车载甲醇在线重整制氢高性能铜锌铝 催化剂的研究

黄 骁 李水荣 浦云川 王 夺 叶跃元 刘运权^{*}
(厦门大学能源学院 福建 厦门 361102)

摘要:为了扩展传统铜锌铝催化剂在车载甲醇自热式重整(ATRM)制氢过程中的应用,采用反向共沉淀法制备了不同铜锌 摩尔比的铜锌铝氧化物催化剂,并与工业铜锌铝催化剂 SCST-401 进行比较。结果发现,该类催化剂的性能随着铜锌摩尔比的 增加而提高。其中,Cu₃₀Zn₁₀Al 催化剂在 200~600℃范围内具有最佳的 ATRM 反应性能,而不含铜的催化剂 Zn₄₀Al 在 500~ 600℃高温下具有与 Cu₂₀Zn₂₀Al 和 Cu₁₀Zn₃₀Al 相近的活性。此外,Cu₃₀Zn₁₀Al 催化剂与商用催化剂 SCST-401 的甲醇转化率也 相近,但前者铜的摩尔分数却远小于后者,且性能更稳定。在 200~300℃的低温下其 ATRM 反应表现出更高的活性。

关键词: 车载制氢; 甲醇; 自热式重整; 铜锌铝催化剂; 稳定性 中图分类号: 0643.3 文献标志码: A 文章编号: 0253-4320(2018) 11-0115-06 DOI: 10.16606/j.cnki.issn 0253-4320.2018.11.025

Study on CuZnAl-oxides catalysts for on-board hydrogen production by methanol reforming

HUANG Xiao, LI Shui-rong, PU Yun-chuan, WANG Duo, YE Yue-yuan, LIU Yun-quan^{*} (College of Energy, Xiamen University, Xiamen 361102, China)

Abstract: To study the feasibility of using conventional CuZnAl-oxides as catalysts for on-board hydrogen production by autothermal reforming of methanol (ATRM) ,CuZnAl-oxides catalyst with different copper-zinc ratios are prepared via reverse co-precipitation method. The samples are compared with commercial CuZnAl catalyst SCST-401. It is found that the performance of such type of catalysts improves with the increased mole ratio of copper to zinc. The prepared $Cu_{30}Zn_{10}Al$ catalyst shows the best performance for ATRM in the range of 200-600°C ,while $Zn_{40}Al$ catalyst is found to have the similar activity with those of $Cu_{20}Zn_{20}Al$ and $Cu_{10}Zn_{30}Al$ at the temperature from 500°C to 600°C. In addition , $Cu_{30}Zn_{10}Al$ catalyst can bring about similar methanol conversion with that brought by commercial catalyst SCST-401 that has a much higher copper content than $Cu_{30}Zn_{10}Al$. $Cu_{30}Zn_{10}Al$ exhibits more stable than SCST-401. Furthermore , $Cu_{30}Zn_{10}Al$ shows higher activity for ATRM at low temperature from 200°C to 300°C.

Key words: onboard hydrogen production; methanol; autothermal reforming; CuZnAl catalyst; stability

燃油发动机尾气中常含有未燃烧尽的烃 (HC)、一氧化碳(CO)、碳烟颗粒(PM)以及氮氧化 物(NO_x)等有害物质,是主要的城市空气污染源之 一,严重威胁着城市环境和居民的健康。尽管这两 年新能源汽车的研发与推广得到政策的大力支持, 但燃油发动机仍是绝大部分汽车动力的主要配置, 因此其尾气污染物的控制仍是最受关切的问题之 一^[1]。使用混合燃料是从源头上降低燃油发动机 特别是柴油发动机尾气污染物的排放,同时提高燃 油的燃烧效率,降低油耗的最重要的策略之一^[2]。 氢气相比于其他燃料具有质量最轻、点火所需能量 最小、火焰传播速度最快、着火界限宽、淬熄距离短 等优点 混入汽油或柴油中,可显著改善其燃烧性 能 提高燃油效率并降低其尾气中污染物的质量分 数。因而,掺氢燃烧已经受到了大量的关注^[3-5]。 运行测试结果显示,在掺氢燃烧的条件下,汽油或柴 油发动机的热效率可显著提高15%~30%^[6-8]。尽 管掺氢发动机所需的氢气量较小,但车载储氢的方 案目前仍面临基础设施严重缺乏及大容量存储技术 难度大、存储成本居高不下等挑战。

