不同孔径介孔二氧化硅纳米粒的制备及其用于固化西罗莫司自微乳

余 越^{1,2},陶 春¹,杨海跃^{1,3},王天宇^{1,3},薛丹萍¹,田雪梅¹, 张美敬^{1,2},房盛楠^{1,2},宋洪涛^{1*}

南京军区福州总医院,福建福州 350025; 2. 福建医科大学药学院,福建福州 350108; 3. 厦门大学医学院,福建厦门 360000)

摘要:研究制备了不同孔径的介孔二氧化硅纳米粒及西罗莫司自微乳。使用扫描电镜、透射电镜、小角度 X-射线衍射、氮气吸附--脱附表征制得的介孔二氧化硅纳米粒,发现其为有序的纳米孔道结构,孔径分别为 6.3、 8.1 和 10.8 nm,通过粒径测定仪测得西罗莫司自微乳粒径为 20.6±1.3 nm。通过搅拌法制备载西罗莫司自微乳介 孔二氧化硅纳米粒。研究发现,当西罗莫司自微乳与介孔二氧化硅纳米粒质量比 2 1 时为最佳比例,载药量约 为 0.83%,且固体粉末流动性良好。采用差示扫描量热法表明,西罗莫司以非晶体或无定形存在于载体材料中, 重分散性良好。孔径大小对于载西罗莫司自微乳介孔二氧化硅纳米粒在 250 mL 水中 2 h 的释放终点并没有显著 影响,但对于最初 40 min 释放结果影响较大。综上,介孔二氧化硅纳米粒有望成为一种新型的自微乳吸附剂。 关键词:西罗莫司;介孔二氧化硅纳米粒;自微乳化给药系统;固化;纳米载体;体外释放度 中图分类号: R943 文献标识码:A 文章编号: 0513-4870 (2017) 06-0985-07

Preparation of mesoporous silica nanoparticles in different pore size and its use in the solidification of sirolimus loaded self-microemulsifying drug delivery system

YU Yue^{1, 2}, TAO Chun¹, YANG Hai-yue^{1, 3}, WANG Tian-yu^{1, 3}, XUE Dan-ping¹, TIAN Xue-mei¹, ZHANG Mei-jing^{1, 2}, FANG Sheng-nan^{1, 2}, SONG Hong-tao^{1*}

 Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, China;
 College of Pharmacy, Fujian Medical University, Fuzhou 350108, China;
 Medical College, Xiamen University, Xiamen 360000, China)

Abstract: The mesoporous silica nanoparticles (MSN) in different pore size and sirolimus (SRL) loaded self-microemulsifying drug delivery system (SMEDDS) were prepared. The results in morphology were collected by scanning electron microscope, transmission electron microscope, small-angle X-ray diffraction, and N₂ adsorption-desorption. The results showed that the prepared MSN has ordered nanochannels with a pore size of 6.3, 8.1, 10.8 nm, respectively. The particle size of SRL-SMEDDS were measured by particle sizing system, which was 20.6 ± 1.3 nm. The stirring method was developed to prepare SRL-SMEDDS-MSN. It was found that the optimal ratio of SRL-SMEDDS to MSN was 2 1, while the drug loading rate was near 0.83%, and the flow properties of SRL-SMEDDS-MSN were of good condition. The differential scanning calorimetry results proving a molecular or amorphous dispersed state of SRL in MSN while the suspension experiment has shown great reconstitution properties of SRL-SMEDDS-MSN. There is no significant influence on maximum drug release rate of different pore size of SRL-SMEDDS-MSN in 250 mL water within 2 h, while

收稿日期: 2016-12-19; 修回日期: 2017-02-04. 基金项目: 福建省科技计划重点资助项目 (2013Y0074). *通讯作者 Tel: 86-591-22859459, E-mail: sohoto@vip.163.com DOI: 10.16438/j.0513-4870.2016-1198 the results of the first 40 min have an obvious difference. Above all, MSN might provide a new strategy for the solidification of SMEDDS.

