非酒精性脂肪性肝病无创性诊断方程的构建 **冯** 巩¹, 韩海静¹, 齐 雪¹, 弥 曼¹, 田秋梅², 牛春燕², (1 西安医学院, 西安 710021; 2 西安医学院第一附属医院, 西安 710077; 3 厦门大学附属翔安医院 消化内科, 福建 厦门 361101) 摘要:目的 利用与非酒精性脂肪性肝病(NAFLD) 相关的常用临床及实验室指标 构建无创性诊断方程 并评估该方程对 NAFLD 的预测及诊断价值。方法 选取 2016 年 11 月 -2017 年 11 月西安医学院第一附属医院诊断为 NAFLD 患者 127 例和健康对照者 30 例 记录研究对象的性别、年龄、BMI、病史、ALT、AST、GGT、尿素氮(BUN)、尿酸(UA)、血肌酐(Cr)、TC、TG、HDL、LDL、糖化血红蛋白(HBA1c)、游离脂肪酸(FFA)、空腹血糖(FPG)、空腹胰岛素(FINS)、PLT、超声检查结果和 FibroScan 的检查结果等数据。计量资料组间比较采用 t 检验 相关性使用 Pearson 相关性分析 回归方程的构建使用多元线性回归方程模型 构建受试者工作特征曲线(ROC 曲线) 计算回归方程的敏感度和特异度。结果 与脂肪肝相关的指标包括 BMI(r=0.308 P=0.005)、ALT(r=0.379 P<0.001)、AST (r=0.318 P=0.004)、GGT(r=0.293 P=0.009)、UA(r=0.244 P=0.033)、FFA(r=0.249 P=0.030);对 Fibroscan 的受控衰减参数(CAP)相关指标进行多重回归分析 CAP 的回归模型具有统计学意义(F=11.113 P<0.001) 其校正决定系数 $R^2=0.274$ 说明回归引起的变异在总变异中所占的比率为 27.4% 对 CAP 影响最大的指标是 ALT($\beta=0.358$ P=0.001) 其次是 BMI($\beta=0.258$ P=0.012<0.05) 构建的回归方程为 CAP = 113.163 + 0.252 × ALT + 6.316 × BMI 诊断方程的 ROC 曲线下面积为 0.927 灵敏度为 87.68% 特异度为 90.00% ρ ut - off 值为 277.67 ρ 0.001 具有较高的诊断效能。结论 与目前已有的诊断方程相比 此方程的 ROC 曲线下面积、特异度、灵敏度均较佳 计算方法最为简单 实用性及可操作性强 有利于便捷筛查出早期 NAFLD 提高自我干预意识 进一步降低 NAFLD 的全球危害和疾病进程。可以作为一个诊断 NAFLD 的方程 供临床参考及推广。 关键词: 非酒精性脂肪性肝病; 诊断; 预测 中图分类号: R575.5 文献标志码: A 文章编号: 1001 - 5256(2018) 06 - 1264 - 04 #### Establishment of a noninvasive diagnosis equation for nonalcoholic fatty liver disease FENG Gong, HAN Haijing, QI Xue, et al. (Xi'an Medical University, Xi'an 710021, China) Abstract: Objective To establish a noninvasive diagnosis equation for nonalcoholic fatty liver disease (NAFLD) using related clinical and laboratory markers, and to investigate the value of this equation in the prediction and diagnosis of NAFLD. Methods A total of 127 patients who were diagnosed with NAFLD in The First Affiliated Hospital of Xi'an Medical University from November 2016 to November 2017 were enrolled , and 30 healthy individuals were enrolled as healthy controls. Related data were recorded , including sex , age , body mass index (BMI), medical history, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma – glutamyl transpeptidase (GGT) blood urea nitrogen (BUN), uric acid (UA), serum creatinine (SCr), total cholesterol (TC), triglyceride (TG), high - density lipoprotein (HDL), low-density lipoprotein (LDL), HbAlc, free fatty acid (FFA), fasting blood glucose (FPG), fasting insulin (FINS), platelet count (PLT), and results of ultrasound examination and FibroScan examination. The t – test was used for comparison of continuous data between groups; the Pearson correlation analysis was performed to investigate correlation; the multiple linear regression equation model was used to establish the regression equation; the receiver operating characteristic (ROC) curve was plotted to calculate the sensitivity and specificity of this regression equation. **Results** The indices related to fatty liver included BMI (r = 0.308, P = 0.005), ALT (r = 0.379, P < 0.001), AST (r = 0.318, P = 0.004), GGT (r = 0.293, P = 0.009), UA (r = 0.244, P = 0.033), and FFA (r = 0.249, P = 0.009) 0.030). A multiple regression analysis was performed for controlled attenuation parameter (CAP) on FibroScan; the regression model of CAP had statistical significance (F = 11.113, P < 0.001), and its adjusted determination coefficient R^2 was 0.274, suggesting that the variation caused by regression accounted for 27.4% of all variations; ALT had the greatest influence on CAP ($\beta = 0.358$, P = 0.001), followed by BMI ($\beta = 0.258$, P = 0.012). The regression equation established was CAP = 113.163 + 0.252 × ALT + 6.316 × BMI. This diagnostic equation had an area under the ROC curve of 0.927, a sensitivity of 87.68%, and a specificity of 90.00%, at the cut-off value of doi: 10. 3969/j. issn. 1001 - 5256. 2018. 06. 026 收稿日期: 2018 - 02 - 06; 修回日期: 2018 - 03 - 06。 基金项目: 陕西省普通高等学校优势学科建设项目(陕教位[2014]3 号文件) 作者简介: 冯巩(1992-) 男 主要从事消化内科常见病的诊疗研究。 通信作者: 弥曼 电子信箱: 853002274@ qq. com; 牛春燕 电子信箱: nchy69@ 163. com。 277.67 (P < 0.001), suggesting that it had high diagnostic efficiency. **Conclusion** Compared with current diagnosis equations, the equation established in this study has a larger area under the ROC curve and higher specificity and sensitivity. It also has a simple calculation method and strong practicability and operability and helps to screen out early NAFLD and improve the awareness of self – intervention, which can further reduce the harm and delay the progression of NAFLD in the world. Key words: nonalcoholic fatty liver disease; diagnosis; forecasting 非酒精性脂肪性肝病(NAFLD)是一个重大的公共健康问题 正在危害全世界大约 10 亿人口^[1]。