

[Article]

doi: 10.3866/PKU.WHXB201708071

www.whxb.pku.edu.cn

符合独立五元环规则的 C100(417)Cl28 形成机理的密度泛函理论研究

尹凡华,谭凯*

厦门大学化学化工学院,福建省理论与计算重点实验室,福建 厦门 361005

摘要: 实验上捕获到 C₁₀₀(417)Cl₂₈,但其形成机理仍不清楚。本文采用密度泛函理论(DFT)方法研究了生成 C₁₀₀(417)Cl₂₈ 的反应机理,考虑了可能的经 Stone-Wales (SW)转化、直接氯化和来自于骨架转变等反应路径。结果表明: C₁₀₀(417)Cl₂₈ 形成的最主要来源是通过 C₁₀₂(603)骨架转变,即经历氯化、C₂失去和 SW 转变而来。该结果能很好解释实验结果,对富勒 烯氯化物的合成提供了理论依据。

关键词:密度泛函理论;富勒烯氯化物;骨架转变 中图分类号:O641

Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule $C_{100}(417)CI_{28}$

YIN Fanhua, TAN Kai*

Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China.

Abstract: A new isolated-pentagon-rule (IPR) $C_{100}(417)CI_{28}$ has been captured, but its formation mechanism is still unclear. Herein we have used density functional theory (DFT) to study the possible reaction pathways, including Stone-Wales (SW) transformation, direct chlorination, and skeletal transformation for $C_{100}(417)$. The calculated results show that the major source of $C_{100}(417)$ is the skeletal transformation of $C_{102}(603)$, including chloride formation, C_2 elimination, and SW transformation. The results satisfactorily explained the experimental observations, and provide useful guidance for the synthesis of fullerene chlorides.

Key Words: Density functional theory; Fullerene chloride; Skeletal transformation

1 引言

氯化是捕获、分离富勒烯的有效手段,从 C₅₀Cl₁₀¹的合成分离以来,相当多的氯化富勒烯被 陆续制备和表征。电弧放电法是制备富勒烯氯化 物的主要手段。一种是在电弧放电的条件下引进 活性反应气体,如 CCl₄或 Cl₂,然后通过高效液 相色谱多次分离,从而得到富勒烯氯化物²。另一 种是电弧放电之后,初步分离出碳灰,然后与 VCl₄ 或 SbCl₅在 300–400 ℃下反应获得。目前分离捕 获并明确表征的最大富勒烯是 C_{108} ³。迄今为止, 获得的富勒烯氯化物可分为三类:第一类,富勒 烯母笼是热力学稳定的符合独立五元环规则(IPR) 富勒烯,如 $C_{90}(46)Cl_{32}$ ⁴, $C_{96}(145)Cl_{22}$ ⁵, $C_{108}(1771)$ Cl_{12} ³等等。第二类,富勒烯母笼是 non-IPR 富勒 烯,是由其他相对稳定的碳笼氯化中发生 Stone-Wales (SW)转变⁶而来(SW转变如图 1c 中所 示,由一对五元环和一对六元环围绕的 C-C 键发 生 90°的旋转后,五元环与六元环的相对位置发生

Received: June 28, 2017; Revised: July 31, 2017; Accepted: August 4, 2017; Published on Web: August 7, 2017.

Corresponding author. Email: ktan@xmu.edu.cn; Tel: +86-592-2182826. The project was supported by the National Natural Science Foundation of China (21573182).

国家自然科学基金(21573182)资助项目

© Editorial office of Acta Physico-Chimica Sinica

了改变),如^{#18917}C₇₆Cl₂₄^{7,8},^{#39173}C₈₂Cl₂₈⁹, ^{#283794}C₁₀₂Cl₂₀¹⁰。第三类,富勒烯母笼不是经典富 勒烯,它是通过碳笼经获得/失去C₂片段而形成, 如C₈₈(NC)Cl₂₂¹¹和C₉₈(NC)Cl₂₆(NC表示含一个七 元环的非经典富勒烯)。