Key words: sirolimus; mesoporous silica nanoparticle; self-microemulsifying drug delivery system; solidification; nano-carrier; *in vitro* dissolution rate

西罗莫司 (sirolimus, SRL),又名雷帕霉素,是 一种新型的免疫抑制剂,在抗排斥作用和延长移植 物存活的能力方面有较强作用,临床上可用于器官 移植抗排异作用和治疗类风湿性关节炎、红斑狼疮和 牛皮癣等自身免疫性疾病^[1,2]。但由于 SRL 在水中的 溶解度较小,属于 BCS II 类药物,口服生物利用度只 有 14% ~ 31%,在很大程度上影响了其疗效的发挥。 因此改善其溶解度及溶出性能,是提高生物利用度 的关键。

自微乳化给药系统 (self-microemulsifying drug delivery system, SMEDDS) 是一种提高水难溶性药 物溶解度的有效方法^[3, 4]。自微乳化给药系统通常由 油相、乳化剂和助乳化剂组成, 遇水自发形成粒径小 于 300 nm 的纳米乳。市售产品如 Sandimmun Neoral、 Norvir 和 Fortovase 都是由自微乳化给药系统构成 的。由于自微乳是黏稠的液体, 不易运输、贮存和使 用, 且几乎所有的 SMEDDS 制剂均以浓缩液的形式 灌封于软胶囊中。软胶囊胶壳处方中含有一定量的水 分, 而 SMEDDS 中含有大量表面活性剂, 这些成分 在贮存过程中不断夺取胶壳水分, 最终导致胶壳变 硬, 影响其崩解和自微乳化效果^[5,6]。因而, 将自微乳 固化就显得尤为重要。

介孔二氧化硅纳米粒 (mesoporous silica nanoparticles, MSN), 由于其较高的孔隙率、良好的生物 相容性、可调节的孔径、较大的比表面积及较好的稳 定性,可以通过多种不同的载药方法将难溶性药物 通过一定的方式吸附在材料的表面及材料孔道内部, 使药物分子以无定形或非晶体形态存在,从而在一 定程度上有效地提高药物的溶解度或溶出度,近几 年来已逐渐成为药物载体的研究热点^[7-9]。SBA-15 是一种最为常见的 MSN。SBA-15 较一般的 MSN 具 有更大的可调节孔径 (5~30 nm) 和更厚的孔壁, 拥 有连续的孔道、更强的物理稳定性、且孔道之间有微 孔相连接^[10]。通过查阅相关国内外文献,发现利用 SBA-15 作为 SMEDDS 的吸附剂的研究还鲜有报道。 因此,本文拟采用搅拌法,使用 SBA-15 对自微乳进 行固化, 并考察不同孔径的 SBA-15 对药物释放的影 响。

材料与方法

试剂 西罗莫司对照品 (批号 060425, 含量 99.9%)、西罗莫司原料药 (批号 060702, 含量 99.5%) (福建科瑞药业有限公司);油酸聚乙二醇甘油酯 (Labrafil M1944CS)、二乙二醇单乙基醚 (Transcutol HP)(法国 Gattefosse 公司);聚氧乙烯-35-蓖麻油 (Cremophor EL, 德国 BASF 公司);聚环氧乙烷-聚 环氧丙烷-聚环氧乙烷三嵌段共聚物 (P123, 美国 Sigma-Aldrich 公司);硅酸四乙酯 (TEOS, 上海阿拉 丁试剂公司);盐酸、乙腈、甲醇、乙醇 (天津化工有 限公司),所用试剂均为色谱纯。

主要仪器 Agilent 1200 型高效液相色谱仪 (UV 检测器, 美国 Agilent 公司); Nicomp 380 粒径测定仪 (美国 PSS 公司); Nova NanoSEM 230 型扫描电子显 微镜 (荷兰飞利浦公司); JEOL 2010 透射电子显微镜 (日本电子株式会社); Rigaku Dmax-3CX 射线粉末衍 射仪 (日本 Rigaku 公司); Tristar 3020 吸附仪 (美 国 Micromeritics 公司); TA-Q20 差示扫描量热仪 (美 国 TA 公司); 药物溶出度仪 RCZ-6B2 (上海黄海药检 仪器有限公司)。

色谱条件 色谱柱: Eclipse XDB-C₁₈ (150 mm×
4.6 mm, 5 μm, 美国 Agilent 公司)。流动相: 乙腈-甲醇-水 (45 34 21), 流速: 1 mL·min⁻¹, 检测波长:
278 nm; 柱温: 50 ; 进样量: 20 μL。理论塔板数为
1998, 分离度为 2.11。该方法具专属性、灵敏和简便,
可满足 SRL 制剂质量控制的需要。

