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Abstract—Endoscopic vision plays a significant role in min-
imally invasive surgical procedures. The visibility and mainte-
nance of such direct in-situ vision is paramount not only for
safety by preventing inadvertent injury, but also to improve
precision and reduce operating time. Unfortunately, endoscopic
vision is unavoidably degraded due to illumination variations
during surgery. This work aims to restore or augment such
degraded visualization and quantitatively evaluate it during
robotic surgery. A multiscale bilateral-weighted retinex method
is proposed to remove non-uniform and highly directional il-
lumination and enhance surgical vision, while an objective no-
reference image visibility assessment method is defined in terms
of sharpness, naturalness, and contrast, to quantitatively and
objectively evaluate endoscopic visualization on surgical video
sequences. The methods were validated on surgical data, with
the experimental results showing that our method outperforms
existent retinex approaches. In particular, the combined visibility
was improved from 0.81 to 1.06, while three surgeons generally
agreed that the results were restored with much better visibility.

Index Terms—Endoscopy, endoscopic vision, retinex, illumi-
nation variation, image restoration, minimally invasive surgery,
computer-assisted interventions.

I. ENDOSCOPIC VISION

ENDOSCOPIC vision generally refers to interventional
visualization of surgical sites that are intuitively observed

or examined by endoscopes integrated with video cameras
inserted through a port during minimally invasive surgery.
Based on endoscopic vision, surgeons can not only examine
abnormalities and recognize surface tissue details, but also
track various surgical instruments with respect to anatomical
targets. In this respect, the quality of endoscopic videos is
essential for effective perception or navigation. Therefore, a
high-visibility surgical field is important to prevent uninten-
tional harm, reduce operating time, and improve clinical out-
come. In addition, high-quality endoscopic vision is beneficial
for endoscopic video processing such as three-dimensional (3-
D) surface reconstruction, tissue deformation tracking, instru-
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ment detection and tracking, and activity recognition during
surgery [1].

Robotically assisted endoscopic surgery that commonly
employs the da Vinci surgical system (Intuitive Surgical, Inc.,
Sunnyvale, USA) is increasingly performed in various clinical
procedures, e.g., robotic prostatectomy for minimally invasive
prostatic tumor resection [2] and robotic urological proce-
dure [3]. Robotic endoscopy uses stereoscopic endoscopes
to intuitively visualize the organ surface and directly guide
or manipulate various surgical instruments inside the body.
Unfortunately, typical endoscopes have a narrow field of view
that is additionally degraded by non-uniform illumination due
to the light source located at the distal end of the endoscope
(Fig. 1). These drawbacks unavoidably deteriorate the clear
and high-quality visualization of both the organ being operated
on and its anatomical surroundings. Moreover, they also lead
to difficultly in distinguishing many characteristics of the
visualized scene (e.g., neurovascular bundle), and prevent the
surgeon from clearly observing certain structures (e.g., subtle
bleeding areas). It is important therefore to explore image-
processing techniques to restore such degradations.

This work aims to resolve the inherent drawbacks discussed
above and enhance on-site endoscopic visibility of the surgical
field. As one of well-known and commonly established digital
image processing methods, Retinex is widely employed for
various tasks, e.g., computational color constancy [4], intrinsic
image decomposition [5], [6], image defogging [7], enhance-
ment and restoration [8], [9]. This paper also modifies Retinex
to address surgical field problems. The main contributions of
this paper are clarified as follows.
• From the clinical perspective, this work is of practical sur-

gical importance in dealing with illumination variations
in robotic-assisted laparoscopic prostatectomy, digitally
augmenting the laparoscopic video stream, to provide the
surgeon with a wider useful field of view that is devoid
of non-uniform illumination effects.

• Technically, we propose a multiscale bilateral-weight
retinex method that demonstrates superior performance
compared to extant retinex techniques. In particular, the
method employs cross filtering to remove image streak
and related artifacts, and is an effective and efficient
means of enhancing the images.

• Deep learning based methods are increasingly successful
in computer vision and medical imaging, particularly in
image enhancement and restoration. However, training or
ground truth data of surgical endoscopic video images
are difficult to collect or generate. The output from our
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Fig. 1: Examples of degenerated surgical endoscopic images due to small viewing field and non-uniform and highly directional
illumination in robotic-assisted laparoscopic prostatectomy. Note that the laparoscope providing the surgical field visualization
is usually fixed at a relative distance from anatomical target regions during laparoscopic surgery. While this setting is to avoid
surgical instrument fencing, it also makes the laparoscopic illumination relatively unchanged, resulting in limited access and
view of surgical targets and almost identical illumination on the first and third (or second and forth) images.

proposed approach can in fact be used to train a deep-
learning algorithm for surgical vision augmentation.

