渣油加氢装置间断注水量的核算

1.中化泉州石化有限公司 2.厦门大学化工学院 谢六英 12 张 铭 12 周 华 2

[摘要] 针对渣油加氢过程中产生的硫化氢、氨气、氯化氢等气体在工艺流程的低温段易发生结盐堵塞管道的问题,采用间断注水操作,以便溶解生成的铵盐。为使该工程方案得以实现,该文首先粗略估算了该过程的注水量,在此基础上对该工艺进行模拟,然后在模拟的基础上确定间断注水量,模拟得到的结果比粗略估算更精确,为该过程的优化及工业过程的稳定运行提供了理论依据。

[关键词] 渣油加氢装置 间断注水 化学流程模拟

渣油加氢技术是将重质渣油进行深度加工的主要工艺技 术,能将渣油中的硫、氮、金属等杂质大部分脱除,降低残 碳含量,具有改善油品质量、环境友好、低碳、效益显著和 实现石油资源的高效利用等优势,已被广泛应用[1]。早期典 型的加氢装置多采用高压冷分离反应器流出物的流程(简称 冷高分流程),当加工硫含量、芳烃含量高的原料时,采用 冷高分流程易导致反应系统压降增加、传热效率下降及非计 划停车等问题[2],而采用热高压分离流程(简称热高分流程) 便是有效的手段之一。热高分流程的特点是反应器流出的反 应生成物经过换热降温至约 360 , 进入热高分进行气液两 相分离。反应生成的硫化氢、氨、氯化氢大部分进入热高分 气中,少量溶解在热高分油中。热高分流程有效控制了稠环 芳烃(PNA)积累造成高压换热器和高压空冷器管内结垢堵 塞的问题,可保证装置长周期运行等优点。但硫化氢和氨在 低于 120 时会生成硫氢化铵晶体 氯化氢和氨在低于 200 时会生成氯化铵晶体[3]。为防止铵盐结晶堵塞管道,可在管 道中注水,以溶解铵盐。但是如何注水,注水量如何把握在 目前还缺乏相关的理论支撑。由于渣油中氯离子较少,所以 生成的氯化铵也很少,故可考虑间断注入少部分水的方法将 其溶解。为验证该方法的可行性,下面以中化泉州石化渣油 加氢装置中热高分流程为例,探讨计算间断注水量。

1 流程描述

如图 1 所示 经渣油加氢反应器反应后流出物进入 V-103 中进行气液分离 热高分气相温度 T1 为 353 ,首先在 E-106 中与循环气换热至 T2 (228.4),再进入 E-107 低压蒸汽发生器降温至 T3 (190),随后经过空冷冷却至 50 进入

冷高分。大部分硫化氢、氨、氯化氢以气体形式进入热高分中。氯化铵的结晶温度在 200 , 会在 E-107 中析出,为防止结晶的铵盐堵塞管道,所以在 E-107 前设置间断注水。间断注水要保证有足够的液态水溶解氯化铵,但是由于注水点温度较高,水进入热高分气后会大量汽化,所以要对间断注水量进行核算。

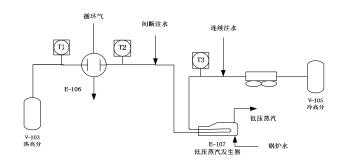


图 1 泉州石化注水流程

核算前,首先需确定热高分气的组分含量,热高分气经后续工艺操作后分为冷高分油及冷高分气,冷高分油的实验室分析数据如表 1 所示。表 1 含量数据所对应的操作时段的冷高分油流量为 15 t/h。由于冷高分气含有大量的硫化氢,不方便取样分析,而循环气比较容易取样分析,但根据流程分析,可以认为冷高分气由循环气、排放气及反应产生的硫化氢气体构成,循环气分析数据如表 2 所示。循环气流量为 $18.7 \times 10^4 \, \text{Nm}^3 / \text{h}$,排放气的流量为 $2.3 \times 10^4 \, \text{Nm}^3 / \text{h}$,,即称不生的硫化氢大部分存在于循环气中,通过计算得出热高分气中硫化氢流量约 $6.5 \, \text{t/h}$ 。

