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Characterizing the precise three-dimensional morphology and anatomical context of neurons
is crucial for neuronal cell type classification and circuitry mapping. Recent advances in tissue
clearing techniques and microscopy make it possible to obtain image stacks of intact,
interweaving neuron clusters in brain tissues. As most current 3D neuronal morphology
reconstruction methods are only applicable to single neurons, it remains challenging to
reconstruct these clusters digitally. To advance the state of the art beyond these challenges,
we propose a fast and robust method named G-Cut that is able to automatically segment
individual neurons from an interweaving neuron cluster. Across various densely inter-
connected neuron clusters, G-Cut achieves significantly higher accuracies than other
state-of-the-art algorithms. G-Cut is intended as a robust component in a high throughput
informatics pipeline for large-scale brain mapping projects.
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numerating and characterizing the diversity of neuronal cell

types has been posed as one of the major challenges of the

BRAIN Initiative, with the vision that such classification is
an important step toward dissecting their functional contribu-
tions in health and disease (http://braininitiative.nih.gov/).
Although no consensus has been reached for a satisfactory defi-
nition of neuronal cell types!:2, it is generally agreed that neuronal
morphology, together with anatomic location, structural con-
nectivity and gene expression profiles are significant dis-
criminating elements>*. The reconstruction of individual
neuronal dendrites and axons enables quantitative analysis of
morphological features of a given neuron type to provide insight
into its functional role. The numbers and lengths of dendritic
arbors of a given neuron serve as an indication of its receptive
field for receiving information, while axonal trajectory and pro-
jection fields determine neuronal outputs that regulate neural
activities of its targeted neurons®~’. Furthermore, morphological
abnormalities of neurons are usually correlated with pathological
changes in numerous neurological disorders such as Alzheimer’s
disease, Huntington’s disease, and autism®. Therefore, char-
acterizing fine detailed neuronal morphology is crucial for clas-
sifying neuronal cell types and understanding their functional
attributes.

With recent advancements in tissue clearing and microscopic
technologies, new challenges and opportunities arise in recon-
structing detailed neuronal morphology. High-resolution image
stacks from large tissue blocks of intact brain tissue can now be
routinely acquired, providing valuable information about three-
dimensional neuronal morphology in intact neural circuitry. In
such contiguously imaged tissues, researchers frequently
encounter densely labeled (either genetically or with viral tracers),
interweaving neuron clusters with intermingled dendritic arbors
and axonal branches of multiple neurons. Existing automatic
reconstruction software are mostly designed to automatically and
elegantly trace single neuronal morphologies, but it still remains
challenging to apply these reconstruction software to correctly
trace multiple neurons that are densely interwoven. Therefore,
computational approaches are required to obtain accurate
reconstructions from image stacks where signal is contributed by
multiple neurons with substantial spatial intermingling®.

In this study, we report a computational approach called G-Cut
to address the challenge of reconstructing densely interwoven
neurons. G-Cut is able to automatically segment individual
neurons robustly from neuron clusters based on combinatorial
information of morphological features and connections among
intermingled neurites. The estimation of relatedness between
individual neurites and somas is based on the morphological
information statistically derived from existing large neuronal
morphological datasets (i.e., NeuroMorpho.Org). Using both
synthetic datasets and real image stacks from tissue blocks, we
demonstrate that, in comparison with other state-of-the-art
algorithms, G-Cut achieves higher accuracy in individual neu-
ron segmentation across neuron clusters of various labeling
densities and morphological patterns. In short, G-Cut is a robust
and powerful informatics tool with broad applications in mor-
phology reconstructions of large numbers of neurons and con-
sequently accelerates the process of cataloging neuronal cell types
of the brain.

Results

General workflow of G-Cut. G-Cut is designed as a component
of an informatics pipeline to reconstruct populations of neurons
with intermingling neurites in 3D images (Fig. 1). In G-Cut, a
connected graph representation of a neuron cluster (consisting of
interwoven neurons) is given as input to the algorithm. The graph

contains neuronal cell bodies and branches whose correct cell
body assignment has not yet been determined (Fig. 2a). In
practice, any known single neuron reconstruction algorithm, for
example, Vaa3D by Peng et al.!®l1, can be used to obtain the
input graph.

Segmentation is achieved by finding a set of globally optimal
branch assignments over all possible topological connectivity
configurations of the graph. In this optimization problem, a
metric is needed to evaluate the fitness of branch assignments.
When viewing reconstruction results from manual tracing, we
observe that neurites often follow a locally smooth path,
extending along the current orientation (inertia) and away from
the soma (tropism)!2. To capture these properties, a Growth
Orientation Feature (GOF) metric is used to described the branch
orientation deviation in relation to a given soma (Methods and
Fig. 2b). The expected distribution of this feature is empirically
derived using more than 70,000 neurons in a standard public
database available from NeuroMorpho.Org* (Fig. 2c).

