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Abstract

Abstract

As Micro Electro Mechanical System takes many advantages as low power
consummation, high sensitivity, small volume, standardized manufacturing process and
high cost performance ratio, piezo-resistive pressure sensor based on which has been
extensively applied to the pressure measurement in almost all the industrial areas such
as automobile, aviation, petrochemical and consumer electronics, etc. The requirement
of the synthetic performance pressure sensor in industrial process increases rapidly with
the improvement of the social industrialization level. However, the environmental
temperature and the static pressure effect are two key factors which may bring some
unsatisfied bias to measurement characteristics of high precision pressure sensor,
which have become the technical bottleneck to provide more measurement accuracy.

To deal with these two issues, the research work in this paper is based on piezo-
resistive effect and MEMS craft. The absolute pressure sensor and the relative pressure
sensor are taken as the research objects. Some methods including Machine learning
models as support vector regression (SVR), least squares support vector machine
(LSSVM), kernel extreme learning machine (KELM) and intelligent optimization
algorithms as adaptive mutation particle swarm optimization (AMPSQ), Chaotic ions
motion algorithm, coupled simulated annealing with simplex (CSA-Simplex) are
combined to solve critical problems as nonlinear output characteristic caused by
environmental temperature variation and static pressure output error derived from static
pressure. The main research works are summarized as follows:

(1) By analyzing the reason for temperature drift, it indicates that the nonlinear
output of the pressure sensor is not only rely on the response relationship of
piezo-resistive coefficient of the semiconductor and the environmental
temperature variation but also influenced by some other unsatisfied factors in
the pressure sensor manufacturing process. Both hardware compensation

methods and software compensation methods are reviewed to give the details



Abstract

of advantages and disadvantages of these existed temperature compensation
schemes.

(2) The improved AdaBoost.RT ensemble adaptive mutation particle swarm
optimization optimized support vector regression (AMPSO-SVR) is proposed
to compensate the temperature error of 250kPa piezo-resistive differential
pressure sensor. Taking into consideration the nonlinear effect of the sensor
output characteristic rise from the temperature variation, the temperature
compensation problem could be deemed as a nonlinear function regression
problem. The frame of structure risk minimum guarantees SVR good nonlinear
approximation ability and generalization ability. Because the model
parameters are important to the SVR the classical intelligent optimization
algorithm——particle swarm optimization (PSO) is introduced in this research
work to select appropriate model parameters. Nevertheless, classical PSO
algorithm suffers from premature phenomena and relative limited searching
ability, Levy flight is applied to adaptively adjust the particle swarm trajectory
to avoid premature. To accelerate the convergence process of PSO, opposition-
based initialization is used to uniformly distribute the swarm particles over the
solution space to learn as much as possible about the solution space structure.
A dynamic calibration experiment was designed and implemented to reduce
the calibration time, several compensation models including Cuckoo Search
Optimized Support Vector Regression (CS-SVR), Firefly Algorithm
Optimized Support Vector Machine (FA-SVR), Shuffled Leap Frog Algorithm
Optimized Support Vector Regression (SLFA-SVR), Particle Swarm
Optimization Optimized Support Vector Regression (PSO-SVR) and Particle
Swarm Optimization with Levy Flight Optimized Particle Swarm
Optimization Optimized Support Vector Regression (Levy-PSO-SVR) are
compared on the experiment data with Adaptive Mutation article Swarm
Optimization Optimized Support Vector Regression (AMPSO-SVR), the
results indicate the presented AMPSO is superior to other optimization scheme

for SVR. Furthermore, the proposed improved AdaBoost.RT takes the
VI
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AMPSO-SVR as base learning machine. The result derived from the
comparison between back-propagation neural network, radial basis function
neural network, AMPSO-SVR and the proposed compensation scheme shows
that the improved AdaBoost.RT ensemble AMPSO-SVR can provide more
satisfied compensation performance than other compensation methods and
more feasible for engineering realization.

(3) The chaotic ions motion algorithm (CIMA) optimized least squares support
vector machine (LSSVM) is proposed to deal with the temperature
compensation problem of 40kPa piezo-resistive differential pressure sensor.
LSSVM converts the quadratic optimization to a linear equation system, in
which the regularization theory is able to achieve the balance between
modeling ability and model complexity. Constructing hybrid kernel function
on the basis of analyzing the model approximation ability using different
kernel functions. A new intelligent optimization method——ions motion
algorithm (IMA) is introduced, moreover, the CIMA is presented to select
appropriate hybrid kernel parameters. The chaotic mapping is embedded in the
CIMA to promise the ergodicity and stochasticity of the searching process.
Compared with SVM merely has RBF kernel (RBF-SVM), Improved Particle
Swarm Optimization Optimized Support Vector Machine (IPSO-RBF-SVM),
Improved Particle Swarm Optimization Optimized Least Square Support Vector
Machine (IPSO-RBF-LSSVM), Improved Particle Swarm Optimization
Optimized Least Square Support Vector Machine (IPSO-Hybrid-LSSVM), lons
Motion Algorithm Optimized Least Square Support Vector Machine (IMA-
Hybrid-LSSVM) and Chaotic lons Motion Algorithm Optimized Least Square
Support Vector Machine (CIMA-Hybrid-LSSVM) on static experiment data
from viewpoints of static partition and random partition. Three conclusion can
be drawn from the simulation results: LSSVM framework is more efficient
than SVM; hybrid kernel has better generalization ability than single RBF
kernel; CIMA is more suitable than other referred optimization algorithms for

searching global optima.
il
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(4) A new sparse scheme named quantum particle swarm sparse least squares
support machine (QPSO-sparse-LSSVM) is presented to deal with relative
large sample dataset. QPSO-sparse-LSSVM can not only obtain the optimal
model parameters of the sparse LSSVM model with high probability but also
avoid the early stop caused by the order stop criterion of the classical sparse
LSSVM algorithm. Compared with the LSSVM without sparseness and
classical sparse LSSVM on different dataset, the proposed sparse LSSVM
shows the most satisfied performance for the temperature compensation
problem of 1MPa absolute pressure sensor.

(5) The coupled simulated annealing and simplex optimized kernel extreme
learning machine (CSA-simplex-KELM) framework is proposed to solve the
compensation problem result from synthetic influence of the static effect and
environmental temperature. Extreme Learning Machine (ELM) is a prediction
model with fast modeling speed and decent generalization ability which owes
to the application of the kernel trick and regularization theory. The parameter
optimization task is accomplished by a two steps searching strategy consists
of coupled simulated annealing (CSA) and simplex. The CSA is employed to
find a local optimal position followed by the simplex which would perform a
more precise local search. Compared with Back Propagation Neural Network
(BP), Radial Basis Function Neural Network (RBF), Particle Swarm
Optimization Optimized Support Vector Machine (PSO-SVM), Particle
Swarm Optimization Optimized Least Square Support Vector Machine (PSO-
LSSVM) and Extreme Learning Machine (ELM), the proposed compensation
strategy not only improves the compensation performance about the
temperature compensation and synthetic compensation but also exhibits strong
learning ability about the characteristic of pressure sensor.

Theoretic analysis, intelligent optimization algorithm, machine learning theory

and experiment research are combined in this research. Some key methods are
developed along with related work to eliminate the temperature error and synthetic error

of the MEMS piezo-resistive pressure sensor which have important theoretical
VI
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significance and application value for the diversification of the research methods of the
pressure measurement area and exploring the development direction of this discipline.
Keywords: piezo-resistive pressure sensor; temperature compensation; intelligent

optimization algorithm; SVR; LSSVM; KELM
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