• Although this work develops the multiscale bilateral-
weight retinex method for laparoscopic image processing,
we believe that our method is also applicable to other
endoscopic image enhancement such as colonoscopy and
bronchoscopy, as well as to real-world or natural image
nonuniform illumination removal.

• Additionally, several no-reference image visibility assess-
ment metrics are proposed to quantitatively and objec-
tively evaluate endoscopic video images and different
surgical field augmentation algorithms.

The remainder of this paper is organized as follows. Sec-
tion II reviews work related to retinex theory. Our bilateral-
weighted retinex method for vision augmentation is presented
in Section III, followed by the experiment settings in Sec-
tion IV. Sections V and VI show and discuss the validation
results before concluding this work in Section VII.

II. RELATED WORK

Our idea of endoscopic vision augmentation is motivated by
computational color constancy [10], [11]. The human visual
system has a relatively constant awareness of the color of
objects under illumination differences. This implies that hu-
man color perception generally depends on the reflectance of
objects but not the scene illumination. Hence, the fidelity and
quality of images or videos can be augmented by removing the
illumination effect while retaining the reflectance component.

Retinex [12] is currently a popular and effective approach
to to model human color consistency for image enhancement.
Numerous papers have been published on retinex methods in
the literature. Kimmel et al. [13] presented a variational retinex
method for image color processing. This approach, that usually
generate halos and does not preserve edge information, was
further improved by Ng et al. [14], Ma et al. [15], Wang
et al. [16], and Provenzi et al. [17]. Provenzi et al. [18]
reported a new implementation of random spray retinex on
the basis of a reset mechanism. While random spray retinex is
sensitive to image noise, the number of sprays, and the pixels
in the sprayed region, Banic et al. [19] modified by employing
Gaussian filtering for better performance. By discussing cur-
rent issues of retinex theory, Bertalmio et al. [12] proposed a
kernel-based retinex, while Morel et al. [20] proved that the
retinex solutions satisfy the discrete Poisson equation. Rahman

et al. [21] discussed a fully automatic retinex color restoration
framework that combines the multiscale retinex processing
with a simple color restoration step. Jiang et al. [22] introduced
the graphics processing unit technique and autolevels process-
ing to boost retinex and further reduce computational time and
improve performance. While Zosso et al. [23] presented a non-
local retinex framework, the non-local retinex method with
multiple predetermined parameters in optimization is a time-
consuming procedure and also potentially leads to unnaturally
colored images. Cai et al. [5] discussed a retinex model on
the basis of joint intrinsic-extrinsic prior. A thorough review
of the retinex methods was recently presented by McCann [4].

In addition, Okuhata et al. [24] used the variational Retinex
model to enhance colonoscopic images, while Khan et al. [25]
employed a color reproduction and processing algorithm for
colonoscopic image real-time mapping. Pedersen et al. [26]
used currently available image quality metrics to evaluate
wireless capsule endoscopic video sequences. Luo et al. [8]
discussed a visibility-driven fusion defogging framework to
enhance robotic laparoscopic video images, and more recently,
Sdiri et al. [27] proposed to use joint wavelet decomposition
and binocular combination for surgical image enhancement.

Although multiscale retinex processing is easily imple-
mented with high efficiency and performance, provides dy-
namic range compression and preserves most of the detail, it
still has two drawbacks: (1) washed out appearance: blurring
the strongest edges with the remaining faint edges almost
being untouched, (2) unnatural color rendition due to over-
enhanced saturation. Our current work aims for edge preser-
vation and natural color rendition and further addresses the
drawbacks of the multiscale retinex color restoration method.
We propose a multiscale bilateral-weighted retinex method to
achieve better color fidelity and apply this method to deal with
the aforementioned problems that occur in endoscopic vision
during robotic surgery. Augmented visualization enables sur-
geons to accurately identify subtle surface details and results
in improved perception of the anatomical surroundings of the
organ being operated on.