Considering that different cell types display rich varieties of
morphologies in different species (e.g., C elegans, mouse, rat,
monkey, and human) or in different brain structures (e.g., retina,
neocortex and main olfactory bulb), we computed the distribu-
tions of GOF, respectively, in a total of 8 different species and 14
different brain structures (Fig. 3). These GOF distributions allow
users to segment neuron clusters of different cell types according
to species or structural characteristics. To increase its applic-
ability, G-Cut also allows users to obtain the distribution of the
GOF from customized neuronal morphology datasets provided
for specific research purposes, allowing further computations to
be performed on the most appropriate cell types (Supplementary
Fig. 1). Unless otherwise stated, G-Cut employs a single
parameter that specifies which of the species or brain region
specific GOF distributions to be used (or that a custom GOF
distribution should be calculated). Subsequently, this computed
GOF distribution is used to quantify the fitness of each branch-
soma pair to enable data driven determination of branch-soma
assignments.

G-Cut calculates the complete set of segmentation configura-
tions in a neuron cluster in order to calculate the global optimum.
Topological relations between branches under different segmen-
tation configurations are derived with well-established graph
algorithms and translated to a series of algebraic constraints
(Methods and Fig. 2d). An optimization process that maximizes
the global GOF based fitness of all soma branch pairs can then
partition the graph into individual neurons. We use a linear
programming approach!3 to solve the optimization problem
because: (1) the optimized function is linear in nature (Methods);
(2) a global optimum is guaranteed to be found (there is no
conflicting constraint in our system); and (3) many fast and
reliable solvers are available. Because the distribution of GOF,
which the fitness metric is based on, is derived from real world
biological data, our method achieves biologically valid segmenta-
tion of individual neurons.

Evaluation of G-Cut accuracy with simulated neuron clusters.
To our knowledge, only two other algorithms have been proposed
to address the challenge of multi-neuron reconstruction. One is
TREES toolbox, which uses a growth competition algorithm to
reconstruct multiple neurons with minimum wiring cost!.
Another method, NeuroGPS-Tree locates neuronal cell bodies!”
and uses statistical distribution of several biological features to
determine break points between bridged neurons!®. Although
these two algorithms can reconstruct individual neurons from a
neuron cluster, they have several limitations for reconstructing
densely interweaving neurons. Output of TREES toolbox is highly
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Fig. 1 A workflow for automated reconstruction of individual neurons from a neuron cluster. a An image stack with a densely labeled neuron cluster is
obtained with appropriate tissue preparation and imaging techniques (e.g., confocal microscopy, multiphoton microscopy on clarified tissue, etc.). b An
existing tracing method (e.g., NeuronStudio software) is applied to obtain an unsegmented reconstruction of the neural cluster as shown in €. G-Cut is
applied to the unsegmented reconstruction. Resulting individual neurons are shown with distinct colors as shown in d. e and f show enlarged view of two
reconstructed single neurons corresponding to the orange boxes in d. g shows segmentation result of G-Cut on four reconstructed neuron clusters. Initial
unsegmented neuron clusters were reconstructed from experimental image stacks with APP2 algorithm in Vaa3D software. The result shows that G-Cut

can be applied on clusters with numerous neurons

parameterization dependent. Both TREES toolbox and
NeuroGPS-Tree rely on local morphological features and are
therefore unable to determine the most probable partition in the
entire connected graph.

To systematically evaluate the accuracy of G-Cut and
compare it with NeuroGPS-Tree and TREES toolbox, we
investigated the accuracy of all three methods with respect to
two characteristics of a neuron cluster: cluster scale and degree

of inter-neuron entanglement. Cluster scale refers to the number
of neurons in a cluster. Cluster degree of entanglement is
represented by the number of spurious links bridging proximal
neurons. Both characteristics change with experimental proto-
cols (e.g., volume of the tissue, density of neuronal labeling, etc.)
and influence the difficulty of the segmentation problem. We
created two large synthetic datasets of simulated neuron clusters
of varying scale and degree of entanglement, respectively, using
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Fig. 2 G-Cut performs automatic segmentation based on biological features and graph theory. a The original graph representation of a neuron cluster
consists of branches and somas. Each branch starts at one topological node, and ends at another topological node (soma nodes shown as blue, branch
nodes shown as green, leaf nodes shown as yellow, path nodes shown as magenta, and edges between nodes shown as solid line). b The Growth
Orientation Feature (GOF) quantifies the orientation of a branch with respect to a soma. Blue node: soma. Green node: branch node. Yellow node: leaf
node. Red node: path node. ¢ Left-hand panel shows an example histogram of the GOF for more than 70,000 experimentally reconstructed neuronal
morphologies from the NeuroMorpho.Org database. Right-hand panel shows cumulative distribution function of the GOF derived from its histogram. d We
identify bridging branches between somas and establish their topological relations by constructing a directed acyclic graph (DAG) rooted at a given soma
using the Dijkstra algorithm. The branches which are reachable from only one soma are excluded with a Breadth-first search algorithm in preprocessing to
reduce problem size. The direction of each branch and its path from the soma are established in this step (direction of each branch shown as blue arrow).
After that, the linear programming algorithm is used to find a globally optimal segmentation for the neuron cluster

