doi: 10.3866/PKU.WHXB201704243

www.whxb.pku.edu.cn

抗烧结 Rh-Sm₂O₃/SiO₂ 催化剂的制备和表征及其 甲烷部分氧化制合成气性能

郑芳芳 李 倩 张 宏 翁维正^{*} 伊晓东 郑燕萍 黄传敬 万惠霖^{*} (厦门大学化学化工学院,固体表面物理化学国家重点实验室,醇醚酯化工清洁生产国家工程实验室,福建 厦门 361005)

摘要: 以乙酰丙酮铑(Rh(acac)₃)和乙酰丙酮钐(Sm(acac)₃)为前驱体,用浸渍法制备了 Rh/SiO₂ 和 Rh-Sm₂O₃/SiO₂ 催化剂。采用原位红外光谱、热重分析、低温 N₂吸附、X 射线粉末衍射、高分辨透射电子显微镜、H₂-程序升温还原和 X 射线光电子能谱等实验技术对催化剂的制备过程,比表面积和物相以及 Rh 与 Sm₂O₃ 间的相互作用进行了表征,并以甲烷部分氧化制合成气为目标反应对催化剂的稳定性进行了考察。研究表明:以 Rh(acac)₃和 Sm(acac)₃为前驱体采用简单的浸渍法即可制备出 Rh 平均粒径为 2.3 nm 且具 有良好抗烧结性能的 Rh-Sm₂O₃/SiO₂ 催化剂。在浸渍过程中乙酰丙酮化合物通过与 SiO₂ 表面羟基形成氢键 而负载于载体表面。Sm(acac)₃在 SiO₂ 表面的单层负载量(质量分数)约为 31%,对应于 Sm₂O₃ 的质量分数 约为 15%,只要 Sm(acac)₃ 的质量分数低于这一阈值,均可保证分解后生成的 Sm₂O₃ 以高分散形式负载于 SiO₂ 上,且不会因高温(800 ℃)焙烧而团聚。高分散于 SiO₂ 表面的 Sm₂O₃ 与 Rh 之间存在强的相互作用,可显著提高 Rh 的分散度,防止其在高温反应条件下烧结,进而使低 Rh 负载量的催化剂表现出良好的甲烷 部分氧化制合成气反应活性和稳定性。

关键词: Rh-Sm₂O₃/SiO₂;乙酰丙酮铑;乙酰丙酮钐;抗烧结;甲烷部分氧化;合成气 中图分类号: O643

Preparation and Characterization of Sinter-Resistant Rh-Sm₂O₃/SiO₂ Catalyst and Its Performance for Partial Oxidation of Methane to Syngas

ZHENG Fang-Fang LI Qian ZHANG Hong WENG Wei-Zheng YI Xiao-Dong ZHENG Yan-Ping HUANG Chuan-Jing WAN Hui-Lin^{*}

(State Key Laboratory of Physical Chemistry of Solid State Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China)

Abstract: Rh/SiO₂ and Rh-Sm₂O₃/SiO₂ catalysts were synthesized by the conventional impregnation method using rhodium acetylacetonate (Rh(acac)₃) and samarium acetylacetonate (Sm(acac)₃) as precursors. The preparation and catalytic properties, as well as the interaction between Rh and Sm₂O₃, were characterized in detail by *in situ* infrared spectroscopy (IR), thermogravimetric analysis (TG), N₂

*Corresponding authors. WENG Wei-Zheng, Email: wzweng@xmu.edu.cn, WAN Hui-Lin, Email: hlwan@xmu.edu.cn; Tel: +86-592-2185192.

©Editorial office of Acta Physico-Chimica Sinica

Received: February 21, 2017; Revised: April 7, 2017; Published online: April 24, 2017.

The project was supported by the National Key Basic Research Program of China (2013CB933102), National Natural Science Foundation of China (21473144, 21373168), National Talent Development of Basic Research Program of China (J1310024) and Program for Innovative Research Team in University, China (IRT 14R31).

国家重点基础研究发展规划项目(2013CB933102),国家自然科学基金(21473144,21373168),国家基础科学人才培养基金项目(J1310024)及教育部创新研究团队项目(IRT 14R31)资助

physisorption (Brunauer-Emmett-Teller (BET) method), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (H₂-TPR) and X-ray photoelectron spectroscopy (XPS). The performance of the catalysts for the partial oxidation of methane (POM) to syngas was also investigated. The results showed that a sinter-resistant Rh-Sm₂O₃/SiO₂ catalyst with an average Rh particle size of ~2.3 nm could be synthesized using the conventional impregnation method with Rh(acac)₃ and Sm(acac)₃ as precursors. The surface silanol groups of SiO₂ acted as the centers to interact with M(acac)₃ (M=Rh, Sm) molecules when SiO₂ was impregnated in the M(acac)₃ solution, leading to the formation of a hydrogen-bonded M(acac)₃ layer on the SiO₂ surface. In this experiment, the monolayer coverage of Sm(acac)₃ on the SiO₂ surface was equal to a Sm(acac)₃ loading (mass fraction) of approximately 31%, which in turn corresponded to a Sm₂O₃ loading of approximately 15%. When a Sm(acac)₃/SiO₂ sample with Sm(acac)₃ loading below 31% was heated in air to approximately 360 °C, the monolayer Sm(acac)₃ species decomposed into highly dispersed Sm₂O₃ species on the SiO₂ surface, which displayed superior stability against sintering at high temperature. No aggregation of the Sm₂O₃ species was observed even when the sample was heated to 800 °C in air. The strong interaction between the highly dispersed Sm₂O₃ and Rh plays a key role in increasing the dispersion of Rh species in the catalyst and preventing the Rh species from sintering under high temperature conditions. This factor should also be responsible for the superior activity and stability of the Rh-Sm₂O₃/SiO₂ catalyst with extremely low Rh loading for the catalytic partial oxidation of methane to syngas.