III. APPROACHES

This section discusses multiscale bilateral-weighted retinex
for endoscopic vision augmentation and defines several quality
metrics to evaluate surgical vision.
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Fig. 2: Flowchart of the proposed multiscale bilateral-weighted retinex method for endoscopic vision augmentation

A. Multiscale Bilateral-Weighted Retinex

Our retinex approach consists of three main steps: (1)
illumination decomposition, (2) bilateral weighting, and (3)
color balance. Fig. 2 shows the flowchart of bilateral-weighted
retinex modeling for endoscopic vision augmentation.

1) Illumination Decomposition: As discussed above, the
human visual system when perceiving the color of a scene de-
pends on the reflectance but not its illumination. Accordingly,
we can decompose the illumination and reflectance elements,
and remove the former but preserve the latter to enhance
image visual quality. The multiscale retinex algorithm is able
to separate image illumination and reflectance, and contains
two operators of Gaussian convolution and logarithmic trans-
formation.

Suppose that (x, y) is a pixel on a color image Ic with
three channels of red, green, and blue c ∈ {r, g, b}. For
pixel Ic(x, y) in each channel, the Gaussian convolution and
logarithmic transformation are performed to obtain Jc(x, y):

Jm,c(x, y) = log Ic(x, y)− log (Gm(x, y)⊗ Ic(x, y)), (1)

Gm(x, y) = λm exp(
−(x2 + y2)

2σ2
m

), (2)

where m indicates the Gaussian scale level, ⊗ is the con-
volution operator, σm denotes the scale, and λm guarantees∫

Gm(x, y)dxdy = 1. Eq. 1 aims at accurately separating the
reflectance and illumination components of the image I(x, y).
Based on the definition of retinex theory, the output Kc(x, y)
of the multiscale retinex is the sum of weighted Jm,c(x, y) at
different Gaussian levels at each channel:

Kc(x, y) =

M∑
m=1

ωmJm,c(x, y), c ∈ {r, g, b}, (3)

K(x, y) =

M∑
m=1

ωmJm(x, y), (4)

where ωm(x, y) denotes a weight to balance various levels or
scales, K(x, y) is the final enhanced color image and Jm(x, y)
represents the output image at level m with scale σm.

While the approach formulated by Eq. 1 achieves the color
constancy property, it assumes that

Ic(x, y) = Lc(x, y)Rc(x, y), (5)

where Lc(x, y) and Rc(x, y) represent scene illumination and
reflectance, respectively. We rewrite Eq. 1:

Jc(x, y) ' log
Lc(x, y)Rc(x, y)

L̄c(x, y)R̄c(x, y)
, (6)

where L̄c(x, y) and R̄c(x, y) are the smoothed and average
intensity after a predefined processing (which here refers
to Gaussian convolution). Multiscale retinex makes a core
assumption that L̄c(x, y) is locally smooth and constant after
such processing. This implies that Lc(x, y) is approximately
identical to L̄c(x, y), i.e., Lc(x, y) ' L̄c(x, y). Therefore,

Jc(x, y) ' log
Rc(x, y)

R̄c(x, y)
, (7)

which demonstrates that scene color is independent of the illu-
mination Lc(x, y), and also explains why the retinex method
should attenuate shading effects and shadows on color images.

Unfortunately, the predefined processing cannot perfectly
smooth and weight color images and make L̄c(x, y) locally
constant, particularly in our case of non-uniform and highly
directional illumination in robotic surgery. This implies that
the core assumption Lc(x, y) ' L̄c(x, y) can be violated,
resulting in image artifacts. Fig. 3 illustrates this phenomenon
where we see streak-like and grayish artifacts on the color
image K(x, y). To tackle these image artifacts, we introduce
a bilateral-weighting strategy in the following.

2) Bilateral Weighting: To remove streak-like and grayish
artifacts while preserving structural or edge information, a
weighted filtering procedure is commonly applied to such
artifacts at each level, i.e., we need to re-weight all the pixels
after the Gaussian convolution and logarithmic transformation.
Ideally, guided filtering should be used to calculate the weights
of the pixels [28]. However, this approach requires the con-
struction of a sparse N ×N matrix (where N is the number
of image pixels), which is a memory- and time-consuming
computation. Hence, we employ cross bilateral filtering to
calculate these weights for artifact removal.
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(a) Output image K(x, y) (b) Image artifacts

Fig. 3: The multiscale retinex generates streak-like and grayish artifacts under non-uniform and highly directional illumination