reconstructed single neurons hosted on NeuroMorpho.Org.
Briefly, single neurons were randomly placed in space, where
any pair of branches in close proximity was subsequently
connected, bridging neurons into a cluster (Fig. 4, Supplemen-
tary Note 1 and Supplementary Fig. 2). This allowed the rapid
evaluation of the outcomes of each algorithm against an
established ground truth. We measured the accuracy of neuron
segmentation results with the Miss-Extra-Scores (MES)!7, which
quantifies topological resemblance between segmented and
ground truth neurons.

To understand how cluster scale affects segmentation accuracy,
we formed clusters with increasing number of individual neurons,
with upper bounds on cluster entanglement with the empirical
distribution of spurious link numbers between randomly placed
neuron pairs (Supplementary Note 1). MES following G-Cut
segmentation remained high across various cluster scales, and we
did not find obvious deterioration in MES results as the cluster
scale increased (Fig. 5a and Supplementary Fig. 3a). Details of the
statistical analysis are given in Supplementary Fig. 4a. Further, in
comparison with NeuroGPS-Tree and TREES toolbox, G-Cut had
higher MES scores across all scales of simulated neuron clusters

(Mann-Whitney U tests with Benjamini-Hochberg correction,
p <0.01, Fig. 5a).

To understand how cluster degree of entanglement affects
segmentation accuracy, we formed clusters with a constant
number of individual neurons, while leaving the spurious link
number in clusters unbound. Since the distribution of spurious
links is a non-uniform value where events with very high link
numbers occur at low frequency (Fig. 5b), we generated a large
number of clusters at fixed scale and performed stratified
sampling at varying degrees of entanglement (Supplementary
Note 1). As the cluster degree of entanglement increases, MES
results of G-Cut, NeuroGPS-tree and TREES toolbox were all
seen to decrease (Fig. 5¢, Supplementary Figs. 3b and 4b).
However, the MES of G-Cut was still higher than that of the two
other algorithms across all degrees of entanglement
(Mann-Whitney U tests with Benjamini-Hochberg correction,
p <0.01, Fig. 5¢).

With these two datasets, we demonstrated that G-Cut has high
segmentation accuracy and outperforms both NeuroGPS-Tree
and TREES toolbox in challenging neuron clusters with large
scale or high degree of entanglement.
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Fig. 3 GOF distributions obtained from public datasets available on the NeuroMorpho.Org website. Neurons are cataloged by species or by brain regions.
a GOF distribution of each species contains more than one thousand neurons (excluding C. elegans which only has 424 neurons in total). b GOF distribution
of each brain region contains more than one thousand neurons. Kullback-Leibler divergence was performed on different species and different brain regions,

respectively

Validation of G-Cut performance on densely connected neu-
rons. To validate our results from synthetic datasets on real image
stacks, we evaluated the performance of G-Cut, NeuroGPS-Tree
and TREES toolbox on an image volume containing densely
interconnected neurons (Fig. 6a). A neuron cluster graph was
reconstructed using NeuronStudio software!® (Fig. 6b). The
reconstructed neuron cluster was segmented by the three methods:
G-Cut, NeuroGPS-Tree and TREES toolbox. Additionally, manual
tracing of individual neurons was performed with neuTube soft-
ware to establish ground truth!® (Fig. 6c). The MES comparison of
segmented and ground truth neurons showed the result of G-Cut
to be close to ground truth and more accurate than NeuroGPS-
Tree and TREES toolbox (Fig. 6d-g). We tested all three algo-
rithms on an additional densely labeled image stack, with results

demonstrating high accuracy by G-Cut segmentation (Supple-
mentary Fig. 5). These results are consistent with findings from
synthetic neuron clusters with high degree of entanglement, and
demonstrate the reliability of G-Cut as a component in an
informatics reconstruction pipeline applied toward densely labeled
neuronal morphologies in image stacks.