甲醇重整制氢的反应条件较温和,可在较低的 反应温度下高效产氢。同时,将甲醇重整催化剂放 置于发动机尾气管中,还可以充分利用尾气的余热 来提供重整反应所需的热量,从而进一步提升系统

收稿日期: 2018-03-08; 修回日期: 2018-09-12

基金项目: 国家自然科学基金(NSFC-21276214); 福建省科技厅重点项目(2016H6024); 福建省自然科学基金(2015J05033)

作者简介:黄骁(1991-) ,男 硕士研究生 研究方向为节能减排 xmu_huangxiao@163.com; 刘运权(1963-) ,男 ,博士 教授 研究方向为生物质热 化学转化、节能减排等 通讯联系人 ,yq_liu@ xmu.edu.cn。

的总能量效率^[9-10]。因此 ,甲醇重整制氢在车载供 氢方案选择上具备较好的应用潜力。

甲醇可以通过热裂解(TD)、部分氧化(POX)、 蒸汽重整(SR)以及自热式重整(ATR)等反应过程 产生氢气 其反应方程式如下:

$$CH_{3}OH = CO + 2H_{2} \quad \Delta H^{0} = 90 \text{ kJ/mol} \quad (1)$$

$$CH_{2}OH + 0.5O_{2} = 2H_{2} + CO_{2}$$

 $\Delta H^0 = -192 \text{ kJ/mol}$ (2) CH₂OH + H₂O === 3H₂ + CO₂ $\Delta H^0 = 50 \text{ kJ/mol}$ (3)

 $CH_3OH + (1 - 2\alpha) H_2O + \alpha O_2 = (3 - 2\alpha) H_2 + CO_2$

 $\Delta H^0 = - 415.6\alpha + 49 \text{ kJ/mol}$ (4)

综合考虑实际应用的场景,在发动机启动阶段 采用 ATR 或 POX,而随着发动机尾气温度的提升, 适当调节 α,降低 O₂供给并提高供水量,可实现尾 气热量的最大化利用,并有助于提高反应的氢气选 择性,将是比较可行的技术方案。

工业上甲醇重整制氢常采用蒸汽重整的方式, 以尽可能提高产氢量。经过多年研究与实践, CuZnAl 基催化剂由于成本低、活性高,在众多催化 剂中脱颖而出,被认为是针对甲醇蒸汽重整(SR)反 应过程的最有效的催化剂组合^[11-16]。CuZnAl 基催 化剂也常被用于 ATR 过程并展示出良好的催化反 应活性。Shen 等^[17]使用浸渍、共沉淀和水热合成 等多种方法制备了 CuZnAl 基催化剂,结果发现共 沉淀法制备的 CuZnAl 基催化剂显示出很高的甲醇 转化率和氢气产率,但是对于 CuZnAl 基催化剂用 于柴油机尾气供热下的在线自热重整制氢却较少有 研究^[17-18]。柴油机尾气的温度范围较宽,随运行情 况的不同,其尾气温度可在 200~600℃之间变 化^[19-21] 这对催化剂的活性和热稳定性都提出了新

(上接第 114 页)

- [13] Sen A ,Pramanik P.A chemical synthetic route for the preparation of fine-grained metal molybdate powders [J]. Materials Letters, 2002 52(1-2):140-146.
- [14] Gouveia A F Sczancoski J C ,Ferrer M M ,et al. Experimental and theoretical investigations of electronic structure and photolumines– cence properties of β-Ag₂MoO₄ microcrystals. [J]. Inorganic Chemistry 2014 53(11): 5589–99.
- [15] Chen N ,Gao Y Zhang M et al. Electrochemical properties and sodium-storage mechanism of Ag₂Mo₂O₇ as the anode material for sodiumion batteries. [J]. Chemistry 2016 ,22(21): 7248-7254.
- [16] Fabbro M T Saliby C Rios L R et al.Identifying and rationalizing the morphological structural and optical properties of β-Ag₂MoO₄ microcrystals and the formation process of Ag nanoparticles on their surfaces: Combining experimental data and first-principles calculations [J].Science & Technology of Advanced Materials ,2015 ,16 (6): 065002.