Yang 等人通过低温氯化反应,相继分离并表 征了 $C_{100}(18)Cl_{28/30}$, $C_{100}(417)Cl_{28}$, $C_{100}(425)Cl_{22}$ 和 $C_{100}(NC)Cl_{18/22}$ 以及 $C_{98}(NC)Cl_{26}^{12}$ 。 $C_{100}(18)$ 和 $C_{100}(425)$ 富勒烯的获得很容易理解,过去的理论 计算 ^{13,14}都显示它们是较稳定的 IPR 富勒烯,但 是 $C_{100}(417)$ 的获得令人意外。PM3 的计算 ¹³表明 它的能量比最稳定的 $C_{100}(449)$ 高出 78.2 kJ·mol⁻¹, 依据波尔兹曼分布推测其丰度是很低的。另外, Yang 等人实验细节显示如果仅用 C_{100} 碳灰氯化得 不到 $C_{100}(417)Cl_{28}$ 产物,实验中是使用 C_{98} 、 C_{100} 和 C_{102} 碳灰混合物。众所周知,富勒烯的生长过 程存在 SW 转变和 C_2 得失 ^{15–17}的骨架转变。在低 温氯化的条件下,骨架转变也能发生 ^{11,18–20}, Yang 等认为 C₉₈(NC)Cl₂₆就是 C₁₀₀(417)Cl₂₈ 失去 C₂碎片 而形成的。依据富勒烯生长道路, C₁₀₀(417)Cl₂₈ 形成的几种可能途径见图 1。C₁₀₀(417)Cl₂₈ 是由其 它稳定 IPR C₁₀₀碳笼加氯而发生 SW⁶转变而得到 的?或者是由其它碳数富勒烯骨架转变而来?它 真正的生成机理是如何的呢?这些问题还没有人 进行过理论上的探讨。因而本文将使用 DFT 方法 对 C₁₀₀(417)及其氯化物进行计算研究,探索其生 成过程不同的反应路径。这些研究将会对为富勒 烯的形成机理提供重要线索,为实验工作提供理 论解释。

2 模型与计算方法

对于富勒烯 C₁₀₀, 经典异构体数为 285913 个, 其中满足 IPR 的异构体数为 450 个 ²¹。我们考虑 IPR C₁₀₀(417)富勒烯相对稳定性,对富勒烯 C₁₀₀ 的 450 个 异 构 体 进 行 了 密 度 泛 函 理 论 B3LYP/6-31G*²² 水平的几何结构优化计算,并在

图 1 (a) C100(417)骨架转变示意图; (b) C100(417)Cl28 四条可能生成途径; (c)碳笼 C100(445)通过 C100(419) 转变到 C100(417)的拓扑关系

Fig.1 (a) Skeletal transformation of $C_{100}(417)$; (b) four possible routes to $C_{100}(417)Cl_{28}$; (c) reconstruction of a skeletal transformation of $C_{100}(445)$ into $C_{100}(417)$ via $C_{100}(419)$.

The pentagons and hexagons near the rotated C-C bond are shown in green and red, respectively. color online.

相同基组水平下进行了频率计算。对实验上获得 能量比 IPR C₁₀₀(417)低且能发生 SW 转变成它的 6 个异构体考察温度对异构体相对含量的影响。考 察了 C₁₀₀的异构体之间 SW 转变,进一步考虑氯 化后的 SW 转变和骨架转变。理论计算所得各过 渡态均有唯一虚频,通过内禀反应坐标(IRC)²³ 计 算和频率振动分析进一步确认了过渡态的合理 性。由于富勒烯氯化后具有太多的可能结构,我 们未考虑氯重排的情况,仅用实验获得的氯化富 勒烯结构进行研究。所有的计算采用 Gaussian 09²⁴ 软件包下进行。

3 结果与讨论

3.1 C₁₀₀的 450个 IPR 异构体稳定性

IPR C₁₀₀ 在 B3LYP/6-31G*水平上进行几何优 化的结果列在表 1 中,包含排序、相对能量(ΔE)、 最高占据分子轨道(HOMO)和最低未占据分子轨 道(LUMO)之间的能量间隙(gaps)。我们只列出相 对能量在 40 kJ·mol⁻¹ 以内的计算结果以及 C₁₀₀(419)和 C₁₀₀(417),完全结果可见附表 S1(Supporting Information)。计算显示 C₁₀₀(449)是 最稳定的异构体。这与过去的 PM3^{13,14},AM1²⁵ 以及 PBE1PBE/6-311G*²⁶ 计算结果是一样的。特 别是 B3LYP/6-31G*与 PBE1PBE/6-311G*计算的 最稳定的前 5 个异构体能量排名完全一致。 B3LYP/6-31G*计算结果表明C₁₀₀(417)比最稳定的 C₁₀₀(449)高出 71.97 kJ·mol⁻¹。通过 SW 转变为 C₁₀₀(417) 且稳定性比 C₁₀₀(417)好的富勒烯是 C₁₀₀(445)和 C₁₀₀(419),这两种异构体比最稳定的 C₁₀₀(449)分别高出 33.89 和 55.87 kJ·mol⁻¹。

