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Neural Machine Translation with Deep Attention
Biao Zhang, Deyi Xiong and Jinsong Su

Abstract—Deepening neural models has been proven very successful in improving the model’s capacity when solving complex learning
tasks, such as the machine translation task. Previous efforts on deep neural machine translation mainly focus on the encoder and the
decoder, while little on the attention mechanism. However, the attention mechanism is of vital importance to induce the translation
correspondence between different languages where shallow neural networks are relatively insufficient, especially when the encoder and
decoder are deep. In this paper, we propose a deep attention model (DeepAtt). Based on the low-level attention information, DeepAtt is
capable of automatically determining what should be passed or suppressed from the corresponding encoder layer so as to make the
distributed representation appropriate for high-level attention and translation. We conduct experiments on NIST Chinese-English, WMT
English-German and WMT English-French translation tasks, where, with 5 attention layers, DeepAtt yields very competitive performance
against the state-of-the-art results. We empirically find that with an adequate increase of attention layers, DeepAtt tends to produce more
accurate attention weights. An in-depth analysis on the translation of important context words further reveals that DeepAtt significantly
improves the faithfulness of system translations.

Index Terms—Deep attention network, neural machine translation (NMT), attention-based sequence-to-sequence learning, natural
language processing
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1 INTRODUCTION

R ECENT advances in deep learning enable the end-to-end neural
machine translation (NMT) system to achieve very promising

results on various language pairs [1], [2], [3], [4], [5]. Unlike
conventional statistical machine translation (SMT), NMT is a
single, large neural network which heavily relies on an encoder-
decoder framework, where the encoder transforms source sentence
into distributed vectors from which the decoder generates the
corresponding target sentence word by word [2]. However, to
achieve state-of-the-art performance, researchers often resort to
deep NMT so as to enhance its capacity in capturing source and
target semantics [3], [4], [5].

Previous efforts on deep NMT mainly focus on the encoder and
the decoder. For example, Wu et al. [3] use residual connections
to train 8 encoder and 8 decoder layers; Zhou et al. [4] propose
fast-forward connections and train a NMT with a depth of 16; Wang
et al. [5] propose linear associative units and apply it on 4 layers
encoder and 4 layers decoder. Intuitively, the deep encoder is able
to summarize and represent source semantics more accurately,
and the deep decoder can memorize much longer translation
history and dependency. Although these deep models benefit NMT
significantly, they all build only upon a single-layered attention
network, which might be insufficient in modeling translation
correspondence between different languages thus hindering the
performance of NMT systems.

The attention mechanism [2] aims to dynamically detect
translation-relevant source words for predicting next target word
according to the partial translation. It acts as the translation model
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Fig. 1: Illustration of the proposed DeepAtt. We use blue and
red color to indicate the source and target side respectively. The
yellow and gray color denotes the information flow for target
word prediction and attention respectively. Notice that we draw the
encoder on the right and the decoder on the left for clarity.

in SMT, bridging the gap between encoder and decoder, which
requires complex reasoning ability and is very crucial to the
faithfulness of translation. To improve its capacity, we propose
a deep attention model (DeepAtt). Figure 1 shows the overall
architecture. With one more encoding layer, DeepAtt stacks one
more attention layer. In this way, the low-level attention layer is able
to provide translation-aware information to the high-level attention
layer. This enables the higher layer to automatically determine what
should be passed or suppressed from the corresponding encoder
layer which in turn, makes the learned distributed representation
more appropriate for the next target word prediction. Besides,
DeepAtt retains the hierarchy of the encoder, and sets up the layer-
wise interaction between the encoder and the decoder. This can
help the decoder to capture more accurate source semantics since
only one attention layer often induces inadequate attentions [6].
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DeepAtt is deep on not only the encoder and the decoder,
but also the attention mechanism. This deep attention architecture
significantly improves the connection strength between the encoder
and decoder, enabling more complex reasoning operations during
translation. To testify its effectiveness, we conduct a series of
experiments on machine translation tasks. On NIST Chinese-
English task, our model achieves the best performance in terms
of BLEU score compared with existing work using the same
training data. We quantitatively analyze the attention weights of
each attention layer in terms of alignment error rate, and find that
with an adequate increase of attention layers, DeepAtt produces
more accurate attention weights. We further check whether our
model yields more adequate translation. Experiment results show
that the translation quality of important context words (e.g. noun,
verb, adjective) is indeed improved. On the WMT14 English-
German and English-French (using 12M corpus only) task, our
single model, with 5 attention layers, achieves a BLEU score of
24.73 and 38.56 respectively, both comparable to the state-of-the-
art.

Our main contributions are summarized as follows:
• We propose a novel deep attention mechanism which operates

in a hierarchical manner and allows the encoder to interact
with the decoder layer by layer. The hierarchy architecture
ensures that source-side semantics can be fully utilized to
generate the next target word. The layer-wise interaction, ,
on the other hand, enables the decoder to selectively pick
essential untranslated source words for the prediction of the
next target word.

• We develop a novel deep encoding schema which alternates
forward and backward RNNs with skip connections to the
source input at each layer. The alternation helps capture more
accurate source semantics via integrating both history and
future source-side information. The skip connection, on the
other hand, makes the gradient propagation more fluent so as
to enable feasible model optimization.

• We conducted a series of experiments on NIST Chinese-
English, WMT14 English-German and WMT14 English-
French translation tasks. The proposed model yields consistent
and significant improvements over several strong baselines,
and achieves results comparable to various state-of-the-art
NMT systems.