的挑战。

因此,笔者采用共沉淀法合成了具有不同组成 的 CuZnAl 基催化剂,分别在模拟柴油机尾气温度 条件(200~600℃)下对其 ATR 反应活性和稳定性 进行研究。

1 实验部分

1.1 材料与试剂

三水硝酸铜、六水硝酸锌、九水硝酸铝等,均为 分析纯,上海麦克林生化科技有限公司生产;氢氧化 钠、无水乙醇,分析纯,国药集团化学试剂有限公司 生产;高纯氢气、氮气、氩气、氧气,纯度99.999%, 福建南安成功气体有限公司生产;商业甲醇重整制 氢 CuZnAl 基催化剂(SCST-401),四川蜀泰化工科 技有限公司生产。

1.2 催化剂的制备

采用反向共沉淀法制备一系列 CuZnAl 基催化 剂,金属盐为硝酸铜 [Cu(NO₃)₂•3H₂O]、硝酸锌 [Zn(NO₃)₂•6H₂O]、硝酸铝 [Al(NO₃)₃•9H₂],沉淀 剂为 NaOH 溶液,表面活性剂为聚乙二醇(Mn 500、 Mn 2000),350℃ 焙烧 4 h(升温速率为 2℃/min)。 CuZnAl 基催化剂及其金属元素摩尔组成见表 1。

表1 CuZnAl 基催化剂及其金属元素摩尔组成

样品	Cu	Zn	Al
Cu ₄₀ Al	40.0	0.0	60.0
$\mathrm{Cu}_{30}\mathrm{Zn}_{10}\mathrm{Al}$	30.0	10.0	60.0
$\mathrm{Cu}_{20}\mathrm{Zn}_{20}\mathrm{Al}$	20.0	20.0	60.0
$\mathrm{Cu}_{10}\mathrm{Zn}_{30}\mathrm{Al}$	10.0	30.0	60.0
${\rm Zn}_{40}{\rm Al}$	0.0	40.0	60.0
SCST-401	N/A	N/A	N/A

[17] Li Z Q ,Chen X T ,Xue Z L.Microwave-assisted hydrothermal synthesis of cube-like Ag-Ag₂MoO₄ with visible-light photocatalytic activity [J].Science China Chemistry 2013 56(4):443-450.

- [18] 沈敏.新型钼酸盐晶体的可控制备及其光催化性能研究[D].武 汉:华中农业大学 2011.
- [19] Ryu J H ,Yoon J W ,Shim K B.Microwave-assisted synthesis of Ba-MoO₄ nanocrystallites by a citrate complex method and their anisotropic aggregation [J]. Journal of Alloys & Compounds ,2006 ,413 (1): 144-149.
- [20] Wang X W ,Wang N Z Zhang O Z et al. Tissue deposition of silver following topical use of silver sulphadiazine in extensive burns [J]. Burns Including Thermal Injury ,1985 ,11(3): 197-201.
- [21] Jiang P , Li S Y , Xie S S , et al. Machinable long PVP-stabilized silver nanowires [J]. Chemistry 2004 ,10(19):4817-4820.
- [22] Rahman M F , Wang J , Patterson T A *et al*. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles [J]. Toxicology Letters 2009, 187(1): 15-21.

1.3 催化剂表征

XRF 分析使用德国布鲁克 S8 Tiger 高端波长色 散型 X 射线荧光光谱仪。EDS 分析在 Zeiss 公司生 产的 SUPRA 55 扫描电子显微镜上进行。 N_2 等温 吸附在美国 Micromerities 公司生产的 Tristar ASAP 3020 上进行。XRD 分析在德国布鲁克公司生产的 D8 ADVANCE 型 X 射线衍射仪上进行,Cu 靶;除 Zn₄₀Al 外,各样品在测试前分别使用 10% H₂/N₂ (50 mL/min)在 300℃还原 1.5 h。程序升温还原过 程(TPR) 在美国麦克默瑞提克仪器有限公司生产的 AutoChem II 2920 型化学吸附仪上进行。

1.4 催化剂测试实验

甲醇自热式重整反应催化剂性能测试在厦门百 得沃智能科技有限公司生产的 ICES-HNP2P2R6F 型催化剂评价系统上进行,其结构如图 1 所示。该 装置由物料供给系统、反应器系统、控制系统和产物 气体分析系统4 部分组成。物料供给系统分为进气 系统和进液系统2 部分。

