A New Probability Function and its Properties

Tseng-Tung Cheng

To cite this article: Tseng-Tung Cheng (1944) A New Probability Function and its Properties, Journal of the American Statistical Association, 39:226, 243-245

To link to this article: https://doi.org/10.1080/01621459.1944.10500682

Published online: 11 Apr 2012.

Submit your article to this journal

Article views: 12

A NEW PROBABILITY FUNCTION AND ITS PROPERTIES

By Tseng-Tung Cheng

National Amoy University, China

LET $x_{1}, x_{2}, \cdots, x_{n}$ be n quantities which vary within the interval $(0,1)$ and have the same probability function $\phi(x)$. Let $f(t) d t$ be the probability that the sum of these n quantities has a value between t and $t+d t$. Then

$$
\begin{equation*}
f(t)=\frac{d}{d t} \iint \cdots \int_{V} \phi\left(x_{1}\right) \phi\left(x_{2}\right) \cdots \phi\left(x_{n}\right) d x_{1} d x_{2} \cdots d x_{n} \tag{1}
\end{equation*}
$$

where the region V, over which the n-tuple integral is extended, is defined by the inequalities

$$
\begin{equation*}
0 \leqq x_{1} \leqq 1,0 \leqq x_{2} \leqq 1, \cdots, 0 \leqq x_{n} \leqq 1, x_{1}+x_{2}+\cdots+x_{n} \leqq t . \tag{2}
\end{equation*}
$$

Let V^{\prime} be the region defined by

$$
0 \leqq x_{1}, 0 \leqq x_{2}, \cdots, 0 \leqq x_{n}, x_{1}+x_{2}+\cdots+x_{n} \leqq t
$$

and V_{s} be that part of V^{\prime} in which s and only s of the x 's are greater than 1 , so that when $k<t \leqq k+1$, we may write symbolically

$$
\begin{equation*}
V^{\prime}=V+V_{1}+\cdots+V_{k} \tag{3}
\end{equation*}
$$

Again, let $V^{(s)}$ be the region defined by

$$
\begin{equation*}
x_{1} \geqq 1, \cdots, x_{s} \geqq 1, x_{s+1} \geqq 0, \cdots, x_{n} \geqq 0, x_{1}+x_{2}+\cdots+x_{n} \leqq t \tag{4}
\end{equation*}
$$

where, of course, s is less than t. Furthermore, we will denote the values of the n-tuple integral

$$
\iint \cdots \int \phi\left(x_{1}\right) \phi\left(x_{2}\right) \cdots \phi\left(x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}
$$

extended over the regions V, V^{\prime}, V and $V^{(s)}$ respectively ${ }^{1}$ by $I, I^{\prime}, I_{\text {s }}$ and $I^{(s)}$.

By the definitions given above, we may derive the following relations:
$\left.\begin{array}{cr}C_{1}{ }^{n} I^{(1)}=I_{1}+C_{1}{ }^{2} I_{2}+C_{1}{ }^{3} I_{3}+\cdots+C_{1}{ }^{k} I_{k} \\ C_{2}{ }^{n} I^{(2)}= & I_{2}+C_{2}{ }^{8} I_{3}+\cdots+C_{2}{ }^{k} I_{k} \\ C_{3}{ }^{n} I^{(3)} & = \\ \vdots & I_{3}+\cdots+C_{3}{ }^{k} I_{k} \\ \vdots & \vdots \\ C_{k}{ }^{n} I^{(k)} & = \\ & I_{k}\end{array}\right\}$

[^0]where $C_{s}{ }^{n}$ denotes, as usual, the number of combinations of n things taken s at a time.

With the aid of the relation

$$
I^{\prime}=I+I_{1}+\cdots+I_{k}
$$

which follows immediately from equation (3), we find from equations (5) that

$$
\begin{equation*}
I=I^{\prime}-C_{1}{ }^{n} I^{(1)}+C_{2}^{n} I^{(2)}-\cdots+(-1)^{k} C_{k}^{n} I^{(k)} \tag{6}
\end{equation*}
$$