Validation of G-Cut performance on large number of neurons.
We further tested the performance of G-Cut and compared it
with NeuroGPS-Tree and TREES toolbox on an image stack
containing large numbers of intermingling neurons. The image
stack was obtained by classic Golgi-cox staining (Fig. 7a). In
addition to the numerous neuronal cell bodies and their extended
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Fig. 4 Segmentation accuracy of G-Cut on a simulated neuron cluster. a A simulated neuron cluster (left panel) and segmentation result (right panel). Each
segmented neuron is given a unique color for easier visualization. b Comparison between each original neuron (left) and segmented neuron (right). The
neurons are rotated for more effective visual presentation. Rendering is done with neuTube software
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Fig. 5 Evaluating the segmentation accuracy of G-Cut on simulated neuron clusters. a Segmentation accuracy of G-Cut compared to NeuroGPS-tree and
TREES toolbox on different scales of simulated neuron clusters (sample size: 100 neuron clusters for each scale). Mann-Whitney U tests with Benjamini-
Hochberg correction show that G-Cut has consistently higher accuracy (p < 0.01) across all scales of clusters. b The probability distribution of degree of
entanglement in randomly generated neuron clusters with a fixed cluster scale of six. € Segmentation accuracy of G-Cut compared to NeuroGPS-Tree and
TREES toolbox on simulated neuron clusters with different degrees of entanglement (sample size: 100 neuron clusters for each degree of entanglement).
The MES result of G-Cut is consistently higher than both NeuroGPS-TREE and TREES toolbox at all degrees of entanglement (p < 0.01, Mann-Whitney U
test with Benjamini-Hochberg correction). Source data are provided as a Source Data file
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Fig. 6 Performance of G-Cut, NeuroGPS-tree and TREES toolbox on densely connected neurons. a The raw image stack. Data size: 1024 x 1024 x 500

voxels. b A neuron cluster was automatically reconstructed from the image stack by NeuronStudio software. The neuron cluster contained 108 spurious
links in total. Some representative spurious links were marked in yellow circles. ¢ Sixteen neurons were manually reconstructed from the raw image stack
with neuTube software and used as ground truth. d-f The neuron cluster in b was segmented into individual neurons by G-Cut, NeuroGPS-tree and TREES
toolbox, respectively. Identical post-processing was used on segmentation results from all three algorithms (see Supplementary Fig. 7 and Supplementary
Note 2). g Miss-Extra-Scores of the sixteen neurons reconstructed by G-Cut, NeuroGPS-Tree and TREES toolbox. The MES was obtained by comparing an
automatic reconstruction result with the manual reconstruction result of each neuron. The red line represents median MES. Source data are provided as a

Source Data file

neurites, the image stack also contained many neurites originat-
ing from locations outside of the imaged volume, both char-
acteristics causing tracing errors when existing automatic tracing
methods were applied (Supplementary Fig. 6). Therefore, firstly,
we manually reconstructed forty-five neurons as ground truth
using neuTube software (Fig. 7b). Then, we used automatic tra-
cing methods in NeuronStudio software to reconstruct neuron
clusters from the image stack (Fig. 7c). Subsequently, these
neuron clusters were segmented using G-Cut, NeuroGPS-tree and
TREES toolbox into 45 individual neurons, respectively
(Fig. 7d-f). Our results showed that the MES of G-Cut segmen-
tation result remained robust even when the reconstructed neu-
ron cluster contained tracing errors, and was more accurate than
the segmentation results of NeuroGPS-Tree and TREES toolbox
(Fig. 7d-g).

However, we emphasize that we conducted our image stack
segmentation experiments on the best tracing results attainable by
state-of-the-art algorithms. Topological tracing errors in
upstream automatic tracing methods decrease the quality of
input received by G-Cut and can in turn negatively impact its
output (Supplementary Figs. 6-8 and Supplementary Note 2).
Although G-Cut can correct some of the topological errors at
present, some tracing inaccuracies remain and are visible in the
output of G-Cut. Therefore, methods that detect and rectify
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topological errors in automatically traced neuron clusters with
high success rates are needed to optimize the performance of
G-Cut. Development of these error correction methods is planned
for our future technology work.