图 1 催化剂装置示意图

物料 摩尔比固定为 $n(O_2):n(CH_3OH):$ $n(H_2O) = 0.2:1:1.5$,甲醇水溶液 $[n(CH_3OH):$ $n(H_2O) = 1:1.5$]的进料速度为 0.05 mL/min,氧气 进料速度为 3.6 mL/min。此外,在反应过程中还加 入 50 mL/min 的氮气作为稀释气体,有利于反应中 各物质的定量计算。催化剂装载量为 200 mg,质量 空速(*WHSV*)为 32 h⁻¹。催化剂在每次反应前需进 行还原预处理 2 h,预处理气为 10% 的氢氮混合气, 在设定的温度稳定还原 30 min 后开始进样检测。

2 结果与讨论

2.1 催化剂表征结果与讨论

利用 XRF 对 CuZnAl 基催化剂元素质量分数进 行分析 利用 EDS 对 CuZnAl 基催化剂的元素相对 组成进行分析 ,结果如表 2 所示。整体上来说 ,各金 属元素的原子组成十分接近理论组成 ,其中各催化 剂的 Cu 元素质量分数略高于理论值 ,而 Al 元素的 质量分数略低于理论值 ,说明还是有极少量的 Al 元 素发生了损失。

表 2 CuZnAl 基催化剂的 XRF 与 EDS 元素分析

样品	理论质量 占比/%		XRF 分析 结果/%			EDS 分析 结果/%			
	Cu	Zn	Al	Cu	Zn	Al	Cu	Zn	Al
Zn ₄₀ Al	_	41.4	25.7	_	41.5	20.4	_	42.1	57.9
$\mathrm{Cu}_{10}\mathrm{Zn}_{30}\mathrm{Al}$	10.1	31.2	25.7	11.0	31.3	19.6	9.3	31.3	59.4
$\mathrm{Cu}_{20}\mathrm{Zn}_{20}\mathrm{Al}$	20.2	20.8	25.8	19.6	19.0	18.3	22.5	20.9	56.6
$\mathrm{Cu}_{30}\mathrm{Zn}_{10}\mathrm{Al}$	30.4	10.5	25.9	29.8	9.9	18.6	34.6	11.3	54.1
Cu ₄₀ Al	40.7		26.0	42.0		22.1	44.5		55.5
SCST-401	_	_	_	45.2	10.0	20.0	75.3	15.2	9.6

甲醇重整制氢商业催化剂 SCST-401 的元素组 成分析结果如表 2 所示。从 XRF 的分析结果可以 看到,该催化剂的 Cu 质量分数达到 45.2%,高于本 研究中所合成的催化剂的 Cu 质量分数(11.0%~ 42.0%); Zn 的质量分数较低,只有 10.0%; Al 的质 量分数则与所制备的 CuZnAl 基催化剂的实际质量 十分接近。EDS 的分析结果中,Cu、Zn、Al 各元素在 SCST-401 中的原子组成则与在所制备的 CuZnAl 基催化剂中的原子组成相差较大,其中 Cu 元素原 子质量分数显著提高,而 Al 元素的相对原子质量分 数则显著下降。考虑到 XRF 和 EDS 测试深度的不 同,说明本研究工作中采用的共沉淀法可以实现各 元素在体相和表面的均匀分布,而 SCST-401 催化 剂则采用了浸渍或特殊的处理方法,促使 Cu 组分 主要分散在催化剂表面。

催化剂的比表面积及孔结构采用 N_2 等温吸附 法进行分析 结果如表 3 所示。

表3 CuZnAl 基催化剂的理化性质

样品	S_{BET} /	孔容/	平均孔	$d_{ m Cu}$ /	$d_{ m ZnO}$ /
	(m ⁻ •g ⁻)	(cm •g)	1도/ 미미	nm	nm
Zn ₄₀ Al	38	0.26	43	N/A	15.7
$Cu_{10}Zn_{30}Al$	70	0.11	7.2	10.3	9.1
$\mathrm{Cu}_{20}\mathrm{Zn}_{20}\mathrm{Al}$	56	0.23	17.5	12.3	6.3
$\mathrm{Cu}_{30}\mathrm{Zn}_{10}\mathrm{Al}$	66	0.32	21	13.6	3.1
$\mathrm{Cu}_{40}\mathrm{Al}$	127	0.65	28	14.7	N/A
SCST-401	104	0.27	10.2	13.0	6.6
$\rm Used{-}Cu_{30}Zn_{10}Al$	41.4	0.23	21.62	24. 2	3.4
Used-SCST-401	8.9	0.17	60.3	50.6	46.8

