG-A1C-WL can help SAN 618

achieves a 36% training saving with 50% of training ex- 619
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Fig. 8. Sample distributions of different learning paradigms on the VQA2.0 and VQA-CP v2 datasets.These distributions reflect preferences of
different sampling scheme.

amples, while the performance loss is only 1.3 point. For620

BUTD, FG-A1C-AL saves 52% atraining costs with 50% of621

the training data, while the model performance is better. A622

notable difference to VQA2.0 is that both SAN and BUTD623

reaches the optimal performance by our paradigms with624

only 75% of training data.625

4.4 Sample Distributions626

To further analyze the learning paradigms, we visualize627

their sample distributions in Fig.8. We find out that different628

paradigms present very distinct sample preferences, some of629

which are different from our prior knowledge. The sample630

distributions of random paradigm are consistent with the de-631

fault data distribution of the whole training set. In the case632

of SAN, SPL presents a favor towards question types with a633

smaller number of potential answers, like yes/no. Its sample634

distributions also uncover its shortcoming. Concretely, hard635

questions like “why” and “where” are barely selected, which636

fails to obtain sustained growth during SAN training. Under637

the case of BUTD, the distribution of SPL will be more bal- 638

anced, and better performance is achieved accordingly. The 639

reason is that, in BUTD, the entropy values of different ques- 640

tion types are closer than that in SAN. In contrast to SPL, 641

AL prefers questions that are hard to predict, like “what” 642

or “where”. Such a preference also leads to a problem that 643

the yes/no questions are less selected, which occupies a large 644

proportion in the dataset. Compared with the baselines, the 645

sample distribution of FG-A1C-WS is more balanced. Over- 646

all, FG-A1C-WS presents a favor towards hard questions, 647

like “others” and “what is”, which are difficult to learn but 648

also beneficial to enhance the accuracy. Meanwhile, it also 649

takes yes/no questions into account since they have a high 650

proportion. In sum, FG-A1C paradigms can use the learning 651

agent to perform targeted data augmentations and make a 652

good trade-off between different types of questions, which 653

achieves the best performance by using fewer examples. 654

Fig.9 displays sampled questions by different learning 655

paradigms. From this figure we can observe that examples 656
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A1C_AL

Question: What liquid is in the glass?
Answer: beer Prediction: beer

Question: What is the darker wall 
made of?
Answer: brick Prediction: brick

Question: What is the likely ethnicity 
of this man?
Answer: white Prediction: white

Question: How many sinks are under 
the mirror?
Answer: 2 Prediction: 2

Question: Does the carrot appear to 
be clean?
Answer: yes Prediction: yes

Question: Do you see a yellow tie?
Answer: yes Prediction: yes

Question: What is the person holding 
in this hand?
Answer: phone Prediction: phone

Question: Is this woman holding up a 
camera?
Answer: yes Prediction: yes

A1C_SPL

AL

Question: What is this kid eating?
Answer: carrot Prediction: carrot

Question: What type of leaves are 
used as garnish?
Answer: parsley Prediction: white

Question: How many men cutting the 
cake?
Answer: 3 Prediction: 2

Question: What is the girl holding in 
right hand?
Answer: handle Prediction: handle

A1C_WS

Question: Is the umbrella successfully 
shading the table?
Answer: no Prediction: yes

Question: Is this fire hydrant opened?
Answer: yes Prediction: yes

Question: What color of pants is the 
man wearing?
Answer: white Prediction: white

Question: Whose legs are those?
Answer: cat Prediction: cat

SPL

Question: Is the tv on?
Answer: yes Prediction: yes

Question: Is it daytime?
Answer: yes Prediction: cloudy

Question: Are there a lot of people?
Answer: no Prediction: yes

Question: What sport is being played?
Answer: tennis Prediction: tennis

Fig. 9. The sampled questions of different learning paradigms.

sampled by active-learning based methods, e.g., AL and657

A1C-AL, are relatively more difficult than those sampled by658

curriculum-learning based methods, e.g., SPL, A1C-SPL and659

A1C-WS. In easy examples, the structure of the question660

content is simpler, and the involved tasks are typically661

identifying objects or recognizing scenes et al., which re-662

quire less reasoning ability. In terms of hard examples, the663

question content is more complex, and the corresponding664

answer entities in images are more difficult to find out.665

Another observation is that under questions with the same666

difficulties, models trained by our learning schemes show667

a better ability to answer predictions, which suggests that668

our fine-grained learning can help the model improve the669

ability of question answering more efficiently with limited670

training examples.671

4.5 Guiding Data Labeling672

Our learning paradigms can further guide data labeling,673

since the sampling strategies proposed are all label-free. To674

validate this argument, we regard the VisualGenome (VG)675

TABLE 4
Evaluations of BUTD on VQA2.0 test-dev with Visual Genome dataset.
“VG” denotes the number of Visual Genome examples used. “STEP”

denotes the number of the training steps.