2 RELATED WORK

Our work is closely related with two lines of research: the attention
mechanism and the deep NMT.

Observing that the use of a fixed-length vector is insufficient in
summarizing source-side semantics, Bahdanau et al. [2] propose
the attention mechanism. Luong et al. [7] explore several efficient
architectures for this mechanism, introducing the global and local
attention models. Zhang et al. [8] propose that the recurrent neural
network can be used as an alternative to the attention network.
Recently, Zhang et al. [9] introduce a GRU gate to the attention
model so as to improve the discriminative ability of the learned
attention vectors. Vaswani et al. [10] propose a multi-head attention
network with scaled-dot operation, expecting each head to capture
a particular aspect of the source-target interaction. Zhang et al. [11]
develop an average attention model which greatly simplifies the
decoder-part self-attention mechanism using solely cumulative
average operation. Rather than developing more flexible attention
models, we treat these exiting models as our basic unit. Although

we employ the model of Bahdanau et al. [2] in our experiments,
our DeepAtt can be easily adapted to other attention models.

Based on the success achieved in computer vision [12], [13],
deep neural networks have become a pretty hot spot in the NMT
community, such as [3], [4], [5]. These studies differ significantly
from ours in the following two aspects. First, their major focus is
to enable flexible optimization since training a deep neural network
is very difficult. To this end, Wu et al. [3] leverage the residual
connection; Zhou et al. [4] propose a fast-forward connection, while
Wang et al. [5] introduce a linear associative unit. Second, their
deep architecture lies in the encoder and the decoder, ignoring the
single-layered attention network which is still shallow. In contrast,
our model is also deep in the attention network, making the deep
encoder and deep decoder couple more tightly and the training
more flexible.

Our work brings these two lines of research together. In this
respect, Yang et al. [14] propose stacked attention networks to learn
to answer natural language questions from images. The difference
is that they apply the attention only on a single encoding layer and
compose the attended vectors using the adding operation. Although
their model works fine on CNN-based image question answering
task, this simple architecture and operation is relatively insufficient
for machine translation. Very recently, Gehring et al. [15] and Gangi
et al. [16], independent of our work, propose a multi-step attention.
In comparison, our DeepAtt has more compact network structure,
and is more feasible for optimization. Through experiments, we
observe that our model is superior to their stacked multi-layered
attention-based decoder.

3 THE MODEL

Unlike SMT, NMT models the translation procedure by directly
mapping the source sentence x = {x1, . . . , xn} to its target
translation y = {y1, . . . , ym}. As shown in Figure 1, this is
achieved via three components: encoder, decoder and attention
mechanism. We describe these components in succession.

The encoder aims at summarizing and representing source
semantics such that the decoder can recover them using the target
language. Given a source sentence x, we design our encoder as
follows (see the blue color in Figure 1):

hk
i =

{−→
h k

i = fenc(
−→
h k

i−1, c
k
i ,Exi) if k is even

←−
h k

i = fenc(
←−
h k

i+1, c
k
i ,Exi) otherwise

(1)

where hk
i ∈ Rdh is the hidden representation of source word xi

in the k-th encoder layer, and Exi
∈ Rdw is the source word

embedding. cki ∈ Rdh denotes the context representation in source
position i which tells the encoder the unobserved information in
the future. Formally,

cki = hk−1
i ,

where h0
i =
−→
h 0

i = GRU(
−→
h 0

i−1,Exi)
(2)

With such a serpentine manner, our encoder is aware of what has
been read so far

−→
h k

i−1/
←−
h k

i+1, what will be read next cki , and
what is the current input word Exi so that the future and history
information can be fully incorporated into the learned source word
representations. To enable this full integration, we design the
encoding function fenc using two-level hierarchy (take the first
case in Eq. (1) as example):

−→
h i = GRUhigher(h̃i, ci)

h̃i = GRUlower(
−→
h i−1,Exi)

(3)
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Intuitively, the low-level GRU model [17] provides a special
short-cut connection to the encoding function such that our deep
encoder can be feasibly optimized. After encoding, the source
sentence is converted into real-valued hidden representations:
Hk = {hk

1 , . . . ,h
k
n} (where 1 ≤ k ≤ K, K denotes the number

of encoder layers). The higher the encoder layer is, the more
abstract meanings Hk represents.

The decoder aims at leveraging these encoded source semantics
{Hk}Kk=1 to generate not only faithful but also fluent translation.
Generally, it is a conditional recurrent neural language model which
models the translation probability based on the following chain
rule:

p(y|x) =
m∏
j=1

p(yj |x,y<j)

=
m∏
j=1

softmax
(
g(Eyj−1 , sj , {akj }Kk=1)

) (4)

where y<j = {y1, · · · , yj−1} denotes a partial translation.
Eyj−1

∈ Rdw is the embedding of previously generated target
word yj−1, akj ∈ Rdh is the translation-sensitive attention vector
produced by the k-th attention layer and g(·) is a highly non-linear
function. sj ∈ Rdh is the j-th target-side hidden state, which is
usually calculated in a recurrent manner:

sj = fdec(sj−1,Eyj−1
, {Hk}Kk=1) (5)

As shown in Figure 1, DeepAtt is highly coupled with this decoding
function. Formally, we decompose fdec as follows:

sj = s̃Kj (6)

s̃kj = GRU(s̃k−1
j ,akj ) (7)

where s̃0j = GRU(sj−1,Eyj−1), akj = Att(s̃k−1
j ,Hk) (8)

Notice that ak relies on s̃k−1, while s̃k relies on both s̃k−1 and
ak. In this way, the low-level attention information s̃k−1 can help
to determine what should be extracted from the corresponding
encoding layer Hk, and the extracted information ak, in turn,
amends the expressibility of s̃k in translation correspondence
between source and target sentences for predicting the next target
word.