检测波长的确定 精密称取 SRL 对照品适量, 按紫外分光光度法在 200~400 nm 内进行扫描。

方法专属性考察 称取 SRL 原料药适量,置 100 mL量瓶中,加流动相适量至刻度,摇匀,精密量 取 1.0 mL 至 10 mL量瓶中加流动相稀释,摇匀,即 得供试品溶液。同法配制对照品溶液。

线性关系考察 精密称取 SRL 对照品适量, 配 制成 2、4、8、12、16 和 20 μg·mL⁻¹对照品溶液。 0.45 μm 微孔滤膜滤过, 续滤液进样。以浓度 (*C*, μg·mL⁻¹) 为横坐标, 峰面积 (*A*) 为纵坐标, 进行回 归方程。

方法精密度考察 称取 SRL 适量,分别配制质

量浓度为 8、10 和 12 μ g·mL⁻¹溶液,每个浓度连续进 样 5 次,得日内精密度;再连续 5 日进样测定,得日 间精密度。

西罗莫司自微乳 (SRL-SMEDDS) 的制备与表征 SRL-SMEDDS 的制备基于前期课题组的处方及实验 步骤^[11],并进行了少许改动,具体操作如下:精密称 取 SRL 粉末 1 g,加入助乳化剂 Transcutol HP 19 g中, 不断搅拌直至溶解,再加入油相 Labrafil M1944CS 22 g 及乳化剂 Cremophor EL 38 g,不断搅拌至淡黄 色澄清溶液,即得 SRL-SMEDDS。

取 SRL-SMEDDS 0.5 mL 加入 50 mL 超纯水 中,室温下以 50 r·min⁻¹的速度搅拌。将完全形成自 微乳的时间记作自微乳化时间,并使用 Nicomp 380 粒径测定仪测定其粒径及多分散指数 (polydispersity index, PDI)。

不同孔径大小的 **SBA-15** 的制备与表征 SBA-15 的合成采用 Zhao 等^[10]的方法:首先称取 P123 (2.0 g) 溶于 15 g 超纯水及 60 g 的 2 mol·L⁻¹ HCl 中。搅拌均 匀后,将反应体系加热至 35 ,并加入 TEOS 4.25 g, 随后搅拌 20 h。反应结束后在 80 下晶化 48 h。待 样品冷却至室温后,过滤、洗涤,45 干燥 12 h。再 将新合成的样品置于马弗炉中,550 煅烧 8 h,即得 孔径为 6.3 nm的 SBA-15,命名为 SBA-15 (6.3);调节 反应温度为 35 反应 20 h,随后升温至 100 晶化 48 h,反应步骤及其他反应条件相同,得孔径为 8.1 nm 的 SBA-15,命名为 SBA-15 (8.1);调节反应温度为 40 反应 24 h,随后升温至 120 晶化 24 h,反应步 骤及其他反应条件相同,得孔径为 10.8 nm的 SBA-15, 命名为 SBA-15 (10.8)。制备流程图如图 1 所示。

扫描电子显微镜 (scanning electron microscope, SEM) 和透射电子显微镜 (transmission electron microscope, TEM) 分别使用 Nova NanoSEM 230 型扫 描电镜及 JEOL 2010 型透射电镜拍摄;小角度 X-射 线衍射 (small angle X-ray diffraction, SAXD) 测定使 用 Rigaku Dmax-3CX 射线粉末衍射仪测定;氮气吸 附-脱附等温曲线采用 Tristar 3020吸附仪在 77 K 条件下测得,采用 BET 法方法计算样品的比表面积, 采用 BJH 模型计算孔容和孔径。

载西罗莫司自微乳 SBA-15 (SRL-SMEDDS-SBA-15) 的制备与表征 采用搅拌法:称取 SBA-15 (1 g), 将不同比例的 SRL-SMEDDS 逐滴加入其中,边加边 搅拌。待加入完毕后,于干燥器中放置过夜,确保吸 附完全,即得 SRL-SMEDDS-SBA-15。

将一定量的 SRL-SMEDDS-SBA-15 分散于 0.4%

Figure 1 Preparation of different pore size of mesoporous silica nanoparticles (SBA-15). A: SBA-15 (6.3); B: SBA-15 (8.1); C: SBA-15 (10.8)