Paradigm VG STEP All Yes/No Num. Others

Random* [14] 512K - 65.3 81.8 44.2 57.3
Random 512K 412K 66.9 83.4 48.6 57.1
FG-A1C-AL 250K 341K 67.0 83.7 47.6 57.2
FG-A1C-AL 150K 227K 67.0 83.3 47.6 57.1
FG-A1C-SPL 250K 240K 67.2 83.9 48.5 57.2
FG-A1C-SPL 150K 227K 67.2 84.0 48.5 57.0

*is the result reported in [14]

[50] as an un-labeled VQA dataset, and use the proposed 676

learning paradigms, i.e., FG-A1C-AL, to guide data labeling 677

to improve the performance of BUTD on VQA2.0. 678

Specifically, we follow the setting in [14] to select about 679

half a million examples from visual genome as candidates. 680

These examples are also categorized into eight question 681

types defined in Sec.4.1. For the Random paradigm, we 682
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directly augment these VG examples to the training set683

of VQA2.0. For FG-A1C-AL, we first train BUTD with the684

training set of VQA2.0 for several epochs, and then perform685

data sampling after each training interval.686

Tab.4 gives the evaluation results of BUTD with different687

number of VG examples used on VQA2.0 test-dev split.688

From this table, we can first observe that with less aug-689

mented VG examples, FG-A1C-AL can help BUTD achieve690

a superior performance. Meanwhile, the training expendi-691

tures by our paradigm are sill much cheaper than that692

of traditional training scheme. These results confirms the693

functionality of guiding labeling of the proposed learning694

paradigm.695

5 CONCLUSION696

In this paper, we have proposed a fine-grained learning697

paradigm with actor-critic learning, termed FG-A1C, to-698

wards efficient training of Visual Question Answering. This699

paradigm aims at solving two practical yet largely unex-700

ploited issues in VQA, i.e., difficulty diversity and label redun-701

dancy. Compared to the traditional training paradigm, FG-702

A1C starts with a few examples, and uses a learning agent703

to perform targted data augmentations. This learning agent704

can evaluate the training state of VQA models, and decide705

which question types should be added to the subsequent706

training epochs to tackle the difficulty diversity issue. Such707

target data augmentation can alleviate the “difficulty diver-708

sity” issue to a large extent. Meanwhile, we also propose709

three data selection approaches to decide which samples710

should be selected from individual question types, which711

well handles the label redundancy issue. To validate the712

merits of FG-A1C, we apply it to two most recent VQA713

models, i.e., SAN [1] and BUTD [14], and conduct extensive714

experiments on VQA2.0 dataset. Experimental results show715

that our approach can outperform baselines with different716

groups of training examples. FG-A1C can help VQA achieve717

comparable performance with much fewer examples and718

less training time. Most importantly, it can be seamlessly719

embedded to the existing VQA models, as well as other720

learning-related computer vision tasks.721

ACKNOWLEDGMENTS722

This work is supported by the National Key R&D Program723

(No.2017YFC0113000, and No.2016YFB1001503), Nature Sci-724

ence Foundation of China (No.U1705262, No.61772443, and725

No.61572410), Post Doctoral Innovative Talent Support Pro-726

gram under Grant BX201600094, China Post-Doctoral Sci-727

ence Foundation under Grant 2017M612134, Scientific Re-728

search Project of National Language Committee of China729

(Grant No. YB135-49), and Nature Science Foundation of Fu-730

jian Province, China (No. 2017J01125 and No. 2018J01106).731

REFERENCES732

[1] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention733

networks for image question answering. In Proceedings of the IEEE734

Conference on Computer Vision and Pattern Recognition, pages 21–29,735

2016.736

[2] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and737

M. Rohrbach. Multimodal compact bilinear pooling for vi-738

sual question answering and visual grounding. arXiv preprint739

arXiv:1606.01847, 2016.740

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning 741

for image recognition. In Proceedings of the IEEE Conference on 742

Computer Vision and Pattern Recognition, pages 770–778, 2016. 743

[4] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, 744

R. S. Zemel, and Y. Bengio. Show, attend and tell: Neural image 745

caption generation with visual attention. In ICML, volume 14, 746

pages 77–81, 2015. 747

[5] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact bilinear 748

pooling. In Proceedings of the IEEE Conference on Computer Vision 749

and Pattern Recognition, pages 317–326, 2016. 750

[6] J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical question-image 751