Key Words: Rh-Sm₂O₃/SiO₂; Rh(acac)₃; Sm(acac)₃; Sinter-resistant; Partial oxidation of methane; Syngas

1 引 言

甲烷部分氧化(POM)制合成气因有望部分取 代传统的甲烷水蒸汽重整反应成为制备合成气的 新工艺近年来备受关注 1-6。该反应的催化剂多为 负载型催化剂,活性组分主要为贵金属和非贵金 属,其中负载于 SiO2或 Al2O3 上的 Ni 和 Rh 催化 剂是人们研究最多的两种体系⁷⁻⁹。Ni 基催化剂的 优点在于价格低廉,但该催化剂在反应条件下易 因积碳失活,因此如何提高 Ni 基催化剂的抗积碳 性能是人们关注的热点问题之一。与 Ni 基催化剂 相比, Rh 基催化剂具有活性高、抗积碳性能强等 优点,但由于 Rh 的价格昂贵,提高 Rh 的分散度 并降低其负载量对 Rh 基催化剂显得更为重要。此 外由于 POM 反应的温度较高,如何提高催化剂上 负载的金属组分的抗烧结性能也是高性能 POM 催化剂研制必需解决的关键问题之一。随着纳米 技术的发展以及在新催化材料合成上的创新,人 们在改善负载型金属催化剂稳定性方面已取得了 许多进展。如:将金属组分限域在分子筛、介孔 SiO2 或碳管等多孔材料的孔道内, 使得纳米粒子 间彼此隔离,进而抑制由迁移引起的粒子长大, 提高催化剂的抗烧结性能 10-15; 或在金属纳米粒 子表面包覆(含介孔)氧化物壳层,隔离活性组分, 防止因粒子彼此接触所导致的颗粒长大,进而改 善催化剂热稳定性 16-23。但是从实际应用的角度 看,这些催化剂的制备过程均较为复杂,有些体 系在制备时还需用到较昂贵的试剂。

除了通过限域或包覆等手段阻止金属纳米粒 子在高温环境下烧结外,人们还可通过在催化剂 体系中引入碱土和/或稀土氧化物助剂来提高负载 型金属催化剂的分散度和抗烧结性能²⁴⁻²⁸。在稀 土氧化物助剂中,CeO₂因存在Ce⁴⁺/Ce³⁺氧化还原 对,具有良好的储存及释放氧的能力,是人们研 究最多的助剂之一²⁹⁻³⁵。Wang 等³⁶研究发现, Rh-CeO₂间的相互作用导致 Rh 与 CeO₂之间发生 了电子转移,催化剂表面上 Ce⁴⁺/Ce³⁺和 Rh⁰/Rh⁶⁺ 氧化还原对共存,促进了 CH₄和 CO₂分子的活化, 进而提高催化剂的活性和抗积碳性能。与之相比, 对非变价稀土氧化物助剂的研究相对较少。

浸渍法是制备负载型金属催化剂最常用的方 法之一,具有工艺简单,活性组分利用率高等特 点。然而活性组分在载体上分布不均匀是该方法 制备的负载型金属催化剂不容忽视的弊端之一, 其原因主要源于负载于载体表面的金属活性组分 在干燥和焙烧过程中易发生迁移,进而导致金属 物种的团聚。如何采用浸渍法制备出粒径分布均 一且具有良好抗烧结性能的负载型金属催化剂一 直是人们努力的方向。近期,我们以不同 Pd 化合 物为前驱体采用浸渍法制备了系列 Pd/SiO₂ 催化 剂,并比较了焙烧后各催化剂上 Pd 颗粒的分散情 况³⁷。研究发现以乙酰丙酮钯为前驱体制备的样品 表现出优异的抗高温烧结性能,经空气中 800 ℃ 焙 烧和 H₂中 600 °C 还原后,Pd 的平均粒径仍可保 持在 3-4 nm。作为相关工作的延续,本文以乙酰 丙酮铑和乙酰丙酮钐为前驱体,采用简单的浸渍 法制备了具有良好抗烧结性能的 Rh-Sm₂O₃/SiO₂ 催化剂。通过原位红外光谱,热重分析,X 射线 粉末衍射,高分辨透射电子显微镜,H₂-程序升温 还原和 X 射线光电子能谱等实验技术对催化剂的 制备过程以及 Rh 与 Sm₂O₃间的相互作用进行了 表征,并以甲烷部分氧化制合成气为目标反应对 催化剂在高温反应条件下的稳定性进行考察。

2 实验部分

2.1 催化剂制备

将 SiO₂ 载体(Aldrich, 35-60 目, 孔径 6 nm) 浸泡在 20%的硝酸溶液中 24 h 后用蒸馏水洗涤至 中性,在 110 ℃ 下烘干后备用。

A:称取 0.10 g Rh(acac)₃(Alfa Aesar, 99.99%), 溶于 100 mL 的乙酰丙酮溶液中,配制成 Rh 浓度 为 2.5 × 10^{-3} mol·L⁻¹的溶液备用。

按需量取 Rh(acac)₃ 溶液并加入相应量的 Sm(acac)₃·nH₂O (Alfa Aesar, 99.9%),用乙酰丙酮 稀释至总体积为 50 mL 后在 80 °C 加热 0.5 h。向 上述溶液中加入 0.50 g 经 110 °C 烘干的 SiO₂,并 在室温下浸渍 24 h。在 110 °C 下加热除去溶剂后, 将所得固体在 110 °C 烘干 1 h,再于模拟空气流 (O₂/N₂ 体积比为 21/79,100 mL·min⁻¹)中升温(1 °C·min⁻¹)至 800 °C 焙烧 2 h,制得 x% Rh/SiO₂, y% Sm₂O₃/SiO₂和 x% Rh-y% Sm₂O₃/SiO₂ 催化剂,其中 x 和 y 分别为样品中 Rh 和 Sm₂O₃ 的质量分数。