SDS 中, 持续超声 30 min, 所得溶液于 10000 r·min⁻¹ 离心 10 min, 取上清液, 过 0.22 μm 微孔滤膜后, 按 上述"色谱条件"进样分析, 计算 SRL-SMEDDS-SBA-15 载药量。

载药量 = (载药纳米粒中 SRL 的质量 / 载药纳米 粒的质量)×100%

通过测定 SBA-15 与 SRL-SMEDDS-SBA-15 的 休止角 (angle of repose)、压缩度 (compressibility index) 及豪斯纳比 (Hausner ratio),考察粉末的流动 性。使用差示扫描量热法 (differential scanning calorimetry, DSC),对 SRL、SBA-15、物理混合物及 SRL-SMEDDS-SBA-15 进行表征。

重分散实验 称取含有 0.75 g SRL-SMEDDS 的 SRL-SMEDDS-SBA-15 (6.3)、SRL-SMEDDS-SBA-15 (8.1) 和 SRL-SMEDDS-SBA-15 (10.8),分别加到 50 mL 超纯水中,于 50 r·min⁻¹的速度搅拌。待溶液基 本均匀时,于干燥器中室温放置 24 h,上清液使用 Nicomp 380 粒径测定仪测定粒径。

体外释放度的测定 SRL-SMEDDS-SBA-15 的体 外溶出方法采用 2015 年中国药典(第四部)小杯法。 称取 SRL 原料药 1 mg 及含 1 mg SRL 的市售片剂雷 帕鸣以 SRL-SMEDDS-SBA-15 (6.3)、SRL-SMEDDS-SBA-15 (8.1)和 SRL-SMEDDS-SBA-15 (10.8)填充胶 囊,以 250 mL 水为溶出介质,反应条件为 37 ,75 r·min⁻¹。于 5、10、15、20、30、45、60、90 和 120 min 取样 1 mL, 并补充等量释放介质。样品经 10000 r·min⁻¹离心 10 min 后过 0.22 μm 微孔滤膜, 使用上述 "色谱条件"进样分析。SRL-SMEDDS-SBA-15 的制 备及溶出机制见图 2。

结果

1 方法学考察

1.1 检测波长的确定 SRL在 278 nm 处有最大紫外 吸收,结果如图 3。因此,选择 278 nm 作为检测波长。

Figure 3 The ultraviolet spectrum of SRL

1.2 方法专属性考察 所得色谱图见图 4。结果表明, 空白溶剂对 SRL 的测定无干扰, 方法专属性较好。

Figure 4 High performance liquid chromatogram of SRL. A: Blank; B: Standard; C: Sample; 1: SRL; 2: SRL isomer

1.3 线性关系考察 在本色谱条件下, SRL 在 $2 \sim 20$ $\mu g \cdot m L^{-1}$ 内峰面积与测定浓度线性关系良好。回归方 程为:

A = 57.683 C + 31.093 (r = 0.9996)

1.4 方法精密度考察 低、中、高浓度的日内精密

度分别为 0.70%、0.55%、0.47%, 低、中、高浓度的 日间精密度分别为 0.65%、0.55%、0.36%, 所有值均 小于 2 %, 说明精密度良好。

2 SRL-SMEDDS 的表征

空白自微乳及载 SRL 自微乳的粒径及 PDI 见 表 1。药物的加入对自微乳化效果影响不大, 甚至在 一定程度上更有利于自微乳的形成。

Table 1 The particle sizing distribution and polydispersity index (PDI) of SMEDDS and SRL-SMEDDS. n=3, $\bar{x} \pm s$

Sample	Particle size/nm	PDI	
SMEDDS	21.4 ± 1.8	0.173 ± 0.02	
SRL-SMEDDS	20.6 ± 1.3	0.042 ± 0.05	

3 不同孔径的 SBA-15 的表征

制备的 SBA-15 的扫描电镜及透射电镜如图 5 所 示。从扫描电镜和透射电镜中可以看到 SBA-15 均呈 柱状,且内部孔道为有序结构。从图 6 中可见,100、 110、200 的 3 个峰再次说明 SBA-15 为有序介孔孔 道结构。在图 7 中,SBA-15 (6.3)、SBA-15 (8.1) 和 SBA-15 (10.8) 均呈现 IV 型等温线和 H1 型迟滞回线。 由国际纯粹与应用化学联合会 (IUPAC) 提出, IV 型 等温线和 H1 型迟滞回线由介孔材料产生。因此,可 以进一步佐证所制备的材料为介孔材料。通过氮气吸 脱附实验测得 SBA-15 (6.3)、SBA-15 (8.1) 和 SBA-15 (10.8) 的比表面积分别为 578.5、410.2 和 554.6 m²·g⁻¹, 孔径分别为 6.3、8.1 和 10.8 nm。