We use Att(·) to denote the attention mechanism, which extracts
a fixed-length vector ak from varied-length source representations
Hk. Currently, there are several alternatives [2], [7], [8], [9], [11],
among which we employed the most widely-used one [2]. This can
be summarized as follows:

akj =
∑
i

αk
jih

k
i

where αk
ji = softmax

(
exp

(
vTa tanh(Was̃

k−1
j + Uah

k
i )
))

(9)

Our model is deep not only on the encoder and decoder, but also
on the attention mechanism. To optimize our model, we used the
most popular maximum likelihood objective via stochastic gradient
descent algorithm.

4 EXPERIMENTS

We evaluated DeepAtt mainly on the NIST Chinese-English task.
Besides, we also provided results on the WMT14 English-German
and English-French task.

4.1 Setup

Datasets. The training data for NIST Chinese-English task con-
sists of 1.25M sentence pairs, with 27.9M Chinese words and
34.5M English words respectively. This data is a combination of
LDC2002E18, LDC2003E07, LDC2003E14, Hansards portion of
LDC2004T07, LDC2004T08 and LDC2005T06. We chose the
NIST 2005 dataset as the development set, and the NIST 2002,
2003, 2004, 2006 and 2008 datasets as our test sets. There are 878,
919, 1788, 1082 and 1664 sentences in NIST 2002, 2003, 2004,
2005, 2006, 2008 dataset respectively.

For English-German task, we used the same subset of the
WMT 2014 training corpus as in [3], [4], [5], [7]. This training
data consists of 4.5M sentence pairs with 116M English words and
110M German words respectively.1 We used the news-test 2013 as
the development set, and the news-test 2014 as the test set.

For English-French task, we also used the WMT 2014 training
data. The whole training corpus consists of around 36M sentence
pairs, from which we selected 12M sentence pairs for training so as
to meet our computational capability. The selection algorithm
strictly follows the previous work2. Finally, our training data
contain 304M English words and 348M French words. We used
the combination of news-test 2012 and news-test 2013 as the
development set, and the news-test 2014 as the test set.

Evaluation. We used the case-insensitive and case-sensitive
BLEU-4 metric [18] to evaluate translation quality of Chinese-
English and English-German, English-French task respectively.
For all tasks, we tokenized the reference and evaluated the
performance using multi-bleu.perl.3 We performed paired bootstrap
sampling [19] for significance test.

4.2 Model Settings

We adopted similar settings as Bahdanau et al. [2]. For Chinese-
English task, we extracted the most frequent 30K words from two
corpora as the source and target vocabulary, covering approximately
97.7% and 99.3% of each corpora respectively. With respect to
Moses, we used all the 1.25M sentence pairs (without length
limitation). We trained a 4-gram language model on the target
portion of training data using the SRILM4 toolkit with modified
Kneser-Ney smoothing. We word-aligned the training corpus
using GIZA++5 toolkit with the option “grow-diag-final-and”.
We employed the default lexical reordering model with the type
“wbe-msd-bidirectional-fe-allff”. All other parameters were kept as
the default settings.

For English-German task, we applied the byte pair encoding
compression algorithm [20] to reduce the vocabulary size as well
as to deal with rich morphology. For both languages, we preserved
16K sub-words as the vocabulary. We also tested a big setting
with 30K sub-words extracted as the vocabulary. Similarly, for
English-French task, we preserved 40K sub-words in the source
and target vocabulary, respectively.

We used dw = 620 dimensional word embeddings and dh =
1000 dimensional hidden states for both the source and target
languages. All non-recurrent parts were randomly initialized with

1. The preprocessed data can be found and downloaded from
http://nlp.stanford.edu/projects/nmt/.

2. http://www-lium.univ-lemans.fr/s̃chwenk/cslm_joint_paper/
3. https://github.com/moses-smt/mosesdecoder/tree/master/scripts/generic/multi-

bleu.perl
4. http://www.speech.sri.com/projects/srilm/download.html
5. http://www.fjoch.com/GIZA++.html
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System MT05 MT02 MT03 MT04 MT06 MT08 ALL
Moses 31.70 33.61 32.63 34.36 31.00 23.96 31.03
RNNSearch [2] 34.72 37.95 35.23 37.32 33.56 26.12 34.06
DeepAtt-1 36.44 40.12 37.63 39.83 35.44 27.34 36.12⇑++

DeepAtt-2 36.90 39.71 37.79 39.93 35.95 27.87 36.34⇑++

DeepAtt-3 36.75 40.53 38.12 40.14 36.14 28.12 36.65⇑++

DeepAtt-4 37.87 40.99 39.10 40.77 37.14 28.44 37.34⇑++

DeepAtt-5 38.82 41.00 39.07 41.09 37.37 28.52 37.50⇑++

DeepAtt-6 38.29 41.40 39.23 40.66 37.20 28.99 37.51⇑++

TABLE 1: Case-insensitive BLEU scores on the Chinese-English translation task. DeepAtt-k: the proposed model using “k” attention
layers, “k” encoder layers and “k” decoder layers (i.e. K =“k”). RNNSearch: a vanilla NMT system using 1-layer encoder and 1-layer
decoder with 1-layer attention. ALL = total BLEU score on all test sets. We highlight the best results in bold for each test set. All neural
models were trained with Adadelta optimizer. “↑/⇑”: significantly better than Moses (p < 0.05/p < 0.01); “+/++”: significantly better
than RNNSearch (p < 0.05/p < 0.01).

System Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6 ALL
RNNSearch 50.83 - - - - - 50.83
DeepAtt-1 45.25 - - - - - 45.25
DeepAtt-2 54.43 52.53 - - - - 48.09
DeepAtt-3 67.27 43.99 96.28 - - - 47.23
DeepAtt-4 77.64 52.16 76.86 53.30 - - 45.38
DeepAtt-5 60.71 49.22 64.39 78.86 96.44 - 44.69
DeepAtt-6 60.42 54.45 53.91 73.18 97.50 95.65 46.01

TABLE 2: AER scores of word alignments. The lower the score, the better the alignment quality. ALL = overall AER scores on all
attention layers.

zero mean and standard deviation of 0.01, except the recurrent
parameters which were initialized with random orthogonal matrices.
During decoding, we used the beam-search algorithm, and set the
beam size to 10.

The model is trained through standard SGD algorithm with
a mini-batch size of 80 sentences. We updated the learning rate
using the Adadelta algorithm [21] (ε = 10−6 and ρ = 0.95). We
clipped the norm of model gradient to make it no more than 5.0
so as to avoid gradient explosion issue. Dropout was also applied
on the output layer to avoid over-fitting. We set the dropout rate
to be 0 for Chinese-English task, and 0.2 for English-German and
English-French task. In addition, following recent advances in deep
learning community [3], [10], we employed Adam algorithm [22]
(ε = 10−8 and β1 = 0.9, β2 = 0.999) in some cases. Without
clear declaration, we used the Adadelta for experiment.

We implemented all our models based on the open-sourced
dl4mt system.6. All NMT systems were trained on a GeForce GTX
1080 based on the computational framwork Theano where up to 6
attention layers were tested due to the physical memory limit of
our GPU. The training of our DeepAtt costs around 5 days on the
Chinese-English task, around 3 weeks on the English-German task
and around 6 weeks on the English-French task when K is set to
be 5.

4.3 Results on Chinese-English Translation
Table 1 shows the translation results of different systems. No matter
how many attention layers are used, DeepAtt always significantly
outperforms both Moses and RNNSearch, with gains of up to 6.48
and 3.45 BLEU points respectively. Besides, as the number of
attention layers increases, the overall translation performance is
improved. Specifically, when there are 6 attention layers, DeepAtt
achieves 37.51 BLEU score on all test sets. This suggests that the
deep attention architecture benefits the NMT system.

6. https://github.com/nyu-dl/dl4mt-tutorial/blob/master/session3/nmt.py

We also observed that compared to DeepAtt-6, DeepAtt-
5 requires less training time with no significant performance
degradation. Thus, we conducted the following experiments using
5 attention layers by default, unless mentioned otherwise.

4.4 Analysis on Chinese-English Translation

The major difference between DeepAtt and other deep NMTs lies
in the multiple attention layers. Therefore, we first quantitatively
evaluated the quality of the learned attention weights at different
layers. To this end, we employed the alignment error rate (AER)
metric [23] and used the evaluation dataset from Liu and Sun [24],
which contains 900 manually aligned Chinese-English sentence
pairs [6]. Table 2 summarizes the results. With respect to the overall
AER score, we observed that there are no consistent improvements
as the attention layers deepen. However, all DeepAtt models achieve
lower (better) AER scores than the RNNSearch, especially the
DeepAtt-5 which yields the lowest 44.69 AER score. This indicates
that deepening the attention layers can help improve the alignment
quality, which typically contributes significantly to the translation
performance.

With respect to the AER score across different attention layers
(take DeepAtt-5 as example), we find that the score decreases at
first, then raises sharply (60.71→ 49.22→ 96.77). This suggests
that DeepAtt first seeks the translation-relevant source words, and
then pay more attention to the other words. We argue that this
phenomenon, to some extent, is consistent with human’s procedure
of translation. That is, a human needs to determine which source
word to translate at first, then checks broader context to confirm its
meaning, and finally finds out adequate target translations.

High quality word alignment plays an important role in the
translation of significant context words (e.g. noun, verb, adjective).
As DeepAtt produces better attention weights, we dug into the
translations and investigated whether the translation quality of
context words can be improved. We assigned parts of speech to
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Metric RNNSearch DeepAtt
NN VB NN&VB NN&VB&JJ NN VB NN&VB NN&VB&JJ

BLEU-1 61.97 55.75 59.18 60.66 65.38 58.87 62.52 64.07
BLEU-2 44.33 28.62 29.80 33.15 45.84 33.24 33.09 36.45
BLEU-3 35.66 15.01 15.01 17.92 36.98 21.21 17.41 20.38
BLEU-4 11.40 - 7.71 9.68 17.07 - 9.27 11.50

TABLE 3: Case-insensitive BLEU scores on specific context words. NN = noun, VB = verb, JJ = adjective, NN&VB = noun and verb.
“−” indicates the BLEU score is zero.