B : 称 取 0.10 g Rh(NO₃)₃·xH₂O (Sigma-Aldrich, Rh 的质量百分数~36%), 溶于 100 mL 的 10% HNO₃ 水溶液中, 配制成 Rh 浓度为 3.0×10⁻³ mol·L⁻¹ 的溶液备用。

按需量取 Rh(NO₃)₃ 溶液并加入相应量的 Sm(NO₃)₃·6H₂O (上海笛柏, 99.9%),用去离子水 稀释至总体积为 50 mL。向上述溶液中加入 0.50 g 经 110 °C 烘干的 SiO₂,并在室温下浸渍 24 h。在 90 °C 下加热除去溶剂后,将所得固体在 110 °C 烘干 1 h,再于模拟空气流(O₂/N₂ 体积比为 21/79, 100 mL·min⁻¹)中升温(1 °C·min⁻¹)至 800 °C 焙烧 2 h,制得 x% Rh-y% Sm₂O₃/SiO₂-N 催化剂,其中 x 和 y 分别为样品中 Rh 和 Sm₂O₃ 的质量分数。

2.2 催化剂表征

(1) N₂物理吸附(BET):催化剂的比表面积采用 BET 方法在 Micromeritics Tristar 3000 物理吸附 仪上测定。测定前,样品先在 300 °C 下抽真空预

处理 3 h, 之后以氮气为吸附质, 在液氮温度下吸 附, 测定样品的比表面积, 孔径和孔容。

(2) X 射线粉末衍射(XRD): 催化剂的体相组 成和结构采用 X 射线粉末衍射法测定。实验在日 本理学公司(Rigaku)生产的多功能多晶粉末 X 射 线衍射仪 Ultima IV 上进行。以 Cu K_a ($\lambda = 0.15406$ nm)为辐射源,电压为 35 kV,电流为 15 mA,扫 描区间为 10°-90°,扫描速度为 20 (°)·min⁻¹。

(3) 程序升温还原(H₂-TPR): 以上海海欣 GC-950 色谱仪的热导检测器测量氢气的消耗量, 以 H₂/Ar 体积比为 5/95 的混合气为载气和还原气 (流速为 20 mL·min⁻¹)。样品(100.0 mg)先在 O₂/Ar 体积比为 5/95 的混合气流(30mL·min⁻¹)中升温至 500 °C 处理 15 min 并在 O₂/Ar 气氛下降至 25 °C。 切入 H₂/Ar 混合气吹扫至基线平稳后以 10 °C·min⁻¹的速率升温至 900 °C。

(4) 热重分析(TG-DTG): 热重分析在美国 TA 仪器公司生产的同步热分析仪 SDT-Q600 上进行。 称取约 5 mg 的样品置于干净的氧化铝坩埚内,通 入流速为 100 mL·min⁻¹ 的模拟空气(O₂/N₂ 体积比 为 21/79), 待基线平稳后开始升温测试,升温速 率为 10 °C·min⁻¹。

(5) 红外光谱表征(IR): IR 光谱表征实验在自 行研制的装有 CaF₂ 窗片的石英衬底高温透射原位 样品池 ³⁸ 和配有 MCT-A 检测器的 Nicolet Nexus 型 FTIR 谱仪上进行。将催化剂压成 ϕ 为 13 mm 的自支撑薄片(约 10 mg)并装入原位池,在模拟空 气流(O₂/N₂ 体积比为 21/79, 50 mL·min⁻¹)中升温 至 110 °C 预处理 2 h 后以同温下的空原位样品池 为背景摄取样品的 IR 谱, 谱图分辨率: 4 cm⁻¹, 扫描范围: 4000–1300 cm⁻¹, 扫描次数: 32 次。

(6) X 射线光电子能谱(XPS): XPS 测试在 Omicron Sphera II hemispherical 型能谱仪上进行。 以 Al K_{α} (1486.6 eV, 300 W)为 X 射线辐射源,谱 图分辨率为 0.2 eV。以催化剂样品上 Si 1s 的结合 能(103.3 eV)为内标校正其它元素的结合能。

(7) 高分辨透射电镜(TEM): 催化剂活性组分的颗粒大小及形貌表征在 Phillips FEI Tecnai 20型高分辨透射电子显微镜上进行,加速电压为 200 kV,分辨率为 0.1 nm。取少量粉末样品分散在 1.5 mL 无水乙醇中,经 1 h 超声分散后,用喷有碳膜的铜网捞取浊液 5 次,随后自然晾干,备用。对每个样品上的金属颗粒做粒径统计和加权平均,测量约 300 个颗粒的尺寸后,绘制粒径分布图并计算出纳米颗粒的平均粒径。

2.3 催化剂的性能评价

催化剂的甲烷部分氧化制合成气反应的性能 评价在微型固定床流动反应装置上进行。催化剂 (42.0 mg)在 700 °C 通高纯 H₂ 预还原 60 min 后, 于同温下切换成 CH₄/O₂/Ar 体积比为 2/1/4 原料气 (空速为 1 × 10⁵ mL·g⁻¹·h⁻¹)进行反应。原料气配比 和反应尾气组成用配有热导检测器(TCD)和碳分 子筛填充柱(TDX-02, 3 m)的上海海欣 GC-950 型 气相色谱仪在线分析,载气为高纯 Ar (99.999%, Linde)。以酒精/液氮浴为冷阱除去反应尾气中的 H₂O。甲烷转化率,CO 和 H₂选择性参照文献 ³⁹ 中所列的公式计算。