由表 3 可以看出, 合成的 CuZnAl 基催化剂中, 随着 Cu 摩尔分数的增加, 孔容和平均孔径都有所

增大; 比表面积则受到孔容和孔径同时增加的双重 影响 在 Zn 存在的情况下变化不大,而 Cu₄₀Al 的比 表面积则相比显著增加,达到 127 m²/g,甚至高于 SCST-401 催化剂的比表面积。结果表明,Zn 的存 在对于催化剂的孔结构和比表面积影响较大,整体 上使得催化剂比表面积下降。

还原后的 CuZnAl 基催化剂 XRD 图谱如图 2 所 示。当催化剂中不含 Cu 时,Zn₄₀ Al 催化剂在 2 θ = 31.8、34.3、36.5°等位置附近检测到较强的衍射峰。 随着 Zn 摩尔分数的减小,这些特征峰强度逐渐减 弱。随着 Cu 的加入,CuZnAl 基催化剂分别在 2 θ = 43.5、50.4、74.0°等位置附近检测到新的衍射峰。 随着 Cu 摩尔分数的增加,这些衍射峰强度逐渐增 强。对于 Cu₄₀ Al 催化剂,除了金属 Cu 外,在 2 θ = 36.6、42.6、61.3°及 2 θ = 35.7、38.9、49.2°等位置还 分别检测到新的衍射峰。分别基于 Cu(111) 和 Zn (101) 晶面采用谢乐(Scherrer) 公式对其晶体平均 粒径进行计算,结果如表 3 所示。各催化剂中,随着 Cu 或 Zn 摩尔分数的增加,金属 Cu 和 ZnO 的平均 晶体粒径都随之增大。相比较而言,Cu 晶粒大小变 化幅度较小,而 ZnO 晶粒大小变化相对较大。

4-Cu₂₀Zn₂₀Al; 5-Cu₁₀Zn₅₀Al; 6-Zn₄₀Al

图 2 还原后的 CuZnAl 基催化剂的 XRD 图谱

采用 H₂ 程序升温还原(H₂-TPR)的方法对 CuZnAl 基催化剂的还原性能进行分析,结果如图 3 所示。由图 3 可以看出,当 CuZnAl 基催化剂中含有 Cu 时,各催化剂在 100~300℃范围内均检测到较明 显的还原峰。其中,Cu₄₀ Al 样品分别在 147℃ 和 174℃检测到 1 个较强的还原峰和 1 个肩峰。前者 (低温还原峰)跨度较宽,可归结于高度分散的 CuO 完成 Cu²⁺→Cu⁺→Cu⁰ 的还原^[38],后者(高温还原 峰)较小,则是与 Al₂O₃ 有较强相互作用的 CuO 的 还原引起的。随着 Zn 的加入,CuO 的还原峰整体 向高温方向移动,并且 2 个还原峰的相对大小也发 生了显著的变化,低温还原峰面积显著减小但仍基 本保持跨度较宽的形状,而高温还原峰面积显著增 大,说明 ZnO 的存在改变了 CuO 的分散性和还原 性^[22]。SCST-401 样品的还原峰与 Cu₄₀ Al 样品类 似,但高温还原峰的强度要大一些,也是受 Zn 的影 响所致。相比较而言,上述现象说明 Zn 在 SCST-401 样品中的分散状态与其在本研究中所合成的 CuZnAl 基催化剂中的分散状态不同,与 CuO 的相 互作用强度也有所不同。