Discussion

Characterizing precise three-dimensional neuronal morphology
and anatomical context of neurons is crucial for neuronal cell type
classification and circuitry mapping. Achieving this requires tech-
nological advancements in three areas: (1) More efficient and
robust labeling methods, for example, Brainbow?%2! and recently
developed sparse labeling technologies?2. These technologies fully
reveal the detailed neuronal morphologies of single neurons that
are distinguishable from a tangle of numerous neuronal processes
of numerous other neurons; (2) Microscopic imaging technologies
that enable imaging high-resolution 3D neuronal morphologies in
tissue blocks or even whole brains; (3) Computational tools for
reconstructing neuronal morphology accurately and efficiently.
Due to high densities of axonal and dendritic arbors of mammalian
neurons in local brain regions, multiple labeled cells with dense
neurites may appear fused in optical microscopy images, while
existing automated tracing algorithms are incapable of resolving
such junctions reliably and typically trace multiple cells as
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interconnected neuron clusters. Although a great deal of progress G-Cut leverages biological statistics and graph theory to
has been made in the other two aspects, there have been few efforts  automatically segment individual neurons with detailed neuronal
toward developing computational approaches that are required to  morphologies from densely intermingled neuron clusters. It is
more efficiently and accurately segment and characterize neuronal  rapidly and accurately performant in various CLARITY processed
morphologies of many neurons in large brain volumes. tissue blocks and Golgi-cox stained brain sections. Able to use a
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Fig. 7 Validation of G-Cut, NeuroGPS-tree and TREES toolbox on a large number of neurons. a The raw Golgi-cox staining image stack. Data size: 8192 x
2048 x 46 voxels. b Forty-five neurons were manually reconstructed using neuTube software and used as ground truth. ¢ Neuron clusters were
reconstructed from the image stack by automatic tracing methods in NeuronStudio software. The neuron clusters contained 169 spurious links in total.
d-f The neuron clusters in ¢ were segmented by G-Cut, NeuroGPS-tree and TREES tool box into 45 individual neurons, respectively. Identical post-
processing was applied to results from all three algorithms to fix tracing errors and prune redundant branches (see Supplementary Fig. 7 and
Supplementary Note 2). g Miss-Extra-Scores of the forty-five neurons segmented by G-Cut, NeuroGPS-Tree, and TREES toolbox. Source data are provided

as a Source Data file

standard SWC file as input??, G-Cut can be easily applied on top
of reconstruction results obtained from automatic, semi-
automatic and manual tracing methods of different labs, mak-
ing it a flexible and powerful component of an informatics
pipeline. We combine G-Cut with automatic single neuron
reconstruction methods (by APP2 in Vaa3D?%, GTree?’, Neu-
ronStudio etc.) for a proposed workflow (Fig. 1) that includes
data acquisition, neuron cluster reconstruction and single neuron
segmentation (see Fig. le, Supplementary Figs. 5 and 9 for more
real image stack cluster reconstruction and neuron segmentation
examples; also see Supplementary Movie). The proposed work-
flow would address the challenge of reconstructing populations of
neurons from tissue blocks, improving cell type identification,
neuronal circuitry mapping and single cell resolution brain atlas
development.

Our proposed workflow with G-Cut can reconstruct indivi-
dual neurons from neuron clusters labeled with a wide range of
techniques (rabies virus, genetic expression, etc.) that are much
less challenging than “sparse” labeling strategies. In addition, as
shown in this report, the G-Cut workflow can reconstruct
Golgi-labeled individual neurons (Golgi labeling is notoriously
for its noisy background and numerous neurites). This is sig-
nificant because currently Golgi-cox method is the most prac-
tical and robust method to reveal neuronal morphologies of
mammalian species such as rats, monkeys, and humans, where
technical and ethical barriers prevent the application of genetic
or viral labeling. Furthermore, we designed G-Cut such that it
can be used both individually and integrated into large-scale
informatics pipelines; therefore, it can be used systematically
and comprehensively to reconstruct neurons and establish
databases for comparison with neuronal cell types collected in
NeuroMorpho.org. Overall, G-Cut is a robust software for
practical and broad use in reconstructing neuronal morphology
with a high potential to accelerate and scale-up processes of cell
type classification, multi-compartmental modeling, and brain
mapping.

A final note is that we have not tested the capability of G-Cut
in reconstructing long axons in whole brain volumes. Axons
display very distinctive morphological features from dendritic
arbors in their complexity, such as length and thickness, numbers
of dendritic branches and axonal collateral trajectory, as well as
fine detailed morphological specificities (i.e., dendritic spines
versus axonal varicosities, boutons of passages, or terminal bou-
tons). Therefore, to accurately reconstruct axons with this
detailed information (not just as curve skeletons) requires dif-
ferent mathematic strategies. Further, accurate reconstruction of
individual axonal morphologies in whole brain context rely
heavily on imaging technologies that achieve a good balance of
sufficient resolution, reasonably good throughput, and relatively
“sparse labeling” of individual axons in order to produce mean-
ingful results. Considering the above challenges, accurate and
simultaneous reconstruction of long projecting axons from many
neurons in the whole brain context is a task better tackled by
combined efforts from reconstruction pipelines and image
acquisition techniques in future research.