3 结果与讨论

3.1 比表面积(BET)测试和 TEM 表征

表1为经空气中800°C 焙烧的样品的比表面 积和孔性质数据。从表中可以看出,在SiO₂上负 载 Rh 和/或Sm₂O₃并经过高温焙烧后,样品的比 表面积和孔容均有不同程度的下降,同时含有 Rh 和Sm₂O₃的0.5% Rh-10% Sm₂O₃/SiO₂的比表面积 最小。

图 1 为经空气中 800 °C 焙烧并在 700 °C 下用 H₂/Ar 体积比为 5/95 还原后的 0.5% Rh/SiO₂ 和 0.5% Rh-10% Sm₂O₃/SiO₂ 的 TEM 图。从图中可以看出, 0.5% Rh/SiO₂上的 Rh 物种出现明显团聚, Rh 的平 均粒径为 5.7 nm, 粒径分布也较宽。与之相比, 0.5% Rh-10% Sm₂O₃/SiO₂上 Rh 物种的平均粒径仅为 2.3 nm 且粒径分布狭窄,说明在催化剂上引入 Sm₂O₃ 后显著提高了 Rh 物种的分散度和抗烧结性能。

表1 札	举品的比表面积(SBET)和孔性质
------	-------------------

	Fable 1	Specific surface	areas (S _{BET}) and	pore properties	of the samples
--	---------	------------------	-------------------------------	-----------------	----------------

Catalyst	$S_{\text{BET}}/(\text{m}^2 \cdot \text{g}^{-1})$	Pore volume/($cm^3 \cdot g^{-1}$)	Aperture/nm
SiO ₂	480	0.89	5.8
0.5% Rh/SiO2	436	0.86	6.5
10% Sm ₂ O ₃ /SiO ₂	381	0.76	7.0
0.5% Rh-10% Sm ₂ O ₃ /SiO ₂	350	0.73	7.0

图 2 不同负载量的 Rh(acac)₃/SiO₂和 Sm(acac)₃/SiO₂ 样品的红外谱图

Fig.2 IR spectra of the Rh(acac)₃/SiO₂ and Sm(acac)₃/SiO₂ with different M(acac)₃ loadings.

3.2 红外(IR)和热重(TG-DTG)表征

为了考察浸渍过程中乙酰丙酮化合物与 SiO₂ 表面的相互作用,我们采用原位 IR 光谱对不同负 载量 Rh(acac)₃/SiO₂和 Sm(acac)₃/SiO₂样品进行了 表征,相关结果由图 2 所示,图中 3735 cm⁻¹处的 谱峰归属于 SiO₂ 表面孤立羟基的振动⁴⁰,~3660 cm⁻¹处的谱峰归属于乙酰丙酮化合物与 SiO₂表面

羟基形成的弱氢键的振动 $^{40-43}$, 而位于~3502 cm⁻¹ 处的宽峰源于乙酰丙酮化合物与 SiO2 表面羟基形 成的氢键的振动⁴⁰。随着 Rh(acac)3 或 Sm(acac)3 负载量的增加, 3735 cm⁻¹处的振动峰强度逐渐减 弱,在 Rh(acac),和 Sm(acac),的质量分数分别达 到 25.3%和 31%时,该振动峰基本消失,而位于 ~3502 cm⁻¹ 处的宽峰强度则随 M(acac)₃ 负载量的 增加逐渐增强,说明乙酰丙酮化合物主要通过与 SiO2 表面羟基上的 H 形成了氢键而负载于载体上 44, 表面孤立羟基消失时所对应的 Rh(acac), 和 Sm(acac)3的负载量可视为相关物种在SiO2表面的 最大单层吸附量,分别约为 25.3%和 31%,对应 于 Rh 和 Sm₂O₃的质量分数分别约为 8%和 15%。 表 2 列出了负载前后的 Rh(acac); 和 Sm(acac); 在 1300-1650 cm⁻¹ 范围内的谱峰及其指认,其中位 于~1570 和~1520 cm⁻¹ 处的谱峰为乙酰丙酮环上 C==O的对称伸缩振动和C==C==C的非对称伸缩振 动的耦合^{45,46}。1542 cm⁻¹ 处的谱峰为 C-H 面外 变形振动的倍频峰,~1433 和~1446 cm⁻¹ 处的谱峰 为甲基上C-H的非对称变形振动,~1387和~1385 cm⁻¹处为乙酰丙酮环上 C==O 的非对称伸缩振动, ~1362 cm⁻¹ 处的谱峰为甲基上 C-H 的对称变形 振动⁴⁶⁻⁵⁰。负载后 Rh(acac)₃上位于 1542 cm⁻¹ 和 1365 cm⁻¹的振动峰消失,其原因可能是由于负载 后乙酰丙酮化合物受到氢键的扰动或源于构型发 生了变化^{48,51}。而 Sm(acac); 在负载后相关振动峰 只是发生了位移,说明负载后乙酰丙酮化合物并 未发生分解或解离 47,48,51。

图 3 为 3.8% Rh(acac)₃/SiO₂ (对应于 1% Rh/ SiO₂)、22% Sm(acac)₃/SiO₂ (对应于 10% Sm₂O₃/ SiO₂)以及 3.3% Rh(acac)₃-22% Sm(acac)₃/SiO₂ (对 应于 1% Rh-10% Sm₂O₃/SiO₂)样品在空气中加热 分解过程的 TG-DTG 曲线。所有样品在 200 °C 之

表 2 Rh(acac)₃, Sm(acac)₃, Rh(acac)₃/SiO₂ 以及 Sm(acac)₃/SiO₂样品的红外谱峰(cm⁻¹)及其归属 ^a Table 2 Observed frequency (cm⁻¹) and band assignents for the IR spectra of Rh(acac)₃, Sm(acac)₃, Rh(acac)₃/SiO₂ and Sm(acac)₃/SiO₂ samples^a.