技术报告

表 1 冷高分油分析数据

馏出量	初馏点	10%	30%	50%	70%	90%	95%	终馏点
温度()	144.8	180	245.8	298.4	353.4	403.4	455.8	504

注:20 密度为 833kg/m³。

表 2 循环气分析数据

组分	甲烷	乙烷	丙烷	异丁烷	正丁烷	异戊烷	正戊烷	氢气
含量/%	5.67	2.05	1.19	0.12	0.48	0.1	0.14	90.25

2 间断注水量的估算

间断注水的流量至少要保证热高分气中有足够的液态水存在,为此也可以估算一下需要的注水量。

首先假定注入的水刚好全部汽化达到饱和状态,汽化后水蒸气的体积为 V_I 。注水后的热高分气的气相部分主要包括循环气、排放气、硫化氢以及部分油气。循环气流量为 $18.7\times10^4\,\mathrm{Nm}^3/\mathrm{h}$,排放气的流量为 $2.3\times10^4\,\mathrm{Nm}^3/\mathrm{h}$,硫化氢的质量流量为 $6.5\,\mathrm{t/h}$,换算成体积流量为 $4300\,\mathrm{Nm}^3/\mathrm{h}$ 。油气的体积流量难以确定,但热高分气为饱和气相,经过 $E-106\,\mathrm{换热及注水之后,温度降低幅度比较大,故大部分油气已经冷凝;油的分子量比较大,油汽化以后的体积与循环气的体积流量比,可以忽略不计。为此可忽略油气的体积流量,这将大大简化计算过程。$

计算注水量还需要确定注水后的温度和压力。注水后,热高分气温度会大大降低,然后在 E-107 内与饱和水换热。 1.0MPa 饱和水的温度为 180 ,若注水后热高分气温度低于 180 ,热高分气会在汽包内被饱和水加热至约 180 ;若注水后热高分气温度高于 180 ,注水前与 E-107 换热后的温度为 190 ,考虑到注水的降温作用,注水后 E-107 出口温度应该在 180~190 之间。所以可以认为注水后的温度约为 180 。

注水后,热高分气的压力为冷高分的压力加上管线及空冷的阻力降,冷高分压力为 15.74MPa,根据经验,空气冷却器的压力降约为 0.2MPa,所以可以计算出注水后的压力约为 16MPa。

根据上面分析,得到热高分气标态下的体积流量为 $21.43\times10^4~\mathrm{Nm^3/h}$,由于氢气的分子量非常小,分子体积也非常小,在高压下的实际气体与理想气体偏差不是很大,所以 用理想气体状态方程可算出实际的体积流量为 $2070\mathrm{m^3/h}$ 。 180 时饱和蒸汽的压力为 $1.0\mathrm{MPa}$,则根据分压定律, $V_1/(V_1+2070)=1/16$,得出 $V_1=138~\mathrm{m^3/h}$ 。则注水后的总体积流量为 $138+2070=2208~\mathrm{m^3/h}$ 。然后查到 $1.0\mathrm{MPa}$ 下饱和水蒸气的 比 容 为 $0.194\mathrm{m^3/kg}$,则 水 蒸 气 的 质 量 流 量 为 $2208/0.194=11381(\mathrm{kg/h})=11.4(\mathrm{t/h})$ 。注水流量为每小时 $11.4~\mathrm{t}$,热高分气中的水蒸气刚好达到饱和状态,继续加大注水量,超过 $11.4\mathrm{t}$ 的部分将以液态存在。

3 流程模拟及核算

流程模拟采用 Aspen Plus , 具体操作步骤为:首先启动 ASPEN PLUS , 选择模板 petroleum with metric units , 运行类型选择 assay data analysis。进入 components |specifications |selection 页面 ,在 component ID 中输入 oil , type 选择 assay。然后进入 components | assay/blend | oil | basic data | dist curve 页面 ,蒸馏曲线类型(distillation curve type)选择 ASTM 2887 (2) ,然后输入表 1 中的蒸馏数据和密度。