在以西方饮食模式占优势的社会中,NAFLD 被认为是最常见的肝病之一^[2-3],且正在成为我国的第一大肝病。NAFLD 可以从单纯肝细胞脂肪变性进展为非酒精性脂肪性肝炎(NASH),继而可进展为肝硬化甚至肝癌^[4]。因 NAFLD 的发病机制至今仍未完全明确,故对于NAFLD 仍缺乏公认的诊断标准及确切有效的疗法^[5]。 目前对于 NAFLD 的诊断,包括肝脏脂肪变性、NASH 及肝纤维化。肝活组织检查仍然是诊断 NAFLD 的唯一可靠的金标准,并能确定肝损伤的严重程度、纤维化的发生和结构重塑,而且也可提供重要的预后和疗效评估依据,然而其成本高、侵入性、风险性、并发症、依从性低、取样误差等限制了临床应用^[6]。影像学检查因费用较高也并非首选的诊断方法。因此,寻找诊断 NAFLD 的高特异度和灵敏度的方法势在必行。当前 NAFLD 的血清生物标志物成为研究热点。关于无创性诊断标准的研究,以及以 FibroScan 为参照的无创性研究尚为少见。本研究拟以临床常用检查指标为基础,构建一种无创性诊断方程,并评估该方程对 NAFLD 的诊断价值。 ## 1 资料与方法 1.1 研究对象 选取 2016 年 11 月 -2017 年 11 月 西安医学院第一附属医院进行检查的 157 例患者 ,以 FibroScan 为参照标准 ,结合相关检查指标 ,分为 NAFLD 组(127 例) 及对照组(30 例)。 NAFLD 的诊断参照中华医学会制订的《非酒精性脂肪性肝病诊疗指南(2010 年修订版) $\mathbb{N}^{[7]}$,排除自身免疫、药物、酒精、病毒等具有明确病因引起的脂肪肝。 收集所有研究对象的基本信息和完整的人体学指标、生化和影像学指标。 ### 1.2 研究方法 1.2.1 临床及实验室检查 收集研究对象的临床及实验室检查数据,包括:性别、年龄、BMI、病史、ALT、AST、GGT、尿素氮(BUN)、尿酸(uric acid ,UA)、血肌酐(Cr)、TC、TG、HDL、LDL、糖化血红蛋白(haemoglobin A1C, HBA1c)、游离脂肪酸(free fatty acids ,FFA)、空腹血糖(FPG)、空腹胰岛素(fasting insulin ,FINS)、PLT、超声及 FibroScan 检查结果。 - 1.2.2 FibroScan 扫描 使用 Echosens 公司生产的 FibroScan 502 机型进行肝脏脂肪变定量检测,以受 控衰减参数(controlled attenuation parameter ,CAP) 表示。根据 Lédinghen 等^[8]的研究结果,将 CAP 诊断脂肪肝分为 4 级(S0、S1、S2、S3)。正常肝脏: CAP < 238 db/m 对应脂肪含量 $\leq 10\%$; 轻度脂肪肝: 238 db/m \leq CAP < 259 db/m 对应脂肪含量 $11\% \sim 33\%$; 中度脂肪肝: 259 db/m 对应脂肪含量 $11\% \sim 33\%$; 中度脂肪肝: 259 db/m 对应脂肪含量 $34\% \sim 66\%$; 重度脂肪肝: CAP \geq 292 db/m 对应脂肪含量 $\geq 67\%$ 。在参考国内外文献的基础上,最终将研究中FibroScan 的 CAP 值定义为 238 db/m,作为本研究中脂肪肝和非脂肪肝的临界值。 - 1.3 统计学方法 采用 SPSS24.0 统计学软件进行数据录入及分析。计量资料采用均数 \pm 标准差(\overline{x} $\pm s$) 表示 组间比较采用 t 检验; 相关性使用 Pearson 相关性分析 回归方程的构建使用多元线性回归方程模型 构建受试者工作特征曲线(ROC 曲线),计算回归方程的敏感度和特异度。P < 0.05 为差异具有统计学意义。 - 2.1 一般资料 两组人群在年龄、性别方面的差异均无统计学意义(P 值均 > 0.05),具有可比性。2组的一般资料详见表 1。 - 2.2 与脂肪含量相关的指标 FibroScan 的 CAP 值可以认为是脂肪含量的间接反映 结果提示与 CAP 值相关的指标有: BMI(r=0.308,P=0.005)、ALT(r=0.379,P<0.001)、AST(r=0.318,P=0.004)、GGT(r=0.293,P=0.009)、UA(r=0.244,P=0.033)、FFA(r=0.249,P=0.030),上述指标与 CAP 均呈正相关,与脂肪肝相关指标从高到低依次为 ALT、AST、BMI、GGT、FFA、UA。在一定范围内,上述指标越高,说明脂肪含量越高,可进一步预示 NAFLD 的疾病风险程度越高。 - 2.3 回归方程的构建 通过回归分析,发现 AST、GGT、FFA、UA 指标的回归系数无统计学意义,结合相关指标的相关系数大小排序,最终拟构建 CAP,ALT,BMI 三者之间的回归方程。由于均为定量资料,故采用多元线性回归方程模型。对 Fibroscan 的 CAP 相关指标进行多重回归分析的结果显示: CAP的回归模型 表 1 两组人群的一般资料 | 指标 | NAFLD 组