				-		
Rh(acac) ₃	Rh(acac) ₃ /SiO ₂	Sm(acac) ₃	Sm(acac) ₃ /SiO ₂	Assignment	Ref.	
-	_	1608	1605	$\delta(OH)$	48	
1566	1570	_	_	$v_{as}(C - C - C) + v_s(C - O)$	45,46	
1542	_	_	_	2[<i>y</i> (C—H)]	46,48	
1516	1520	1517	1520	$v_{as}(C - C - C) + v_s(C - O)$	45,46	
1427	1433	1454	1446	$\delta_{\mathrm{as}}(\mathrm{CH}_3)$	46,48	
1381	1385	1388	1387	$v_{\rm as}(C^{}O)$	49	
1365	_	1360	1362	$\delta_{ m s}(m CH_3)$	46,50	

^av: stretching vibrations; δ : deformation vibrations; γ : out-of-plane vibrations; s: symmetric vibrations; as: antisymmetric vibrations.

Fig.3 TG-DTG curves recorded during the decomposition of Rh(acac)₃-Sm(acac)₃/SiO₂ samples in air.

前均有两个失重峰,主要源于样品脱去物理吸附 的水以及所吸附的乙酰丙酮 52 。3.8% Rh(acac)₃/SiO₂、22% Sm(acac)₃/SiO₂和 3.3% Rh(acac)₃-22% Sm(acac)₃/SiO₂样品分别在 281、363 和 313 °C 处 出现尖锐的失重峰,对应于相关样品上乙酰丙酮 化合物的分解温度。对比三个样品的 DTG 曲线可 以看出, 3.3% Rh(acac)₃-22% Sm(acac)₃/SiO₂的分 解 温 度 介 于 3.8% Rh(acac)₃/SiO₂ 和 22% Sm(acac)₃/SiO₂之间,且只出现一个失重峰,说明 在 3.3% Rh(acac)₃-22% Sm(acac)₃/SiO₂ 上, Rh(acac)₃和 Sm(acac)₃物种同时发生了分解,这有 助于加强分解所生成的 Rh₂O₃和 Sm₂O₃物种之间 的融合,增加两者之间的相互作用。

3.3 X 射线粉末衍射(XRD)

图 4(a)为经空气中 800 °C 焙烧的 x% Sm₂O₃/SiO₂样品的 XRD 图。从图中可以看出,当 Sm₂O₃的负载量在 10%以下时,样品上并没有出 现明显的与 Sm₂O₃ 相关的晶相衍射峰,说明这些 样品上的 Sm₂O₃ 很好地分散于 SiO₂ 表面,并不会 因高温焙烧而发生团聚。当 Sm2O3 的负载量增大 到 15%和 20%时,在 2θ = 28.3°和 47.0°等处开始 出现微弱的立方 Sm₂O₃ 晶相衍射峰。结合图 2 的 IR 表征结果可以发现,只要 Sm(acac)₃的负载量不 超过以 SiO₂ 表面孤立羟基(3735 cm⁻¹)完全消失为 标志的最大单层负载量,均可保证焙烧后生成的 Sm_2O_3 在 SiO₂表面呈高分散状态。当 Sm₂O₃的负 载量增大至 30%后, 立方 Sm₂O₃ 衍射峰的强度显 著增大,说明当 Sm(acac),的负载量超过其在 SiO2 表面的最大单层负载量之后,分解生成的部分 Sm2O3 物种开始团聚。所以为了保证催化剂上的 Sm₂O₃物种的分散度,在浸渍时 Sm(acac)₃的负载 量不宜大于其在 SiO₂表面的最大单层负载量,即 Sm2O3的质量分数不大于15%。在后续实验中, 除表征需要外,我们在制备催化剂时均将 Sm₂O₃ 的负载量定在10%。

图 4(b)为 800 °C 焙烧的 0.5% Rh-y% Sm₂O₃/ SiO₂ 催化剂的 XRD 图。从图中可以看出,0.5% Rh-30% Sm₂O₃/SiO₂ 催化剂在 2*θ* = 28.3°, 32.8°, 47.0° 和 55.8°等位置可检出明显的立方 Sm₂O₃ 晶相衍射 峰,但与 30% Sm₂O₃/SiO₂ 相比,0.5% Rh-30% Sm₂O₃/SiO₂上立方 Sm₂O₃ 的衍射峰明显宽化,说 明 Rh 与 Sm₂O₃ 之间存在着相互作用,Rh 的加入

(a) x% Sm₂O₃/SiO₂; (b) 0.5% Rh-y% Sm₂O₃/SiO₂.

促进了 Sm₂O₃ 的分散。

3.4 程序升温还原(TPR)和 X 射线光电子能谱 (XPS)表征

为了进一步考察 Rh 物种与 Sm₂O₃ 之间的相 互作用,我们对相关样品进行了 H₂-TPR 和 XPS 表征。图 5 为 0.5% Rh/SiO₂和 0.5% Rh-*y*% Sm₂O₃/ SiO₂的 TPR 图。由图可知,经 800 ℃ 焙烧后的 0.5% Rh/SiO₂在 85 和 108 ℃ 处出现了两个还原 峰,分别对应于与载体 SiO₂相互作用较弱和较强 的 Rh₂O₃的还原⁵³。随着 Sm₂O₃含量的增加,Rh₂O₃ 的还原峰温逐渐向高温方向移动,且还原峰逐渐 宽化,在 Sm₂O₃的负载量达到 30%时,在 283 ℃ 处出现了一个新的还原峰,说明 Sm₂O₃与 Rh 之间 存在着较强的相互作用。

为了进一步证实 Sm₂O₃ 与 Rh 间的相互作用, 我们对相关样品进行了 XPS 表征,所得结果见图 6。从图 6 可以看出,800 °C 焙烧的 Rh/SiO₂ 的 Rh 3*d* 峰的结合能位于 308.7 eV,对应于 Rh₂O₃ 物种 ⁵⁴。

(a) 1% Rh/SiO₂; (b) 1% Rh-20% Sm₂O₃/SiO₂.

