2016年11月

文章编号: 1000-7032(2016) 11-1384-06

三基色白光 LED 的司辰节律因子研究

郑莉莉¹,郭自泉^{1*},严 威¹,吴挺竹¹,吕毅军¹,高玉琳¹,史 园²,陈 忠¹

(1. 厦门大学电子科学系 福建省半导体照明工程技术研究中心,福建厦门 361005;

2. 厦门市产品质量监督检验院 国家半导体发光器件(LED)应用产品质量监督检验中心,福建 厦门 361004)

摘要:采用司辰节律因子模型 通过计算三基色白光 LED 光源在不同工作电流下的司辰节律因子,对可调色 温的三基色白光 LED 光源进行非视觉效应研究。为了获取与自然光非视觉效应类似的 LED 白光,建立了司 辰节律因子和相关色温分别相对于工作电流的关系模型,从而已知自然光的司辰节律因子和相关色温,就可 以确定三基色 LED 的工作电流。通过测试一天内不同时刻的自然光光谱,根据上述模型推算出了三基色 LED 的工作电流。在所推算的三基色电流下,测试了白光 LED 光谱参数并计算了相应的司辰节律因子。与 自然光司辰节律因子的对比结果表明,理论值和实验值的误差在1.1% 以内,证实该方法具有可行性。本文 所呈现的方法对于利用三基色白光 LED 模拟自然光具有一定的指导意义。

关 键 词: 非视觉效应; 三基色白光 LED; 司辰节律因子; 自然光 中图分类号: TU113.19 文献标识码: A **DOI**: 10.3788/fgxb20163711.1384

Investigation on The Circadian Action Factor of RGB White LEDs

ZHENG Li-li1 , GUO Zi-quan1* , YAN Wei1 , WU Ting-zhu1 ,

LYU Yi-jun¹, GAO Yu-lin¹, SHI Yuan², CHEN Zhong¹

(1. Department of Electronic Science , Xiamen University , Fujian Engineering Research Center for Solid-state Lighting , Xiamen 361005 , China;

2. Xiamen Products Quality Supervision & Inspection Institute, National Testing Center for LED Application Products, Xiamen 361004, China) * Corresponding Author, E-mail: zqguo@xmu.edu.cn

Abstract: The circadian action factor (CAF) model was adopted to study the non-visual biological effects for the three-primary color-tunable white LEDs by calculating CAFs at various driving currents. In order to obtain the white light similar to the natural light according to non-visual biological effects , the models of CAF *versus* current and CCT *versus* current were generated. Therefore , the driving currents of three-primary LEDs could be determined after the CAF and the CCT of the natural light were known. Based on aforementioned models , and after the natural light at different times in a day was tested , the driving currents of three-primary LEDs were calculated. A comparison between calculated values and experimental counterparts shows that the difference lies within 1.1% , suggesting the feasibility of this approach. This work appears meaningful for mimicking the natural light by using three-primary white LEDs.

Key words: non-visual effects; RGB LEDs; circadian rhythms factor; natural light

收稿日期: 2016-05-19; 修订日期: 2016-08-24

基金项目:科技部国际合作项目(2015DFG62190);国家自然科学基金(61504112);福建省产学合作重大专项(2013H6024);福建 省自然科学基金(2016R0091);科技部港澳台科技合作专项(2015DFT10120)资助项目