(n = 127) | 对照组
(n =30) | t 值 | P 值 | |---------------------------|------------------------------|----------------------|--------|---------| | ALT(U/L) | 76.480 ±61.494 | 34.790 ± 19.104 | -6.106 | < 0.001 | | AST(U/L) | 51.182 ± 35.279 | 28.000 ± 9.950 | -6.131 | < 0.001 | | GGT(U/L) | 73.081 ± 116.637 | 40.158 ± 30.262 | -1.221 | 0.008 | | BUN(mmol/L) | 4.670 ± 1.299 | 4.344 ± 1.020 | -1.019 | 0.310 | | UA(µmol/L) | 417.434 ± 116.624 | 342.111 ±92.034 | -2.629 | 0.009 | | Cr(µmol/L) | 68.909 ± 14.823 | 71.761 ± 11.004 | 0.787 | 0.433 | | TC(mmol/L) | 8.079 ± 37.281 | 4.778 ± 1.401 | -0.375 | 0.709 | | TG(mmol/L) | 2.529 ± 1.604 | 1.701 ± 0.784 | -1.740 | 0.086 | | HDL(mmol/L) | 1.069 ± 0.2413 | 1.048 ± 0.178 | -0.341 | 0.734 | | LDL(mmol/L) | 7.642 ± 39.650 | 2.979 ± 1.025 | -0.498 | 0.620 | | HBA1c(%) | 6.043 ± 1.366 | 5.513 ± 0.764 | -1.471 | 0.144 | | FFA(mmol/L) | 0.520 ± 0.214 | 0.414 ± 0.219 | -1.456 | 0.150 | | FPG(mmol/L) | 6.149 ± 2.333 | 5.339 ± 0.702 | -1.138 | 0.258 | | FINS(mIU/L) | 10.275 ± 5.882 | 6.692 ± 3.103 | -1.787 | 0.078 | | PLT(10 ⁹ / L) | 196.623 ±68.154 | 169.714 ± 23.150 | -0.426 | 0.041 | | BMI(kg/m ²) | 27.130 ± 2.771 | 23.219 ± 2.252 | -5.884 | < 0.001 | 具有统计学意义(F=11.113,P<0.001),其校正决定系数 $R^2=0.274$,说明回归引起的变异在总变异中所占的比率为 27.4%,对 CAP 影响最大的指标是 ALT($\beta=0.358$,P=0.001),其次是 BMI($\beta=0.258$, P=0.012<0.05),由此,得出 CAP 的回归方程为: CAP=113.163+0.252×ALT+6.316×BMI。 2.4 ROC 曲线分析 以 FibroScan 的 CAP 值作为诊断指标 将 CAP = 238 作为判定是否有脂肪肝的临界值 对上述诊断方程进行价值验证 构建 ROC 曲线,结果显示: ROC 曲线下面积为 0.927 ,灵敏度为87.68% ,特异度为 90.00% ,cut – off 值为 277.67 ,P < 0.001 ,即数值高于 277.67 的可以判定为脂肪肝,数值低于 277.67 的为非脂肪肝患者(图 1)。 ## 3 讨论 FibroScan 最早于 2001 年被法国 Echosens 公司研 发,并应用干欧洲,10年后被美国食品药品监督管理 局(FDA) 批准用于肝脏疾病的无创诊断评估^[9]。在 2017 年亚太工作组 NAFLD 指南中指出 超声检查是 一种合理的筛查工具 但它不能检查出轻微的脂肪肝 病变 瞬时弹性成像亦可用于 NAFLD 的筛查 CAP 对 轻度脂肪肝病变(>10%) 敏感度高 结果实时可得, 费用低,对脂肪变可分级(S0、S1、S2、S3)。其中S1级 的 ROC 曲线下面积为 0.80 ~ 0.91 截断值为 215 ~ 283 db/m; S2 级的 ROC 曲线下面积为 0.81 ~ 0.95, 截断值为 252 ~ 259 db/m; S3 级的 ROC 曲线下面积 为 0.66 ~ 0.93 ,截断值为 292 ~ 296 db/m^[10]。FibroScan 目前在无创性诊断中应用较多,被欧洲肝病 学会临床实践指南、亚太地区慢性乙型肝炎管理共 识、中国慢性乙型肝炎防治指南、美国肝病学会肝细 **胞癌诊疗指南以及《中国脂肪性肝病诊疗规范化专家** 建议》推荐应用。