Based on cross bilateral filtering, we modify Eq. 3 by
weighting each pixel p = (x, y) on image Jm,c(x, y):

K̃c(x, y) =

M∑
m=1

ωmΨp(Jm,c(x, y)), c ∈ {r, g, b}, (8)

where K̃(x, y) is the bilateral-weighted output. The bilateral
weight Ψp(Jm,c(x, y)) at level m is computed by [29]

Ψp(Jm,c(x, y)) =
1

Ap

∑
q∈Ω

WJm,c(u, v),q = (u, v), (9)

where q denotes a pixel in region Ω centered at pixel p =
(x, y) and the coefficient W is determined by

W = P(‖p− q‖)Q(‖Ic(x, y)− Ic(u, v)‖), (10)

where P(·) and Q(·) are the spatial and range filter kernels,
respectively. In particular, Q(·) is a Gaussian kernel to penal-
ize pixels across edges that have large intensity differences.
Hence, the bilateral processing can preserve edge information
since P(·)Q(·) takes on smaller values as the range distance
and/or the spatial distance increases [29]. In addition, the
normalization parameter Ap can be computed by

Ap =
∑
q∈Ω

P(‖p− q‖)Q(‖Ic(x, y)− Ic(u, v)‖). (11)

Eventually, the bilateral weighted K̃(x, y) is written as

K̃(x, y) =

M∑
m=1

ωmΨp(Jm(x, y)),p ∈ Jm(x, y) (12)

3) Color Balance: Figs. 4 (b) and (c) compare the outputs
K(x, y) and K̃(x, y). While the output K̃(x, y) (Fig. 4 (c))
shows that the streak-like and grayish artifacts were removed,
it still contains underexposed pixels and artificial light. The
color balancing algorithm aims to correct such pixels and
lighting effects. Various complex color balancing approaches
are available in the literature [10]. This section explores a
method that is simple and efficient while exhibiting higher or
comparable performance to existing methods.

A color image at each channel usually has the maximal
and minimal pixel intensities that correspond to some singular

pixels due to underexposure or brightness artifacts. The idea
of simple color balancing is to remove these singular pixels
that are located at the left and right histogram tails, and stretch
the dynamic range of the remaining pixels.

The output K̆(x, y) of the color balancing step is commonly
formulated by

K̆(x, y) =


µmax, µmax < µmin
ξmin, K̃(x, y) < µmin < µmax
ξmax, µmin < µmax < K̃(x, y)
ϕ, otherwise

, (13)

ϕ = µmin +
(K̃(x, y)− µmin)(ξmax − ξmin)

µmax − µmin
, (14)

µmin = arg min
(x,y)∈Π1

(K̃(x, y)), Π1 = N
ζ1

100
, (15)

µmax = arg max
(x,y)∈Π2

(K̃(x, y)), Π2 = N(1− ζ2
100

)−1, (16)

where N is the number of pixels in K̃(x, y) and the dynamic
range [ξmin, ξmax], Π1 is the number of ζ1 percent pixels
located at the left side of the low intensity region in K̃(x, y)
and ζ2 is the percent of pixels located at the right side of the
high intensity region in K̃(x, y). Note that the percentages ζ1
and ζ2 at the left and right histogram tails are experimentally
determined. The processed images usually become bright or
over-enhanced when the percentage is increased. We tested ζ1
and ζ2 from 1% to 5% and found that ζ1 = ζ2 = 2% shows
relatively good performance balancing contrast and brightness.
After determining ζ1 and ζ2, the dynamic range ξmin and ξmax
are directly taken from the histogram at positions or quantiles
Nζ1/100 and N(1− ζ1/100)− 1, respectively.

Fig. 4 (d) gives an example output of color balancing. Note
that the color balance step improves contrast and brightness
of the image, augmenting visualization of the surgical field
without disconcerting the surgeon.

B. Surgical Vision Assessment

Endoscopic vision assessment is a challenging problem
since neither gold standards nor ground truth examples are
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(a) Input (b) K(x, y) (c) K̃(x, y) (d) K̆(x, y)

(e) Histogram of (a) (f) Histogram of (b) (g) Histogram of (c) (h) Histogram of (d)

Fig. 4: Compared results of bilateral weight and color balance processing

available. Subjective assessment by surgeons is a way to
manually and intuitively validate surgical field visual quality.
More interestingly, quantitative objective assessment metrics
without any reference are widely developed to evaluate image
visual quality. In this work, we define four image metrics: (1)
sharpness, (2) naturalness, (3) contrast, and (4) a hybrid metric
that is a combination of all three.