上述设定完成以后,开始运行计算,可以得到冷高分油的虚拟馏分数据,如表3所示。在此基础上便可针对该物料进行热量衡算和相平衡计算。

渣油加氢装置间断注水量的核算

表 3 冷高分油虚拟馏分数据

虚拟组分	正常沸点()	API 重度	· 比重	UOP K	分子量	临界温度()	临界压力(bar)
PC159C	159.206135	54.6640125	0.76008246	12.1016344	136.609807	341.281225	23.4935176
PC170C	170.082317	53.1286669	0.76640319	12.1016344	143.44024	352.189974	22.6121115
PC184C	184.325525	51.1923316	0.77452621	12.1016344	152.78118	366.358553	21.5376788
PC197C	197.331897	49.4930787	0.78179785	12.1016344	161.712211	379.184752	20.6281303
PC211C	211.334279	47.7323408	0.78947806	12.1016344	171.765237	392.87812	19.717701
PC225C	225.283914	46.0444408	0.79698356	12.1016344	182.241663	406.40559	18.8747844
PC239C	239.236031	44.4180948	0.80435159	12.1016344	193.189653	419.825453	18.0895706
PC253C	253.132798	42.85586	0.81155861	12.1016344	204.569552	433.086534	17.359636
PC267C	266.970293	41.3540032	0.81860991	12.1016344	216.379805	446.189953	16.6798658
PC281C	280.801578	39.9032315	0.82553869	12.1016344	228.668946	459.190001	16.0431946
PC295C	294.614717	38.5017818	0.83234422	12.1016345	241.430799	472.078842	15.4464031
PC309C	308.581529	37.1302198	0.83911413	12.1016345	254.836146	485.018416	14.8793185
PC322C	322.499111	35.8064846	0.84575323	12.1016345	268.669631	497.822554	14.3476039
PC336C	336.416534	34.5233738	0.85228963	12.1016345	283.070052	510.53958	13.846529
PC351C	350.547086	33.2599692	0.85882512	12.1016345	298.180758	523.365007	13.366649
PC363C	363.190208	32.1614841	0.8645895	12.1016345	312.145369	534.768709	12.9600893
PC377C	377.270195	30.9719032	0.87091982	12.1016345	328.189635	547.390938	12.5308078
PC392C	391.540917	29.8007397	0.87724334	12.1016345	344.978562	560.103695	12.1191349
PC406C	406.454025	28.6121514	0.88375554	12.1016345	363.085566	573.302719	11.712247
PC420C	419.656315	27.5885761	0.88944161	12.1016345	379.58941	584.917741	11.3704954
PC441C	441.050917	25.9838921	0.89850459	12.1016345	407.262508	603.604126	10.8504973
PC461C	460.675769	24.5673135	0.90666006	12.1016345	433.630118	620.601674	10.4071092

进入 setup| specifications| global 页面,将运行模式(run type)由 assay data analysis 改为 flowsheet,关闭数据浏览窗口,进入 process flowsheet 页面,建立如图 2 所示的流程图,流程模拟中,物性方法选择 PENG-ROB。

如图 2 所示,热高分气经过 E-106 换热后注入间断注水,为了方便观察间断注水后的油、水、气三相的流量,在注水后面的管路虚拟了一个闪蒸罐。已知循环气的流量和组成,我们可以计算各组分的质量流量,结果如表 4 所示。

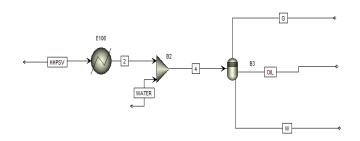


图 2 间断注水模拟流程

表 4 循环气各组分质量流量

内容	CH ₄	C_2H_6	C_3H_8	nC_4H_{10}	iC_4H_{10}	nC_5H_{12}	iC_5H_{12}	H_2
质量流量/kg·h ⁻¹	8505	5765.625	4908.75	652.5	2610	945	675	16921.88
体积百分数/%	5.67	2.05	1.19	0.12	0.48	0.14	0.1	90.25