1 引 言

发光二极管(LEDs) 是一种半导体发光器件, 被称为第四代照明光源。LED 光源相比于白炽 灯、荧光灯等传统光源 在节能、环保、光效和寿命 等各方面均占有绝对优势。随着光效的进一步提 高和成本的进一步下降 ,LED 被广泛应用于交通 信号灯、显示屏、手机背光源、室内照明和城市夜 景工程等领域^[1]。通常利用 LED 实现白光主要 有以下 3 种方法: 蓝光 LED 激发钇铝石榴石 (YAG: Ce³⁺) 黄色荧光粉^[2]; 近紫外 LED 激发红、 绿和蓝三基色荧光粉: 红/绿/蓝三基色白光 LED (RGB-LEDs)。RGB-LEDs 照明光源是采用不同 配比光功率的红、绿和蓝3种基色光混合成白光, 比较容易通过改变发光功率配比来实现色温动态 可调,以满足不同照明场合的需求。目前,关于 RGB-LEDs 白光光源已经有众多相关研究和应 用^[3-4] 但是人工光源与自然光源之间仍存在一 定差距,尤其是在显色性和非视觉效应上^[5]。

人类经历几百万年的进化过程已经养成了 "日出而作,日落而息"的习惯。光对人类和其他 哺乳动物的生理系统至关重要。它不仅提供视觉 信息 还参与生物节律、大脑认知等非视觉系统生 理功能的调节,学术界称后者为"光的非视觉生 物效应"。2002 年,美国 Brown 大学的 Berson 等 发现了哺乳动物视网膜的第三类感光细胞——视 网膜特化感光神经节细胞(ipRGC)^[6]。当光线进 入人眼后 通过第三类感光细胞接收产生光生物 学效应,可以影响褪黑素、皮质醇等激素的形成和 转换。在正常生理状态下,人体褪黑素的分泌是 夜多昼少,呈现昼夜节律性的波动。要营造健康 的光照环境,首先要了解光照对人体昼夜节律的 影响。Berman 结合褪黑素抑制光谱与明视觉、暗 视觉函数曲线 给出了表征光生物效应影响因子, 即司辰节律因子(Circadian action factor, CAF, a_{cx}) 用于表征光生物效应的强弱^[7]。Bellia 等比 较了不同光谱功率分布的光源在室内照明领域的 视觉和非视觉效应,得到在可见光领域的人体生 理节律效率和生理节律因子的具体公式^[8]。宋 丽妍等研究了以发光二极管为背光源的平板显示 对人体非视觉效应的影响^[9]。鲁玉红等研究了 不同波长的蓝光 LED 对人体光生物节律效应的 影响^[10]。Oh 等实验研究了基于不同背光源的手

机显示屏对人体非视觉效应的影响,并提出一种 减小智能手机显示屏对人体健康影响的方法^[11]。 Žukauskas 等对四基色白光 LED 进行了基于光源 的司辰节律因子的优化^[12]。

本文通过测试不同工作电流下的 RGB-LEDs 的光谱,计算并分析了 CAF 与工作电流的关系。 同时,建立了工作电流与 CAF、工作电流与相关 色温(Correlated color temperature ,CCT)^[13]的关系 模型 结合实验实现了对自然光的模拟。

2 相关理论基础

本文所使用的光谱生理响应曲线是基于 Gall 等提出的 c(λ)曲线^[14],明视觉曲线采用 1978 Judd-Vos 修正后的 2°视角的光谱光视效率函数 曲线,如图 1 所示。

图 1 人眼光谱灵敏度曲线 V(λ) 与光谱生理响应曲线 C(λ)
 Fig. 1 Spectral eye sensitivity curve V(λ) and spectral biological action curve C(λ)

通常,用于描述人眼对光能量的转换度量的 光通量的计算公式为:

$$\varphi_{v} = k_{m} \int_{380}^{780} P(\lambda) V(\lambda) d\lambda , \qquad (1)$$

其中 $k_m = 638 \ln/W$ 为明视觉下最大光视效率值, $V(\lambda)$ 为归一化的明视觉下的光谱光视效率函数, $P(\lambda)$ 为光源的光谱功率分布。类似于光通量的计 算公式 同样对光谱生理响应^[14] 作如下定义:

$$\varphi_{\rm c} = k_{\rm c} \int_{380}^{780} P(\lambda) C(\lambda) \, \mathrm{d}\lambda , \qquad (2)$$