3.2 温度-相对浓度关系

虽然以上计算的相对能量能够大致描述分子的稳定性,但是不能够提供异构体相对浓度或含量的信息。富勒烯是电弧放电的环境下形成的,必须考虑温度效应。我们进行了谐和振动频率分析,在优化好的结构的振动频率基础上获得转动-振动配分函数,各异构体的相对含量 w_i可通过下列方程式估算得到。其中 q_i为配分函数,ΔH_{0,i}为异构体的基态能量,**R**为气体常数,**T**为绝对温度:

$$w_{i} = \frac{q_{i} \exp[-\Delta H_{0,i}^{0} / (RT)]}{\sum_{j=1}^{m} q_{j} \exp[-\Delta H_{0,j}^{0} / (RT)]}$$

因此我们选取了最稳定异构体 C₁₀₀(449)和 C₁₀₀(18)、C₁₀₀(425)、C₁₀₀(417)、C₁₀₀(382)、C₁₀₀(445) 和 C₁₀₀(419),基于以上平衡统计热力学原理²⁷绘 制了相应的温度–相对浓度曲线(如图 2 所示)。从

表 1 C₁₀₀ IPR 异构体的相对能量(*E*_r 单位 kJ·mol⁻¹)与 HOMO-LUMO 能隙(*E*_{gap} 单位 eV) Table 1 Relative energies (*E*_r in kJ·mol⁻¹) of the C₁₀₀ IPR fullerene isomers and HOMO-LUMO gap (*E*_{gap} in eV).

Rank	FM:Sym	$E_{\rm r}$	$E_{\rm gap}$	Rank	FM:Sym	Er	$E_{\rm gap}$
1	449:D ₂	0.00	1.20	19	321:T	31.47	0.80
2	425:C1	2.93	1.32	20	441:C1	31.58	0.74
3	$442:C_2$	5.72	1.20	21	$383:C_1$	32.35	1.32
4	$173:C_1$	9.74	1.09	22	$216:C_1$	32.63	1.42
5	$440:C_2$	10.83	1.19	23	$424:C_1$	33.03	1.33
6	$426:C_1$	17.40	1.30	24	432:D ₂	33.04	1.43
7	$448:C_2$	18.30	1.01	25	357:C1	33.73	0.92
8	$382:C_1$	19.41	1.35	26	445:D ₂	33.89	1.53
9	$253:C_1$	22.54	0.99	27	$414:C_{s}$	35.86	1.26
10	$95:C_1$	22.54	1.39	28	$254:C_1$	35.88	0.98
11	$427:C_1$	24.41	1.05	29	$71:C_1$	36.06	1.28
12	$384:C_1$	24,88	1.28	30	412:C ₁	36.94	1.07
13	$248:C_1$	28.45	1.14	31	431:D ₂	37.19	1.46
14	$303:C_1$	28.63	1.33	32	344:C ₁	37.47	1.29
15	$232:C_1$	30.58	1.34	33	$260:C_1$	37.86	1.01
16	$174:C_2$	30.83	0.86	34	323:C1	38.47	1.00
17	$18:C_2$	30.95	1.87	73	419:C ₁	55.87	1.74
18	$380:C_1$	31.31	1.05	126	$417:C_{2v}$	71.97	1.85

FM: sym, fullerene number: symmetry.