Source

津巴布韦总统穆加贝在 3月 9日至 11日的总统选举中再次当选 ,但西方国家指责选举存在严
重作弊行为 ,缺乏公正性和自由性 ,因此拒绝承认选举结果 ,并扬言将对津巴布韦进一步实
施制裁。
jı̄n bā bù wéi zǒng tǒng mù jiā bèi zài 3 yuè 9 rì zhì 11 rì de zǒng tǒng xuǎn jǔ zhōng zài cì dāng xuǎn , dàn xı̄
fāng guó jiā zhı̌ zé xuǎn jǔ cún zài yán zhòng zuò bì háng wéi , quē fá gōng zhèng xìng hé zì yóu xìng , yı̄n cı̌
jù jué chéng rèn xuǎn jǔ jié guǒ , bìng yáng yán jiāng duì jı̄n bā bù wéi jìn yı̄ bù shí shı̄ zhì cái。

Reference
zimbabwean president mugabe was reelected at the presidential election held from march 9 to 11 , but western
countries , alleging serious cheatings and lack of fairness and freedom in the election , refused to recognize the
election results and threatened further sanctions against zimbabwe .

Moses
zimbabwean president mugabe 9 to 11 march in the presidential election again elected , however , western
countries criticize election , there exist serious lack of fairness and cheating at UNK and therefore refused to
recognize the election results , and vowed to zimbabwe further sanctions .

RNNSearch in his election in the presidential election on march 9 - 11 , zimbabwe president UNK was re - elected during
the presidential election on march 9 th .

DeepNMT in the presidential election from march 9 to the 11 th of march - 11 , zimbabwean president mugabe , however ,
refused to acknowledge the election results and threatened to further impose sanctions against zimbabwe .

VDeepAtt
in the presidential election from march 9 th to the 11 th of the presidential election from march 9 th to the 11 th
, western countries have refused to recognize the election results and threatened to further impose sanctions
against zimbabwe .

WideAtt
during his election in the presidential election on the 9 th to 11 march , zimbabwe ’s president mugabe was re -
elected in the presidential election on march 9 - 11 , but he refused to acknowledge the election results and
threatened to further impose sanctions against zimbabwe .

DeepAtt
zimbabwean president mugabe was re - elected in the presidential election on 9 - 11 march , but western
countries have accused the election of serious UNK and lack fairness and UNK , thus refusing to admit the
election result and threatened to further impose sanctions on zimbabwe .

TABLE 4: Examples generated by different systems. The translation of DeepAtt is more accurate in expressing the meanings of source
sentences. Important phrases are highlighted in red color.
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Fig. 2: BLEU score and translation length on different length
groups of source sentences.

each word in the references and translations using the Stanford
POS Tagger7, and evaluated the translation quality of noun (NN),
verb (VB) and adjective (JJ) alone. We report BLEU from 1 to
4, and show the results in Table 3. Obviously, DeepAtt leads to
remarkable improvements over RNNSearch on all context words.
Specifically, on “NN”, DeepAtt outperforms RNNSearch by 5.67
BLEU-4 points, while on “VB”, DeepAtt achieves a gain of 6.2
BLEU-3 points. These significant improvements strongly indicate
that DeepAtt connects the encoder and decoder more tightly so as
to enable the translations more faithful.

A common challenge for NMT system is the translation of
long source sentences. The above analysis reveals that DeepAtt

7. https://nlp.stanford.edu/software/tagger.shtml

generates more faithful translation. We further verified this point
on long sentences. Following Bahdanau et al. [2], we grouped
sentences of similar lengths together and computed BLEU score
and average length of translations in each group.8 Figure 2
shows the overall results. We observe that the performance of
RNNSearch drops sharply when the length of source sentence
exceeds 50. Compared with RNNSearch, DeepAtt yields consistent
and significant improvements on all groups. Specifically, DeepAtt
obtains a gain of up to 4 BLEU points on the longest group.
Surprisingly, the translation length of DeepAtt is almost the same
as that of RNNSearch. This suggests that DeepAtt achieves much
better translation performance without changing the length of
translation, demonstrating the ability of DeepAtt in dealing with
long-range dependencies as well as generating faithful translations.

4.5 Translation Analysis
Following the above analysis, we further provide some translation
examples to verify whether our model indeed generates more fluent
and faithful translation. We show the instances in Table 4.

As a traditional statistical system that relies heavily on large-
scale phrase pairs, the Moses succeeds in generating faithful
translations, which, however, tend to lack of fluency. For example,
the sentence “zimbabwean president mugabe 9 to 11 march

8. We divide our test sets into 6 disjoint groups according to the length of
source sentences ((0, 10), [10, 20), [20, 30), [30, 40), [40, 50), [50, -)), each of
which has 680, 1923, 1839, 1189, 597 and 378 sentences respectively.
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System #Enc #Dec #Att MT05 MT02 MT03 MT04 MT06 MT08 ALL
Existing End-to-End NMT Systems

Coverage [5] 1 1 1 34.91 - 34.49 38.34 34.25 - -
MemDec [5] 1 1 1 35.91 - 36.16 39.81 35.98 - -
DeepLAU [5] 4 4 1 38.07 - 39.35 41.15 37.29 - -
VRNMT [25] 1 1 1 36.82 - 38.08 41.07 36.72 - -
ABDNMT [26] 1 1 1 38.84 - 40.02 42.32 38.38 - -

Our End-to-End NMT systems
RNNSearch 1 1 1 34.72 37.95 35.23 37.32 33.56 26.12 34.06
DeepNMT 5 5 5 36.44 39.29 37.89 39.65 35.37 27.63 36.02++