图 3 CuZnAl 基催化剂的 TPR 谱图

2.2 催化剂活性测试结果与讨论

在 200~600℃ 范围内对所合成的 CuZnAl 基催 化剂及商业 SCST-401 催化剂的甲醇重整制氢反应 性能进行考察 其甲醇转化率随温度的变化情况如 图 4 所示。作为空白对照试验 将 200 mg 的石英砂 作为催化剂替代品放入反应管中,在相同条件下进 行反应。由图4可以看出,当系统中无催化剂存在 时,在反应条件下,甲醇转化率极低,在600℃也只 有18%。加入 CuZnAl 基催化剂后,甲醇重整的反 应活性显著提升。相比较而言 "Cu 的低温反应活性 较高 ,Cu₁₀ Al 催化剂在 250℃下的甲醇转化率即可 达到 66%,并在 350℃之后接近 100%。Zn40 Al 催化 剂在较高温度下对甲醇重整也有较好的反应活性 , 其甲醇转化率在 400~600℃ 之间显著提升,在 600℃也达到 77%。当同时含有 Cu 和 Zn 时,催化 剂在低温区的反应活性随铜锌摩尔比的增大而有所 提高。250℃和 300℃下催化剂的铜锌摩尔比对甲 醇转化率的影响如图 5 所示。由图 5 可以看出 ,无 论是 250℃或 300℃,甲醇的转化率均随着铜锌摩尔 比的增加而增加。其中 ,Cu₃₀Zn₁₀Al 催化剂的低温 反应活性最好,在200℃即可达到46%。商业催化 剂(SCST-401) 的活性与 Cu₃₀Zn₁₀Al 相似 ,但商业催 化剂中铜元素的质量分数高达 45.2%,比 Cu₃₀Zn₁₀ Al 催化剂的 29.8%高,其表面的 Cu 元素组成高摩 尔分数也达到了 75.3%,远高于 Cu₃₀ Zn₁₀ Al 的 34.6%。这说明所合成的 Cu₃₀Zn₁₀Al 相比于商业催 化剂 其 Cu 元素组分的反应活性更高。

1—Cu₄₀Al; 2—Cu₃₀Zn₁₀Al; 3—Cu₂₀Zn₂₀Al; 4—Cu₁₀Zn₅₀Al; 5—Zn₄₀Al; 6—SCST-401; 7—空白

图 4 合成的催化剂以及商业催化剂的 甲醇转化率对比

1—250℃; 2—300℃

图 5 250℃和 300℃下催化剂的铜锌摩尔比 对甲醇转化率的影响

各催化剂在 200~600[°]C 范围内的产氢量如 表 4 所示。由表 4 可以看出,催化剂的产氢量与 甲醇转化率的变化趋势一致,即甲醇转化率越高, 氢气产率越高。 Zn_{40} Al 催化剂只在高温区(400~ 600[°]C)有较大的氢气产率,在 600[°]C 下的氢气产率 为 84.6 μ mol_H,/(g_{cat} s)。

表 4	催化剂的产氢量	$[\mu mol_{H_a} / (g_{cat})]$
-----	---------	-------------------------------

温度/								
°C	Cu ₄₀ Al	$\mathrm{Cu}_{30}\mathrm{Zn}_{10}\mathrm{Al}$	$\mathrm{Cu}_{20}\mathrm{Zn}_{20}\mathrm{Al}$	$\mathrm{Cu}_{10}\mathrm{Zn}_{30}\mathrm{Al}$	$\mathrm{Zn}_{40}\mathrm{Al}$	SCST-401		
200	0	65.39	23.65	4. 10	0	81.94		
250	89. 83	93.03	72.67	18.20	0	79.58		
300	107.18	108.93	103.66	70.06	0	104.82		
350	117.32	116.01	111. 25	87.46	0	101.76		
400	123.65	117.15	100. 38	91.11	29.18	97.06		
450	115.65	117.49	94. 55	87.98	82.16	111.78		
500	112.72	116.44	85.89	85.20	81.33	109.91		
550	111.43	114. 29	83. 91	86.64	90.29	106.11		
600	110.38	105.44	81.85	84. 94	84.64	106.67		

2.3 催化剂稳定性测试结果及讨论

为了进一步研究铜锌铝催化剂在车载甲醇制氢 系统中的适用性,笔者还对催化剂的稳定性进行了 测试。选取了 Cu₃₀Zn₁₀ Al 催化剂,并与商业催化剂 SCST-401 进行了对比。催化剂稳定性的测试方法 借鉴福特公司对柴油机尾气处理催化剂的方法 将 催化剂置于 600℃反应 10 h 随后降到 200℃再反应 5 h 相当于行驶 4 000 km 的情况模拟^[23]。