加入 Sm₂O₃ 并经 800 °C 焙烧后,相关样品的 Rh 3*d* 峰向高结合能方向位移了 0.6 eV, 谱峰的强度也 显著增大,这些结果均表明高分散于 SiO₂表面的 Sm₂O₃与 Rh 之间存在着强的相互作用,进而促进 了 Rh 物种的分散并保证其在高温下不被烧结。

3.5 催化剂的甲烷部分氧化(POM)制合成气性 能测试

为了进一步验证催化剂的高温稳定性,我们 以甲烷部分氧化制合成气为目标反应,对 Rh/SiO₂ 和 Rh-Sm₂O₃/SiO₂的性能进行了考察。图 7 为 700 °C 下 Rh 负载量分别 0.025%和 0.5%的 Rh/SiO₂催 化剂的 POM 反应转化率随时间的变化情况。在近 50 h 的反应时间内,两个催化剂的反应活性均显 著下降。从图 5 的 TPR 表征结果可以看出,Rh/SiO₂ 上 Rh₂O₃物种的还原峰峰温较低,说明 Rh 与 SiO₂ 之间的相互作用较弱,因此在高温反应过程中容 易发生团聚。相关的 TEM 的表征结果表明,经 700 °C 下反应 200 h 后,0.5% Rh/SiO₂ 上 Rh 的平 均粒径由 5.7 nm (图 1)增大至 7.8 nm (图 8),说明 反应过程 Rh 物种的烧结是导致催化剂活性降低 的主要原因。

图 9 为 0.025% Rh-10% Sm₂O₃/SiO₂、 0.025%Rh-10% Sm₂O₃/SiO₂-N 和 0.5% Rh-10% Sm₂O₃/SiO₂ 催化剂的 POM 反应性能。由图可知 Sm₂O₃的添加显著改善了催化剂的活性。在 100 h 内, 0.025% Rh-10% Sm₂O₃/SiO₂ 和 0.5% Rh-10% Sm₂O₃/SiO₂ 催化剂的 CH₄转化率以及 CO 和 H₂ 的 选择性均未出现显著下降。TEM 表征结果表明,

转化率随时间的变化

Fig.7 Plot of CH₄ conversion as a function of reaction time for the POM reaction over Rh/SiO₂ catalysts with different Rh loadings.

Reaction temperature 700 °C, Feed: CH₄/O₂/Ar volume ratio is 2/1/4, GHSV = 1×10^5 mL·g⁻¹·h⁻¹.

图 8 经 700 °C 下 POM 反应后的 Rh/SiO₂和 Rh-Sm₂O₃/SiO₂催化剂的 TEM 照片和 Rh 纳米颗粒粒径分布图 Fig.8 TEM images and size distribution of the Rh nanoparticles of the Rh/SiO₂ and Rh-Sm₂O₃/SiO₂ catalysts after the POM reaction at 700 °C.

(a) 0.5% Rh/SiO₂; (b) 0.5% Rh-10% Sm₂O₃/SiO₂.

Reaction temperature 700 °C, Feed: CH₄/O₂/Ar volume ratio is 2/1/4, GHSV = 1×10^5 mL·g⁻¹·h⁻¹.

经 700 °C 反应 500 h 后,0.5% Rh-10% Sm₂O₃/SiO₂ 催化剂上 Rh 的平均粒径仍保持在 2.3 nm 左右(图 8),说明 Sm₂O₃ 的加入不仅显著提高了 Rh 物种的 分散度和利用率,也极大的改善了 Rh 颗粒的稳定 性,防止其在高温反应条件下烧结,进而使低负 载量(0.025%)的催化剂表现出良好的 POM 反应活 性和稳定性。对比 0.025% Rh-10% Sm₂O₃/SiO₂ 和 0.025% Rh-10% Sm₂O₃/SiO₂-N 的 POM 反应性能 可以发现,在相同的反应条件下,以乙酰丙酮化 合物为前驱体制备的催化剂表现出更好的稳定性,其原因可能与由硝酸盐前驱分解生成的物种 在高温焙烧过程中容易发生团聚有关^{37,55}。

4 结论

以 Rh(acac)₃ 和 Sm(acac)₃ 为前驱体采用简单 浸渍法即可制备出 Rh 平均粒径为 2.3 nm 且具有 良好抗烧结的 Rh-Sm₂O₃/SiO₂ 催化剂。Sm₂O₃ 的添 加可显著提高 Rh 的分散度和抗烧结性能, Rh 负 载量为 0.025%的催化剂的甲烷部分氧化制合成气性能在 100 h 内保持稳定。Rh 负载量为 0.5%的催化剂经 700 ℃ 反应 500 h 后,催化剂上的 Rh 粒子未出现明显团聚。对催化剂制备机理的研究结果表明,在浸渍过程中,乙酰丙酮化合物主要通过与 SiO₂表面羟基上的 H 形成氢键均匀分散于 SiO₂载体表面,在比表面积约为 480 m²·g⁻¹的 SiO₂表面,Sm(acac)₃的最大单层负载量约为 31%,对应于 Sm₂O₃的负载量约为 15%。只要 Sm(acac)₃的负载量约为 15%。只要 Sm(acac)₃的负载量约为 15%。只要 Sm(acac)₃ 的负载量约为 15%。只要 Sm(acac)₃ 的负载量行为 15%。只要 Sm(acac)₃ 在 SiO₂表面呈高分散状态,经 800 °C 焙烧后也不发 生团聚。高分散于 SiO₂表面的 Sm₂O₃ 与 Rh 之间存在着强相互作用,进而促进了 Rh 物种的分散并保证其在高温反应条件下不被烧结。