The sharpness metric χ aims to quantitatively character-
ize how much structural information such as contours and
boundaries on images can be perceived by the human visual
system. Similar to previous work [30], a standard deviation
of a weighted maximum local variation distribution is defined
as the sharpness metric χ. On the other hand, the naturalness
metric ξ depicts how natural endoscopic vision appears, and is
generally a subjective judgment on images. While it is hard to
characterize naturalness ξ, we define it on the basis of statis-
tical analysis of thousands of images, for which analysis has
demonstrated that the histogram curves of natural images gen-
erally yield Gaussian and Beta probability distributions [31].
In addition, contrast η describes the difference in luminance
that makes regions of interest on images distinguishable. We
define contrast C as the difference between a pixel I(x, y) and
its average edge-weighted ρ(x, y) in a patch O [32]:

η = G−1
∑
O(x,y)

|I(x, y)− ρ(x, y)|
|I(x, y) + ρ(x, y)|

, (17)

ρ(x, y) =
∑
O(x,y)

φ(x, y)I(x, y), (18)

where G is the pixel number and φ(x, y) is the detected edge.
Finally, we define a hybrid metric Hm as

Hm = aχα + bξβ + (1− a− b) log η, (19)

where a and b balance the three components of sharpness, nat-
uralness, and contrast, and α and β control their sensitivities.

IV. EXPERIMENTAL SETTINGS

Endoscopic video sequences were acquired during robotic-
assisted laparoscopic radical prostatectomy using the da Vinci
Si surgical system (Intuitive Surgical Inc., Sunnyvale, CA,
USA) in the St. Josephs Hospital, London, Canada. These
video data with various illumination from five different se-
quences were also collected under a protocol approved by the
Research Ethics board of Western University, London, Canada.
All the experiments were tested on a laptop installed with
Windows 8.1 Professional 64-Bit System, 32.0-GB Memory,
and Processor Intel Xeon CPU×8 and were implemented on
the platform of Microsoft Visual Studio C++ 2008.

Our surgical vision augmentation and assessment ap-
proaches need to determine a set of parameters as discussed in
Section III. While these parameters can affect the performance
of the proposed methods, unfortunately, there are no standards
to optimally determine these parameters. This work follows the
previous work [21], [31]. In the multiscale retinex processing
step, three levels and scales are sufficient for most images
and the weights can be identical [21]. Therefore, we set
M = 3 and ωm(x, y) = 1/M,m = 1, 2, 3 in Eq. 3. On
the other hand, three scales were experimentally determined:
σm ∈ {15, 80, 250} in this work. Additionally, based on the
work of Yeganeh and Wang [31], we set the parameters in
Eq. 19 as:a = 0.5, b = 0.4, α = 0.3, and β = 0.7. While these
parameters were only tested on real-world (natural) images,
they also can provide acceptable results in this study.

It is quite reasonable and natural to compare our proposed
approach to various Retinex algorithms since ours is also one
of the Retinex family methods. We compare our approach
to currently available retinex techniques: (1) M1 [18], a
random spray retinex method, (2) M2 [20], retinex formulated
by the discrete Poisson equation, (3) M3 [19], a modified
random spray retinex method, (4) M4 [23], an unifying retinex
framework, (5) M5 [5], a joint intrinsic-extrinsic prior based
retinex method; (7) M6, our proposed method, as discussed in
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(a) Input 1 (b) Input 2

(c) Result of input 1 processed by M1 [18] (d) Result of input 1 processed by M2 [20] (e) Result of input 1 processed by M3 [19]

(f) Result of input 1 processed by M4 [23] (g) Result of input 1 processed by M5 [5] (h) Result of input 1 processed by M6 (ours)

(i) Result of input 2 processed by M1 [18] (j) Result of input 2 processed by M2 [20] (k) Result of input 2 processed by M3 [19]

(l) Result of input 2 processed by M4 [23] (m) Result of input 2 processed by M5 [5] (n) Result of input 2 processed by M6 (ours)

Fig. 5: Examples of visual comparison of processed endoscopic images of using the different retinex methods.The input images
(a) and (b) show different illumination on the images: (c)∼(h) and (i)∼(n) correspond to the results of using these compared
methods M1 [18], M2 [20], M3 [19], M4 [23], M5 [5], and M6 (ours) to process the input images 1 and 2, respectively. Our
proposed endoscopic vision augmentation approach shows the best performance.
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(a) Better (b) Comparable (c) Worse

Fig. 6: Subjective assessment of the processed endoscopic video images of using methods M1 [18], M2 [20], M3 [19],
M4 [23], M5 [5], and M6 (ours). The three endoscopic surgeons independently directly compared all the given processed
endoscopic video images to the original images and subjectively classified those processed images into three categories of
better, comparable, and worse.