VDeepAtt 5 5 5 37.15 39.71 38.36 40.48 36.29 28.00 36.69++

WideAtt 5 1 1 35.66 38.60 37.01 38.49 34.66 26.06 35.00++

MHeadNMT 1 1 1 36.23 39.61 35.89 39.45 35.70 27.80 36.09++

UDeepAtt 5 5 5 36.71 39.93 37.78 39.38 36.03 28.25 36.30++

DeepAtt 5 5 5 38.82 41.00 39.07 41.09 37.37 28.52 37.50++

DeepAtt + LN 5 5 5 40.19 42.20 40.24 42.13 38.59 30.15 38.78++

DeepAtt + LN + Adam 5 5 5 44.16 45.70 44.17 46.82 43.12 34.16 43.08++

DeepAtt + LN + Adam (4 model ensemble) 5 5 5 46.17 47.61 47.30 49.14 45.94 36.64 45.58++

TABLE 5: Case-insensitive BLEU scores of advanced systems on the Chinese-English translation task. “#Enc” = number of encoder
layers, “#Dec” = number of decoder layers and “#Att” = number of attention layers. “−” indicates no result is provided in [5]. “Adam” =
model is optimized with Adam optimizer, if specified. “LN” = length normalization during decoding.

Layer DeepAtt DeepNMT VDeepAtt WideAtt
2 36.34 33.99 35.2 35.34
3 36.65 34.49 35.8 34.58
4 37.34 34.69 35.77 35.24
5 37.5 36.02 36.69 35

Layer 2 3 4 5
DeepAtt 36.34 36.65 37.34 37.5
DeepNMT 33.99 34.49 34.69 36.02
VDeepAtt 35.2 35.8 35.77 36.69
WideAtt 35.34 34.58 35.24 35
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Fig. 3: BLEU score of different systems on all test sets under different numbers of layers.

in the presidential election again elected” suffers from serious
disorder problem as well as missing-predicate problem. In contrast,
the translations of all NMT systems exhibit incredible fluency.
Nevertheless, different NMT systems are faced with different
challenges.

On one hand, these models sometimes prefer to avoid
translating some important source clauses, which is a well-
known under-translation problem [6]. For example, RNNSearch
fails to translate the source clause “ 但(but) 西方(western) 国
家(countries) 指责(alleging) 选举(the election) 存在(in) 严
重(serious) 作弊(cheating) 行为(behavior) , 缺乏(lack of) 公正
性(fairness)和(and)自由性(freedom) ,因此(thus)拒绝(refused
to)承认(recognize)选举(the election)结果(results) ,并(and)扬
言(threatened) 将(will) 对(against) 津巴布韦(zimbabwe) 进一
步(further)实施(carry out)制裁(sanctions)。”.9 It seems that the
shallow model has difficulties in extracting and transforming the
source semantics, which can also be reflected on its poor alignment
quality. Deepening the model is a promising way to alleviate
this problem, as we observe that all deep models can recover
more source meaning into the translations. However, except our
model, other deep models still neglect several source clauses during
transformation.

9. Words in bracket are word-by-word English translations.

On the other hand, some common source clauses can be
translated repeatedly, which is a well-known over-translation
problem [6]. This is because if the model fails to capture the
source semantics, it may try to translate the recognized part over
and over. As an example, the sub-translation “9-11 march” appears
several times in all the NMT systems except ours. Additionally,
both DeepNMT and WideNMT mistakenly produce “zimbabwe ’s
president mugabe” rather than “western countries” as the subject
that “refused to acknowledge the election results and threatened to
further impose sanctions against zimbabwe .”. All these strongly
demonstrate that deepening the model alone is not sufficient enough
to correctly convey the meaning of the source sentences.

Our DeepAtt, although its generated translations are not perfect
either, handles these problems much better. We contribute this to
the proposed attention architecture that is more capable of dealing
with the underlying semantics of source sentences.

4.6 More Comparisons on Chinese-English Translation
Except for the Moses and RNNSearch, we provide the following
existing systems:

• Coverage [6]: A RNNSearch with a coverage vector to keep
track of the translated and un-translated source words.

• MemDec [31]: A RNNSearch whose decoder is enhanced
with an external memory.
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System Architecture Vocab BLEU
Buck et al. [27] Winning WMT14 system phrase-based + large LM - 20.7

Existing end-to-end NMT systems
Jean et al. [28] RNNSearch + unk replace + large vocab 500K 19.40
Luong et al. [7] LSTM with 4 layers + dropout + local att. + unk replace 50K 20.90
Shen et al. [29] RNNSearch (GroundHog) + MRT + PosUnk 50K 20.45
Zhou et al. [4] LSTM with 16 layers + Fast-Forward connections 80K 20.60
Wu et al. [3] LSTM with 8 layers + Word 80K 23.10
Wu et al. [3] LSTM with 8 layers + RL-refined WPM 32K 24.60
Wang et al. [5] RNNSearch with 4 layers + LAU 80K 22.10
Wang et al. [5] RNNSearch with 4 layers + LAU + PosUnk 80K 23.80
Gehring et al. [15] CNN with 15 layers + Multi-step Attention + BPE 40K 25.16
Cheng et al. [30] RNN with 2 layers + adversarial stability training + BPE 30K 25.26
Gangi et al. [16] RNN with 10 layers + SR + BPE 32K 24.98
Vaswani et al. [10] Attention with 6 layers + WPM + base 32K 27.30
Wang et al. [5] RNNSearch with 4 layers + LAU + PosUnk (8 model ensemble) 80K 26.10
Wu et al. [3] LSTM with 8 layers + RL-refined WPM (8 model ensemble) 32K 26.20
Gehring et al. [15] CNN with 15 layers + Multi-step Attention + BPE (8 model ensemble) 40K 26.43