根据上述两个式子, 同辰节律因子[14] 可被定义为:

$$a_{cv} = \frac{\int_{380}^{780} P(\lambda) C(\lambda) d\lambda}{\int_{380}^{780} P(\lambda) V(\lambda) d\lambda}.$$
 (3)

3 结果与讨论

3.1 实验

本文实验中采用积分球 4π 测量方法对被测 RGB-LEDs 进行光谱测试。实验装置包括: 德国 Instrument Systems 公司的光谱仪 Spectro-320e、光 纤、恒流源、控温平台以及计算机。测试自然光实 验装置包括:光谱仪 Spectro-320e、光度探头 Top100、光纤和计算机。首先,测试不同电流条件 下 RGB-LEDs 的光谱功率分布,计算司辰节律因 子 CAF,建立工作电流与 CAF、工作电流与 CCT 的关系模型。然后,测试不同时刻的自然光光谱, 计算各时刻自然光的司辰节律因子。基于模型得 到3路驱动电流,实验上配比出与自然光 CAF和 CCT 相一致的白光光谱。

实验样品采用飞利浦照明公司生产的商用 RGB 三基色 LED 灯珠,每种颜色芯片的电流 都可以独立地进行控制调节。具体光谱数据 (均在电流 350 mA 下测得)如表 1 所示,分别 为峰值波长(Peak wavelength)、半高宽(FWHM)、 光通量(Flux)、光功率(OP)和光电转换效率 (η_e)。

表1	RGB 三基色 LED 芯片的光谱参数
Tab. 1	Spectral parameters of RGB LED chips

Chip	Peak wavelength/nm	FWHM/nm	Flux/lm	OP/W	$oldsymbol{\eta}_{ ext{e}}$
R	628	15.7	32.7	0.146	16.7%
G	515	33.2	41.6	0.095	8.2%
В	455	23.8	11.1	0.251	35.9%

3.2 不同工作电流下的司辰节律因子

首先,设置红、绿、蓝三路初始电流(I_{R} 、 I_{G} 、 I_{B})分别为 I_{R} = 150 mA, I_{G} = 350 mA, I_{B} = 80 mA。 此时光谱在 CIE1931 色品图上的色品坐标(x,y)

为(0.2703,0.2987)以及 CCT 为 10 552 K。在 初始电流下,RGB-LEDs 的光谱和色品坐标如图 2 所示。

在相同温度下,改变3路电流,分别测试光谱 并计算其 a_{cv} 。图3为在工作环境温度25℃下, RGB 三基色 LED 的 a_{cv} 随电流的变化情况。

图 3 25℃下 *a*_{ev}与 RGB-LEDs 驱动电流的关系

由图 3 可知 ,RGB-LEDs 的 a_{ex} 随着 I_{R} 和 I_{C} 的升高而变小 随着 I_{B} 的升高而变大。这是因为随电流升高,蓝光 LED 光功率增大,白光光谱在 蓝色部分明显增多。蓝光的增多增加了白光光谱 与光谱生理响应曲线的重叠,故光源的 a_{ex} 增大。 同理 随电流升高,红光 LED 光功率增大,光谱在 红光区域增多,光源 a_{ex} 减小。绿光 LED 电流升 高时,光功率也增大。但是,由于光谱与人眼明视 觉响应曲线重叠部分增多 同时与光谱生理曲线重 叠部分变少,故光源 a_{ex}会随电流的升高反而减小。 可见,RGB-LEDs 光源在不同基色电流改变下的司 辰节律因子的变化不同。通过相关实验,可以进一 步推出 a_{ex}与各路电流的定量关系,从而得到 a_{ex}与 红光、绿光和蓝光的工作电流的关系模型。

3.3 模型构建

在 25 ℃环境温度下,保持绿光 LED 的工作 电流为 350 mA,分别设置红光 LED 和蓝光 LED 的工作电流为 10,50,80,100,150,200,300,350 mA,测试并分析数据。图4为不同红光和蓝光电 流下的 CCT 变化情况。