Methods

In G-Cut, we assume that a digitally reconstructed neuron cluster has been
extracted from raster images and the neuronal cell body locations are known.
Reconstructed neuron clusters can be obtained through one of the many currently
available neuron tracing algorithms. Traced clusters are conventionally represented
by a connected graph, from which individual neuron segmentation is achieved by
an optimal graph partition that yields maximum global fitness in the graph.
Currently, the input formats supported by G-Cut include (1) SWC file format (the
current standard storage format for neuronal morphologies) and (2) vertex and
edge list. From an initially reconstructed neuron cluster, represented as a graph
(described by SWC file format or the more general vertex and edge list format), we
define four types of nodes connected by edges: soma nodes, branch nodes, leaf
nodes and path nodes. Soma nodes represent somas. Branch nodes are nodes with
more than two immediate neighbors. Leaf nodes are nodes with exactly one
immediate neighbor. These three types of nodes are of topological importance and
are therefore called topological nodes. Path nodes are nodes with exactly two
immediate neighbors. Associated with three-dimensional coordinates and con-
nected by edges, topological nodes and path nodes constitute the geometric
components of the connected graph representing a traced neuron cluster. We
formally define a branch as a curve immediately connecting two topological nodes
in the connected graph (Fig. 2a). It is important to note that, to the best of our
knowledge, with the exception of the TREES Toolbox and NeuroGPS-TREE, all
automatic tracing algorithms assume the presence of no more than one soma in a
traced volume. Therefore, all traced branches correctly belong to the single soma.
The SWC format echoes this single soma assumption by representing the traced
structure as a tree graph, where all edges (branches) orient away from one root
node (assumed single soma). By contrast, G-Cut considers image volumes where
the single soma assumption does not hold. A tree graph representation of such a
multi-soma neuron cluster contains branches with incorrect orientation: a branch’s
orientation designated by the tree graph is false, whenever the branch does not
actually belong to the assumed single soma, and therefore orients away from an
incorrect root. It is easy to see the edge directionality intrinsic to tree graphs is no
longer a meaningful representation of the biological data in a multi-neuron cluster.
Therefore G-Cut discards such direction information altogether, and instead views
the input as an undirected graph with numerous possible combinations of branch
to soma assignments: a system with » branches and m somas gives rise to n total
combinations, though we are able to greatly reduce this value by applying biolo-
gically relevant constraints. From all those possible combinations, G-cut identifies a
single combination of branch soma assignments that maximizes the global fitness
of the graph. Because each branch uniquely belongs to one and only one soma, at
the completion of the assignment, segmentation of single neurons from a neuron
cluster is achieved (Fig. 2d).

Our algorithm in G-Cut has three major steps:

To begin with, we define a morphological feature that we refer to as the Growth
Orientation Feature (GOF) and derive the statistical distribution of the GOF using
the existing experimental reconstruction of neuronal morphologies. We further
compute fitness, as well as penalty, the complement of fitness, for any given
branch-soma pair in the graph by incorporating GOF and branch length.

Secondly, we simplify the problem by eliminating branches whose soma
assignment can be determined from the topology of the graph alone. Briefly, when
traversing the graph from a given soma node, if a leaf node is encountered, all
branches between the soma node and the leaf node can only originate from the
given soma. They are subsequently assigned to the soma and excluded from further
consideration. We next run Dijkstra’s algorithm for each pair of soma nodes in the
graph, with one node being source and the other being target. The edge cost to
leave a non-source soma node is set to infinity. The branches along the identified
path, designated as common path, are reachable from either soma of the pair. Their
soma assignments are therefore ambiguous. A given soma, with its neighbor somas
reachable from it via a common path, and the minimum set of common paths
connecting these neighboring somas, is considered as an independent unit of the
neuron cluster graph. Branch assignments within the unit have no effect on the
branch assignments outside of the unit. Each independent unit is then considered
by the next stage of G-Cut.

In the final step, we derive one directed acyclic graph (DAG) from each soma in
the independent unit, representing the maximum probable set of branches origi-
nating from the soma within the unit. In every such DAG, the GOF based penalty
is computed and assigned as edge cost. We mathematically express topological
relationships between branches in the unit DAGs as several linear equality and
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inequality constraints. With linear programming, we minimize the total penalty of
all branch-soma pairs. The branch-soma assignments at the global minimum are
then the solution to our segmentation problem.

We now describe each of the 3 stages in greater detail.

Mathematic model for neuronal morphology. In a graph representation of a
neuron cluster, branches reachable from multiple somas cannot be assigned to a
unique soma based on topological relations alone. To overcome this difficulty and
to approximate the empirical observation that branch orientation crucially guides
successful manual tracing, we define and derive GOF as a data driven optimality
estimator in the graph.