图 2 可以看出, 在温度升高时, 尽管 C₁₀₀(449)仍 处于主导地位, 但是相对含量逐渐下降。 C₁₀₀(382)、C₁₀₀(445)、C₁₀₀(419)和 C₁₀₀(417)的含量 逐渐升高。C₁₀₀(445)、C₁₀₀(419)和 C₁₀₀(417)在温度 达到 1500 K 时, 其相对含量分别只有 1.17%, 0.42%和 0.1%。这说明 C₁₀₀(445)和 C₁₀₀(419)在 C₁₀₀ 碳 灰中丰度要高于 C₁₀₀(417), 因而存在着 C₁₀₀(445)和 C₁₀₀(419)氯化经过 SW 转变为 C₁₀₀(417)氯化物的可能。

3.3 通过 Stone-Wales 转变生成 C100(417)

为了考查 C₁₀₀(445)和 C₁₀₀(419)富勒烯氯化物 通过 SW 转变生成 C₁₀₀(417),构造了 C₁₀₀(445)Cl₂₈ 和 C₁₀₀(419)Cl₂₈,前者进行一次 SW 转变变为后 者,再进行一次 SW 转变为最终实验上获得的产 物,见图 3。计算结果显示从 C₁₀₀(445)Cl₂₈ 到 $C_{100}(419)Cl_{28}$ 的 SW 转变活化能是 258.58 kJ·mol⁻¹;从 $C_{100}(419)Cl_{28}$ 发生第二次 SW 转变成 $C_{100}(417)Cl_{28}$ 时,活化能是 262.44 kJ·mol⁻¹。对于 相反的过程,SW 转变活化能要大。即 SW 转变过 程是放热的,是能量有利的过程。相比较空笼的 SW 转变, $C_{100}(445)$ 到 $C_{100}(419)$ 转化的活化能是 625.22 kJ·mol⁻¹;当发生第二次 SW 转变时,活化 能是 579.87 kJ·mol⁻¹。这与过去计算富勒烯空笼发 生 SW 转变所需的能量接近 ²⁸。显然,加氯之后 发生的 SW 转变所需的能量按近 ²⁸。显然,加氯之后 发生的 SW 转变所需的能量按近 ²⁸。显然,加氯之后 为 SW 转变所需的能量方下发生 SW 转变的报道是 一致的 ^{7,9,10}。因此,在不高的温度下, $C_{100}(445)$ 和 $C_{100}(419)$ 氯化后通过之间的 SW 转变可以转变 为 $C_{100}(417)Cl_{28}$ 产物。

3.4 不同碳数富勒烯间骨架转变为 C₁₀₀(417)

考虑相同碳数 C_{100} 富勒烯通过 SW 转变获得 $C_{100}(417)后,我们进一步探讨不同碳数富勒烯经过$ $骨架转变成为 <math>C_{100}(417)$ 的过程。选取实验上已经捕 获的 $C_{98}(NC)^{12}$ 为起始物与 C_2 发生加成反应,即可 生成 $C_{100}(417)$ 。图 4 所示无氯和有氯条件下从 $C_{98}(NC)$ 到 $C_{100}(417)$ 的过程的加成反应路径。无氯 条件下 $C_{98}(NC)$ 经过 C_2 插入的反应能全为 112.89 kJ·mol⁻¹,而相反过程反应能全非常高(690.80 kJ·mol⁻¹)。计算的反应吉布斯自由能为-577.97 kJ·mol⁻¹;有氯条件下 $C_{98}(NC)Cl_{26}$ 与 C_2Cl_2 反应生 成 $C_{100}(417)Cl_{28}$ 需要克服的能全更小(60.61 kJ· mol⁻¹),计算的反应吉布斯自由能为-583.48 kJ·mol⁻¹;两者都是放热过程。因而常温下七元环的 C_{98} 氯化物非常容易插入 C_2 碎片转变为 $C_{100}(417)$ 。

Energies are given in $kJ \cdot mol^{-1}$.