4 SRL-SMEDDS-SBA-15 的表征

按 m (SRL-SMEDDS) m (SBA-15)=1 1、2 1、 3 1 比例制备 SRL-SMEDDS-SBA-15,并测其载药 量,结果见表 2。孔径大小对载药量几乎没有影响。 随着 SRL-SMEDDS 的增加,载药量逐渐增加。

粉末的流动性结果如表 3 所示。当比例增至 3 1 时, SRL-SMEDDS-SBA-15 外观上已经过于黏稠, 流 动性差, 因此未进行流动性考察; 当比例为 1 1 及

Figure 2 Mechanism of the preparation and release of SRL-SMEDDS-SBA-15. SRL: Sirolimus; SMEDDS: Self-microemulsifying drug delivery system

Figure 5 Scanning electron microscope (SEM) of SBA-15 (6.3) (A), SBA-15 (8.1) (B), SBA-15 (10.8) (C) and transmission electron microscope (TEM) of SBA-15 (6.3) (D), SBA-15 (8.1) (E), SBA-15 (10.8) (F)

Figure 6 Small angle X-ray diffraction (SAXD) of SBA-15 (6.3) (A), SBA-15 (8.1) (B), SBA-15 (10.8) (C)

2 1时, SRL-SMEDDS-SBA-15 与 SBA-15 的流动性数 据差异不大, 且休止角均小于 40°, 压缩度小于 20%, 豪斯纳比小于 1.25, 说明 SRL-SMEDDS-SBA-15 粉 末流动性良好。故将最终比例确定为 2 1, 用于后续 实验。

SRL、SBA-15、物理混合物及 SRL-SMEDDS-SBA-15 的 DSC 结果如图 8 所示。从图中可知, SRL 在 190 和 210 有两个特征衍射峰, 在物理混合 物中依然清晰可见。但在 SRL-SMEDDS-SBA-15 中 SRL 的特征衍射峰消失, 表明 SRL 以无定形装载在

Figure 7 N₂ Adsorption-desorption isotherm and pore size distribution of SBA-15 (6.3) (A), SBA-15 (8.1) (B), SBA-15 (10.8) (C)

Table 2 Drug loading rate of SRL-SMEDDS-SBA-15 with different ratio of SRL-SMEDDS to SBA-15. n=3, $\bar{x} \pm s$

M (SPL-SMEDDS) m (SPA-15)	Drug loading rate/%			
M (SRE-SMEDDS) III (SDA-15) -	SRL-SMEDDS-SBA-15 (6.3)	SRL-SMEDDS-SBA-15 (8.1)	SRL-SMEDDS-SBA-15 (10.8)	
1 1	0.62 ± 0.15	0.60 ± 0.17	0.58 ± 0.16	
2 1	0.83 ± 0.08	0.84 ± 0.06	0.83 ± 0.06	
3 1	0.93 ± 0.09	0.94 ± 0.10	0.93 ± 0.12	

Table 3	Flow properties of SRI	L-SMEDDS-SBA-15 (6	6.3), SRL-SMEDDS-SBA-15 (8	8.1). SRL-	SMEDDS-SBA-15 (10.8
			0.07, 0.0000 0.0000 0.0000 0.000000	···/, ~·		

Sample	Ratio	Angle of repose/°	Compressibility index/%	Hausner ratio
m (SRL-SMEDDS) m (SBA-15) (6.3)	0	30.17	14.19	1.17
	1 1	30.35	14.54	1.17
	2 1	31.89	14.93	1.18
	3 1	-	-	-
m (SRL-SMEDDS) m (SBA-15) (8.1)	0	29.82	14.04	1.16
	1 1	30.27	14.52	1.17
	2 1	30.88	15.07	1.17
	3 1	-	-	-
m (SRL-SMEDDS) m (SBA-15) (10.8)	0	29.09	13.24	1.16
	1 1	29.35	13.75	1.16
	2 1	30.98	14.18	1.17
	3 1	-	-	-