The GOF describes the orientation of a branch with respect to a given soma
(Fig. 2b). A branch can be abstractly represented as a parametric curve in the three-
dimensional space C(I): Risp — R where [ is the trajectory length from a starting
point to a curve point and R3 is the three-dimensional coordinates of the point. For
a branch of total length L, a= C(0) is the start and b = C(L) is the stop (Table 1).

We define the GOF of a branch C with respect to a soma s as below:

GOF(C,s) = %/Le(z)dz m
0(l) = arccos<é$§7::‘, C’(l)> (2)

where 60(]) is the angle between the tangent vector C'(J) of the branch curve at C(I)
and the unit vector (C(I) — s) x |C(I) — s|A—1 pointing from s to C(l). (--) denotes
dot product of two vectors. Because C(]) is parametrized with curve length, C'(]) is
always a unit vector. Please note that the direction of a branch depends on its
topological relation with a given soma. GOF(C,_, s) and GOF(C,_,,, s) have
distinct values.

Substituting Eq. (2) into Eq. (1), we calculate the GOF of a reconstructed branch
as follows:

n pPi—s v
> v \arccos< ‘ijis{ , W>

®3)

GOF(C,s) = 7
ijl Iv;l
. | +p.
= % (4)
Vi =P ~Pj ®)

For a branch-soma pair with GOF = x, we use the tail distribution of GOF,
TailDist(x) as a measure of the likelihood that the pair occurs in a biological system
(Fig. 2¢):

TailDist(x) = / PDF(p)dp = 1 — CDF(x) (6)
where function PDF is the probability density function of the GOF empirically
constructed from the NeuroMorpho. Org database.

We also define fitness of a branch as below:

fitness (a — b, s) = weight (a — b) x TailDist{GOF(a — b, s)] (7)

where a — b denotes a branch that starts at a and ends at b. weight(a — b) is the
weight parameter of a branch a — b determined by its length. This term is used to
suppress noise from very short branches (a common tracing artifact from noisy
image stacks) on the graph.

Our segmentation method relies on Dijkstra’s algorithm and linear
programming. Both algorithms search for a global minimum. Therefore, we
convert the fitness score fitness(a — b, s) to penalty score g, b

Zabs = weight(a — b) x {1 — TailDist{GOF(a — b, s)|} (8)

Table 1 Mathematical symbols and their corresponding
meanings

Symbols Meaning

C Neurite curve

s Soma node

pi Path node i

v; Direction vector from a parent of path node i to the node
itself

ab Two end nodes on a neurite curve

g Penalty score

w Degree of membership

Transforming neuron clusters into a directed acyclic graph. In a reconstructed
neuron cluster, some branches join multiple somas while others do not. The seg-
mentation problem can be simplified by focusing on branches connecting several
somas. This can be done with breadth first search (BFS) starting at leaf nodes and
terminating at soma nodes. If only one soma node can be reached from the leaf
node, all branches between the soma node and the leaf node can only originate
from the encountered soma. They are subsequently assigned to the soma and
excluded from further consideration.

The GOF tells us how likely a branch has grown from a soma based on the
branch’s orientation and its relative position with respect to a soma. However,
other factors must also be considered. First, the GOF depends on the direction of a
branch. Edges in our input graph are undirected. A branch with end nodes a and b
can be considered either from a to b or from b to a. Which direction should it be?
Second, branches are in a graph and they have grown from the soma, so their
direction must be constructible with a growth process. Here we present how to
determine potential branch directions for a certain soma from an undirected
network. Our process is based on the following rules. First, if a branch has grown
from a soma, then there must be a directed path from the soma to the branch and
all branches on the path must have grown along the same direction of the path.
Second, if there are multiple directed paths to a branch, we choose the most likely
one. We consider the directed path with the lowest sum of penalty as the most
likely one. Based on these two rules, we employ Dijkstra’s algorithm?® to determine
branch direction and path from soma (Supplementary Note 3).

Please note that the Dijkstra’s algorithm needs a soma to be assigned as the root.
We run it independently for each soma in the graph. Given a root soma, it not only
outputs the minimal total cost from the soma to reach each branch, but also, more
importantly, the directed path to the branch by recording the previous branches for
each branch. In this way, the graph which represents the neuron cluster is
converted to multiple trees rooted at their respective somas, and the penalty along
the path direction can be assigned as weight to each branch in the tree (Fig. 2d).

Segmentation with linear programming. We formulate the graph partition
problem as a linear programming problem?’.