co-attention for visual question answering. In Advances In Neural 752

Information Processing Systems, pages 289–297, 2016. 753

[7] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zit- 754

nick, and D. Parikh. Vqa: Visual question answering. In Proceed- 755

ings of the IEEE International Conference on Computer Vision, pages 756

2425–2433, 2015. 757

[8] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum 758

learning. In Proceedings of the 26th annual international conference on 759

machine learning, pages 41–48. ACM, 2009. 760

[9] B. Settles. Active learning literature survey. University of Wisconsin, 761

Madison, 52(55-66):11, 2010. 762

[10] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Mak- 763

ing the v in vqa matter: Elevating the role of image understanding 764

in visual question answering. arXiv preprint arXiv:1612.00837, 765

2016. 766

[11] M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for 767

latent variable models. In Advances in Neural Information Processing 768

Systems, pages 1189–1197, 2010. 769

[12] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska. A survey 770

of actor-critic reinforcement learning: Standard and natural policy 771

gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part 772

C (Applications and Reviews), 42(6):1291–1307, 2012. 773

[13] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Learning to 774

compose neural networks for question answering. arXiv preprint 775

arXiv:1601.01705, 2016. 776

[14] D. Teney, P. Anderson, X. He, and A. V. Den Hengel. Tips and 777

tricks for visual question answering: Learnings from the 2017 778

challenge. computer vision and pattern recognition, 2018. 779

[15] L. Ma, Z. Lu, and H. Li. Learning to answer questions 780

from image using convolutional neural network. arXiv preprint 781

arXiv:1506.00333, 2015. 782

[16] C. Zhu, Y. Zhao, S. Huang, K. Tu, and Y. Ma. Structured attentions 783

for visual question answering. In Proc. IEEE Int. Conf. Comp. Vis, 784

volume 3, 2017. 785

[17] Y. Kim, C. Denton, L. Hoang, and A. M. Rush. Structured attention 786

networks. international conference on learning representations, 2017. 787

[18] B. Patro and V. P. Namboodiri. Differential attention for visual 788

question answering. In Proceedings of the IEEE Conference on 789

Computer Vision and Pattern Recognition, pages 7680–7688, 2018. 790

[19] H. Xu and K. Saenko. Ask, attend and answer: Exploring question- 791

guided spatial attention for visual question answering. european 792

conference on computer vision, pages 451–466, 2016. 793

[20] Q. Wu, P. Wang, C. Shen, A. Dick, and A. van den Hengel. 794

Ask me anything: Free-form visual question answering based 795

on knowledge from external sources. In Proceedings of the IEEE 796

Conference on Computer Vision and Pattern Recognition, pages 4622– 797

4630, 2016. 798

[21] P. Wang, Q. Wu, C. Shen, and A. v. d. Hengel. The vqa-machine: 799

Learning how to use existing vision algorithms to answer new 800

questions. arXiv preprint arXiv:1612.05386, 2016. 801

[22] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: towards 802

real-time object detection with region proposal networks. IEEE 803

transactions on pattern analysis and machine intelligence, 39(6):1137– 804

1149, 2017. 805

[23] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, 806

and L. Zhang. Bottom-up and top-down attention for image 807

captioning and visual question answering. In CVPR, volume 3, 808

page 6, 2018. 809

[24] Y. Jiang, V. Natarajan, X. Chen, M. Rohrbach, D. Batra, and 810

D. Parikh. Pythia v0. 1: the winning entry to the vqa challenge 811

2018. arXiv preprint arXiv:1807.09956, 2018. 812

[25] J.-H. Kim, S.-W. Lee, D. Kwak, M.-O. Heo, J. Kim, J.-W. Ha, and B.- 813

T. Zhang. Multimodal residual learning for visual qa. In Advances 814

in Neural Information Processing Systems, pages 361–369, 2016. 815

[26] J.-H. Kim, K.-W. On, J. Kim, J.-W. Ha, and B.-T. Zhang. 816

Hadamard product for low-rank bilinear pooling. arXiv preprint 817

arXiv:1610.04325, 2016. 818

[27] Z. Yu, J. Yu, J. Fan, and D. Tao. Multi-modal factorized bilinear 819

pooling with co-attention learning for visual question answering. 820



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2956699, IEEE
Transactions on Pattern Analysis and Machine Intelligence