在临床实际工作中,NAFLD 活组织 检查病例难以大量获得,基于国内外研究现状,本研 究选用该项检查作为参照标准,通过人体学指标结合 简单的血清学指标,重新构建诊断方程,进一步促进 NAFLD 的无创诊断研究。常规腹部超声在肝脂肪含 量低于30%时,诊断的灵敏度差[11]而且容易受到检 查者的主观判断影响 因此本次研究未选用超声检查 结果作为参照标准。 虽然大多数 NAFLD 处于稳定状态,少部分可进 展成 NASH、肝纤维化、肝硬化,但是基于全球 NAFLD 患者众多,倘若能早期发现单纯性脂肪性肝病,继而 进行早期自我干预(如饮食或运动管理) 提高预警意 识 将进一步降低 NAFLD 的全球危害和疾病进程。 倘若发展至 NASH 阶段、肝功能发生明显损伤阶段再 采取干预措施,则医疗成本和干预效果将达不到最 佳。对于筛查出早期 NAFLD 血清诊断方程在价格上 明显低于影像学诊断技术(如 B 超 ,FibroScan) ,可作 为早期筛查的参考。此外 FibroScan 的诊断准确度仍 然受到检查者主观判断标准、设备分辨率等方面的影 响 以及受检者肥胖程度、皮下脂肪厚度、探头具体所 处部位(肋间隙)等因素的影响,而生化结果则易获 得、受影响因素较少。因此 结合生化学结果 构建一 种客观、有实用价值的 NAFLD 诊断模型是本研究的 目的。 目前已有的 NAFLD 无创诊断方程主要包括 3 种,第一种为脂肪肝指数[12],灵敏度为61%,特异度 为86% ROC 曲线下面积为85%; 第二种为 NAFLD 肝脏脂肪得分[13],灵敏度为86%,特异度为71%, ROC 曲线下面积为 86%: 第三种为 SteatoTest^[14] ,灵 敏度为 38% ,特异度为 81% ,ROC 曲线下面积为 80%。而本研究通过回归分析 发现与 CAP 值相关性 较强的指标为 ALT、AST、BMI、GGT、FFA、UA ,以此为 基础得到诊断方程 CAP = 113. 163 + 0. 252 × ALT + 6.316 × BMI ,所构建的 ROC 曲线下面积为 0.927 ,灵 敏度为87.68% 特异度为90.00% 均高于上述3种 方程。ROC 曲线下面积高 提示可信度强; 特异度高, 表明甄别出非 NAFLD 患者的价值高; 灵敏度高,说明 筛检出脂肪肝患者的效能也比较高。就涉及的方程指 标内容和计算公式而言 在上述方程种也是最简单、最 经济、可获得性最好的 在临床上容易推广 实用性强。 通过简单的人体学指标 BMI 和血清学指标 ALT 即可 诊断出患者是否存在脂肪肝 这将为患者显著降低医 疗费用 避免不必要的检查。而诊断方程中的数据来 源于临床实验室检查的结果 更加客观。 本研究也有不足之处。首先脂肪肝的诊断标准是基于 FibroScan 的 CAP 值 而不是以金标准肝活组织检查做参照 在准确性上稍显不足; 其次 本研究所纳入的样本量有限 有待于进一步多中心、大样本的临床实验去进一步验证; 另外对于严重肝损伤 ALT 极高的患者 ,本方程也不适用; 最后 ,关于 FibroScan 的 CAP 诊断脂肪肝的临界值尚未统一 ,虽然相差不大 ,但依然存在少量误差 期待未来 FibroScan 的 CAP 临界值达到统一标准 本研究的结果也能得到验证和推广。 #### 参考文献: - LOOMBA R. Role of imaging based biomarkers in NAFLD: recent advances in clinical application and future research directions J Hepatol , 2018 , 68(2): 296 304. - [2] HARDY T, OAKLEY F, ANSTEE QM, et al. Nonalcoholic fatty liver disease: Pathogenesis and disease spectrum [J]. Annu Rev Pathol, 2016, 11(1): 451-496. - [3] COBBINA E, AKHLAGHI F. Non alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters [J]. Drug Metab Rev, 2017, 49(2): 197. - [4] CHARYTONIUK T, DRYGALSKI K, KONSTANTYNOWICZNOWICKA K, et al. Alternative treatment methods attenuate the development of NAFLD: A review of resveratrol molecular mechanisms and clinical trials [J]. Nutrition, 2017, 34: 108 - 117. 胆病杂志,2017,33(12):2433-2438. - [5] FENG G, NIU CY. Advances in the treatment of nonalcoholic fatty liver disease [J]. J Clin Hepatol, 2017, 33(12): 2433 2438. (in Chinese) 冯巩,牛春燕. 