另一条骨架转变路径是 C₁₀₂ 失去 C₂碎片成为 C₁₀₀(417)。之前的实验报道了 C₁₀₂ 最稳定的碳笼 C₁₀₂(603)以 C₁₀₂(603)Cl_{18/20}的形式捕获。如图 5 所 示,C₁₀₂(603)进行 1 次 SW 旋转即可得到 C₁₀₂(580), 经过第二次 SW 旋转得到 C₁₀₂(582)。再经历 SW 旋转可以获得非经典七元环富勒烯 C₁₀₂(NC),这 个 C₁₀₂(NC)可以通过一次 SW 旋转获得另一个 C₁₀₂(NC)。最后通过失去 C₂碎片获得 C₁₀₀(417)。 通过计算它们空笼之间 SW 旋转能全,获得的 SW 旋转活化能垒在 610.49 到 642.61 kJ·mol⁻¹之间。 在氯化情况下从 C₁₀₂(603)Cl₁₈ 到 C₁₀₂(580)Cl₁₈ 的 SW 旋转活化能是 273.47 kJ·mol⁻¹。其它步骤 SW 旋转也大致相同。从空笼 C₁₀₂(603)到 C₁₀₂(NC),计 算的反应吉布斯自由能为 473.01 kJ·mol⁻¹,而 C₁₀₂(603)Cl₁₈ 到 C₁₀₂(NC)Cl₁₈,反应吉布斯自由能 为 197.13 kJ·mol⁻¹。

进一步我们考查 C₁₀₂(NC)Cl₃₀ 失去 C₂碎片生 成 C₁₀₀(417)Cl₂₈ 的反应。图 6 所示无氯和有氯条

Energy barrier are given in kJ·mol⁻¹. The energy barrier from $C_{102}(603)Cl_{18}$ to $C_{102}(NC)Cl_{18}$ (brackets).

Energies are given in kJ·mol⁻¹.

件下从 C₁₀₂(NC)到 C₁₀₀(417)的反应路径。无氯条 件下 C₁₀₂(NC)经过失去 C₂ 的反应能垒为 622.33 kJ·mol⁻¹,而其逆反应活化能垒相对小(283.67 kJ·mol⁻¹),计算的反应吉布斯自由能为 338.66 kJ·mol⁻¹,反应不能自发进行;而有氯条件下 C₁₀₂(NC)Cl₃₀失去 C₂Cl₂生成 C₁₀₀(417)Cl₂₈只需克 服 366.24 kJ·mol⁻¹的能垒,计算的反应吉布斯自 由能为 94.84 kJ·mol⁻¹。考虑在实验温度 628 K 时, 其计算的反应吉布斯自由能为-45.01 kJ·mol⁻¹,反 应能够自发进行。

4 结论

通过对 C₁₀₀(417)Cl₂₈ 的形成多种来源途径的 密度泛函理论研究,计算结果表明 C₁₀₀(417)Cl₂₈ 形成的最主要来源是通过 C₁₀₂(603)骨架转变,即 经历氯化、C₂失去和 SW 转变而来。这些结果很 好地解释了实验现象,揭示了富勒烯衍生物新的 形成机理。

Supporting Information: available free of charge *via* the internet at http://www.whxb.pku.edu.cn.

References

 Xie, S. Y.; Gao, F.; Lu, X.; Huang, R. B.; Wang, C. R.; Zhang, X.; Liu, M. L.; Deng, S. L.; Zheng, L. S. *Science* **2004**, *304*, 699. doi: 10.1126/science.1095567

- Tan, Y. Z.; Xie, S. Y.; Huang, R. B.; Zheng, L. S. *Nat. Chem.* 2009, *1*, 450. doi: 10.1038/nchem.329
- (3) Wang, S.; Yang, S.; Kemnitz, E.; Troyanov, S. I. *Inorg. Chem.* 2016, 55, 5741. doi: 10.1021/acs.inorgchem.6b00809
- (4) Troyanov, S. I.; Yang, S.; Chen, C.; Kemnitz, E. *Chem. Eur. J.* **2011**, *17*, 10662. doi: 10.1002/chem.201100908
- (5) Yang, S.; Wei, T.; Kemnitz, E.; Troyanov, S. I. Angew. Chem. Int. Ed. 2012, 124, 8364. doi: 10.1002/anie.201201775
- (6) Stone, A.; Wales, D. Chem. Phys. Lett. 1986, 128, 501.
 doi: 10.1016/0009-2614(86)80661-3
- Ioffe, I. N.; Mazaleva, O. N.; Chen, C.; Yang, S.; Kemnitz, E.; Troyanov, S. I. *Dalton. Trans.*2011, 40, 11005. doi: 10.1039/C1DT10256G
- (8) Ioffe, I. N.; Goryunkov, A. A.; Tamm, N. B.; Sidorov, L. N.; Kemnitz, E.; Troyanov, S. I. Angew. Chem. Int. Ed. 2009, 48, 5904. doi: 10.1002/anie.200902253
- (9) Ioffe, I. N.; Mazaleva, O. N.; Sidorov, L. N.; Yang, S.; Wei,
 T.; Kemnitz, E.; Troyanov, S. I. *Inorg. Chem.* 2012, *51*, 11226. doi: 10.1021/ic301650j
- Yang, S.; Wei, T.; Wang, S.; Ignat'eva, D. V.; Kemnitz, E.; Troyanov, S. I. *Chem. Commun.* 2013, 49, 7944. doi: 10.1039/C3CC44386H
- Ioffe, I. N.; Mazaleva, O. N.; Sidorov, L. N.; Yang, S.; Wei,
 T.; Kemnitz, E.; Troyanov, S. I. *Inorg. Chem.* 2013, *52*,
 13821. doi: 10.1021/ic402556g
- (12) Wang, S.; Yang, S.; Kemnitz, E.; Troyanov, S. I. Angew.