References

- Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D. F. *Nature* 1991, *352*, 225. doi: 10.1038/352225a0
- Hickman, D. A.; Schmidt, L. D. Science 1993, 259, 343.
 doi: 10.1126/science.259.5093.343
- (3) York, A. P.; Xiao, T.; Green, M. L. *Top. Catal.* 2003, 22, 345.
 doi: 10.1023/A:1023552709642
- (4) Hu, H.; Ruckenstein, E. Adv. Catal. 2004, 48, 297.
 doi: 10.1016/S0360-0564(04)48004-3
- (5) Liu, H.; He, D. Catal. Surv. Asia 2012, 16, 53.
 doi: 10.1007/s10563-012-9133-4
- (6) Al-Sayari, S. A. Open Catal. J. 2013, 6, 17.
 doi: 10.2174/1876214X20130729001
- (7) Enger, B. C.; Lødeng, R.; Holmen, A. Appl. Catal. A: Gen.
 2008, 346, 1. doi: 10.1016/j.apcata.2008.05.018
- (8) Kondratenko, V. A.; Berger-Karin, C.; Kondratenko, E. V. ACS Catal. 2014, 4, 3136. doi: 10.1021/cs5002465
- (9) Ding, C.; Wang, J.; Jia, Y.; Ai, G.; Liu, S.; Liu, P.; Zhang, K.;
 Han, Y.; Ma, X. Int. J. Hydrogen Energy 2016, 41, 10707.
 doi: 10.1016/j.ijhydene.2016.04.110
- (10) Wang, S.; Zhao, Q. F.; Wei, H. M.; Wang, J. Q.; Cho, M. Y.;
 Cho, H. S.; Terasaki, O.; Wan, Y. J. Am. Chem. Soc. 2013, 135, 11849. doi: 10.1021/ja403822d
- (11) Sun, J. M.; Ma, D.; Zhang, H.; Liu, X. M.; Han, X. W.; Bao, X. H.; Weinberg, G.; Pfänder, N.; Su, D. S. J. Am. Chem. Soc. 2006, 128, 15756. doi: 10.1021/ja064884j
- (12) Jin, Y. X.; Liu, Z. J.; Chen, W. X.; Xu, Z. D. Acta Phys. -Chim. Sin. 2002, 18, 459. [金亚旭, 刘宗健. 物理化学学报, 2002, 18, 459.] doi: 10.3866/PKU.WHXB20020516
- (13) Ungureanu, A.; Dragoi, B.; Chirieac, A.; Royer, S.; Duprez, D.;
 Dumitriu, E. J. Mater. Chem. 2011, 21, 12529.

doi: 10.1039/C1JM10971E

- (14) Zhao, P. J.; Wu, R.; Hou, J.; Chang, A. M.; Guan, F.; Zhang, B. *Acta Phys. -Chim. Sin.* 2012, *28*, 1971. [赵鹏君, 吴 荣, 侯 娟, 常爱民, 关 芳, 张 博. 物理化学学报, 2012, *28*, 1971.] doi: 10.3866/PKU.WHXB201206111
- (15) Zhu, H. G.; Lee, B.; Dai, S.; Overbury, S. H. Langmuir 2003, 19, 3974. doi: 10.1021/la027029w
- (16) De Rogatis, L.; Cargnello, M.; Gombac, V.; Lorenzut, B.;
 Montini, T.; Fornasiero, P. *ChemSusChem* 2010, *3*, 24.
 doi: 10.1002/cssc.200900151
- (17) Yang, X. Y.; Sun, S.; Ding, J. J.; Zhang, Y.; Zhang, M. M.; Gao, C.; Bao, J. *Acta Phys. -Chim. Sin.* 2012, 28, 1957. [杨晓艳, 孙 松, 丁建军, 张 义, 张曼曼, 高 琛, 鲍 骏. 物理 化学学报, 2012, 28, 1957.]
 doi: 10.3866/PKU.WHXB201206011
- (18) Lu, J. L.; Fu, B. S.; Kung, M. C.; Xiao, G. M.; Elam, J. W.;
 Kung, H. H.; Stair, P. C. *Science* 2012, *335*, 1205.
 doi: 10.1126/science.1212906
- Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.;
 Somorjai, G. A. *Nat. Mater.* 2009, *8*, 126.
 doi: 10.1038/NMAT2329
- (20) Forman, A. J.; Park, J. N.; Tang, W.; Hu, Y. S.; Stucky, G. D.; McFarland, E. W. *ChemCatChem* 2010, *2*, 1318. doi: 10.1002/cctc.201000015
- (21) Arnal, P. M.; Comotti, M.; Schüth, F. Angew. Chem. Int. Ed.
 2006, 118, 8404. doi: 10.1002/ange.200603507
- (22) Radloff, C.; Halas, N. J. Appl. Phys. Lett. 2001, 79, 674.
 doi: 10.1063/1.1389322
- (23) Xu, Y.; Ma, J. Q.; Xu, Y. F.; Xu, L.; Xu, L.; Li, H. X.; Li, H. *RSC Adv.* **2013**, *3*, 851. doi: 10.1039/C2RA22832G
- (24) Ruckenstein, E.; Hu, Y. H. Appl. Catal. A: Gen. 1999, 183, 85.
 doi: 10.1016/S0926-860X(99)00047-2
- (25) Chu, W.; Yan, Q.; Liu, S.; Xiong, G. Stud. Surf. Sci. Catal.
 2000, 130, 3573. doi: 10.1016/S0167-2991(00)80577-7
- (26) Djinović, P.; Batista, J.; Pintar, A. Int. J. Hydrogen Energy
 2012, 37, 2699. doi: 10.1016/j.ijhydene.2011.10.107
- Miyazawa, T.; Okumura, K.; Kunimori, K.; Tomishige, K.
 J. Phys. Chem. C. 2008, 112, 2574. doi: 10.1021/jp076385q
- (28) Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science
 2003, 301, 935. doi: 10.1126/science.1085721
- Bera, P.; Priolkar, K. R.; Gayen, A.; Sarode, P. R.; Hegde, M.
 S.; Emura, S.; Kumashiro, R.; Jayaram, V.; Subbanna, G. N.
 Chem Mater. 2003, *15*, 2049. doi: 10.1021/cm0204775
- (30) Matolínová, I.; Fiala, R.; Khalakhan, I.; Vorokhta, M.; Sofer,
 Z.; Yoshikawa, H.; Kobayashi, K.; Matolín, V. *Appl. Surf. Sci.* **2012**, *258*, 2161. doi: 10.1016/j.apsusc.2011.02.119