Our end-to-end NMT systems

this work
DeepAtt with 5 layers + BPE 16K 24.22
DeepAtt with 5 layers + BPE + Adam 30K 24.73
DeepAtt with 5 layers + BPE + Adam (4 model ensemble) 30K 26.45

TABLE 6: Case-sensitive BLEU scores on WMT14 English-German translation task. “unk replace” and “PosUnk” denotes the approach
of handling rare words in Jean et al. [28] and Luong et al. [7] respectively. “RL” and “WPM” represent the reinforcement learning
optimization and wordpiece model used in Wu et al. [3], respectively. “LAU” and “MRT” denote the linear associative unit and the
minimum risk training proposed by Wang et al. [5] and Shen et al. [29] respectively. “BPE” denotes the byte pair encoding algorithm in
Sennrich et al. [20]. “SR” indicates the weakly-recurrent model proposed by Gangi et al. [16].

• DeepLAU [5]: A deep RNNSearch with linear associative
units to reduce the gradient propagation length inside the
recurrent unit.

• VRNMT [25]: A RNNSearch equipped with recurrent latent
variable to capture semantic variance during decoding.

• ABDNMT [26]: A RNNSearch enhanced with a bidirectional
decoding procedure. This model uses a two-stage translation.

Besides, we also implement several closely-related models:
• DeepNMT: A vanilla deep NMT model with 5 encoder and 5

decoder layers, but only one attention layer. In practice, we
used the same encoder as our DeepAtt.

• VDeepAtt: A vanilla design of DeepAtt-5. The difference
lies in the decoder, where VDeepAtt simply stacks multiple
attention-based decoder layers [15] rather than coupling these
attention layers into one recurrent unit as in DeepAtt. Formally,
VDeepAtt employs 5 stacked conditional recurrent decoders
to predict the next target word:

s̃kj = GRU(skj−1, s
k−1
j ) (10)

skj = GRU(s̃kj ,a
k
j ) (11)

akj = Att(s̃kj ,H
k) (12)

where the j-th target hidden state in the k-th layer skj
depends on the previous hidden state in the same layer
skj−1, the current hidden state in the last layer sk−1

j and
the source representation Hk. The start point for the hidden
representation s0j = Eyj−1 .

• WideAtt: Rather than stacking multiple attention layers,
WideAtt concatenates the multiple encoded source represen-
tations and attends to it using only one decoder layer. In
summary, WideAtt uses 5 encoder layers and 1 decoder layer
with 1 attention layer. The source representation applied for
decoding is calculated as follows:

H = concate(
{
H1, ...,HK

}
) (13)

where Hk is defined as in Eq. (1).
• MHeadNMT: A vanilla RNNSearch system, which utilizes

a multi-head attention network described in [10] rather than
the vanilla attention mechanism [2]. We used 8 heads for
experiment.

• UDeepAtt: The same model as DeepAtt-5, except that each
encoder layer follows the same direction, rather than the
alternative forward and backward architecture. Formally, the
encoder of UDeepAtt operates as follows:

hk
i =
−→
h k

i = fenc(
−→
h k

i−1, c
k
i ,Exi) (14)

Table 5 shows the results. For our NMT systems, all deep
models outperform RNNSearch significantly, demonstrating the
modeling capacity of deep neural networks as well as the solidness
of this line of research. Among these systems, WideAtt yields
the worst performance. This indicates that concatenating the
multi-layered source representations makes the NMT shallow,
and finally results in the loss of valuable capacity in modeling
translation. Compared with DeepNMT, VDeepAtt achieves better
performance with a gain of 0.67 BLEU points. Since the main
difference between DeepNMT and VDeepAtt lies in that VDeepAtt
applies multiple attention layers, we believe that deep attention
is a feasible and effective direction. Enhanced with our proposed
attention architecture, DeepAtt obtains another gain of 0.81 BLEU
points over VDeepAtt, which suggests both the effectiveness and
efficiency of our DeepAtt architecture, considering that DeepAtt
has more compact structure than VDeepAtt, enabling much efficient
gradient propagation inside the decoder.

Compared with UDeepAtt, DeepAtt achieves a clear improve-
ment of 1.2 BLEU points. The only difference between these
two models is that we alternate the encoding direction between
consecutive encoder layers. A benefit from this alternation is that
future information can be fully mixed with history information, thus
enabling DeepAtt to produce more accurate source representations.
We also compared our model with the multi-head attention
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System Architecture Data Vocab BLEU
Existing end-to-end NMT systems

Jean et al. [28] RNNSearch + unk replace + large vocab 12M 500K 34.11
Luong et al. [32] LSTM with 6 layers + PosUnk 12M 40K 32.70
Shen et al. [29] RNNSearch + MRT + PosUnk 12M 30K 34.23
Zhou et al. [4] LSTM with 16 layers + Fast-Forward connections 36M 80K 37.70
Wu et al. [3] LSTM with 8 layers + WPM 36M 32K 38.95
Wang et al. [5] RNNSearch with 4 layers + LAU + PosUnk 12M 30K 35.10
Gehring et al. [15] CNN with 15 layers + Multi-step Attention + BPE 36M 40K 40.51
Vaswani et al. [10] Attention with 6 layers + WPM + base 36M 32K 38.10
Wu et al. [3] LSTM with 8 layers + WPM (8 model ensemble) 36M 32K 40.35
Gehring et al. [15] CNN with 15 layers + Multi-step Attention + BPE (8 model ensemble) 36M 40K 41.44