为了使混合光为适合照明的白光,CCT 应不 超过 10 000 K。从图 4 可得,须将 $I_{\rm B}$ 控制于 150 mA 以下 $J_{\rm R}$ 控制于 80 ~ 350 mA 之间。因此,我 们对蓝光 LED 输入 10 ~ 150 mA 电流,对红光 LED 输入 80 ~ 350 mA 电流,测试白光光谱并计 算其 $a_{\rm ev}$ 值,如表 2 所示。

表2 >	
------	--

$I_{\rm B}/{\rm mA}$ $I_{\rm R}/{\rm mA}$	150	100	80	50	10
350	1.233	1.093	0.996	0.798	0.436
300	1.276	1.129	1.037	0.830	0.473
200	1.345	1.233	1.116	0.915	0.558
150	1.394	1.262	1.163	0.967	0.605
100	1.434	1.319	1.215	1.021	0.660
80	1.467	1.336	1.236	1.043	0.686

Tab. 2 a_{ev} of the light source under different I_{R} and I_{B}

根据表 2 数据,对 *a*_{cv}和 *I*_R、*I*_B进行拟合,得到 如下模型:

$$a_{\rm av} = 7.24 \times 10^{-7} \times I_{\rm R}^2 - 1.20 \times 10^{-3} \times I_{\rm R} -$$

3.
$$35 \times 10^{-5} \times I_{\rm B}^2 + 1.11 \times 10^{-2} \times I_{\rm B} + 0.66$$
,
 $R^2 = 0.997$. (4)

表征拟合度的 R→square 值达到了 0.997,说明拟 合效果较好。根据式(4),已知一个 a_{ev} 便可反推 多组的 I_{R} 和 I_{B} ,进而可以混合出多组白光。接 着,我们需要确定 CCT 与电流的关系模型,并与 式(4) 联立,针对指定 CCT 求解出所需工作电流。 其中 A 500 ~6 500 K 标准日光的 CCT、CAF 和色 坐标如表 3 所示。

表 3 RGB-LEDs 和标准日光的 acv 与 CCT

Гab. З	a_{cv} and	CCT	of the	he	daylight	and	RGB-LEDs
	ev ev						

Daylight-CCT/K	$a_{ m ev}$	CCT/K	x	у
4 500	0.678	4 570	0.308 4	0.365 1
5 000	0.755	4 930	0.318 5	0.3767
5 500	0.825	5 533	0.3319	0.388 6
6 000	0.888	5 916	0.351 6	0.396 2
6 500	0.946	6 472	0.365 5	0.405 4

通过实验测试,计算的不同电流下的 RGB--LEDs 的 CAF 和 CCT 如图 5 所示。取 RGB-LEDs 的 a_{ev} -CCT 曲线与标准日光 a_{ev} -CCT 的曲线交叉 位置的 CCT,对 CCT 和工作电流进行拟合,得到: $CCT = -0.56 \times I_{\rm R} + 104.37 \times 10^{-4} \times I_{\rm B} + 1950.44$,

3.4 自然光光谱测量与实验验证

实验地点选取厦门大学半导体照明实验室, 经度118°,纬度24°。实验时间选取2015年12 月01日,晴天,天空少云。对白天9:00~17:00 各整点时刻的自然光光谱进行测量,计算所得的 a_{cx}值如表4所示。