- (31) Matolín, V.; Matolínová, I.; Václavů, M.; Khalakhan, I.;
 Vorokhta, M.; Fiala, R.; Piš, I.; Sofer, Z.; Poltierová-Vejpravová, J.; Mori, T.; Potin, V.; Yoshikawa, H.; Ueda, S.;
 Kobayashi, K. *Langmuir* 2010, *26*, 12824.
 doi: 10.1021/la100399t
- (32) Miyazawa, T.; Okumura, K.; Kunimori, K.; Tomishige, K.
 J. Phys. Chem. C. 2008, 112, 2574. doi: 10.1021/jp076385q
- (33) Choudhary, V. R.; Prabhakar, B.; Rajput, A. M.; Mamman, A. S.
 Fuel **1998**, 77, 1477. doi: 10.1016/S0016-2361(98)00063-5
- (34) Duarte, R. B.; Nachtegaal, M.; Bueno, J. M. C.; Van Bokhoven,
 J. A. J. Catal. 2012, 296, 86. doi: 10.1016/j.jcat.2012.09.007
- (35) Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; Larese,
 C.; Omil, J. A. P.; Pintado, J. M. *Catal. Today* 1999, *50*, 175.
 doi: 10.1016/S0920-5861(98)00503-3
- (36) Wang, R.; Xu, H.; Liu, X.; Ge, Q.; Li, W. Appl. Catal. A: Gen.
 2006, 305, 204. doi: 10.1016/j.apcata.2006.03.021
- (37) Li, B.; Weng, W. Z.; Zhang, Q.; Wang, Z. W.; Wan, H. L. ChemCatChem 2011, 3, 1277. doi: 10.1002/cctc.201100043
- Weng, W. Z.; Chen, M. S.; Yan, Q. G.; Wu, T. H.; Chao, Z. S.;
 Liao, Y. Y.; Wan, H. L. *Catal. Today.* 2000, 63, 317.
 doi: 10.1016/S0920-5861(00)00475-2
- Liu, Y.; Huang, F. Y.; Li, J. M.; Weng, W. Z.; Luo, C. R.; Wang,
 M. L.; Xia, W. S.; Huang, C. J.; Wan, H.L. J. Catal. 2008, 256,
 192. doi: 10.1016/j.jcat.2008.03.009
- (40) McDonald, R. S. J. Phys. Chem. 1958, 62, 1168.
 doi: 10.1021/j150568a004
- (41) Davydov, V. Y.; Kiselev, A. V.; Zhuravlev, L. T. Trans.
 Faraday Soc. 1964, 60, 2254. doi: 10.1039/TF9646002254
- (42) Gorbunov, B. Z.; Safatov, A. S. J. Appl. Spectrosc. 1982, 36,

328. doi: 10.1007/BF00659769

- (43) Basila, M. R. J. Chem. Phys. 1961, 35, 1151.
 doi: 10.1063/1.1732016
- (44) Xie, Y. H.; Li, B.; Weng, W. Z.; Zheng, Y. P.; Zhu, K. T.; Zhang,
 N. W.; Huang, C. J.; Wan, H. L. *Appl. Catal. A: Gen.* 2015, *504*, 179. doi: 10.1016/j.apcata.2014.12.008
- (45) Mikami, M.; Nakagawa, I.; Shimanouchi, T. Spectrochim. Acta Part A 1967, 23, 1037. doi: 10.1016/0584-8539(67)80027-8
- (46) Mitchell, M. B.; Chakravarthy, V. R.; White, M. G. Langmuir
 1994, 10, 4523. doi: 10.1021/la00024a023
- (47) Kenvint, J. C.; White, M. G.; Mitchell, M. B. *Langmuir* 1991, 7, 1198. doi: 10.1021/la00054a030
- (48) Van Der Voort, P.; White, M. G.; Vansant, E. F. *Langmuir* 1998, 14, 106. doi: 10.1021/la970248a
- (49) Babich, I. V.; Plyuto, Y. V.; Van Der Voort, P.; Vansant, E. F. J. Colloid Interface Sci. 1997, 189, 144.
 doi: 10.1006/jcis.1997.4798
- (50) Nakamoto, K.; Martell, A. E. J. Chem. Phys. 1960, 32, 588.
 doi: 10.1063/1.1730741
- (51) Kiselev, A. V.; Lygin, V. I. Infrared Spectra of Surface Compounds; John Wiley and Sons: New York, 1975; p 211
- (52) Zhuravlev, L. T. Colloids Surf. A. 2000, 173, 1.
 doi: 10.1016/S0927-7757(00)00556-2
- (53) Trovarelli, A.; De Leitenburg, C.; Dolcetti, G.; Lorca, J. L.
 J. Catal. **1995**, *151*, 111. doi: 10.1006/jcat.1995.1014
- (54) Krause, K. R.; Schabes-Retchkiman, P.; Schmidt, L. D.
 J. Catal. 1992, 134, 204. doi: 10.1016/0021-9517(92)90222-4
- (55) Li, B.; Li, H.; Weng, W. Z.; Zhang, Q.; Huang, C. J.; Wan, H. L. Fuel 2013, 103, 1032. doi: 10.1016/j.fuel.2012.09.059