13

In Proc. IEEE Int. Conf. Comp. Vis, volume 3, 2017.821

[28] J. Kim, K. W. On, W. Lim, J. Kim, J. Ha, and B. Zhang. Hadamard822

product for low-rank bilinear pooling. international conference on823

learning representations, 2017.824

[29] L. Jiang, D. Meng, S.-I. Yu, Z. Lan, S. Shan, and A. Hauptmann.825

Self-paced learning with diversity. In Advances in Neural Informa-826

tion Processing Systems, pages 2078–2086, 2014.827

[30] L. Jiang, D. Meng, Q. Zhao, S. Shan, and A. G. Hauptmann. Self-828

paced curriculum learning. In AAAI, volume 2, page 6, 2015.829

[31] D. D. Lewis and W. A. Gale. A sequential algorithm for training830

text classifiers. In Proceedings of the 17th annual international ACM831

SIGIR conference on Research and development in information retrieval,832

pages 3–12. Springer-Verlag New York, Inc., 1994.833

[32] B. Settles and M. Craven. An analysis of active learning strategies834

for sequence labeling tasks. In Proceedings of the conference on835

empirical methods in natural language processing, pages 1070–1079.836

Association for Computational Linguistics, 2008.837

[33] S. Tong and D. Koller. Support vector machine active learning838

with applications to text classification. Journal of machine learning839

research, 2(Nov):45–66, 2001.840

[34] A. Vlachos. Active learning with support vector machines. Master841

of Science School of Informatics University of Edinburgh, 2004.842

[35] I. Misra, R. B. Girshick, R. Fergus, M. Hebert, A. Gupta, and L. V.843

Der Maaten. Learning by asking questions. computer vision and844

pattern recognition, pages 11–20, 2018.845

[36] J. Johnson, B. Hariharan, L. V. Der Maaten, L. Feifei, C. L. Zitnick,846

and R. B. Girshick. Clevr: A diagnostic dataset for compositional847

language and elementary visual reasoning. computer vision and848

pattern recognition, pages 1988–1997, 2017.849

[37] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances850

in neural information processing systems, pages 1008–1014, 2000.851

[38] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau,852

A. Courville, and Y. Bengio. An actor-critic algorithm for sequence853

prediction. arXiv preprint arXiv:1607.07086, 2016.854

[39] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,855

D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep856

reinforcement learning. In International Conference on Machine857

Learning, pages 1928–1937, 2016.858

[40] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,859

and N. de Freitas. Sample efficient actor-critic with experience860

replay. arXiv preprint arXiv:1611.01224, 2016.861

[41] Y. Fan, F. Tian, T. Qin, J. Bian, and T. Liu. Learning what data to862

learn. arXiv: Learning, 2017.863

[42] P. Bachman, A. Sordoni, and A. Trischler. Learning algorithms for864

active learning. international conference on machine learning, pages865

301–310, 2017.866

[43] M. Liu, W. L. Buntine, and G. Haffari. Learning how to actively867

learn: A deep imitation learning approach. pages 1874–1883, 2018.868

[44] R. S. Sutton. Learning to predict by the methods of temporal869

differences. Machine Learning, 3(1):9–44, 1988.870

[45] D. Precup, R. S. Sutton, and S. P. Singh. Eligibility traces for off-871

policy policy evaluation. In Seventeenth International Conference on872

Machine Learning, pages 759–766, 2000.873

[46] Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, and J. Liang.874

Fine-tuning convolutional neural networks for biomedical image875

analysis: Actively and incrementally *. In The IEEE Conference on876

Computer Vision and Pattern Recognition, 2017.877

[47] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár,878

and C. L. Zitnick. Microsoft coco captions: Data collection and879

evaluation server. arXiv preprint arXiv:1504.00325, 2015.880

[48] A. Agrawal, D. Batra, D. Parikh, and A. Kembhavi. Don’t just881

assume; look and answer: Overcoming priors for visual question882

answering. computer vision and pattern recognition, pages 4971–4980,883

2018.884

[49] D. Kingma and J. Ba. Adam: A method for stochastic optimization.885

arXiv preprint arXiv:1412.6980, 2014.886

[50] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,887

S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, et al. Visual genome:888