Figure 8 DSC of SRL-SMEDDS-SBA-15. a: SRL; b1, b2, b3: SBA-15 (6.3), SBA-15 (8.1), SBA-15 (10.8); c1, c2, c3: physical mixture of SRL and SBA-15 (6.3), physical mixture of SRL and SBA-15 (8.1), physical mixture of SRL and SBA-15 (10.8); d1, d2, d3: SRL-SMEDDS-SBA-15 (6.3), SRL-SMEDDS-SBA-15 (8.1), SRL-SMEDDS-SBA-15 (10.8)

载体材料中。

5 重分散实验

使用 SBA-15 固化后的 SRL-SMEDDS 在粒径上 较 SRL-SMEDDS 并无太大改变,见表 4。结果表明, 使用 SBA-15 对 SRL-SMEDDS 进行吸附及释放,此 过程并未对 SRL-SMEDDS 的粒径造成很大影响。

Table 4 Particle sizing distribution of SRL-SMEDDS-SBA-15. $n=3, \ \overline{x} \pm s$

Sample	Particle size/nm
SRL-SMEDDS	20.6 ± 1.3
SRL-SMEDDS-SBA-15 (6.3)	20.9 ± 1.8
SRL-SMEDDS-SBA-15 (8.1)	20.7 ± 1.5
SRL-SMEDDS-SBA-15 (10.8)	20.5 ± 1.6

6 体外溶出度研究

SRL 粉末在 2 h 内基本无释放; 市售片剂雷帕 鸣释放度只达 25% 左右; SRL-SMEDDS 释放最快, 在 30 min 时释放达到 95% 以上, 并且其体外释放终 点接近 100%。从 SRL-SMEDDS-SBA-15 (6.3), SRL-SMEDDS-SBA-15 (8.1) 和 SRL-SMEDDS-SBA-15 (10.8) 三者的体外溶出度数据可见, 孔径大小对于 释放终点无显著影响, 但对 1 h 内的体外释放有较大 影响。孔径越大, 突释现象越明显。结果见图 9。

讨论

研究选用 HPLC 法对 SRL 体外含量进行测定, 该方法专属性好、灵敏和简便, 可满足 SRL 质量控制

Figure 9 Cumulative release rate of different formulation of SRL

的需要。在成功制备 SRL-SMEDDS 后, SRL 在水中 的溶解度有了极大的提高^[11]。自微乳因其具有不易贮 存运输、较为黏稠等特点,选择适宜的物质对其进行 固化就显得尤为必要。在制备了3种不同孔径大小的 SBA-15 后, 通过 SEM、TEM、SAXD 和 BET 对其进 行表征,发现所制备的 3 种不同孔径的 SBA-15 各 项表征结果良好, 与现有文献报道相一致^[12]。使用搅 拌法制备了 SRL-SMEDSS-SBA-15, 并考察了 SRL-SMEDDS 与 SBA-15 比例分别为 1 1、2 1 和 3 1 时对 SRL-SMEDDS-SBA-15 外观及粉体学性质的影 响。当 SRL-SMEDDS 与 SBA-15 比例为 2 1 时, 采 用 SBA-15 (6.3), SBA-15 (8.1) 和 SBA-15 (10.8) 所 制备 SRL-SMEDDS-SBA-15 在外观上不黏连, 流动性 较好。通过重分散实验,发现固化过程对液态自微乳 及 SBA-15 粒径影响不大, 重分散结果良好。载药量 实验表明, 使用 3 种不同孔径 SBA-15 吸附的 SRL-SMEDDS 载药量与孔径大小无关, 且与理论值差异 不大。

SRL-SMEDDS-SBA-15 的体外溶出结果表明,在 水中 2 h 时三者释放终点无显著差异,但在释放开始 后 1 h 三者溶出度有较大差异。SBA-15 (6.3)、SBA-15 (8.1)和 SBA-15 (10.8)三者的孔径不同,在一定程度 上也造成了比表面积的不同。一般来说,比表面积的 大小会影响吸附在外表面的 SRL-SMEDDS 的量^[13]及 SRL 的释放。但从体外溶出实验结果可以发现,孔径 越大突释现象越明显,因此孔径是影响突释的主要 因素。造成此现象的原因可能是因为 SBA-15 孔径内 表面相对外表面吸附了更多的 SRL-SMEDDS,导致 孔径大小在一定程度上成为控制体外溶出的主要因 素。最终的累积释放度只达到 70% 左右,可能是由于 SBA-15 的孔道很深,且其纳米级别的孔径很小,导致 有一定量的自微乳残留在孔道深处接触不到释放介 质,在一定程度上降低了 SRL体外溶出释放终点。有 文献^[14-16]报道,可将介孔二氧化硅纳米粒制成片剂, 也有良好的释药效果。因此,后续研究可能会基于此 固体自微乳粉末进行剂型方面的考察。