可以看出,天气晴朗的情况下,一天不同时刻的色温都比较高,大约都在6000 K 左右 相应的

表4 一天不同时刻下测量的 acv 值和 CCT 值

Tab. 4 a_{cv} and CCT at different time in one day

Time	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00
$a_{_{ m cv}}$	0.989	0.925	0.928	0.941	0.928	0.902	0.891	0.881	0.875
CCT/K	6 905	6 252	6 293	6 392	6 287	6 024	5 938	5 907	5 869

 a_{ev} 在 0.9 附近。为了验证上述方法的可行性,我 们分别把一天中各个时刻的自然光的 a_{ev} 和 CCT 分别代入(4)式和(5)式,计算不同时刻的工作电 流 $I_{\rm R}$ 和 $I_{\rm B}$,然后测试这些电流下的 RGB-LEDs 的 光谱并计算其 $a_{cv}(a_{cvs})$,结果如表 5 所示。其中 与自然光的 $a_{cv}(a_{cv-s})$ 的相对误差定义为

$$\delta = \frac{|a_{\text{ev-s}} - a_{\text{ev-d}}|}{a_{\text{ev-d}}} \times 100\%.$$
 (6)

表5 计算和实验测试所得的一天不同时刻的 a_{cr} 值

Tab. 5 Calculated and experimental a_{cv} at different time in one day

Time	$I_{\rm B}/{ m mA}$	$I_{\rm R}$ /mA	x	Ŷ	CCT/K	$a_{ m ev-s}$	$a_{ m ev-d}$	δ
9:00	49	121	0.300 6	0.353 8	6 918	0.991	0.989	0.2%
10:00	44	145	0.315 4	0.361 5	6 200	0.931	0.925	0.6%
11:00	43	134	0.3109	0.364 4	6 378	0.934	0.928	0.6%
12:00	45	136	0.3104	0.3597	6 419	0.949	0.941	0.9%
13:00	43	134	0.3109	0.364 4	6 378	0.934	0.928	0.6%
14:00	42	152	0.320 1	0.3657	5 988	0.908	0.902	0.7%
15:00	41	155	0.320 0	0.368 4	5 985	0.901	0.891	1.1%
16:00	40	157	0.3227	0.370 6	5 877	0.888	0.881	0.8%
17:00	39	154	0.323 9	0.373 1	5 830	0.879	0.875	0.5%

图 6 为利用上述方法得到的 RGB-LEDs 的色 品坐标图。可以看出混合光的色坐标处于黑体轨 迹附近且落在白光区域。不同时刻下,将计算值 与实际采集的自然光 *a*_{cx}值进行对比,其最大相对 误差为 1.1%,从而证明了该方法的可行性。

受 RGB 白光 LED 样品中绿光 LED 芯片的波 长限制,显色指数较低(低于 70),与自然光相比

具有一定差距,且通过调整 RGB-LEDs 的电流配 比很难得到色坐标更加靠近普朗克黑体轨迹的混 合白光(即使我们也尝试改变了绿光 LED 的电 流)。在将来的工作中,我们将着力于对三基色 的组合波长进行光谱优化设计,以寻找波长更合 适的绿光样品,使所设计的白光 LED 的司辰节律 因子、显色指数、相关色温、色坐标等表征白光的 参数更加靠近自然光。此外,实验中所选取的地 理位置和实验测试时当天的天气情况也具有一定 局限性,将来会在不同地区和不同天气条件下进 行更为深入的探索。

4 结 论

本文基于司辰节律因子模型,对三基色白光 LED 进行了相关研究,以获得一种更接近于自然 光的白光光源。为了得到和自然光更接近的光 源,分别建立了 a_{cx}、CCT 与工作电流的关系模型, 通过模型反推电流值,并测试不同时刻的自然光 进行了实验验证。结果表明误差在 1.1% 以内, 证明本方法具有较高的可行性。

1389

参考文献:

- [1]甘汝婷 郭震宁 林介本 等. 遗传算法在 LED 光源光谱匹配技术中的应用 [J]. 光子学报, 2014, 43(7):0730003.
 GAN R T, GUO Z N, LIN J B, et al.. The genetic algorithm in the application of the LED light source spectral matching technology [J]. Acta Photon. Sinica, 2014, 43(7):0730003. (in Chinese)
- [2] GUO Z Q, SHIH T, GAO Y L, et al. Optimization studies of two-phosphor-coated white light-emitting diodes [J]. IEEE Photonics J., 2013, 5(2):8200112.
- [3]朱钧 涨鹤 金国藩. 一种基于 RGB 三基色 LED 的白光光源 [J]. 光学技术, 2007, 33(6):929-931.
 ZHU J, ZHANG H, JIN G F. A novel white light source based on RGB LED [J]. Opt. Tech., 2007, 33(6):929-931.
 (in Chinese)
- [4] 宋鹏程,文尚胜,尚俊,等. 基于 PWM 的三基色 LED 的调光调色方法 [J]. 光学学报, 2015, 35(2): 2230014-8.
 SONG P C, WEN S S, SHANG J, et al. A dimming method for RGB LED based on three channels' PWM [J]. Acta Opt. Sinica, 2015, 35(2): 2230014-8. (in Chinese)
- [5]姚其 居家奇 程雯婷 等. 不同光源的人体视觉及非视觉生物效应的探讨 [J]. 照明工程学报,2008,19(2):14-19.
 YAQ Q, JU J Q, CHENG W T, et al. Discussion on the visual and non-visual biological effect of different light sources
 [J]. China Illumin. Eng. J., 2008, 19(2):14-19. (in Chinese)
- [6] BERSON D M, DUNN F A, TAKAO M. Phototransduction by retinal ganglion cells that set the circadian clock [J]. Science, 2002, 295(5557): 1070-1073.
- [7] BERMAN S M. A new retinal photoreceptor should affect lighting practice [J]. Lighting Res. Technol. , 2008, 40(4): 373-376.
- [8] BELLIA L, BISEGNA F, SPADA G. Lighting in indoor environments: visual and non-visual effects of light sources with different spectral power distributions [J]. Build. Environ. , 2011, 46(10):1984-1992.
- [9] 宋丽妍 李俊凯 牟同升. 以发光二极管为背光源的平板显示对人体非视觉的影响 [J]. 光子学报, 2013, 42(7): 768-771.

SONG L Y, LI J K, MOU T S. Non-visual effects of flat panel display with light emitting diode backlight on human [J]. *Acta Photon. Sinica*, 2013, 42(7):768-771. (in Chinese)

[10] 鲁玉红,王毓蓉,金尚忠,等.不同波长蓝光 LED 对人体光生物节律效应的影响 [J].发光学报,2013,34(8): 1061-1065.

LU Y H, WANG Y R, JIN S Z, et al. . Influence of different wavelength blue LED on human optical biorhythm effect [J]. Chin. J. Lumin. ,2013,34(8):1061-4065. (in Chinese)

- [11] OH J H, YOO H, PARK H K, et al. Analysis of circadian properties and healthy levels of blue light from smartphones at night [J]. Sci. Rep., 2015, 5: 11325.
- [12] ŽUKAUSKAS A, VAICEKAUSKAS R. Tunability of the circadian action of tetrachromatic solid-state light sources [J]. Appl. Phys. Lett. , 2015, 106(4):041107.
- [13] 林岳 叶烈武 刘文杰 等. 二分法优化计算 LED 光源相关色温 [J]. 光学学报, 2009, 29(10): 2791-2794. LIN Y, YE L W, LIU W J, et al. Optimization algorithm of correlated color temperature for LED light sources by dichotomy [J]. Acta Opt. Sinica, 2009, 29(10): 2791-2794. (in Chinese)
- [14] GALL D. The measurement of circadian radiation quantities [C]. Proceedings of The Licht and Gesundheit , Berlin , 2004.

郑莉莉(1992 -),女,福建莆田人, 硕士研究生 2014 年于厦门大学获 得学士学位,主要从事半导体光电 检测及其特性的研究。 E-mail: 935681005@qq.com

郭自泉(1984 –),男 福建永春人,博 士,工程师,2014 年于厦门大学获得 博士学位,主要从事白光 LED 的光谱 优化和可靠性的研究。 E-mail: zqguo@ xmu. edu. cn