Chem. Int. Ed. 2016, 55, 3235. doi: 10.1002/ange.201511928

- (13) Zhao, X.; Goto, H.; Slanina, Z. Chem. Phys. 2004, 306, 93.
 doi: 10.1016/j.chemphys.2004.07.019
- Cai, W.; Xu, L.; Shao, N.; Shao, X.; Guo, Q. J. Chem. Phys.
 2005, 122, 184318. doi: 10.1063/1.1891706
- (15) Hao, Y.; Tang, Q.; Li, X.; Zhang, M.; Wan, Y.; Feng, L.;
 Chen, N.; Slanina, Z. K.; Adamowicz, L.; Uhlik, F. *Inorg. Chem.* 2016, 55, 11354. doi: 10.1021/acs.inorgchem.6b01894
- (16) Chen, C. H.; Abella, L.; Cerón, M. R.; Guerrero-Ayala, M. A.; Rodríguez-Fortea, A.; Olmstead, M. M.; Powers, X. B.; Balch, A. L.; Poblet, J. M.; Echegoyen, L. *J. Am. Chem. Soc.* 2016, *138*, 13030. doi: 10.1021/jacs.6b07912
- (17) Cai, W.; Li, F. F.; Bao, L.; Xie, Y.; Lu, X. J. Am. Chem. Soc.
 2016, 138, 6670. doi: 10.1021/jacs.6b03934
- (18) Yang, S.; Wang, S.; Kemnitz, E.; Troyanov, S. I. Angew.
 Chem. Int. Ed. 2014, 53, 2460. doi: 10.1002/anie.201310099
- (19) Yang, S.; Wei, T.; Scheurell, K.; Kemnitz, E.; Troyanov, S. I.
 Chem. Eur. J. 2015, 21, 15138.
 doi: 10.1002/chem.201501549

- (20) Jin, F.; Yang, S.; Kemnitz, E.; Trojanov, S. I. J. Am. Chem. Soc. 2017, 139, 4651. doi: 10.1021/jacs.7b01490
- (21) Fowler, P. DE Manolopoulos An atlas of Fullerenes; Oxford University Press: Oxford, UK, 1995.
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648.doi: 10.1063/1.464913
- (23) Gonzalez, C.; Schlegel H. B. J. Chem. Phys. 1989, 90, 2154. doi: 10.1063/1.49785
- (24) Frisch, M.; Trucks, G.; Schlegel, H.; *et al. Gaussian 09*, Revision A. 1.; Gaussian, Inc: Wallingford, CT, 2009.
- (25) Yoshida, M.; Gotō, H.; Hirose, Y.; Zhao, X.; Ōsawa, E. J. Theo. Chem. 1996, 1, 163. doi: 10.1002/ejtc.26
- (26) Shao, N.; Gao, Y.; Yoo, S.; An, W.; Zeng, X. C. J. Phys. Chem. C 2006, 110, 7672. doi: 10.1021/jp0624092
- (27) Slanina, Z.; Lee, S. L.; Uhlík, F.; Adamowicz, L.; Nagase, S. *Theor. Chem. Acc.* 2007, 117, 315. doi: 10.1007/s00214-006-0150-0
- (28) Bettinger, H. F.; Yakobson, B. I.; Scuseria, G. E. J. Am. Chem. Soc. 2003, 125, 5572. doi: 10.1021/ja0288744