稳定性测试后的催化剂性质如表 3 所示。从表 3 中可以看出 , $Cu_{30}Zn_{10}Al$ 与商业催化剂 SCST-401 的性质均发生了不同程度的变化 ,其中商业催化剂 SCST-401 的变化较为明显。经过稳定性测试后 , 商业催化剂 SCST-401 的孔容从测试前的 0.27 cm³/g下降到 0.17 cm³/g ,平均孔径从 10.2 nm 上 涨到 60.3 nm ,而比表面积从 104.0 m²/g 下降到 8.9 m²/g ,下降幅度超过 90%。而 $Cu_{30}Zn_{10}Al$ 的孔 容下降了 0.09 cm³/g ,平均孔径仅扩大了 1.0 nm , 而比表面积更是稳定在 41.4 m²/g ,仅相对下降 37%。结果表明 ,商业催化剂 SCST-401 在稳定性 测试后孔道结构发生了崩塌性破坏 ,而 $Cu_{30}Zn_{10}Al$ 的结构在稳定性测试后基本维持原有结构。

Cu₃₀Zn₁₀Al 与商业催化剂 SCST-401 稳定性测 试前后的 XRD 衍射对比图如图 6 所示。从图 6 中 可以看出 商业催化剂 SCST-401 的铜单质峰在稳 定性测试后强度显著提高,而 Cu₃₀Zn₁₀Al 的铜单质 峰宽仅仅稍微变窄一些。谢乐公式计算结果(表3) 显示 SCST-401 的铜颗粒大小从测试前的 13.0 nm 上涨到测试后的 50.6 nm,上涨幅度达 289%,而 Cu₃₀ Zn₁₀ Al 的铜颗粒大小从 13.6 nm 上涨到 24.2 nm ,仅相对上涨了 78% ,表明 Cu₃₀Zn₁₀Al 催化 剂中 Cu 金属颗粒的烧结程度远小于 SCST-401 中 Cu 金属颗粒的抗烧结能力。在氧化锌晶体尺寸方 面 商业催化剂 SCST-401 的氧化锌晶体尺寸从稳 定性测试前的 6.6 nm 上涨到 46.8 nm ,而 Cu₃₀Zn₁₀Al 从 3.1 nm 仅仅上涨到 3.4 nm ,几乎没有变化,说明 Cu₃₀Zn₁₀Al 催化剂中 ZnO 颗粒的烧结程度也要远小 于 SCST-401 中 ZnO 颗粒的抗烧结能力。分析结果 表明 相对于商业催化剂 SCST-401 ,Cu₃₀Zn₁₀ Al 催

1—Cu₃₀Zn₁₀Al; 2—老化后-Cu₃₀Zn₁₀Al; 3—SCST-401; 4—老化后 SCST-401

图 6 Cu₃₀Zn₁₀Al 和 SCST-401 催化剂 老化前后的 XRD 图 化剂具备更强抗烧结能力,显示出在利用柴油机尾 气余热进行甲醇重整制氢的巨大潜力。

3 结论

(1)当铜锌摩尔比从0增加到3时,催化剂的 铜颗粒缓慢变大,氧化锌颗粒逐渐减小,催化剂的甲 醇重整制氢性能也越来越好。

(2) 当 Cu₄₀ Al 中 10% 的铜被替换成锌变成 Cu₃₀Zn₁₀Al 时,其比表面积从 127.4 m²/g 下降到 65.8 m²/g,但 Cu₃₀Zn₁₀Al 在 200~250℃的低温范围 内的活性要好于 Cu₄₀Al。因此,氧化锌的加入会降 低铜铝催化剂的比表面积,但是会更好地分散铜颗 粒,降低反应的启动温度。