The transformation

$$
\begin{equation*}
x_{1}=z_{1}+1, \cdots, x_{s}=z_{s}+1, x_{s+1}=z_{s+1}, \cdots, x_{n}=z_{n} \tag{7}
\end{equation*}
$$

carries the region $V^{(s)}$ into a new region $R^{(s)}$ defined by the inequalities

$$
\begin{equation*}
z_{1} \geqq 0, z_{2} \geqq 0, \cdots, z_{n} \geqq 0, z_{1}+z_{2}+\cdots+z_{n} \leqq t-s \tag{8}
\end{equation*}
$$

Hence

$$
\begin{align*}
I^{(s)}=\iint \cdots \int_{R^{(s)}} \phi\left(z_{1}+1\right) \cdots \phi\left(z_{s}\right. & +1) \phi\left(z_{s+1}\right) \\
& \cdots \phi\left(z_{n}\right) d z_{1} d z_{2} \cdots d z_{n} \tag{9}
\end{align*}
$$

If $\phi(x)$ be a polynomial in x, then each of the integrals I^{\prime} and $I^{(s)}$ is the sum of a number of Dirichlet's integrals, and may therefore be expressed in terms of Γ functions. In particular, when $\phi(x) \equiv 1$,

$$
\begin{align*}
I^{\prime} & =\frac{[\Gamma(1)]^{n}}{\Gamma(n+1)} t^{n}=\frac{1}{n!} t^{n} \tag{10}\\
I^{(s)} & =\frac{1}{n!}(t-s)^{n}, \quad s=1,2, \cdots, k \tag{11}
\end{align*}
$$

Substituting (10) and (11) into (6) gives

$$
\begin{equation*}
I=\frac{1}{n!}\left[t^{n}-C_{1}^{n}(t-1)^{n}+\cdots+(-1)^{k} C_{k}^{n}(t-k)^{n}\right], \quad k<t \leqq k+1 \tag{12}
\end{equation*}
$$

Differentiating (12) we obtain finally

$$
\begin{align*}
& f(t)=\frac{d I}{d t}=\frac{1}{(n-1)!}\left[t^{n-1}-C_{1}^{n}(t-1)^{n-1}+\cdots\right. \\
& \left.+(-1)^{k} C_{k}^{n}(t-k)^{n-1}\right], \quad k<t \leqq k+1 \tag{13}
\end{align*}
$$

As shown elsewhere, ${ }^{2}$ the function $f(t)$ has the following properties:
(a) $f(t)$, together with its first $n-2$ derivatives, is continuous throughout the interval $(0, n)$.
(b) $f(t)$ is symmetric with respect to the point $t=\frac{1}{2} n$.
(c) $f(t)$ increases in the t-interval ($0, \frac{1}{2} n$) and decreases in ($\frac{1}{2} n, n$).
(d) The moments of $f(t)$ with respect to its arithmetic average $t=\frac{1}{2} n$ are given by the following identity:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \mu_{k}=\left(\frac{e^{t}-1}{t e^{\frac{3}{2}}}\right)^{n} \tag{14}
\end{equation*}
$$

where μ_{k} denotes the k th moment. Hence

$$
\begin{equation*}
\mu_{0}=1, \mu_{1}=0, \mu_{2}=n / 12, \mu_{3}=0, \mu_{4}=\left(5 n^{2}-2 n\right) / 240, \cdots \tag{15}
\end{equation*}
$$

In general, $\mu_{2 k+1}=0$ and $\mu_{2 k}$ is a polynomial of the k th degree in n which may be written in the form

$$
\begin{equation*}
\mu_{2 k}=\frac{(2 k!)}{k!}\left[\frac{1}{3!} \frac{1}{2^{2}}\right]^{k} n^{k}[1+\text { terms involving } 1 / n] \tag{16}
\end{equation*}
$$

Neglecting the terms involving $1 / n$ and denoting the standard deviation by σ, this equation gives

$$
\begin{equation*}
\sigma^{2}=\mu_{2}=n / 12 \tag{17}
\end{equation*}
$$

whereupon it follows that

$$
\begin{equation*}
\mu_{2 k}=(2 k-1)(2 k-3) \cdots 3 \cdot 1 \sigma^{2 k} \tag{18}
\end{equation*}
$$

which is a property characteristic of the normal curve

$$
y=\frac{1}{\sqrt{2 \pi} \sigma} e^{-x^{2} / 2 \sigma^{2}}
$$

[^0]: ${ }^{1}$ It is assumed here that the function $\phi(x)$ has also been defined for values of x lying outside the interval (0,1).