Section III. All the methods were tested on 12000 frames.
Besides the objective quantitative assessment of the ex-

perimental results, we also introduce subjective assessment.
Three surgeons manually inspected 1000 frames of surgical
endoscopic images that were processed by each of the methods
mentioned above. We calculate the percentage of images from
1000 frames for which the surgeon has divided them into three
classes: (1) the processed image is visually better than the
input image, (2) the processed image and the input image are
visually comparable, and (3) the processed image is visually
worse than the input image.

V. RESULTS

Fig. 5 visually compares the experimental results of using
the different retinex methods M1 [18], M2 [20], M3 [19],
M4 [23], M5 [5], and ours (M6). From Fig. 5, our method out-
performs other methods since it provides better visual quality.
Moreover, Fig. 6 shows the results of the subjective assessment
that was manually performed by the three endoscopic sur-
geons. The subjective assessment shows that methods M1, M3,
and M5 give comparable visual quality, M2 and M4 provide
worse visual quality, and our proposed approach achieves the
best visual quality, compared to the input images. While M2
and M4 in all cases obtain worse visual quality than the input
images (Fig. 6(c)), M1, M3, and M5 provide comparable
visualization in more than 80% of the cases (Fig. 6(b)). In
particular, the three endoscopic surgeons generally agree that
on average, our approach provides improved visualization over
80% of the time.

Fig. 7 plots the quantitative objective evaluation of the origi-
nal or input endoscopic video images and their corresponding
results of using the compared methods M1 [18], M2 [20],
M3 [19], M4 [23], M5 [5], and ours (M6). It shows the
obviously different assessment scores between our method
and others. The surgeons intuitively perceived that the image
contrast and naturalness of using our method are much better
than others (Fig. 6 justifies that), although the image sharpness
was comparable. Hence, these obvious differences were gen-
erally consistent with the subjective evaluation. Table I further

summarizes image visual properties or metrics of the average
contrast η, sharpness χ, naturalness ξ, and hybrid index
Hm. According to the non-parametric statistical hypothesis
Wilcoxon signed-rank test [33], we also computed p-values
for the various quality metrics evaluating the processed images
from the different methods. Because most of p-values were
large, the null hypothesis cannot be rejected. Note that M0 in
Fig. 7 and Table I denotes the visual properties of the original
endoscopic images. From both Fig. 7 and Table I, we found
that our method improved the visual quality of the original
endoscopic images with non-uniform and highly directional
illumination, while other retinex approaches either provided
the comparable endoscopic vision or deteriorated the image
visual quality. More interestingly, the average four metric
values (1.13, 0.82, 0.29, 1.06) of our proposed method were
much better than (0.35, 0.56, 0.03, 0.81) of the original images.

The computational time of the six retinex approaches
M1∼M6 was 6.3, 1.1, 6.5, 138.6, 21.6, and 3.1 seconds per
frame, respectively. Note that our acquired endoscopic videos
were high-definition with an image size of 1920× 1080.

Additionally, we investigated various image enhancement
methods reported recently in computer vision. Fig. 8 com-
pares the image results of using ours and currently available
approaches [34], [35], [36], [37], [38], [39], [40], [41], [8],
[9]. While the two methods [37], [40] barely manage to
enhance the the image, another two approaches [34], [39]
slightly improved image brightness. The approaches [36], [8]
generally augmented the image but introduced less naturalness.
Unfortunately, the left four approaches [35], [38], [41], [9]
over-enhanced the image, resulting in worse quality than the
original image. Our method still works better than others.