Our end-to-end NMT systems

this work DeepAtt with 5 layers + BPE + Adam 12M 40K 38.56
DeepAtt with 5 layers + BPE + Adam (4 model ensemble) 12M 40K 39.88

TABLE 7: Case-sensitive BLEU scores on WMT14 English-French translation task. “unk replace” and “PosUnk” denotes the approach
of handling rare words in Jean et al. [28] and Luong et al. [7] respectively. “RL” and “WPM” represent the reinforcement learning
optimization and wordpiece model used in Wu et al. [3], respectively. “LAU” and “MRT” denote the linear associative unit and the
minimum risk training proposed by Wang et al. [5] and Shen et al. [29] respectively. “BPE” denotes the byte pair encoding algorithm in
Sennrich et al. [20].

network [10]. Results show that MHeadNMT yields a gain of
2.03 BLEU points over the RNNSearch, indicating that capturing
different aspects of the source-target interaction is beneficial for
translation. Nevertheless, deepening the attention network with
compact structures as in our DeepAtt can reach better performance,
achieving a gain of 1.41 BLEU points over MHeadNMT.

In order to have a fair comparison with the existing systems,
we apply the length normalization during translation.10 To the best
of our knowledge, DeepLAU [5] reported the best BLEU scores
using the 1.25M training data. However, our DeepAtt outperforms
all these systems significantly. Enhanced with the Adam optimizer,
our model reaches an overall BLEU score of 43.08, a strong
improvement over the one trained with Adadelta by a great margin
of 4.3 BLEU points. We further performed model ensemble. Using
4 well-trained model under different random seeds, our model resets
the state-of-the-art results on this task, where the overall BLEU
score increases to 45.58. Besides, except for NMT with 5 layers,
we also compared different models under other numbers of layers,
which is shown in Figure 3. We observe that with the increase of
layers, NMT models produce better results, and no matter how
many layers are used, DeepAtt always outperforms other related
models and achieves the best result. All these demonstrate the
modeling power of our deep attention architecture.

4.7 Results on English-German Translation

Table 6 shows the results on English-German translation. We also
show existing systems comparable to ours including the winning
system in WMT14 [27], a phrase-based system whose language
models were trained on a huge monolingual text, the Common
Crawl corpus. Obviously, current WMT14 performance is led by
deep NMT systems. For example, Wu et al. [3] reported 24.61
BLEU score with 8 LSTM layers, and Wang et al. [5] generated
23.80 BLEU score with 4 GRU+LAU layers. Very recently, the
state-of-the-art is refreshed by Gehring et al. [15] using 15 CNN
layers and becomes 25.12, which is further broken through by
Vaswani et al. [10] and reaches 27.30.

10. Even with length normalization, the comparison is not completely fair.
Although all systems use the same training data, the existing systems are tuned
on NIST 02, while ours is tuned on NIST 05. However, we believe this is not
the key.

Our model achieves 24.73 BLEU score, a very competitive
result against the RNN-based and CNN-based systems above.
Under similar model settings, the GNMT [3] yields 24.36 BLEU
score (0.37 BLEU points lower than our model) with various non-
trivial tricks such as coverage penalty, specific length normalization,
fine-tunning and the RL-refined model. Although Gehring et al. [15]
achieved 25.16, they used 40K sub-words and 15 layers, several
times larger than those of our mode. We also performed model
ensemble to enhance the translation performance. By initializing
with different random seeds, we trained 4 different models whose
ensemble pushed the BLEU score to 26.45, making our model
outperform both GNMT [3], LAU-NMT [5] and CNN-NMT [15].

4.8 Results on English-French Translation
Table 7 summarizes the translation performance of different NMT
systems. Unlike the above translation tasks, this task provides a
training corpus of 12M sentence pairs, around three times and
ten times larger than that of English-German and Chinese-English
translation task respectively. Overall, our single model achieves a
BLEU score of 38.56, and its ensemble using 4 well-trained models
improves the score to 39.88. Both results are competitive against
both RNN-based and CNN-based systems.

Among systems trained with 12M sentence pairs, our model
is the best, outperforming the previous best model, i.e Wang et
al. [5] (35.10), by a great margin of 3.46 BLEU points. When
using the full 36M sentence pairs, GNMT [3] yeilds a BLEU
score of 38.95, Transformer [10] achieves 38.10, and CNN-NMT
[15] reaches 40.15. By contrast, our model, using only 12M
training data, is able to generate translations with a BLEU score of
38.56, demonstrating our model’s excellent capability in modeling
translation relationship.

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented a deep attention model (DeepAtt)
for NMT systems. Through multiple stacked attention layers with
each layer paying attention to a corresponding encoder layer,
DeepAtt enables low-level attention information to guide what
should be passed or suppressed from the encoder layer so as
to make the learned distributed representations appropriate for
high-level translation tasks. Our model is simple to implement
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and flexible to train. Experiments on both NIST Chinese-English,
WMT14 English-German and English-French translation tasks
demonstrated the effectiveness of our model in improving both the
translation and alignment quality.

In the future, we want to testify DeepAtt on other tasks, e.g.,
summarization. Additionally, our model is not limited to current
attention unit. As mentioned in Section 2, we are also interested in
adapting DeepAtt to other more complex attention models.
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