非酒精性脂肪性肝病的治疗进展[J]. 临床肝 - [6] SUMIDA Y, NAKAJIMA A, ITOH Y. Limitations of liver biopsy and non – invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. World J Gastro– enterol, 2014, 20(2): 475 – 485. - [7] Fatty liver and alcoholic liver disease group of the Chinese Medical Association for Hepatology. Guidelines for the diagnosis and treatment of nonalcoholic fatty liver disease (Revised Edition 2010) [J]. J Clin Hepatol, 2010, 26(2): 120-124. (in Chinese) 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南(2010年修订版) [J]. 临床肝胆病杂志, 2010, 26(2): 120-124. - [8] LÉDINGHEN VD, WONG GL, VERGNIOL J, et al. Controlled attenuation parameter for the diagnosis of steatosis in non alcoholic fatty liver disease [J]. J Gastroenterol Hepatol, 2016, 31(4): 848 855. - [9] TAPPER EB, CASTERA L, AFDHAL NH. FibroScan (vibration controlled transient elastography): Where does it stand in the united states practice [J]. Clin Gastroenterol Hepatol, 2015, 13(1): 27 36. - [10] WONG VW, CHAN WK, CHITTURI S, et al. The Asia Pacific Working Party on Nonalcoholic Fatty Liver Disease Guidelines 2017 Part 1: Definition, risk factors and assessment [J]. J Gastroenterol Hepatol, 2018, 33(1): 70 – 85. - [11] ZHANG SS, LI JX. Consensus opinion of experts on diagnosis and treatment of non-alcoholic fatty liver disease (2017) [J]. J Tradit Chin Med, 2017, 58(19): 1706-1710. (in Chinese) 张声生,李军祥. 非酒精性脂肪性肝病中医诊疗专家共识意见(2017) [J]. 中医杂志, 2017, 58(19): 1706-1710. - [12] BEDOGNI G , BELLENTANI S , MIGLIOLI L , et al. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population [J]. BMC Gastroenterol , 2006 , 6: 33. - [13] KOTRONEN A , PELTONEN M , HAKKARAINEN A , et al. Prediction of non alcoholic fatty liver disease and liver fat using metabolic and genetic factors [J]. Gastroenterology , 2009 , 137(3): 865. - [14] BRUNT EM, WONG VW, NOBILI V, et al. Nonalcoholic fatty liver disease [J]. Nature Reviews Disease Primers, 2015, 1: 15080. 引证本文: FENG G, HAN H, QI X, et al. Establishment of a non-invasive diagnosis equation for nonalcoholic fatty liver disease [J]. J Clin Hepatol, 2018, 34(6): 1264-1267. (in Chinese) 冯巩,韩海静,齐雪,等. 非酒精性脂肪性肝病无创性诊断方程的构建[J]. 临床肝胆病杂志, 2018, 34(6): 1264-1267. (本文编辑: 王亚南)