VI. DISCUSSION

This work showed the first study on augmenting endoscopic
field visualization for realizing subtle surface structures and
anatomical surroundings of the organ being operated on during
robotic-assisted endoscopic procedures. In endoscopic surgery,
the organ sub-structures or surroundings are hidden and hardly
perceived by surgeons due to limited (non-uniform and highly
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(a) Contrast η (b) Sharpness χ

(c) Naturalness ξ (d) Hybrid Hm

Fig. 7: Quantitative objective assessment of the processed endoscopic video images of using methods M1 [18], M2 [20],
M3 [19], M4 [23], M5 [5], and M6 (ours). M0 indicates the quantitative quality of the input endoscopic video images. All the
sharpness, naturalness, contrast, and hybrid metrics demonstrate that our proposed method works much better than others.

TABLE I: Quantitative evaluation of calculated average contrast η, sharpness χ, naturalness ξ, hybrid metric Hm (Eq.19), and
p-values of the processed images by the different methods of M1 [18], M2 [20], M3 [19], M4 [23], M5 [5], and M6. M0
denotes the quantitative assessment of the original or input endoscopic video images from robotic prostatectomy.

Approaches
Contrast η Sharpness χ Naturalness ξ Hybrid Hm

Mean STD p-value Mean STD p-value Mean STD p-value Mean STD p-value

M0 0.35 0.05 – 0.56 0.16 – 0.0344 0.01 – 0.81 0.04 –

M1 0.45 0.03 0.97 0.62 0.06 0.88 0.13 0.01 0.89 0.91 0.02 0.38

M2 0.24 0.05 1.98 0.76 0.12 0.53 0.05 0.01 0.02 0.82 0.04 0.48

M3 0.43 0.04 0.99 0.58 0.15 0.79 0.07 0.01 0.06 0.86 0.04 0.42

M4 0.81 0.06 0.47 0.19 0.00 0.04 0.25 0.03 0.67 0.90 0.02 0.39

M5 0.40 0.05 1.13 0.42 0.11 1.08 0.03 0.01 0.01 0.78 0.03 0.64

M6 1.13 0.07 0.33 0.82 0.15 0.43 0.29 0.02 0.45 1.06 0.03 0.36
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(a) Input (b) Palma-amestoy et al. [34] (c) Shan et al. [35]

(d) Deng et al. [36] (e) Lee et al. [37] (f) Wang et al. [38]

(g) Xu et al. [39] (h) Fu et al. [40] (i) Zhang et al. [41]

(j) Luo et al. [8] (k) Wang et al. [9] (l) Ours

Fig. 8: A comparison of various image enhancement methods reported recently for surgical laparoscopic video augmentation.
Our method generally outperforms these image enhancement approaches.

directional) illumination and narrow endoscopic view of the
surgical field. Based on color constancy, this work first intro-
duced the retinex theory to address these limitations.

A. Effectiveness

Retinex theory, a successful strategy for computational color
constancy, was developed to various models or methods in
the literature. Current retinex models are commonly used
for natural image enhancement and illumination processing.
From the experiments results we evaluated and compared
these retinex models [18], [20], [19], [23], [5], we found that
most current retinex models do not work well for surgical
video images. One reason is that these models are constructed
on the basis of natural real-world images under atmospheric
lighting, while the endoscope uses synthesized light sources

transmitted by optical fibers into the body for imaging the
surgical field, i.e., the mechanism of illumination imaging was
different. On the other hand, these different retinex models
are usually derived in accordance with various assumptions,
e.g., the path-wise structure on the image is substituted with
the random spray structure [18], the retinex solutions satisfy
a discrete Poisson equation by assuming the paths to be
symmetric random walks [20], and illumination is supposed
to vary smoothly [23], [5]. Unfortunately, these assumptions
are commonly violated in endoscopic imaging. This also
implies that these retinex models are inapplicable to enhance
endoscopic vision during minimally invasive surgery.

The multiscale retinex model employs Gaussian convolu-
tion and logarithmic transformation to directly process the
reflectance and illumination information. This work employed
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(a) Parameters = (0.001, 0.0001, 0.25) (b) Parameters = (0.002, 0.0002, 0.50) (c) Parameters = (0.006, 0.0006, 1.00)