Connecting language and vision using crowdsourced dense image889

annotations. arXiv preprint arXiv:1602.07332, 2016.890

Yiyi Zhou received the BS and MS degrees from Dalian Jiaotong891

University of China and Durham University of UK in 2012 and 2014,892

respectively. He is currently pursuing the Ph.D. degree with Xiamen893

University. His research interests include visual question answering,894

multi-modal learning and social network embedding.895

Rongrong Ji is currently a Professor, Director of the Intelligent Multime- 896

dia Technology Laboratory, and Dean Assistant of the School of Informa- 897

tion Science and Engineering, Xiamen University, Xiamen, China. His 898

work mainly focuses on innovative technologies for multimedia signal 899

processing, computer vision, and pattern recognition, with over 100 900

papers published in international journals and conferences. Prof. Ji is 901

a Member of ACM. He was the recipient of the ACM Multimedia Best 902

Paper Award and Best Thesis Award of Harbin Institute of Technology. 903

He serves as Associate/Guest Editor for international journals and mag- 904

azines like Neurocomputing, Signal Processing, Multimedia Tools and 905

Applications, the IEEE MultiMedia Magazine, and Multimedia Systems. 906

He also serves as program committee member for several tier-1 inter- 907

national conferences. 908

Xiaoshuai Sun Xiaoshuai Sun is an assistant professor of School 909

of Computer Science and Technology, Harbin Institute of Technology, 910

China. From Sep. 2015 to Dec. 2016, he has been working as a post- 911

doc research fellow with Prof. Heng Tao Shen at School of Information 912

Technology and Electrical Engineering, the University of Queensland, 913

Australia. He received his doctoral degree from Harbin Institute of Tech- 914

nology in January 2015 under the supervision of Prof. Hongxun Yao. 915

From September 2012 to June 2013, he worked as a research intern in 916

Microsoft Research Asia (MSRA) mentored by Dr. Xin-Jing Wang. His 917

current research interests include deep learning, computer vision and 918

pattern recognition, multimedia content analysis and retrieval. 919

Jinsong Su Jinsong Su was born in 1982. He received the Ph.D. degree 920

from the Chinese Academy of Sciences, Beijing, China. He is currently 921

an Associate Professor with Xiamen University, Xiamen, China. His 922

research interests include natural language processing and machine 923

translation. 924

Deyu Meng received his BA and MS degree in Applied Mathematics, 925

and Ph.D degree in Computer Science, all from Xi’an Jiaotong Univer- 926

sity. Currently he works for Xi’an Jiaotong University as an associate 927

professor. From August 2012 to July 2014, he took my two-year sab- 928

batical leave in Carnegie Mellon University. In August 2012 he joined 929

the Robotics Institute of School of Computer Science, working with Dr. 930

Fernando De la Torre, and in August 2012, he joined Language Tech- 931

nologies Institute of School of Computer Science at Carnegie Mellon 932

University, working with Dr. Alex Hauptmann. His research interests 933

include machine learning and its applications to multimedia content 934

analysis and computer vision. 935

Yue Gao Yue Gao (SM’14) received the B.S. degree from the Harbin 936

Institute of Technology, Harbin, China, and the M.E. and Ph.D. degrees 937

from Tsinghua University, Beijing, China. 938

Chunhua Shen is a Professor at School of Computer Science, Univer- 939

sity of Adelaide. He is a Project Leader and Chief Investigator at the 940

Australian Research Council Centre of Excellence for Robotic Vision 941

(ACRV), for which he leads the project on machine learning for robotic vi- 942

sion. Before he moved to Adelaide as a Senior Lecturer, he was with the 943

computer vision program at NICTA (National ICT Australia), Canberra 944

Research Laboratory for about six years. His research interests are 945

in the intersection of computer vision and statistical machine learning. 946

He studied at Nanjing University, at Australian National University, and 947

received his PhD degree from the University of Adelaide. From 2012 to 948

2016, he holds an Australian Research Council Future Fellowship. 949