(3) 稳定性测试表明 ,SCS-401 经稳定性测试 后其结构遭到了破坏 ,而 Cu₃₀Zn₁₀Al 催化剂具备良 好的抗烧结能力。

(4) 采用共沉淀法制备的 CuZnAl 基催化剂可 适用于较宽温度范围(200~600℃) 的甲醇自热式重 整反应。

参考文献

- [1] 李云燕 葛畅.我国三大区域 PM2.5 源解析研究进展 [J].现代 化工 2017, 37(104):1-5,7.
- [2] Mwangi J K ,Lee W J ,Chang Y C *et al*. An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines [J]. Applied Energy 2015 ,159: 214-36.
- [3] Hairuddin A A, Talal Y, Andrew W P. A review of hydrogen and natural gas addition in diesel HCCI engines [J]. Renewable Sustainable Energy Reviews 2014 32: 739-61.
- [4] Alrazen H A ,Abu Talib A R ,Adnan R *et al*. A review of the effect of hydrogen addition on the performance and emissions of the compression-ignition engine [J]. Renewable Sustainable Energy Reviews 2016 54: 785-96.
- [5] Fayaz H Saidur R , Razali N *et al*. An overview of hydrogen as a vehicle fuel [J]. Renewable Sustainable Energy Reviews ,2012 ,16 (8):5511-5528.
- [6] Szwaja S, Grab-Rogalinski K. Hydrogen combustion in a compression ignition diesel engine [J].International Journal of Hydrogen Energy 2009 34(10):4413-4421.
- [7] Tyagi R K ,Ranjan R.Effect of hydrogen and gasoline fuel blend on the performance of SI engine [J].Journal of Petroleum Technology and Alternative Fuels 2013 A(7): 125-130.
- [8] Saravanan N Nagarajan G Sanjay G et al. Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode [J].Fuel 2008, 87: 3591-3599.
- [9] Wang F ,Li L ,Liu Y. Effects of flow and operation parameters on methanol steam reforming in tube reactor heated by simulated waste

heat [J].International Journal of Hydrogen Energy 2017 42(42): 26270-26276.

- [10] 徐正好,常健 杨宗栋,等.余热制氢发动机的开发研究[J].小型内燃机与摩托车,2003,32(3):11-13.
- [11] Sá S Silva H ,Brandão L et al. Catalysts for methanol steam reforming-a review [J]. Applied Catalysis B: Environmental ,2010 ,99 (1-2):43-57.
- [12] Huang G ,Liaw H J ,Jhang C J ,et al.Steam reforming of methanol over CuO/ZnO/CeO₂/ZrO₂/Al₂O₃ catalysts [J]. Applied Catalysis A 2009 358(1):7-12.
- [13] Li Y F ,Dong X F ,Lin W M.Effects of ZrO₂-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol [J]. International Journal of Hydrogen Energy 2004 29(15): 1617–1621.
- [14] Lindström B, Pettersson L J, Menon P G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ -alumina for methanol reforming for fuel cell vehicles [J]. Applied Catalysis A, 2002 234(1-2):111-125.
- [15] Behrens M ,Kasatkin I ,Kühl S et al. Phase-pure Cu Zn ,Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al₂O₃ catalysts[J].Chemistry of Materials 2010 22(2): 386-397.
- [16] Kühl S Friedrich M ,Armbrüster M ,et al.Cu Zn ,Al layered double hydroxides as precursors for copper catalysts in methanol steam reforming e pH-controlled synthesis by micro emulsion technique [J]. Chemistry of Materials 2012 22: 9632–9638.
- [17] Shen J P Song C. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H₂ production for fuel cells [J].Catalysis Today 2002 ,77(1-2): 89-98.
- [18] Liang Y ,Zhao M ,Wang J ,et al. Enhanced activity and stability of the monolithic Pt/SiO₂-Al₂O₃ diesel oxidation catalyst promoted by suitable tungsten additive amount [J].Journal of Industrial and Engineering Chemistry 2017 54: 359-368.
- [19] Zhang-Steenwinkel Y van der Zande LM ,Castricum H L et al. Microwave-assisted in-situ regeneration of a perovskite coated diesel soot filter [J]. Chemical Engineering Science ,2005 ,60(3): 797– 804.
- [20] Fino D ,Specchia V. Open issues in oxidative catalysis for diesel particulate abatement [J]. Powder Technology ,2008 ,180(1-2): 64-73.
- [21] Turco M , Bagnasco G , Cammarano C , et al. Cu/ZnO/Al₂O₃ catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix [J]. Applied Catalysis B ,2007 ,77 (1-2): 46-57.
- [22] Turco M , Bagnasco G , Cammarano C , et al. Cu/ZnO/Al₂O₃ catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix [J]. Applied Catalysis B ,2007 ,77 (1-2): 46-57.
- [23] 刘向民.车用柴油机氧化催化器快速老化试验方法的研究[D]. 武汉:武汉理工大学 2003.■