(d) Illumination = 10 (e) Illumination = 20 (f) Illumination = 30

Fig. 9: Parameter sensitivity analysis: The firs row shows the results of adjusting the join optimization parameters (shape,
texture, illumination) in M5 [5] and the second row the results of changing the illumination parameter in the method [9]

multiscale retinex because it is simple and easily implemented.
By removing the illumination, the image visual fidelity was
augmented. However, it still violates the assumption that
illumination is presumed to vary smoothly, resulting in streak-
like and grayish artifacts on the image. We introduced bilateral
weight to tackle the artifacts in the three levels after the
Gaussian convolution and logarithmic transformation. The
experimental results demonstrate that the bilateral-weight pro-
cessing is effective for removing the artifacts. In particular,
our improved method for robotic-assisted laparoscopic video
processing is more effective and robust than other currently
available retinex models [18], [20], [19], [23], [5], which is the
main technical contribution of this work. More promisingly,
an interesting RetiNet enhancement framework for surgical
laparoscopic video augmentation can be constructed by com-
bining our modified retinex model with convolutional neural
networks. In addition, no-reference image visual quality as-
sessment metrics are important to evaluate various endoscopic
vision. This work defined several measures to quantitatively
evaluate the original and processed surgical endoscopic video
images.

B. Limitations

Although our proposed multiscale bilateral-weighted retinex
algorithm outperforms other retinex approaches discussed
above, it still has several potential limitations or open issues.

First, we simply select ωm = 1/M (i.e., ω1 = ω2 =
ω3 = 0.33 in Eq. 12) to combine the outputs of the three
levels. It’s difficult to prove that such a strategy is optimal for
integrating these three-level image in a meaningful manner. We
plan to introduce a more effective and accurate fusion method
to combine the three-level outputs in the future. Additionally,
the values of the three scales potentially affect the performance

of the proposed algorithm and will be further investigated for
surgical vision augmentation in our future work.

Next, it remains challenging for objectively no-reference
quantitative assessment of surgical laparoscopic video images
in robotic prostatectomy. Our defined quantitative objective
metrics do not guarantee that they can precisely characterize
image properties related to image visual quality. In particular,
our metrics involve several parameters that possibly affect the
performance of surgical vision assessment. We need to further
investigate these parameters for accurate quality metrics of
surgical video images. Also note that while Fig. 6 shows that
the results of M4 is always worse than the original images,
M4 achieves high scores in most of the objective metrics
compared to the original images (Fig. 7 and Table 1). This
inconsistency between subjective and objective evaluation also
questions the robustness of our surgical vision assessment
metrics. Our future study aims to develop more accurate
assessment metrics to address such a validation issue and
remove such an inconsistency between the subjective and
objective evaluation.

On the other hand, we tested currently available image
quality metrics such as cumulative probability of blur de-
tection [42], dubbed blind/referenceless image spatial quality
evaluator (BRISQUE) [43], local edge gradient analysis [44],
and local phase coherence [45] on robotic-assisted prostate-
ctomy video images. Unfortunately, they were inconsistent
with the subjectively assessed results by the three surgeons.
These metrics commonly work on typical real-world images
that are physically and inherently different from laparoscopic
video sequences. Generally speaking, it is a complicated but
interesting and important issue to develop no-reference, quan-
titative, objective, precise quality metrics for robotic-assisted
laparoscopic video images in our future work.

Third, all the compared enhancement algorithms involve
various parameters that potentially affect their performance
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of surgical laparoscopic video processing. Even though the
experimental results were comparable when using various
parameters in the algorithms (Fig. 9), it is still interesting
to further investigate how these algorithmic parameters affect
their performance in the case of laparoscopic video enhance-
ment.

Eventually, our proposed augmentation approach requires
about 3.1 seconds to process a high-definition image with
a size of 1920×1080, and it is difficult to achieve real-time
operation of standard hardware. However, in the future, we are
confident that multithreaded programing, code optimization,
and GPU implementation will enable real-time performance.
Additionally, we also strive for a user study to evaluate the
practical effectiveness of our method in accordance with the
real-time implementation and settings of surgical systems.

VII. CONCLUSIONS

This paper presented a multiscale bilateral-weighted retinex
modeling framework to augment surgical endoscopic vision
for robotic surgery. We modified the multiscale retinex method
by introducing bilateral weights to improve its performance.
We also define several no-reference image visual quality
assessment metrics to quantitatively and objectively evaluate
endoscopic vision. The experimental results demonstrate that
our method provides an effective and efficient strategy for
endoscopic vision augmentation. Moreover, both subjective
and quantitative objective assessments demonstrate that our
method outperforms other retinex algorithms. In particular,
the visual quality contrast, sharpness, naturalness, and hybrid
visibility of endoscopic vision was improved from (0.35, 0.56,
0.03, 0.81) to (1.13, 0.82,0.29, 1.06), respectively.
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