2016 年第 9 期 (总第 117 期)

32

然后开始输入进料组成及流量。假定间断注水量为 10t/h。参数输入完毕,开始运行模拟计算,详细结果如表 5 所示。

= -		1 55	<i></i> +		
表 5	. 77	算	Ζ±	9	_
28 0	' '	J # 1	-0	7	╮

内容	2	4	G	HHPSV	OIL	W	WATER
温度/	228.0	164.0	164.4	353.0	164.4	164.4	65.0
压力/bar	160.0	160.0	160.0	160.0	160.0	160.0	160.0
质量流量/kg・h ⁻¹	62483.7	72483.7	59099.9	62483.7	13305.4	78.4	10000.0

从表 5 可见,若注水量为 10 t/h,在热高分气的分离流程中只有 78.4 kg/h 的液态水存在,说明在该操作条件下,大量的水均已经汽化为蒸汽,难以实现加水的作用。由于此时气体中的水蒸气已经达到饱和状态,继续加大注水量,多注入的水都会以液态存在,对于所结盐的溶解具有较大的作用。

4 结论

两种方法计算的结果不完全相同,主要是注水后终温不同导致。但结果偏差不大,操作的时候可以根据计算值再进行适当放大,保证有足够的水来溶解铵盐。此外,注水会让热高分气的温度发生大幅变化,为了减少对设备的冲击,应该缓慢增加注水量。

参考文献:

- [1] 方向晨. 国内外渣油加氢处理技术发展现状与分析[J]. 化工进展,2011, 30(1): 95-97.
- [2] 朱华兴,叶杏园. 热高分分离流程在加氢裂化装置中的应用[J]. 炼油设计,1995,25(5):1-5.
- [3] 李大东,聂红,孙丽. 加氢处理工艺与工程[M]. 北京:中国石化出版社, 2004.
- [4] 孙兰义. 化学流程模拟实训——Aspen Plus 教程[M]. 北京:化学工程出版社,2012.

(上接第20页)

- [3] 张思家,张君枝,马文林.微生物修复剂投加量对铜绿微囊藻生长的影响研究[J].环境工程,2015,32(S1):162-165,220.
- [4] 毕相东,张树林,丛方地,等.盐酸小檗碱纳米乳的抑藻性能研究[J]. 环境科学与技术,2014,37(6):21-24.
- [5] 蒋道松,张俭,尉苏娟,等. 电厂冷却水系统杀藻剂除藻试验研究[J]. 长沙电力学院学报(自然科学版),2000,15(2):83-86.
- [6] 赵晓蕾,张跃军,李潇潇,等. AS/PDM 复合混凝剂对冬季太湖原水除藻效果研究[J]. 环境科学,2009,30(4):1024-1028.
- [7] 张跃军,李潇潇,赵晓蕾,等. PAC/PDM 复合混凝剂用于春季长江水制水生产研究[J]. 环境科学,2008,29(8):2196-2199.
- [8] 李想,吴耀国,聂国庆,等. 高锰酸钾及其复合药剂在水处理中的应用[J].

化工进展,2007,26(12):1712-1716.

- [9] Petrusevski B, VAN B A N, Alaevts G. Effect of perman-ganate pretreatment and coagulation with dual coagulants on algae removal in direct filtration[J].Water SRT-Aqua,1996,45(5):316-319.
- [10] Bernhardr H, Clasen J. Flocculation of mico-organism[J]. JSRT-Aqua, 1991, 40(2): 76-79.
- [11] 由振华,李梅,田珍. 高锰酸钾复合药剂在含藻水处理中的应用[J]. 山东建筑大学学报,2010,25(4):438-439.
- [12] 汤鸿霄. 无机高分子絮凝理论与絮凝剂[M]. 北京:中国建筑工业出版 社,2006.
- [13] 陈卫,李圭白,邹浩春. PPC 强化混凝除蓝藻除色度效果及致因研究[J]. 河海大学学报,2006,34(2):140-143.