Dijkstra’s algorithm constructs an independent, directed path to branches from
each soma. To determine from which soma a branch originates, we evaluate all
possible branch soma pairs. We quantify the degree of membership for a branch C
belonging to a soma s as wc,. Assigning branch C to soma s is often not an isolated
operation: this assignment dictates that all branches occurring earlier along the
path from s to C are also assigned to s. We therefore consider w¢ for all branch
soma pairs jointly to minimize a global penalty function for the whole graph:

argmin

E= z:<w_ysy g. ;) where

ses
w.; is a column s of matrix W = {wc,}

g, isacolumn s of matrix G = {gc}

Under the following constraints:
ngs Wes = 1 (9>

Wes Z 0 (10)

(11)

In the expression, E is the energy function representing total penalty of all
soma-branch pairs considered by the algorithm. S is a set representing all somas. G
is a penalty matrix where gc is the penalty of a soma-branch pair C and s. W is a
membership value matrix of each branch to each soma. par(C, s) represents the
parent branch of a branch C.

The constraints expressed by Eq. (9) and Eq. (10) guarantee that the
membership of a branch to a soma is non-negative and its total membership to all
somas is 1.

Importantly, the constraint in Eq. (11) reflects the tree topology of a neuron.
Because a downstream branch grows from an upstream branch, its membership to
the root soma s cannot be higher than its immediate upstream branch. In this way,
we enforce the correct topology structure into our optimization problem.

After we use linear programming to achieve optimization on the graph partition
problem, we assign the branches to a certain soma according to assignment rule:

Wes < Wpur(C.s) s

,  argmax

s = W, 12
seS Cs ( )

The segmentation is completed when all branches have been assigned to specific
soma.

Tissue preparation. All experiments in this project were conducted according
to the regulatory standards set by the National Institutes of Health Guide for

the Care and Use of Laboratory Animals and by the institutional guidelines set by
the Institutional Animal Care and Use Committee at USC or University of Cali-
fornia in Los Angeles (UCLA). Brain tissues in this study are from adult mice
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(2 month-old male C57BL/6]) that either received injections of G-deleted rabies-
eGFP virus (Salk vector core) or with genetic-based sparse labeling using the
MORF method?2. Mice were pair-housed within a room that was controlled for
temperature (21-22 °C), humidity (51%), and light (12 h light:12 h dark cycle with
lights on at 6:00 a.m. and off at 6:00p.m.). Subjects had ad libitum access to tap
water and mouse chow throughout the experiments. Rabies injection surgeries were
performed in a BSL-2 level environment and performed by individuals who had
been rabies-vaccinated. Following surgery, rabies-infected animals were individu-
ally housed in a separate BSL-2 level facility for 4-7 days. Then each animal was
deeply anesthetized with an overdose injection of sodium pentobarbital and trans-
cardially perfused with approximately 50 ml of 0.9% saline solution followed by
50 ml of 4% paraformaldehyde (PFA; pH 9.5). The brains were removed and post-
fixed in 4% PFA for 24-48 h at 4°C.

These brains were then processed with CLARITY?S. In brief, these brains were
sliced into 1 mm thick coronal sections and immersed in SDS solution at 37
degrees Celsius for three weeks or until clear. Tissue sections were then placed into
graded imaging solutions of 2'2- thiodiethanol? with the final 64% TDE imaging
solution matching the refractive index of CLARITY tissue.

CLARITY tissue sections were imaged using an Olympus FVMPE-RS
multiphoton microscope which uses both Mai Tai and Insight laser excitation. For
Z-stack imaging of rabies-eGFP or genetically labeled neurons, Mai Tai laser
excitation was set to 920 nm to visualize rabies eGFP signal. For the 500 um Z-stack
shown in Fig. 1a, the infralimbic cortex (ILA) was imaged at 1024 x 1024 resolution
using a 25x Olympus objective (XLPLN25XWMP2) at 10 ps/pixel with a 1 um Z-
slice. The resulting 3D image volume has an XYZ pixel resolution of 0.497 x
0.497 x 1uym.

Golgi-cox staining was performed following a protocol modified from previous
reports031, Mouse brains were sliced into 150 um thickness for Golgi-cox
impregnation. Images for 3D rendering were collected using Olympus VS120
Virtual Microscope under x30 silicon oil objective lens at 1 pm z steps.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The raw image data generated for the study (shown in Figs. 1, 6, 7 and Supplementary
Fig. 9) are available from corresponding authors on request. The source data underlying
Figs. 3, 5a—c, 6b,g and 7g and Supplementary Figs. 1, 3, 4, 5e and 9 are provided as a
Source Data file.

Code availability

G-Cut is open source and available as Supplementary Software written in Matlab code.
All source code is freely available for noncommercial use (https://muyezhu@bitbucket.
org/muyezhu/gcut.git).
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