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A NEW PROBABILITY FUNCTION AND ITS PROPERTIES

By TSENG-TuNG CHENG

National Amoy University, China

LET Xl, X2, ..• , X" be n quantities which vary within the interval
(0,1) and have the same probability function ¢(x). Letj(t)dt be the

probability that the sum of these n quantities has a value between t
and t+dt. Then

j(t) = .!!.-II ... f ep(Xl)ep(X2) ... ep(x,,)dxldx2 ... dx", (1)
. dt v

where the region V, over which the n-tuple integral is extended, is de­
fined by the inequalities

O~xl~l, 0~x2~1,··· ,O~x,,~l, Xl+X2+ ... +x,,;;it. (2)

Let V' be the region defined by

o ~ Xl, 0 ~ X2, • • • , 0 ~ X", Xl + X2 + .. . + x" ~ t,

and V. be that part of V' in which 8 and only 8 of the x's are greater
than 1, so that when k<t~k+l, we may write symbolically

V' = V + Vl + ... + Vk.

Again, let V(') be the region defined by

xl~l, ... ,x.~I, X.+l~O, •.. ,x,,~O, Xl+X2+ ... +x,,~t (4)

where, of course, 8 is less than t. Furthermore, we will denote the values
of the n-tuple integral

fI ... I ep(Xl)ep(X2) ... ep(x,,)dxldx2 ••• dx;

extended over the regions V, V', V. and V(') respectively' by I, I', I.
and 1(').

By the definitions given above, we may derive the followingrelations:

G1"I (1 ) = II + Gl2]2 + G13I3+ + G1kh

G2"1(2) = 12 + G281
3 + + G2kh

G3" 1 ( 3) E: Is + + G3
kh

J It i8 assumed here that the function .pC",) has also been defined for values of ", lying outside the
interval (0. 1).
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where Can denotes, as usual, the number of combinations of n things
taken 8 at a time.

With the aid of the relation

I' = I + 11 + ... + h,

which follows immediately from equation (3), we find from equations
(5) that

I = I' - C1nIO) + C2nI(2) - ... + (- I)"C"nI(k). (6)

The transformation

Xl = Zl + 1, ... , Xa = Za + 1, Xa+l = z'+l, ••. , Xn = Zn (7)

carries the region V(a) into a new region R(a) defined by the inequalities

Zl ~ 0, Z2 ~ 0, ... , e« ~ 0, Zl + Z2 + ... + Zn ;;i t - 8. (8)

Hence

I(a) = II ... f cP(Zl + 1) ... cP(za + I)cP(za+1)
R(a) r

•.• cP(zn)dz1dz2 ... dzn. (9)

If cf>(x) be a polynomial in z, then each of the integrals I' and I(a) is
the sum of a number of Dirichlet's integrals, and may therefore be ex­
pressed in terms of r functions. In particular, when cf>(x):=; 1,

[r(I)]n 1
I' = tn = - tn (10)

r(n + 1) n!'

1
I(a) = , (t - 8)10, 8 = 1, 2, ... , k, (11)

n.

Substituting (10) and (11) into (6) gives

1
1=, [tn_C1n(t-I)n+ ... +(-I)"C"n(t-k)n], k<t;;ik+1. (12)

n.

Differentiating (12) we obtain finally

J(t)
dI 1

= - = --- [tn-1 - C1n(t - 1)10-1 + ...
dt (n - I)!

+ (- I)kCkn(t - k)n-1], k < t ~ k + 1. (13)

As shown elsewhere," the function J(t) has the following properties:

• T. T. Cheng, Collected Scientific and Engineering Papers, National Amoy University.
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(14)

(16)

(a) f(t), together with its first n-2 derivatives, IS continuous
throughout the interval (0, n).

(b) f( t) is symmetric with respect to the point t =tn.
(c) f(t) increases in the t-interval (0, !n) and decreases in an, n).
(d) The moments of f(t) with respect to its arithmetic average t= in

are given by the following identity:

00 tIc (e' - l)nL: -kl 1-''' = -t-1-' - ,
,,~o. e

where J.l-k denotes the kth moment. Hence

1-'0 = 1, 1-'1 = 0, 1-'2 = n/12, 1-'3 = 0, 1-'4 = (5n2 - 2n)/240, . . . . (15)

In general, J.l-2k+l= 0 and J.l-2k is a polynomial of the kth degree in n which
may be written in the form

(2k!) [1 1J"JL2k = -- - - n"[l + terms involving lin}.
k! 3! 22

Neglecting the terms involving l/n and denoting the standard devia­
tion by a, this equation gives

u2 = 1-'2 = n/12, (17)

whereupon it follows that

1-'2" = (2k - 1)(2k - 3) ... 3.1u2k,

which is a property characteristic of the normal curve

1 2 2
Y = --=- e- X /2a •

y27ru

(18)