综上所述,通过搅拌法成功使用不同孔径的 SBA-15对SRL-SMEDDS进行固化,制得的3种不同 SRL-SMEDDS-SB1-15的粉体学性质与重分散效果良 好,在水中的2h体外溶出度与SRL粉末及市售片 剂相比有明显提高。该制备方法操作简便,可行性高, 为后续液态自微乳制剂的固化研究提供新的思路和 方法。

References

- Chatel MA, Larkin DFB. Sirolimus and mycophenolate as combination prophylaxis in corneal transplant recipients at high rejection risk [J]. Am J Ophthalmol, 2010, 150: 179– 184.
- [2] Sousa JE, Costa MA, Abizaid A, et al. Four-year angiographic and intravascular ultrasound follow-up of patients treated with sirolimus-eluting stents [J]. Circulation, 2005, 111: 2326– 2329.
- [3] Lü FQ, Li H, Xu W, et al. Preparation of self-microemulsion drug delivery system of the mixture of paeonol and borneol based on Xingbi Fang [J]. Acta Pharm Sin (药学学报), 2013, 48: 1602-1610.
- [4] Chen HX, Xu XG, Yan XS. Plasma concentration and pharmacokinetics of ursolic acid carried in self-microemulsifying drug delivery system in rats studied by UPLC-MS/MS [J]. Acta Pharm Sin (药学学报), 2014, 49: 938-941.
- [5] Franceschinis E, Voinovich D, Grassi M, et al. Self-emulsifying pellets prepared by wet granulation in high-shear mixer: influence of formulation variables and preliminary study on the *in vitro* absorption [J]. Int J Pharm, 2005, 291: 87–97.

- [6] Balakrishnan P, Lee BJ, Oh DH, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS) [J]. Eur J Pharm Biopharm, 2009, 72: 539–545.
- [7] Quan GL, Chen B, Wang ZH, et al. Improving the dissolution rate of poorly water-soluble resveratrol by the ordered mesoporous silica [J]. Acta Pharm Sin (药学学报), 2012, 47: 239-243.
- [8] Slowing II, Trewyn BG, Giri S, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications
 [J]. Adv Funct Mater, 2007, 17: 1225–1236.
- [9] Slowing II, Vivero-Escoto JL, Wu CW, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Adv Drug Deliv Rev, 2008, 60: 1278-1288.
- Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores
 [J]. Science, 1998, 279: 548–552.
- [11] Liu ZH, Hu XW, Tao C, et al. Studies on sirolimus self-microemulsifying drug delivery system and its solidification
 [J]. J Pharm Pract (药学实践杂志), 2016, 34: 142-147.
- [12] Sevimli F, Yılmaz A. Surface functionalization of SBA-15 particles for amoxicillin delivery [J]. Micropor Mesopor Mat, 2012, 158: 281–291.
- [13] Kallakunta VR, Bandari S, Jukanti R, et al. Oral self-emulsifying powder of lercanidipine hydrochloride: formulation and evaluation [J]. Powder Technol, 2012, 221: 375–382.
- [14] Wu QL, Quan GL, Hong Y, et al. Preparation and release behaviour of mesoporous silica/ethylcellulose sustained-release mini-matrix [J]. Acta Pharm Sin (药学学报), 2015, 50: 492-499.
- [15] Li CX, Tu JS, Zhang PH, et al. Preparation and dissolution characteristics of mesoporous silica-based risperidone sustainedrelease tablets [J]. Chin J New Drug (中国新药杂志), 2015, 24: 79-84.
- [16] Li H, Gu J, Shah LA, et al. Bone cement based on vancomycin loaded mesoporous silica nanoparticle and calcium sulfate composites [J]. Mater Sci Eng C Mater, 2015, 49: 210–216.